xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 0fe46dc6)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_directio.h"
48 #include "opt_inet.h"
49 #include "opt_msgbuf.h"
50 #include "opt_swap.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysproto.h>
55 #include <sys/signalvar.h>
56 #include <sys/kernel.h>
57 #include <sys/linker.h>
58 #include <sys/malloc.h>
59 #include <sys/proc.h>
60 #include <sys/priv.h>
61 #include <sys/buf.h>
62 #include <sys/reboot.h>
63 #include <sys/mbuf.h>
64 #include <sys/msgbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sysctl.h>
67 #include <sys/vmmeter.h>
68 #include <sys/bus.h>
69 #include <sys/usched.h>
70 #include <sys/reg.h>
71 #include <sys/sbuf.h>
72 #include <sys/ctype.h>
73 #include <sys/serialize.h>
74 #include <sys/systimer.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/lock.h>
79 #include <vm/vm_kern.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_pager.h>
84 #include <vm/vm_extern.h>
85 
86 #include <sys/thread2.h>
87 #include <sys/mplock2.h>
88 #include <sys/mutex2.h>
89 
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
93 
94 #include <sys/efi.h>
95 
96 #include <ddb/ddb.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/clock.h>
100 #include <machine/specialreg.h>
101 #if 0 /* JG */
102 #include <machine/bootinfo.h>
103 #endif
104 #include <machine/md_var.h>
105 #include <machine/metadata.h>
106 #include <machine/pc/bios.h>
107 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
108 #include <machine/globaldata.h>		/* CPU_prvspace */
109 #include <machine/smp.h>
110 #include <machine/cputypes.h>
111 #include <machine/intr_machdep.h>
112 #include <machine/framebuffer.h>
113 
114 #ifdef OLD_BUS_ARCH
115 #include <bus/isa/isa_device.h>
116 #endif
117 #include <machine_base/isa/isa_intr.h>
118 #include <bus/isa/rtc.h>
119 #include <sys/random.h>
120 #include <sys/ptrace.h>
121 #include <machine/sigframe.h>
122 
123 #include <sys/machintr.h>
124 #include <machine_base/icu/icu_abi.h>
125 #include <machine_base/icu/elcr_var.h>
126 #include <machine_base/apic/lapic.h>
127 #include <machine_base/apic/ioapic.h>
128 #include <machine_base/apic/ioapic_abi.h>
129 #include <machine/mptable.h>
130 
131 #define PHYSMAP_ENTRIES		10
132 
133 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
134 
135 extern void printcpuinfo(void);	/* XXX header file */
136 extern void identify_cpu(void);
137 #if 0 /* JG */
138 extern void finishidentcpu(void);
139 #endif
140 extern void panicifcpuunsupported(void);
141 
142 static void cpu_startup(void *);
143 static void pic_finish(void *);
144 static void cpu_finish(void *);
145 
146 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
147 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
152 
153 extern void pcpu_timer_always(struct intrframe *);
154 
155 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
156 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
157 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
158 
159 #ifdef DDB
160 extern vm_offset_t ksym_start, ksym_end;
161 #endif
162 
163 struct privatespace CPU_prvspace_bsp __aligned(4096);
164 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
165 
166 int	_udatasel, _ucodesel, _ucode32sel;
167 u_long	atdevbase;
168 int64_t tsc_offsets[MAXCPU];
169 cpumask_t smp_idleinvl_mask;
170 cpumask_t smp_idleinvl_reqs;
171 
172 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
173 
174 #if defined(SWTCH_OPTIM_STATS)
175 extern int swtch_optim_stats;
176 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
177 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
178 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
179 	CTLFLAG_RD, &tlb_flush_count, 0, "");
180 #endif
181 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
182 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
183 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
184     "monitor/mwait target state");
185 
186 #define CPU_MWAIT_HAS_CX	\
187 	((cpu_feature2 & CPUID2_MON) && \
188 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
189 
190 #define CPU_MWAIT_CX_NAMELEN	16
191 
192 #define CPU_MWAIT_C1		1
193 #define CPU_MWAIT_C2		2
194 #define CPU_MWAIT_C3		3
195 #define CPU_MWAIT_CX_MAX	8
196 
197 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
198 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
199 
200 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
201 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
202 
203 struct cpu_mwait_cx {
204 	int			subcnt;
205 	char			name[4];
206 	struct sysctl_ctx_list	sysctl_ctx;
207 	struct sysctl_oid	*sysctl_tree;
208 };
209 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
210 static char			cpu_mwait_cx_supported[256];
211 
212 static int			cpu_mwait_c1_hints_cnt;
213 static int			cpu_mwait_hints_cnt;
214 static int			*cpu_mwait_hints;
215 
216 static int			cpu_mwait_deep_hints_cnt;
217 static int			*cpu_mwait_deep_hints;
218 
219 #define CPU_IDLE_REPEAT_DEFAULT	750
220 
221 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
222 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
223 static u_int			cpu_mwait_repeat_shift = 1;
224 
225 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
226 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
227 
228 static int			cpu_mwait_c3_preamble =
229 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
230 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
231 
232 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
233     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
234 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
235     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
236 
237 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
238 		    int *, boolean_t);
239 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
240 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
241 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
242 
243 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
244     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
245 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
246     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
247 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
248     &cpu_mwait_repeat_shift, 0, "");
249 
250 long physmem = 0;
251 
252 u_long ebda_addr = 0;
253 
254 int imcr_present = 0;
255 
256 int naps = 0; /* # of Applications processors */
257 
258 u_int base_memory;
259 struct mtx dt_lock;		/* lock for GDT and LDT */
260 
261 static int
262 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
263 {
264 	u_long pmem = ctob(physmem);
265 
266 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
267 	return (error);
268 }
269 
270 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
271 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
272 
273 static int
274 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
275 {
276 	int error = sysctl_handle_int(oidp, 0,
277 		ctob(physmem - vmstats.v_wire_count), req);
278 	return (error);
279 }
280 
281 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
282 	0, 0, sysctl_hw_usermem, "IU", "");
283 
284 static int
285 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
286 {
287 	int error = sysctl_handle_int(oidp, 0,
288 		x86_64_btop(avail_end - avail_start), req);
289 	return (error);
290 }
291 
292 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
293 	0, 0, sysctl_hw_availpages, "I", "");
294 
295 vm_paddr_t Maxmem;
296 vm_paddr_t Realmem;
297 
298 /*
299  * The number of PHYSMAP entries must be one less than the number of
300  * PHYSSEG entries because the PHYSMAP entry that spans the largest
301  * physical address that is accessible by ISA DMA is split into two
302  * PHYSSEG entries.
303  */
304 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
305 
306 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
307 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
308 
309 /* must be 2 less so 0 0 can signal end of chunks */
310 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
311 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
312 
313 static vm_offset_t buffer_sva, buffer_eva;
314 vm_offset_t clean_sva, clean_eva;
315 static vm_offset_t pager_sva, pager_eva;
316 static struct trapframe proc0_tf;
317 
318 static void
319 cpu_startup(void *dummy)
320 {
321 	caddr_t v;
322 	vm_size_t size = 0;
323 	vm_offset_t firstaddr;
324 
325 	/*
326 	 * Good {morning,afternoon,evening,night}.
327 	 */
328 	kprintf("%s", version);
329 	startrtclock();
330 	printcpuinfo();
331 	panicifcpuunsupported();
332 	kprintf("real memory  = %ju (%ju MB)\n",
333 		(intmax_t)Realmem,
334 		(intmax_t)Realmem / 1024 / 1024);
335 	/*
336 	 * Display any holes after the first chunk of extended memory.
337 	 */
338 	if (bootverbose) {
339 		int indx;
340 
341 		kprintf("Physical memory chunk(s):\n");
342 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
343 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
344 
345 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
346 				(intmax_t)phys_avail[indx],
347 				(intmax_t)phys_avail[indx + 1] - 1,
348 				(intmax_t)size1,
349 				(intmax_t)(size1 / PAGE_SIZE));
350 		}
351 	}
352 
353 	/*
354 	 * Allocate space for system data structures.
355 	 * The first available kernel virtual address is in "v".
356 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
357 	 * As pages of memory are allocated and cleared,
358 	 * "firstaddr" is incremented.
359 	 * An index into the kernel page table corresponding to the
360 	 * virtual memory address maintained in "v" is kept in "mapaddr".
361 	 */
362 
363 	/*
364 	 * Make two passes.  The first pass calculates how much memory is
365 	 * needed and allocates it.  The second pass assigns virtual
366 	 * addresses to the various data structures.
367 	 */
368 	firstaddr = 0;
369 again:
370 	v = (caddr_t)firstaddr;
371 
372 #define	valloc(name, type, num) \
373 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
374 #define	valloclim(name, type, num, lim) \
375 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
376 
377 	/*
378 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
379 	 * For the first 64MB of ram nominally allocate sufficient buffers to
380 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
381 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
382 	 * the buffer cache we limit the eventual kva reservation to
383 	 * maxbcache bytes.
384 	 *
385 	 * factor represents the 1/4 x ram conversion.
386 	 */
387 	if (nbuf == 0) {
388 		long factor = 4 * NBUFCALCSIZE / 1024;
389 		long kbytes = physmem * (PAGE_SIZE / 1024);
390 
391 		nbuf = 50;
392 		if (kbytes > 4096)
393 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
394 		if (kbytes > 65536)
395 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
396 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
397 			nbuf = maxbcache / NBUFCALCSIZE;
398 	}
399 
400 	/*
401 	 * Do not allow the buffer_map to be more then 1/2 the size of the
402 	 * kernel_map.
403 	 */
404 	if (nbuf > (virtual_end - virtual_start +
405 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
406 		nbuf = (virtual_end - virtual_start +
407 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
408 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
409 	}
410 
411 	/*
412 	 * Do not allow the buffer_map to use more than 50% of available
413 	 * physical-equivalent memory.  Since the VM pages which back
414 	 * individual buffers are typically wired, having too many bufs
415 	 * can prevent the system from paging properly.
416 	 */
417 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
418 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
419 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
420 	}
421 
422 	/*
423 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
424 	 * the valloc space which is just the virtual_end - virtual_start
425 	 * section.  We use valloc() to allocate the buf header array.
426 	 */
427 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
428 		nbuf = (virtual_end - virtual_start) /
429 		       sizeof(struct buf) / 2;
430 		kprintf("Warning: nbufs capped at %ld due to valloc "
431 			"considerations\n", nbuf);
432 	}
433 
434 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
435 #ifdef NSWBUF_MIN
436 	if (nswbuf_mem < NSWBUF_MIN)
437 		nswbuf_mem = NSWBUF_MIN;
438 #endif
439 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
440 #ifdef NSWBUF_MIN
441 	if (nswbuf_kva < NSWBUF_MIN)
442 		nswbuf_kva = NSWBUF_MIN;
443 #endif
444 #ifdef DIRECTIO
445 	ffs_rawread_setup();
446 #endif
447 
448 	valloc(swbuf_mem, struct buf, nswbuf_mem);
449 	valloc(swbuf_kva, struct buf, nswbuf_kva);
450 	valloc(buf, struct buf, nbuf);
451 
452 	/*
453 	 * End of first pass, size has been calculated so allocate memory
454 	 */
455 	if (firstaddr == 0) {
456 		size = (vm_size_t)(v - firstaddr);
457 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
458 		if (firstaddr == 0)
459 			panic("startup: no room for tables");
460 		goto again;
461 	}
462 
463 	/*
464 	 * End of second pass, addresses have been assigned
465 	 *
466 	 * nbuf is an int, make sure we don't overflow the field.
467 	 *
468 	 * On 64-bit systems we always reserve maximal allocations for
469 	 * buffer cache buffers and there are no fragmentation issues,
470 	 * so the KVA segment does not have to be excessively oversized.
471 	 */
472 	if ((vm_size_t)(v - firstaddr) != size)
473 		panic("startup: table size inconsistency");
474 
475 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
476 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
477 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
478 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
479 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
480 	buffer_map.system_map = 1;
481 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
482 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
483 		      pager_map_size);
484 	pager_map.system_map = 1;
485 	kprintf("avail memory = %ju (%ju MB)\n",
486 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
487 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
488 		1024 / 1024);
489 }
490 
491 struct cpu_idle_stat {
492 	int	hint;
493 	int	reserved;
494 	u_long	halt;
495 	u_long	spin;
496 	u_long	repeat;
497 	u_long	repeat_last;
498 	u_long	repeat_delta;
499 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
500 } __cachealign;
501 
502 #define CPU_IDLE_STAT_HALT	-1
503 #define CPU_IDLE_STAT_SPIN	-2
504 
505 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
506 
507 static int
508 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
509 {
510 	int idx = arg2, cpu, error;
511 	u_long val = 0;
512 
513 	if (idx == CPU_IDLE_STAT_HALT) {
514 		for (cpu = 0; cpu < ncpus; ++cpu)
515 			val += cpu_idle_stats[cpu].halt;
516 	} else if (idx == CPU_IDLE_STAT_SPIN) {
517 		for (cpu = 0; cpu < ncpus; ++cpu)
518 			val += cpu_idle_stats[cpu].spin;
519 	} else {
520 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
521 		    ("invalid index %d", idx));
522 		for (cpu = 0; cpu < ncpus; ++cpu)
523 			val += cpu_idle_stats[cpu].mwait_cx[idx];
524 	}
525 
526 	error = sysctl_handle_quad(oidp, &val, 0, req);
527         if (error || req->newptr == NULL)
528 	        return error;
529 
530 	if (idx == CPU_IDLE_STAT_HALT) {
531 		for (cpu = 0; cpu < ncpus; ++cpu)
532 			cpu_idle_stats[cpu].halt = 0;
533 		cpu_idle_stats[0].halt = val;
534 	} else if (idx == CPU_IDLE_STAT_SPIN) {
535 		for (cpu = 0; cpu < ncpus; ++cpu)
536 			cpu_idle_stats[cpu].spin = 0;
537 		cpu_idle_stats[0].spin = val;
538 	} else {
539 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
540 		    ("invalid index %d", idx));
541 		for (cpu = 0; cpu < ncpus; ++cpu)
542 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
543 		cpu_idle_stats[0].mwait_cx[idx] = val;
544 	}
545 	return 0;
546 }
547 
548 static void
549 cpu_mwait_attach(void)
550 {
551 	struct sbuf sb;
552 	int hint_idx, i;
553 
554 	if (!CPU_MWAIT_HAS_CX)
555 		return;
556 
557 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
558 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
559 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
560 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
561 		int bm_sts = 1;
562 
563 		/*
564 		 * Pentium dual-core, Core 2 and beyond do not need any
565 		 * additional activities to enter deep C-state, i.e. C3(+).
566 		 */
567 		cpu_mwait_cx_no_bmarb();
568 
569 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
570 		if (!bm_sts)
571 			cpu_mwait_cx_no_bmsts();
572 	}
573 
574 	sbuf_new(&sb, cpu_mwait_cx_supported,
575 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
576 
577 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
578 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
579 		int sub;
580 
581 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
582 
583 		sysctl_ctx_init(&cx->sysctl_ctx);
584 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
585 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
586 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
587 		if (cx->sysctl_tree == NULL)
588 			continue;
589 
590 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
591 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
592 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
593 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
594 		    "sub-state count");
595 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
596 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
597 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
598 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
599 
600 		for (sub = 0; sub < cx->subcnt; ++sub)
601 			sbuf_printf(&sb, "C%d/%d ", i, sub);
602 	}
603 	sbuf_trim(&sb);
604 	sbuf_finish(&sb);
605 
606 	/*
607 	 * Non-deep C-states
608 	 */
609 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
610 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
611 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
612 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
613 	    M_DEVBUF, M_WAITOK);
614 
615 	hint_idx = 0;
616 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
617 		int j, subcnt;
618 
619 		subcnt = cpu_mwait_cx_info[i].subcnt;
620 		for (j = 0; j < subcnt; ++j) {
621 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
622 			    ("invalid mwait hint index %d", hint_idx));
623 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
624 			++hint_idx;
625 		}
626 	}
627 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
628 	    ("mwait hint count %d != index %d",
629 	     cpu_mwait_hints_cnt, hint_idx));
630 
631 	if (bootverbose) {
632 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
633 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
634 			int hint = cpu_mwait_hints[i];
635 
636 			kprintf("  C%d/%d hint 0x%04x\n",
637 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
638 			    hint);
639 		}
640 	}
641 
642 	/*
643 	 * Deep C-states
644 	 */
645 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
646 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
647 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
648 	    M_DEVBUF, M_WAITOK);
649 
650 	hint_idx = 0;
651 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
652 		int j, subcnt;
653 
654 		subcnt = cpu_mwait_cx_info[i].subcnt;
655 		for (j = 0; j < subcnt; ++j) {
656 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
657 			    ("invalid mwait deep hint index %d", hint_idx));
658 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
659 			++hint_idx;
660 		}
661 	}
662 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
663 	    ("mwait deep hint count %d != index %d",
664 	     cpu_mwait_deep_hints_cnt, hint_idx));
665 
666 	if (bootverbose) {
667 		kprintf("MWAIT deep hints:\n");
668 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
669 			int hint = cpu_mwait_deep_hints[i];
670 
671 			kprintf("  C%d/%d hint 0x%04x\n",
672 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
673 			    hint);
674 		}
675 	}
676 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
677 
678 	for (i = 0; i < ncpus; ++i) {
679 		char name[16];
680 
681 		ksnprintf(name, sizeof(name), "idle%d", i);
682 		SYSCTL_ADD_PROC(NULL,
683 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
684 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
685 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
686 	}
687 }
688 
689 static void
690 cpu_finish(void *dummy __unused)
691 {
692 	cpu_setregs();
693 	cpu_mwait_attach();
694 }
695 
696 static void
697 pic_finish(void *dummy __unused)
698 {
699 	/* Log ELCR information */
700 	elcr_dump();
701 
702 	/* Log MPTABLE information */
703 	mptable_pci_int_dump();
704 
705 	/* Finalize PCI */
706 	MachIntrABI.finalize();
707 }
708 
709 /*
710  * Send an interrupt to process.
711  *
712  * Stack is set up to allow sigcode stored
713  * at top to call routine, followed by kcall
714  * to sigreturn routine below.  After sigreturn
715  * resets the signal mask, the stack, and the
716  * frame pointer, it returns to the user
717  * specified pc, psl.
718  */
719 void
720 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
721 {
722 	struct lwp *lp = curthread->td_lwp;
723 	struct proc *p = lp->lwp_proc;
724 	struct trapframe *regs;
725 	struct sigacts *psp = p->p_sigacts;
726 	struct sigframe sf, *sfp;
727 	int oonstack;
728 	char *sp;
729 
730 	regs = lp->lwp_md.md_regs;
731 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
732 
733 	/* Save user context */
734 	bzero(&sf, sizeof(struct sigframe));
735 	sf.sf_uc.uc_sigmask = *mask;
736 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
737 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
738 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
739 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
740 
741 	/* Make the size of the saved context visible to userland */
742 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
743 
744 	/* Allocate and validate space for the signal handler context. */
745         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
746 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
747 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
748 			      sizeof(struct sigframe));
749 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
750 	} else {
751 		/* We take red zone into account */
752 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
753 	}
754 
755 	/*
756 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
757 	 * the embedded ucontext is not at the front, so aligning this won't
758 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
759 	 * kernel is ok.
760 	 *
761 	 * The problem though is if userland winds up trying to use the
762 	 * context directly.
763 	 */
764 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
765 
766 	/* Translate the signal is appropriate */
767 	if (p->p_sysent->sv_sigtbl) {
768 		if (sig <= p->p_sysent->sv_sigsize)
769 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
770 	}
771 
772 	/*
773 	 * Build the argument list for the signal handler.
774 	 *
775 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
776 	 */
777 	regs->tf_rdi = sig;				/* argument 1 */
778 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
779 
780 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
781 		/*
782 		 * Signal handler installed with SA_SIGINFO.
783 		 *
784 		 * action(signo, siginfo, ucontext)
785 		 */
786 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
787 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
788 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
789 
790 		/* fill siginfo structure */
791 		sf.sf_si.si_signo = sig;
792 		sf.sf_si.si_code = code;
793 		sf.sf_si.si_addr = (void *)regs->tf_addr;
794 	} else {
795 		/*
796 		 * Old FreeBSD-style arguments.
797 		 *
798 		 * handler (signo, code, [uc], addr)
799 		 */
800 		regs->tf_rsi = (register_t)code;	/* argument 2 */
801 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
802 		sf.sf_ahu.sf_handler = catcher;
803 	}
804 
805 	/*
806 	 * If we're a vm86 process, we want to save the segment registers.
807 	 * We also change eflags to be our emulated eflags, not the actual
808 	 * eflags.
809 	 */
810 #if 0 /* JG */
811 	if (regs->tf_eflags & PSL_VM) {
812 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
813 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
814 
815 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
816 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
817 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
818 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
819 
820 		if (vm86->vm86_has_vme == 0)
821 			sf.sf_uc.uc_mcontext.mc_eflags =
822 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
823 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
824 
825 		/*
826 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
827 		 * syscalls made by the signal handler.  This just avoids
828 		 * wasting time for our lazy fixup of such faults.  PSL_NT
829 		 * does nothing in vm86 mode, but vm86 programs can set it
830 		 * almost legitimately in probes for old cpu types.
831 		 */
832 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
833 	}
834 #endif
835 
836 	/*
837 	 * Save the FPU state and reinit the FP unit
838 	 */
839 	npxpush(&sf.sf_uc.uc_mcontext);
840 
841 	/*
842 	 * Copy the sigframe out to the user's stack.
843 	 */
844 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
845 		/*
846 		 * Something is wrong with the stack pointer.
847 		 * ...Kill the process.
848 		 */
849 		sigexit(lp, SIGILL);
850 	}
851 
852 	regs->tf_rsp = (register_t)sfp;
853 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
854 
855 	/*
856 	 * i386 abi specifies that the direction flag must be cleared
857 	 * on function entry
858 	 */
859 	regs->tf_rflags &= ~(PSL_T|PSL_D);
860 
861 	/*
862 	 * 64 bit mode has a code and stack selector but
863 	 * no data or extra selector.  %fs and %gs are not
864 	 * stored in-context.
865 	 */
866 	regs->tf_cs = _ucodesel;
867 	regs->tf_ss = _udatasel;
868 	clear_quickret();
869 }
870 
871 /*
872  * Sanitize the trapframe for a virtual kernel passing control to a custom
873  * VM context.  Remove any items that would otherwise create a privilage
874  * issue.
875  *
876  * XXX at the moment we allow userland to set the resume flag.  Is this a
877  * bad idea?
878  */
879 int
880 cpu_sanitize_frame(struct trapframe *frame)
881 {
882 	frame->tf_cs = _ucodesel;
883 	frame->tf_ss = _udatasel;
884 	/* XXX VM (8086) mode not supported? */
885 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
886 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
887 
888 	return(0);
889 }
890 
891 /*
892  * Sanitize the tls so loading the descriptor does not blow up
893  * on us.  For x86_64 we don't have to do anything.
894  */
895 int
896 cpu_sanitize_tls(struct savetls *tls)
897 {
898 	return(0);
899 }
900 
901 /*
902  * sigreturn(ucontext_t *sigcntxp)
903  *
904  * System call to cleanup state after a signal
905  * has been taken.  Reset signal mask and
906  * stack state from context left by sendsig (above).
907  * Return to previous pc and psl as specified by
908  * context left by sendsig. Check carefully to
909  * make sure that the user has not modified the
910  * state to gain improper privileges.
911  *
912  * MPSAFE
913  */
914 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
915 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
916 
917 int
918 sys_sigreturn(struct sigreturn_args *uap)
919 {
920 	struct lwp *lp = curthread->td_lwp;
921 	struct trapframe *regs;
922 	ucontext_t uc;
923 	ucontext_t *ucp;
924 	register_t rflags;
925 	int cs;
926 	int error;
927 
928 	/*
929 	 * We have to copy the information into kernel space so userland
930 	 * can't modify it while we are sniffing it.
931 	 */
932 	regs = lp->lwp_md.md_regs;
933 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
934 	if (error)
935 		return (error);
936 	ucp = &uc;
937 	rflags = ucp->uc_mcontext.mc_rflags;
938 
939 	/* VM (8086) mode not supported */
940 	rflags &= ~PSL_VM_UNSUPP;
941 
942 #if 0 /* JG */
943 	if (eflags & PSL_VM) {
944 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
945 		struct vm86_kernel *vm86;
946 
947 		/*
948 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
949 		 * set up the vm86 area, and we can't enter vm86 mode.
950 		 */
951 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
952 			return (EINVAL);
953 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
954 		if (vm86->vm86_inited == 0)
955 			return (EINVAL);
956 
957 		/* go back to user mode if both flags are set */
958 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
959 			trapsignal(lp, SIGBUS, 0);
960 
961 		if (vm86->vm86_has_vme) {
962 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
963 			    (eflags & VME_USERCHANGE) | PSL_VM;
964 		} else {
965 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
966 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
967 			    (eflags & VM_USERCHANGE) | PSL_VM;
968 		}
969 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
970 		tf->tf_eflags = eflags;
971 		tf->tf_vm86_ds = tf->tf_ds;
972 		tf->tf_vm86_es = tf->tf_es;
973 		tf->tf_vm86_fs = tf->tf_fs;
974 		tf->tf_vm86_gs = tf->tf_gs;
975 		tf->tf_ds = _udatasel;
976 		tf->tf_es = _udatasel;
977 		tf->tf_fs = _udatasel;
978 		tf->tf_gs = _udatasel;
979 	} else
980 #endif
981 	{
982 		/*
983 		 * Don't allow users to change privileged or reserved flags.
984 		 */
985 		/*
986 		 * XXX do allow users to change the privileged flag PSL_RF.
987 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
988 		 * should sometimes set it there too.  tf_eflags is kept in
989 		 * the signal context during signal handling and there is no
990 		 * other place to remember it, so the PSL_RF bit may be
991 		 * corrupted by the signal handler without us knowing.
992 		 * Corruption of the PSL_RF bit at worst causes one more or
993 		 * one less debugger trap, so allowing it is fairly harmless.
994 		 */
995 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
996 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
997 	    		return(EINVAL);
998 		}
999 
1000 		/*
1001 		 * Don't allow users to load a valid privileged %cs.  Let the
1002 		 * hardware check for invalid selectors, excess privilege in
1003 		 * other selectors, invalid %eip's and invalid %esp's.
1004 		 */
1005 		cs = ucp->uc_mcontext.mc_cs;
1006 		if (!CS_SECURE(cs)) {
1007 			kprintf("sigreturn: cs = 0x%x\n", cs);
1008 			trapsignal(lp, SIGBUS, T_PROTFLT);
1009 			return(EINVAL);
1010 		}
1011 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1012 	}
1013 
1014 	/*
1015 	 * Restore the FPU state from the frame
1016 	 */
1017 	crit_enter();
1018 	npxpop(&ucp->uc_mcontext);
1019 
1020 	if (ucp->uc_mcontext.mc_onstack & 1)
1021 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1022 	else
1023 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1024 
1025 	lp->lwp_sigmask = ucp->uc_sigmask;
1026 	SIG_CANTMASK(lp->lwp_sigmask);
1027 	clear_quickret();
1028 	crit_exit();
1029 	return(EJUSTRETURN);
1030 }
1031 
1032 /*
1033  * Machine dependent boot() routine
1034  *
1035  * I haven't seen anything to put here yet
1036  * Possibly some stuff might be grafted back here from boot()
1037  */
1038 void
1039 cpu_boot(int howto)
1040 {
1041 }
1042 
1043 /*
1044  * Shutdown the CPU as much as possible
1045  */
1046 void
1047 cpu_halt(void)
1048 {
1049 	for (;;)
1050 		__asm__ __volatile("hlt");
1051 }
1052 
1053 /*
1054  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1055  * (unless you want to blow things up!).  Instead we look for runnable threads
1056  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1057  *
1058  * The main loop is entered with a critical section held, we must release
1059  * the critical section before doing anything else.  lwkt_switch() will
1060  * check for pending interrupts due to entering and exiting its own
1061  * critical section.
1062  *
1063  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1064  *	 However, there are cases where the idlethread will be entered with
1065  *	 the possibility that no IPI will occur and in such cases
1066  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1067  *
1068  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1069  *	 must occur before it starts using ACPI halt.
1070  *
1071  * NOTE: Value overridden in hammer_time().
1072  */
1073 static int	cpu_idle_hlt = 2;
1074 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1075     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1076 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1077     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1078 
1079 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1080     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1081 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1082     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1083 
1084 static void
1085 cpu_idle_default_hook(void)
1086 {
1087 	/*
1088 	 * We must guarentee that hlt is exactly the instruction
1089 	 * following the sti.
1090 	 */
1091 	__asm __volatile("sti; hlt");
1092 }
1093 
1094 /* Other subsystems (e.g., ACPI) can hook this later. */
1095 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1096 
1097 static __inline int
1098 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1099 {
1100 	int hint, cx_idx;
1101 	u_int idx;
1102 
1103 	hint = stat->hint;
1104 	if (hint >= 0)
1105 		goto done;
1106 
1107 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1108 	    cpu_mwait_repeat_shift;
1109 	if (idx >= cpu_mwait_c1_hints_cnt) {
1110 		/* Step up faster, once we walked through all C1 states */
1111 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1112 	}
1113 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1114 		if (idx >= cpu_mwait_deep_hints_cnt)
1115 			idx = cpu_mwait_deep_hints_cnt - 1;
1116 		hint = cpu_mwait_deep_hints[idx];
1117 	} else {
1118 		if (idx >= cpu_mwait_hints_cnt)
1119 			idx = cpu_mwait_hints_cnt - 1;
1120 		hint = cpu_mwait_hints[idx];
1121 	}
1122 done:
1123 	cx_idx = MWAIT_EAX_TO_CX(hint);
1124 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1125 		stat->mwait_cx[cx_idx]++;
1126 	return hint;
1127 }
1128 
1129 void
1130 cpu_idle(void)
1131 {
1132 	globaldata_t gd = mycpu;
1133 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1134 	struct thread *td __debugvar = gd->gd_curthread;
1135 	int reqflags;
1136 	int quick;
1137 
1138 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1139 
1140 	crit_exit();
1141 	KKASSERT(td->td_critcount == 0);
1142 
1143 	for (;;) {
1144 		/*
1145 		 * See if there are any LWKTs ready to go.
1146 		 */
1147 		lwkt_switch();
1148 
1149 		/*
1150 		 * When halting inside a cli we must check for reqflags
1151 		 * races, particularly [re]schedule requests.  Running
1152 		 * splz() does the job.
1153 		 *
1154 		 * cpu_idle_hlt:
1155 		 *	0	Never halt, just spin
1156 		 *
1157 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
1158 		 *
1159 		 *		Better default for modern (Haswell+) Intel
1160 		 *		cpus.
1161 		 *
1162 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1163 		 *		use the ACPI halt (default).  This is a hybrid
1164 		 *		approach.  See machdep.cpu_idle_repeat.
1165 		 *
1166 		 *		Better default for modern AMD cpus and older
1167 		 *		Intel cpus.
1168 		 *
1169 		 *	3	Always use the ACPI halt.  This typically
1170 		 *		eats the least amount of power but the cpu
1171 		 *		will be slow waking up.  Slows down e.g.
1172 		 *		compiles and other pipe/event oriented stuff.
1173 		 *
1174 		 *	4	Always use HLT.
1175 		 *
1176 		 * NOTE: Interrupts are enabled and we are not in a critical
1177 		 *	 section.
1178 		 *
1179 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1180 		 *	 don't bother capping gd_idle_repeat, it is ok if
1181 		 *	 it overflows.
1182 		 *
1183 		 * Implement optimized invltlb operations when halted
1184 		 * in idle.  By setting the bit in smp_idleinvl_mask
1185 		 * we inform other cpus that they can set _reqs to
1186 		 * request an invltlb.  Current the code to do that
1187 		 * sets the bits in _reqs anyway, but then check _mask
1188 		 * to determine if they can assume the invltlb will execute.
1189 		 *
1190 		 * A critical section is required to ensure that interrupts
1191 		 * do not fully run until after we've had a chance to execute
1192 		 * the request.
1193 		 */
1194 		if (gd->gd_idle_repeat == 0) {
1195 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1196 			if (stat->repeat > cpu_idle_repeat_max)
1197 				stat->repeat = cpu_idle_repeat_max;
1198 			stat->repeat_last = 0;
1199 			stat->repeat_delta = 0;
1200 		}
1201 		++stat->repeat_last;
1202 
1203 		++gd->gd_idle_repeat;
1204 		reqflags = gd->gd_reqflags;
1205 		quick = (cpu_idle_hlt == 1) ||
1206 			(cpu_idle_hlt < 3 &&
1207 			 gd->gd_idle_repeat < cpu_idle_repeat);
1208 
1209 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1210 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1211 			splz(); /* XXX */
1212 			crit_enter_gd(gd);
1213 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1214 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1215 			    cpu_mwait_cx_hint(stat), 0);
1216 			stat->halt++;
1217 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1218 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1219 						      gd->gd_cpuid)) {
1220 				cpu_invltlb();
1221 				cpu_mfence();
1222 			}
1223 			crit_exit_gd(gd);
1224 		} else if (cpu_idle_hlt) {
1225 			__asm __volatile("cli");
1226 			splz();
1227 			crit_enter_gd(gd);
1228 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1229 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1230 				if (quick)
1231 					cpu_idle_default_hook();
1232 				else
1233 					cpu_idle_hook();
1234 			}
1235 			__asm __volatile("sti");
1236 			stat->halt++;
1237 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1238 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1239 						      gd->gd_cpuid)) {
1240 				cpu_invltlb();
1241 				cpu_mfence();
1242 			}
1243 			crit_exit_gd(gd);
1244 		} else {
1245 			splz();
1246 			__asm __volatile("sti");
1247 			stat->spin++;
1248 		}
1249 	}
1250 }
1251 
1252 /*
1253  * This routine is called if a spinlock has been held through the
1254  * exponential backoff period and is seriously contested.  On a real cpu
1255  * we let it spin.
1256  */
1257 void
1258 cpu_spinlock_contested(void)
1259 {
1260 	cpu_pause();
1261 }
1262 
1263 /*
1264  * Clear registers on exec
1265  */
1266 void
1267 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1268 {
1269 	struct thread *td = curthread;
1270 	struct lwp *lp = td->td_lwp;
1271 	struct pcb *pcb = td->td_pcb;
1272 	struct trapframe *regs = lp->lwp_md.md_regs;
1273 
1274 	/* was i386_user_cleanup() in NetBSD */
1275 	user_ldt_free(pcb);
1276 
1277 	clear_quickret();
1278 	bzero((char *)regs, sizeof(struct trapframe));
1279 	regs->tf_rip = entry;
1280 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1281 	regs->tf_rdi = stack;		/* argv */
1282 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1283 	regs->tf_ss = _udatasel;
1284 	regs->tf_cs = _ucodesel;
1285 	regs->tf_rbx = ps_strings;
1286 
1287 	/*
1288 	 * Reset the hardware debug registers if they were in use.
1289 	 * They won't have any meaning for the newly exec'd process.
1290 	 */
1291 	if (pcb->pcb_flags & PCB_DBREGS) {
1292 		pcb->pcb_dr0 = 0;
1293 		pcb->pcb_dr1 = 0;
1294 		pcb->pcb_dr2 = 0;
1295 		pcb->pcb_dr3 = 0;
1296 		pcb->pcb_dr6 = 0;
1297 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1298 		if (pcb == td->td_pcb) {
1299 			/*
1300 			 * Clear the debug registers on the running
1301 			 * CPU, otherwise they will end up affecting
1302 			 * the next process we switch to.
1303 			 */
1304 			reset_dbregs();
1305 		}
1306 		pcb->pcb_flags &= ~PCB_DBREGS;
1307 	}
1308 
1309 	/*
1310 	 * Initialize the math emulator (if any) for the current process.
1311 	 * Actually, just clear the bit that says that the emulator has
1312 	 * been initialized.  Initialization is delayed until the process
1313 	 * traps to the emulator (if it is done at all) mainly because
1314 	 * emulators don't provide an entry point for initialization.
1315 	 */
1316 	pcb->pcb_flags &= ~FP_SOFTFP;
1317 
1318 	/*
1319 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1320 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1321 	 *	 may panic in npxdna().
1322 	 */
1323 	crit_enter();
1324 	load_cr0(rcr0() | CR0_MP);
1325 
1326 	/*
1327 	 * NOTE: The MSR values must be correct so we can return to
1328 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1329 	 *	 code knows what the current MSR values are.
1330 	 */
1331 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1332 	pcb->pcb_gsbase = 0;
1333 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1334 	mdcpu->gd_user_gs = 0;
1335 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1336 	wrmsr(MSR_KGSBASE, 0);
1337 
1338 	/* Initialize the npx (if any) for the current process. */
1339 	npxinit();
1340 	crit_exit();
1341 
1342 	pcb->pcb_ds = _udatasel;
1343 	pcb->pcb_es = _udatasel;
1344 	pcb->pcb_fs = _udatasel;
1345 	pcb->pcb_gs = _udatasel;
1346 }
1347 
1348 void
1349 cpu_setregs(void)
1350 {
1351 	register_t cr0;
1352 
1353 	cr0 = rcr0();
1354 	cr0 |= CR0_NE;			/* Done by npxinit() */
1355 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1356 	cr0 |= CR0_WP | CR0_AM;
1357 	load_cr0(cr0);
1358 	load_gs(_udatasel);
1359 }
1360 
1361 static int
1362 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1363 {
1364 	int error;
1365 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1366 		req);
1367 	if (!error && req->newptr)
1368 		resettodr();
1369 	return (error);
1370 }
1371 
1372 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1373 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1374 
1375 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1376 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1377 
1378 #if 0 /* JG */
1379 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1380 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1381 #endif
1382 
1383 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1384 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1385 
1386 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1387 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1388 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1389 
1390 /*
1391  * Initialize 386 and configure to run kernel
1392  */
1393 
1394 /*
1395  * Initialize segments & interrupt table
1396  */
1397 
1398 int _default_ldt;
1399 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1400 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1401 #if 0 /* JG */
1402 union descriptor ldt[NLDT];		/* local descriptor table */
1403 #endif
1404 
1405 /* table descriptors - used to load tables by cpu */
1406 struct region_descriptor r_gdt;
1407 struct region_descriptor r_idt_arr[MAXCPU];
1408 
1409 /* JG proc0paddr is a virtual address */
1410 void *proc0paddr;
1411 /* JG alignment? */
1412 char proc0paddr_buff[LWKT_THREAD_STACK];
1413 
1414 
1415 /* software prototypes -- in more palatable form */
1416 struct soft_segment_descriptor gdt_segs[] = {
1417 /* GNULL_SEL	0 Null Descriptor */
1418 {	0x0,			/* segment base address  */
1419 	0x0,			/* length */
1420 	0,			/* segment type */
1421 	0,			/* segment descriptor priority level */
1422 	0,			/* segment descriptor present */
1423 	0,			/* long */
1424 	0,			/* default 32 vs 16 bit size */
1425 	0  			/* limit granularity (byte/page units)*/ },
1426 /* GCODE_SEL	1 Code Descriptor for kernel */
1427 {	0x0,			/* segment base address  */
1428 	0xfffff,		/* length - all address space */
1429 	SDT_MEMERA,		/* segment type */
1430 	SEL_KPL,		/* segment descriptor priority level */
1431 	1,			/* segment descriptor present */
1432 	1,			/* long */
1433 	0,			/* default 32 vs 16 bit size */
1434 	1  			/* limit granularity (byte/page units)*/ },
1435 /* GDATA_SEL	2 Data Descriptor for kernel */
1436 {	0x0,			/* segment base address  */
1437 	0xfffff,		/* length - all address space */
1438 	SDT_MEMRWA,		/* segment type */
1439 	SEL_KPL,		/* segment descriptor priority level */
1440 	1,			/* segment descriptor present */
1441 	1,			/* long */
1442 	0,			/* default 32 vs 16 bit size */
1443 	1  			/* limit granularity (byte/page units)*/ },
1444 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1445 {	0x0,			/* segment base address  */
1446 	0xfffff,		/* length - all address space */
1447 	SDT_MEMERA,		/* segment type */
1448 	SEL_UPL,		/* segment descriptor priority level */
1449 	1,			/* segment descriptor present */
1450 	0,			/* long */
1451 	1,			/* default 32 vs 16 bit size */
1452 	1  			/* limit granularity (byte/page units)*/ },
1453 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1454 {	0x0,			/* segment base address  */
1455 	0xfffff,		/* length - all address space */
1456 	SDT_MEMRWA,		/* segment type */
1457 	SEL_UPL,		/* segment descriptor priority level */
1458 	1,			/* segment descriptor present */
1459 	0,			/* long */
1460 	1,			/* default 32 vs 16 bit size */
1461 	1  			/* limit granularity (byte/page units)*/ },
1462 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1463 {	0x0,			/* segment base address  */
1464 	0xfffff,		/* length - all address space */
1465 	SDT_MEMERA,		/* segment type */
1466 	SEL_UPL,		/* segment descriptor priority level */
1467 	1,			/* segment descriptor present */
1468 	1,			/* long */
1469 	0,			/* default 32 vs 16 bit size */
1470 	1  			/* limit granularity (byte/page units)*/ },
1471 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1472 {
1473 	0x0,			/* segment base address */
1474 	sizeof(struct x86_64tss)-1,/* length - all address space */
1475 	SDT_SYSTSS,		/* segment type */
1476 	SEL_KPL,		/* segment descriptor priority level */
1477 	1,			/* segment descriptor present */
1478 	0,			/* long */
1479 	0,			/* unused - default 32 vs 16 bit size */
1480 	0  			/* limit granularity (byte/page units)*/ },
1481 /* Actually, the TSS is a system descriptor which is double size */
1482 {	0x0,			/* segment base address  */
1483 	0x0,			/* length */
1484 	0,			/* segment type */
1485 	0,			/* segment descriptor priority level */
1486 	0,			/* segment descriptor present */
1487 	0,			/* long */
1488 	0,			/* default 32 vs 16 bit size */
1489 	0  			/* limit granularity (byte/page units)*/ },
1490 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1491 {	0x0,			/* segment base address  */
1492 	0xfffff,		/* length - all address space */
1493 	SDT_MEMRWA,		/* segment type */
1494 	SEL_UPL,		/* segment descriptor priority level */
1495 	1,			/* segment descriptor present */
1496 	0,			/* long */
1497 	1,			/* default 32 vs 16 bit size */
1498 	1  			/* limit granularity (byte/page units)*/ },
1499 };
1500 
1501 void
1502 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1503 {
1504 	int cpu;
1505 
1506 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1507 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1508 
1509 		ip->gd_looffset = (uintptr_t)func;
1510 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1511 		ip->gd_ist = ist;
1512 		ip->gd_xx = 0;
1513 		ip->gd_type = typ;
1514 		ip->gd_dpl = dpl;
1515 		ip->gd_p = 1;
1516 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1517 	}
1518 }
1519 
1520 void
1521 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1522 {
1523 	struct gate_descriptor *ip;
1524 
1525 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1526 
1527 	ip = &idt_arr[cpu][idx];
1528 	ip->gd_looffset = (uintptr_t)func;
1529 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1530 	ip->gd_ist = ist;
1531 	ip->gd_xx = 0;
1532 	ip->gd_type = typ;
1533 	ip->gd_dpl = dpl;
1534 	ip->gd_p = 1;
1535 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1536 }
1537 
1538 #define	IDTVEC(name)	__CONCAT(X,name)
1539 
1540 extern inthand_t
1541 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1542 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1543 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1544 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1545 	IDTVEC(xmm), IDTVEC(dblfault),
1546 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1547 
1548 void
1549 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1550 {
1551 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1552 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1553 	ssd->ssd_type  = sd->sd_type;
1554 	ssd->ssd_dpl   = sd->sd_dpl;
1555 	ssd->ssd_p     = sd->sd_p;
1556 	ssd->ssd_def32 = sd->sd_def32;
1557 	ssd->ssd_gran  = sd->sd_gran;
1558 }
1559 
1560 void
1561 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1562 {
1563 
1564 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1565 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1566 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1567 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1568 	sd->sd_type  = ssd->ssd_type;
1569 	sd->sd_dpl   = ssd->ssd_dpl;
1570 	sd->sd_p     = ssd->ssd_p;
1571 	sd->sd_long  = ssd->ssd_long;
1572 	sd->sd_def32 = ssd->ssd_def32;
1573 	sd->sd_gran  = ssd->ssd_gran;
1574 }
1575 
1576 void
1577 ssdtosyssd(struct soft_segment_descriptor *ssd,
1578     struct system_segment_descriptor *sd)
1579 {
1580 
1581 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1582 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1583 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1584 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1585 	sd->sd_type  = ssd->ssd_type;
1586 	sd->sd_dpl   = ssd->ssd_dpl;
1587 	sd->sd_p     = ssd->ssd_p;
1588 	sd->sd_gran  = ssd->ssd_gran;
1589 }
1590 
1591 /*
1592  * Populate the (physmap) array with base/bound pairs describing the
1593  * available physical memory in the system, then test this memory and
1594  * build the phys_avail array describing the actually-available memory.
1595  *
1596  * If we cannot accurately determine the physical memory map, then use
1597  * value from the 0xE801 call, and failing that, the RTC.
1598  *
1599  * Total memory size may be set by the kernel environment variable
1600  * hw.physmem or the compile-time define MAXMEM.
1601  *
1602  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1603  * of PAGE_SIZE.  This also greatly reduces the memory test time
1604  * which would otherwise be excessive on machines with > 8G of ram.
1605  *
1606  * XXX first should be vm_paddr_t.
1607  */
1608 
1609 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1610 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1611 	vm_paddr_t physmap[PHYSMAP_SIZE];
1612 	struct bios_smap *smapbase, *smap, *smapend;
1613 	struct efi_map_header *efihdrbase;
1614 	u_int32_t smapsize;
1615 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1616 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1617 
1618 static void
1619 add_smap_entries(int *physmap_idx)
1620 {
1621 	int i;
1622 
1623 	smapsize = *((u_int32_t *)smapbase - 1);
1624 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1625 
1626 	for (smap = smapbase; smap < smapend; smap++) {
1627 		if (boothowto & RB_VERBOSE)
1628 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1629 			    smap->type, smap->base, smap->length);
1630 
1631 		if (smap->type != SMAP_TYPE_MEMORY)
1632 			continue;
1633 
1634 		if (smap->length == 0)
1635 			continue;
1636 
1637 		for (i = 0; i <= *physmap_idx; i += 2) {
1638 			if (smap->base < physmap[i + 1]) {
1639 				if (boothowto & RB_VERBOSE) {
1640 					kprintf("Overlapping or non-monotonic "
1641 						"memory region, ignoring "
1642 						"second region\n");
1643 				}
1644 				break;
1645 			}
1646 		}
1647 		if (i <= *physmap_idx)
1648 			continue;
1649 
1650 		Realmem += smap->length;
1651 
1652 		if (smap->base == physmap[*physmap_idx + 1]) {
1653 			physmap[*physmap_idx + 1] += smap->length;
1654 			continue;
1655 		}
1656 
1657 		*physmap_idx += 2;
1658 		if (*physmap_idx == PHYSMAP_SIZE) {
1659 			kprintf("Too many segments in the physical "
1660 				"address map, giving up\n");
1661 			break;
1662 		}
1663 		physmap[*physmap_idx] = smap->base;
1664 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1665 	}
1666 }
1667 
1668 #define efi_next_descriptor(ptr, size) \
1669 	((struct efi_md *)(((uint8_t *) ptr) + size))
1670 
1671 static void
1672 add_efi_map_entries(int *physmap_idx)
1673 {
1674 	 struct efi_md *map, *p;
1675 	 const char *type;
1676 	 size_t efisz;
1677 	 int i, ndesc;
1678 
1679 	static const char *types[] = {
1680 		"Reserved",
1681 		"LoaderCode",
1682 		"LoaderData",
1683 		"BootServicesCode",
1684 		"BootServicesData",
1685 		"RuntimeServicesCode",
1686 		"RuntimeServicesData",
1687 		"ConventionalMemory",
1688 		"UnusableMemory",
1689 		"ACPIReclaimMemory",
1690 		"ACPIMemoryNVS",
1691 		"MemoryMappedIO",
1692 		"MemoryMappedIOPortSpace",
1693 		"PalCode"
1694 	 };
1695 
1696 	/*
1697 	 * Memory map data provided by UEFI via the GetMemoryMap
1698 	 * Boot Services API.
1699 	 */
1700 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1701 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1702 
1703 	if (efihdrbase->descriptor_size == 0)
1704 		return;
1705 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1706 
1707 	if (boothowto & RB_VERBOSE)
1708 		kprintf("%23s %12s %12s %8s %4s\n",
1709 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1710 
1711 	for (i = 0, p = map; i < ndesc; i++,
1712 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1713 		if (boothowto & RB_VERBOSE) {
1714 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1715 				type = types[p->md_type];
1716 			else
1717 				type = "<INVALID>";
1718 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1719 			    p->md_virt, p->md_pages);
1720 			if (p->md_attr & EFI_MD_ATTR_UC)
1721 				kprintf("UC ");
1722 			if (p->md_attr & EFI_MD_ATTR_WC)
1723 				kprintf("WC ");
1724 			if (p->md_attr & EFI_MD_ATTR_WT)
1725 				kprintf("WT ");
1726 			if (p->md_attr & EFI_MD_ATTR_WB)
1727 				kprintf("WB ");
1728 			if (p->md_attr & EFI_MD_ATTR_UCE)
1729 				kprintf("UCE ");
1730 			if (p->md_attr & EFI_MD_ATTR_WP)
1731 				kprintf("WP ");
1732 			if (p->md_attr & EFI_MD_ATTR_RP)
1733 				kprintf("RP ");
1734 			if (p->md_attr & EFI_MD_ATTR_XP)
1735 				kprintf("XP ");
1736 			if (p->md_attr & EFI_MD_ATTR_RT)
1737 				kprintf("RUNTIME");
1738 			kprintf("\n");
1739 		}
1740 
1741 		switch (p->md_type) {
1742 		case EFI_MD_TYPE_CODE:
1743 		case EFI_MD_TYPE_DATA:
1744 		case EFI_MD_TYPE_BS_CODE:
1745 		case EFI_MD_TYPE_BS_DATA:
1746 		case EFI_MD_TYPE_FREE:
1747 			/*
1748 			 * We're allowed to use any entry with these types.
1749 			 */
1750 			break;
1751 		default:
1752 			continue;
1753 		}
1754 
1755 		Realmem += p->md_pages * PAGE_SIZE;
1756 
1757 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1758 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1759 			continue;
1760 		}
1761 
1762 		*physmap_idx += 2;
1763 		if (*physmap_idx == PHYSMAP_SIZE) {
1764 			kprintf("Too many segments in the physical "
1765 				"address map, giving up\n");
1766 			break;
1767 		}
1768 		physmap[*physmap_idx] = p->md_phys;
1769 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1770 	 }
1771 }
1772 
1773 struct fb_info efi_fb_info;
1774 static int have_efi_framebuffer = 0;
1775 
1776 static void
1777 efi_fb_init_vaddr(int direct_map)
1778 {
1779 	uint64_t sz;
1780 	vm_offset_t addr, v;
1781 
1782 	v = efi_fb_info.vaddr;
1783 	sz = efi_fb_info.stride * efi_fb_info.height;
1784 
1785 	if (direct_map) {
1786 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1787 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1788 			efi_fb_info.vaddr = addr;
1789 	} else {
1790 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1791 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1792 	}
1793 
1794 	if (v == 0 && efi_fb_info.vaddr != 0)
1795 		memset((void *)efi_fb_info.vaddr, 0x77, sz);
1796 }
1797 
1798 int
1799 probe_efi_fb(int early)
1800 {
1801 	struct efi_fb	*efifb;
1802 	caddr_t		kmdp;
1803 
1804 	if (have_efi_framebuffer) {
1805 		if (!early &&
1806 		    (efi_fb_info.vaddr == 0 ||
1807 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1808 			efi_fb_init_vaddr(0);
1809 		return 0;
1810 	}
1811 
1812 	kmdp = preload_search_by_type("elf kernel");
1813 	if (kmdp == NULL)
1814 		kmdp = preload_search_by_type("elf64 kernel");
1815 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1816 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1817 	if (efifb == NULL)
1818 		return 1;
1819 
1820 	have_efi_framebuffer = 1;
1821 
1822 	efi_fb_info.is_vga_boot_display = 1;
1823 	efi_fb_info.width = efifb->fb_width;
1824 	efi_fb_info.height = efifb->fb_height;
1825 	efi_fb_info.stride = efifb->fb_stride * 4;
1826 	efi_fb_info.depth = 32;
1827 	efi_fb_info.paddr = efifb->fb_addr;
1828 	if (early) {
1829 		efi_fb_info.vaddr = 0;
1830 	} else {
1831 		efi_fb_init_vaddr(0);
1832 	}
1833 	efi_fb_info.restore = NULL;
1834 	efi_fb_info.device = NULL;
1835 
1836 	return 0;
1837 }
1838 
1839 static void
1840 efifb_startup(void *arg)
1841 {
1842 	probe_efi_fb(0);
1843 }
1844 
1845 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1846 
1847 static void
1848 getmemsize(caddr_t kmdp, u_int64_t first)
1849 {
1850 	int off, physmap_idx, pa_indx, da_indx;
1851 	int i, j;
1852 	vm_paddr_t pa;
1853 	vm_paddr_t msgbuf_size;
1854 	u_long physmem_tunable;
1855 	pt_entry_t *pte;
1856 	quad_t dcons_addr, dcons_size;
1857 
1858 	bzero(physmap, sizeof(physmap));
1859 	physmap_idx = 0;
1860 
1861 	/*
1862 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1863 	 *
1864 	 * subr_module.c says:
1865 	 * "Consumer may safely assume that size value precedes data."
1866 	 * ie: an int32_t immediately precedes smap.
1867 	 */
1868 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1869 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1870 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1871 	    MODINFO_METADATA | MODINFOMD_SMAP);
1872 	if (smapbase == NULL && efihdrbase == NULL)
1873 		panic("No BIOS smap or EFI map info from loader!");
1874 
1875 	if (efihdrbase == NULL)
1876 		add_smap_entries(&physmap_idx);
1877 	else
1878 		add_efi_map_entries(&physmap_idx);
1879 
1880 	base_memory = physmap[1] / 1024;
1881 	/* make hole for AP bootstrap code */
1882 	physmap[1] = mp_bootaddress(base_memory);
1883 
1884 	/* Save EBDA address, if any */
1885 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1886 	ebda_addr <<= 4;
1887 
1888 	/*
1889 	 * Maxmem isn't the "maximum memory", it's one larger than the
1890 	 * highest page of the physical address space.  It should be
1891 	 * called something like "Maxphyspage".  We may adjust this
1892 	 * based on ``hw.physmem'' and the results of the memory test.
1893 	 */
1894 	Maxmem = atop(physmap[physmap_idx + 1]);
1895 
1896 #ifdef MAXMEM
1897 	Maxmem = MAXMEM / 4;
1898 #endif
1899 
1900 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1901 		Maxmem = atop(physmem_tunable);
1902 
1903 	/*
1904 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1905 	 * in the system.
1906 	 */
1907 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1908 		Maxmem = atop(physmap[physmap_idx + 1]);
1909 
1910 	/*
1911 	 * Blowing out the DMAP will blow up the system.
1912 	 */
1913 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1914 		kprintf("Limiting Maxmem due to DMAP size\n");
1915 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1916 	}
1917 
1918 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1919 	    (boothowto & RB_VERBOSE)) {
1920 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1921 	}
1922 
1923 	/*
1924 	 * Call pmap initialization to make new kernel address space
1925 	 *
1926 	 * Mask off page 0.
1927 	 */
1928 	pmap_bootstrap(&first);
1929 	physmap[0] = PAGE_SIZE;
1930 
1931 	/*
1932 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1933 	 * exceeding Maxmem.
1934 	 */
1935 	for (i = j = 0; i <= physmap_idx; i += 2) {
1936 		if (physmap[i+1] > ptoa(Maxmem))
1937 			physmap[i+1] = ptoa(Maxmem);
1938 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1939 			     ~PHYSMAP_ALIGN_MASK;
1940 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1941 
1942 		physmap[j] = physmap[i];
1943 		physmap[j+1] = physmap[i+1];
1944 
1945 		if (physmap[i] < physmap[i+1])
1946 			j += 2;
1947 	}
1948 	physmap_idx = j - 2;
1949 
1950 	/*
1951 	 * Align anything else used in the validation loop.
1952 	 */
1953 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1954 
1955 	/*
1956 	 * Size up each available chunk of physical memory.
1957 	 */
1958 	pa_indx = 0;
1959 	da_indx = 1;
1960 	phys_avail[pa_indx++] = physmap[0];
1961 	phys_avail[pa_indx] = physmap[0];
1962 	dump_avail[da_indx] = physmap[0];
1963 	pte = CMAP1;
1964 
1965 	/*
1966 	 * Get dcons buffer address
1967 	 */
1968 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1969 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1970 		dcons_addr = 0;
1971 
1972 	/*
1973 	 * Validate the physical memory.  The physical memory segments
1974 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1975 	 * of PAGE_SIZE.
1976 	 */
1977 	for (i = 0; i <= physmap_idx; i += 2) {
1978 		vm_paddr_t end;
1979 		vm_paddr_t incr = PHYSMAP_ALIGN;
1980 
1981 		end = physmap[i + 1];
1982 
1983 		for (pa = physmap[i]; pa < end; pa += incr) {
1984 			int page_bad, full;
1985 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
1986 			uint64_t tmp;
1987 
1988 			incr = PHYSMAP_ALIGN;
1989 			full = FALSE;
1990 
1991 			/*
1992 			 * block out kernel memory as not available.
1993 			 */
1994 			if (pa >= 0x200000 && pa < first)
1995 				goto do_dump_avail;
1996 
1997 			/*
1998 			 * block out dcons buffer
1999 			 */
2000 			if (dcons_addr > 0
2001 			    && pa >= trunc_page(dcons_addr)
2002 			    && pa < dcons_addr + dcons_size) {
2003 				goto do_dump_avail;
2004 			}
2005 
2006 			page_bad = FALSE;
2007 
2008 			/*
2009 			 * Always test the first and last block supplied in
2010 			 * the map entry, but it just takes too long to run
2011 			 * the test these days and we already have to skip
2012 			 * pages.  Handwave it on PHYSMAP_HANDWAVE boundaries.
2013 			 */
2014 			if (pa != physmap[i]) {
2015 				vm_paddr_t bytes = end - pa;
2016 				if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2017 				    bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2018 					incr = PHYSMAP_HANDWAVE;
2019 					goto handwaved;
2020 				}
2021 			}
2022 
2023 			/*
2024 			 * map page into kernel: valid, read/write,non-cacheable
2025 			 */
2026 			*pte = pa |
2027 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2028 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2029 			    kernel_pmap.pmap_bits[PG_N_IDX];
2030 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2031 			cpu_mfence();
2032 
2033 			tmp = *ptr;
2034 			/*
2035 			 * Test for alternating 1's and 0's
2036 			 */
2037 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2038 			cpu_mfence();
2039 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2040 				page_bad = TRUE;
2041 			/*
2042 			 * Test for alternating 0's and 1's
2043 			 */
2044 			*ptr = 0x5555555555555555LLU;
2045 			cpu_mfence();
2046 			if (*ptr != 0x5555555555555555LLU)
2047 				page_bad = TRUE;
2048 			/*
2049 			 * Test for all 1's
2050 			 */
2051 			*ptr = 0xffffffffffffffffLLU;
2052 			cpu_mfence();
2053 			if (*ptr != 0xffffffffffffffffLLU)
2054 				page_bad = TRUE;
2055 			/*
2056 			 * Test for all 0's
2057 			 */
2058 			*ptr = 0x0;
2059 			cpu_mfence();
2060 			if (*ptr != 0x0)
2061 				page_bad = TRUE;
2062 			/*
2063 			 * Restore original value.
2064 			 */
2065 			*ptr = tmp;
2066 handwaved:
2067 
2068 			/*
2069 			 * Adjust array of valid/good pages.
2070 			 */
2071 			if (page_bad == TRUE)
2072 				continue;
2073 
2074 			/*
2075 			 * If this good page is a continuation of the
2076 			 * previous set of good pages, then just increase
2077 			 * the end pointer. Otherwise start a new chunk.
2078 			 * Note that "end" points one higher than end,
2079 			 * making the range >= start and < end.
2080 			 * If we're also doing a speculative memory
2081 			 * test and we at or past the end, bump up Maxmem
2082 			 * so that we keep going. The first bad page
2083 			 * will terminate the loop.
2084 			 */
2085 			if (phys_avail[pa_indx] == pa) {
2086 				phys_avail[pa_indx] += incr;
2087 			} else {
2088 				pa_indx++;
2089 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2090 					kprintf(
2091 		"Too many holes in the physical address space, giving up\n");
2092 					pa_indx--;
2093 					full = TRUE;
2094 					goto do_dump_avail;
2095 				}
2096 				phys_avail[pa_indx++] = pa;
2097 				phys_avail[pa_indx] = pa + incr;
2098 			}
2099 			physmem += incr / PAGE_SIZE;
2100 do_dump_avail:
2101 			if (dump_avail[da_indx] == pa) {
2102 				dump_avail[da_indx] += incr;
2103 			} else {
2104 				da_indx++;
2105 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2106 					da_indx--;
2107 					goto do_next;
2108 				}
2109 				dump_avail[da_indx++] = pa;
2110 				dump_avail[da_indx] = pa + incr;
2111 			}
2112 do_next:
2113 			if (full)
2114 				break;
2115 		}
2116 	}
2117 	*pte = 0;
2118 	cpu_invltlb();
2119 	cpu_mfence();
2120 
2121 	/*
2122 	 * The last chunk must contain at least one page plus the message
2123 	 * buffer to avoid complicating other code (message buffer address
2124 	 * calculation, etc.).
2125 	 */
2126 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2127 
2128 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
2129 	       msgbuf_size >= phys_avail[pa_indx]) {
2130 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
2131 		phys_avail[pa_indx--] = 0;
2132 		phys_avail[pa_indx--] = 0;
2133 	}
2134 
2135 	Maxmem = atop(phys_avail[pa_indx]);
2136 
2137 	/* Trim off space for the message buffer. */
2138 	phys_avail[pa_indx] -= msgbuf_size;
2139 
2140 	avail_end = phys_avail[pa_indx];
2141 
2142 	/* Map the message buffer. */
2143 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2144 		pmap_kenter((vm_offset_t)msgbufp + off,
2145 			    phys_avail[pa_indx] + off);
2146 	}
2147 	/* Try to get EFI framebuffer working as early as possible */
2148 	if (have_efi_framebuffer)
2149 		efi_fb_init_vaddr(1);
2150 }
2151 
2152 struct machintr_abi MachIntrABI;
2153 
2154 /*
2155  * IDT VECTORS:
2156  *	0	Divide by zero
2157  *	1	Debug
2158  *	2	NMI
2159  *	3	BreakPoint
2160  *	4	OverFlow
2161  *	5	Bound-Range
2162  *	6	Invalid OpCode
2163  *	7	Device Not Available (x87)
2164  *	8	Double-Fault
2165  *	9	Coprocessor Segment overrun (unsupported, reserved)
2166  *	10	Invalid-TSS
2167  *	11	Segment not present
2168  *	12	Stack
2169  *	13	General Protection
2170  *	14	Page Fault
2171  *	15	Reserved
2172  *	16	x87 FP Exception pending
2173  *	17	Alignment Check
2174  *	18	Machine Check
2175  *	19	SIMD floating point
2176  *	20-31	reserved
2177  *	32-255	INTn/external sources
2178  */
2179 u_int64_t
2180 hammer_time(u_int64_t modulep, u_int64_t physfree)
2181 {
2182 	caddr_t kmdp;
2183 	int gsel_tss, x, cpu;
2184 #if 0 /* JG */
2185 	int metadata_missing, off;
2186 #endif
2187 	struct mdglobaldata *gd;
2188 	u_int64_t msr;
2189 
2190 	/*
2191 	 * Prevent lowering of the ipl if we call tsleep() early.
2192 	 */
2193 	gd = &CPU_prvspace[0]->mdglobaldata;
2194 	bzero(gd, sizeof(*gd));
2195 
2196 	/*
2197 	 * Note: on both UP and SMP curthread must be set non-NULL
2198 	 * early in the boot sequence because the system assumes
2199 	 * that 'curthread' is never NULL.
2200 	 */
2201 
2202 	gd->mi.gd_curthread = &thread0;
2203 	thread0.td_gd = &gd->mi;
2204 
2205 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2206 
2207 #if 0 /* JG */
2208 	metadata_missing = 0;
2209 	if (bootinfo.bi_modulep) {
2210 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2211 		preload_bootstrap_relocate(KERNBASE);
2212 	} else {
2213 		metadata_missing = 1;
2214 	}
2215 	if (bootinfo.bi_envp)
2216 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2217 #endif
2218 
2219 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2220 	preload_bootstrap_relocate(PTOV_OFFSET);
2221 	kmdp = preload_search_by_type("elf kernel");
2222 	if (kmdp == NULL)
2223 		kmdp = preload_search_by_type("elf64 kernel");
2224 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2225 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2226 #ifdef DDB
2227 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2228 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2229 #endif
2230 
2231 	if (boothowto & RB_VERBOSE)
2232 		bootverbose++;
2233 
2234 	/*
2235 	 * Default MachIntrABI to ICU
2236 	 */
2237 	MachIntrABI = MachIntrABI_ICU;
2238 
2239 	/*
2240 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
2241 	 * and ncpus_fit_mask remain 0.
2242 	 */
2243 	ncpus = 1;
2244 	ncpus2 = 1;
2245 	ncpus_fit = 1;
2246 	/* Init basic tunables, hz etc */
2247 	init_param1();
2248 
2249 	/*
2250 	 * make gdt memory segments
2251 	 */
2252 	gdt_segs[GPROC0_SEL].ssd_base =
2253 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2254 
2255 	gd->mi.gd_prvspace = CPU_prvspace[0];
2256 
2257 	for (x = 0; x < NGDT; x++) {
2258 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2259 			ssdtosd(&gdt_segs[x], &gdt[x]);
2260 	}
2261 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2262 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2263 
2264 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2265 	r_gdt.rd_base =  (long) gdt;
2266 	lgdt(&r_gdt);
2267 
2268 	wrmsr(MSR_FSBASE, 0);		/* User value */
2269 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2270 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2271 
2272 	mi_gdinit(&gd->mi, 0);
2273 	cpu_gdinit(gd, 0);
2274 	proc0paddr = proc0paddr_buff;
2275 	mi_proc0init(&gd->mi, proc0paddr);
2276 	safepri = TDPRI_MAX;
2277 
2278 	/* spinlocks and the BGL */
2279 	init_locks();
2280 
2281 	/* exceptions */
2282 	for (x = 0; x < NIDT; x++)
2283 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2284 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2285 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2286 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2287  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2288 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2289 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2290 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2291 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2292 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2293 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2294 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2295 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2296 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2297 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2298 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2299 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2300 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2301 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2302 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2303 
2304 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2305 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2306 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2307 	}
2308 
2309 	lidt(&r_idt_arr[0]);
2310 
2311 	/*
2312 	 * Initialize the console before we print anything out.
2313 	 */
2314 	cninit();
2315 
2316 #if 0 /* JG */
2317 	if (metadata_missing)
2318 		kprintf("WARNING: loader(8) metadata is missing!\n");
2319 #endif
2320 
2321 #if	NISA >0
2322 	elcr_probe();
2323 	isa_defaultirq();
2324 #endif
2325 	rand_initialize();
2326 
2327 	/*
2328 	 * Initialize IRQ mapping
2329 	 *
2330 	 * NOTE:
2331 	 * SHOULD be after elcr_probe()
2332 	 */
2333 	MachIntrABI_ICU.initmap();
2334 	MachIntrABI_IOAPIC.initmap();
2335 
2336 #ifdef DDB
2337 	kdb_init();
2338 	if (boothowto & RB_KDB)
2339 		Debugger("Boot flags requested debugger");
2340 #endif
2341 
2342 #if 0 /* JG */
2343 	finishidentcpu();	/* Final stage of CPU initialization */
2344 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2345 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2346 #endif
2347 	identify_cpu();		/* Final stage of CPU initialization */
2348 	initializecpu(0);	/* Initialize CPU registers */
2349 
2350 	/*
2351 	 * On modern intel cpus, haswell or later, cpu_idle_hlt=1 is better
2352 	 * because the cpu does significant power management in MWAIT
2353 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2354 	 *
2355 	 * On modern amd cpus cpu_idle_hlt=3 is better, because the cpu does
2356 	 * significant power management in HLT or ACPI (but cpu_idle_hlt=1
2357 	 * would try to use MWAIT).
2358 	 *
2359 	 * On older amd or intel cpus, cpu_idle_hlt=2 is better because ACPI
2360 	 * is needed to reduce power consumption, but wakeup times are often
2361 	 * longer.
2362 	 */
2363 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2364 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2365 		cpu_idle_hlt = 1;
2366 	}
2367 	if (cpu_vendor_id == CPU_VENDOR_AMD &&
2368 	    CPUID_TO_FAMILY(cpu_id) >= 0x14) {	/* Bobcat or later */
2369 		cpu_idle_hlt = 3;
2370 	}
2371 
2372 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2373 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2374 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2375 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2376 
2377 	/*
2378 	 * Some of the virtual machines do not work w/ I/O APIC
2379 	 * enabled.  If the user does not explicitly enable or
2380 	 * disable the I/O APIC (ioapic_enable < 0), then we
2381 	 * disable I/O APIC on all virtual machines.
2382 	 *
2383 	 * NOTE:
2384 	 * This must be done after identify_cpu(), which sets
2385 	 * 'cpu_feature2'
2386 	 */
2387 	if (ioapic_enable < 0) {
2388 		if (cpu_feature2 & CPUID2_VMM)
2389 			ioapic_enable = 0;
2390 		else
2391 			ioapic_enable = 1;
2392 	}
2393 
2394 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2395 	gd->gd_common_tss.tss_rsp0 =
2396 		(register_t)(thread0.td_kstack +
2397 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2398 	/* Ensure the stack is aligned to 16 bytes */
2399 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2400 
2401 	/* double fault stack */
2402 	gd->gd_common_tss.tss_ist1 =
2403 		(long)&gd->mi.gd_prvspace->idlestack[
2404 			sizeof(gd->mi.gd_prvspace->idlestack)];
2405 
2406 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2407 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2408 
2409 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2410 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2411 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2412 	ltr(gsel_tss);
2413 
2414 	/* Set up the fast syscall stuff */
2415 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2416 	wrmsr(MSR_EFER, msr);
2417 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2418 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2419 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2420 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2421 	wrmsr(MSR_STAR, msr);
2422 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2423 
2424 	getmemsize(kmdp, physfree);
2425 	init_param2(physmem);
2426 
2427 	/* now running on new page tables, configured,and u/iom is accessible */
2428 
2429 	/* Map the message buffer. */
2430 #if 0 /* JG */
2431 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2432 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2433 #endif
2434 
2435 	msgbufinit(msgbufp, MSGBUF_SIZE);
2436 
2437 
2438 	/* transfer to user mode */
2439 
2440 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2441 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2442 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2443 
2444 	load_ds(_udatasel);
2445 	load_es(_udatasel);
2446 	load_fs(_udatasel);
2447 
2448 	/* setup proc 0's pcb */
2449 	thread0.td_pcb->pcb_flags = 0;
2450 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2451 	thread0.td_pcb->pcb_ext = NULL;
2452 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2453 
2454 	/* Location of kernel stack for locore */
2455 	return ((u_int64_t)thread0.td_pcb);
2456 }
2457 
2458 /*
2459  * Initialize machine-dependant portions of the global data structure.
2460  * Note that the global data area and cpu0's idlestack in the private
2461  * data space were allocated in locore.
2462  *
2463  * Note: the idlethread's cpl is 0
2464  *
2465  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2466  */
2467 void
2468 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2469 {
2470 	if (cpu)
2471 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2472 
2473 	lwkt_init_thread(&gd->mi.gd_idlethread,
2474 			gd->mi.gd_prvspace->idlestack,
2475 			sizeof(gd->mi.gd_prvspace->idlestack),
2476 			0, &gd->mi);
2477 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2478 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2479 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2480 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2481 }
2482 
2483 /*
2484  * We only have to check for DMAP bounds, the globaldata space is
2485  * actually part of the kernel_map so we don't have to waste time
2486  * checking CPU_prvspace[*].
2487  */
2488 int
2489 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2490 {
2491 #if 0
2492 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2493 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2494 		return (TRUE);
2495 	}
2496 #endif
2497 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2498 		return (TRUE);
2499 	return (FALSE);
2500 }
2501 
2502 struct globaldata *
2503 globaldata_find(int cpu)
2504 {
2505 	KKASSERT(cpu >= 0 && cpu < ncpus);
2506 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2507 }
2508 
2509 /*
2510  * This path should be safe from the SYSRET issue because only stopped threads
2511  * can have their %rip adjusted this way (and all heavy weight thread switches
2512  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2513  * convoluted so add a safety by forcing %rip to be cannonical.
2514  */
2515 int
2516 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2517 {
2518 	if (addr & 0x0000800000000000LLU)
2519 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2520 	else
2521 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2522 	return (0);
2523 }
2524 
2525 int
2526 ptrace_single_step(struct lwp *lp)
2527 {
2528 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2529 	return (0);
2530 }
2531 
2532 int
2533 fill_regs(struct lwp *lp, struct reg *regs)
2534 {
2535 	struct trapframe *tp;
2536 
2537 	if ((tp = lp->lwp_md.md_regs) == NULL)
2538 		return EINVAL;
2539 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2540 	return (0);
2541 }
2542 
2543 int
2544 set_regs(struct lwp *lp, struct reg *regs)
2545 {
2546 	struct trapframe *tp;
2547 
2548 	tp = lp->lwp_md.md_regs;
2549 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2550 	    !CS_SECURE(regs->r_cs))
2551 		return (EINVAL);
2552 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2553 	clear_quickret();
2554 	return (0);
2555 }
2556 
2557 static void
2558 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2559 {
2560 	struct env87 *penv_87 = &sv_87->sv_env;
2561 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2562 	int i;
2563 
2564 	/* FPU control/status */
2565 	penv_87->en_cw = penv_xmm->en_cw;
2566 	penv_87->en_sw = penv_xmm->en_sw;
2567 	penv_87->en_tw = penv_xmm->en_tw;
2568 	penv_87->en_fip = penv_xmm->en_fip;
2569 	penv_87->en_fcs = penv_xmm->en_fcs;
2570 	penv_87->en_opcode = penv_xmm->en_opcode;
2571 	penv_87->en_foo = penv_xmm->en_foo;
2572 	penv_87->en_fos = penv_xmm->en_fos;
2573 
2574 	/* FPU registers */
2575 	for (i = 0; i < 8; ++i)
2576 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2577 }
2578 
2579 static void
2580 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2581 {
2582 	struct env87 *penv_87 = &sv_87->sv_env;
2583 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2584 	int i;
2585 
2586 	/* FPU control/status */
2587 	penv_xmm->en_cw = penv_87->en_cw;
2588 	penv_xmm->en_sw = penv_87->en_sw;
2589 	penv_xmm->en_tw = penv_87->en_tw;
2590 	penv_xmm->en_fip = penv_87->en_fip;
2591 	penv_xmm->en_fcs = penv_87->en_fcs;
2592 	penv_xmm->en_opcode = penv_87->en_opcode;
2593 	penv_xmm->en_foo = penv_87->en_foo;
2594 	penv_xmm->en_fos = penv_87->en_fos;
2595 
2596 	/* FPU registers */
2597 	for (i = 0; i < 8; ++i)
2598 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2599 }
2600 
2601 int
2602 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2603 {
2604 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2605 		return EINVAL;
2606 	if (cpu_fxsr) {
2607 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2608 				(struct save87 *)fpregs);
2609 		return (0);
2610 	}
2611 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2612 	return (0);
2613 }
2614 
2615 int
2616 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2617 {
2618 	if (cpu_fxsr) {
2619 		set_fpregs_xmm((struct save87 *)fpregs,
2620 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2621 		return (0);
2622 	}
2623 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2624 	return (0);
2625 }
2626 
2627 int
2628 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2629 {
2630 	struct pcb *pcb;
2631 
2632         if (lp == NULL) {
2633                 dbregs->dr[0] = rdr0();
2634                 dbregs->dr[1] = rdr1();
2635                 dbregs->dr[2] = rdr2();
2636                 dbregs->dr[3] = rdr3();
2637                 dbregs->dr[4] = rdr4();
2638                 dbregs->dr[5] = rdr5();
2639                 dbregs->dr[6] = rdr6();
2640                 dbregs->dr[7] = rdr7();
2641 		return (0);
2642         }
2643 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2644 		return EINVAL;
2645 	dbregs->dr[0] = pcb->pcb_dr0;
2646 	dbregs->dr[1] = pcb->pcb_dr1;
2647 	dbregs->dr[2] = pcb->pcb_dr2;
2648 	dbregs->dr[3] = pcb->pcb_dr3;
2649 	dbregs->dr[4] = 0;
2650 	dbregs->dr[5] = 0;
2651 	dbregs->dr[6] = pcb->pcb_dr6;
2652 	dbregs->dr[7] = pcb->pcb_dr7;
2653 	return (0);
2654 }
2655 
2656 int
2657 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2658 {
2659 	if (lp == NULL) {
2660 		load_dr0(dbregs->dr[0]);
2661 		load_dr1(dbregs->dr[1]);
2662 		load_dr2(dbregs->dr[2]);
2663 		load_dr3(dbregs->dr[3]);
2664 		load_dr4(dbregs->dr[4]);
2665 		load_dr5(dbregs->dr[5]);
2666 		load_dr6(dbregs->dr[6]);
2667 		load_dr7(dbregs->dr[7]);
2668 	} else {
2669 		struct pcb *pcb;
2670 		struct ucred *ucred;
2671 		int i;
2672 		uint64_t mask1, mask2;
2673 
2674 		/*
2675 		 * Don't let an illegal value for dr7 get set.	Specifically,
2676 		 * check for undefined settings.  Setting these bit patterns
2677 		 * result in undefined behaviour and can lead to an unexpected
2678 		 * TRCTRAP.
2679 		 */
2680 		/* JG this loop looks unreadable */
2681 		/* Check 4 2-bit fields for invalid patterns.
2682 		 * These fields are R/Wi, for i = 0..3
2683 		 */
2684 		/* Is 10 in LENi allowed when running in compatibility mode? */
2685 		/* Pattern 10 in R/Wi might be used to indicate
2686 		 * breakpoint on I/O. Further analysis should be
2687 		 * carried to decide if it is safe and useful to
2688 		 * provide access to that capability
2689 		 */
2690 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2691 		     i++, mask1 <<= 4, mask2 <<= 4)
2692 			if ((dbregs->dr[7] & mask1) == mask2)
2693 				return (EINVAL);
2694 
2695 		pcb = lp->lwp_thread->td_pcb;
2696 		ucred = lp->lwp_proc->p_ucred;
2697 
2698 		/*
2699 		 * Don't let a process set a breakpoint that is not within the
2700 		 * process's address space.  If a process could do this, it
2701 		 * could halt the system by setting a breakpoint in the kernel
2702 		 * (if ddb was enabled).  Thus, we need to check to make sure
2703 		 * that no breakpoints are being enabled for addresses outside
2704 		 * process's address space, unless, perhaps, we were called by
2705 		 * uid 0.
2706 		 *
2707 		 * XXX - what about when the watched area of the user's
2708 		 * address space is written into from within the kernel
2709 		 * ... wouldn't that still cause a breakpoint to be generated
2710 		 * from within kernel mode?
2711 		 */
2712 
2713 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2714 			if (dbregs->dr[7] & 0x3) {
2715 				/* dr0 is enabled */
2716 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2717 					return (EINVAL);
2718 			}
2719 
2720 			if (dbregs->dr[7] & (0x3<<2)) {
2721 				/* dr1 is enabled */
2722 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2723 					return (EINVAL);
2724 			}
2725 
2726 			if (dbregs->dr[7] & (0x3<<4)) {
2727 				/* dr2 is enabled */
2728 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2729 					return (EINVAL);
2730 			}
2731 
2732 			if (dbregs->dr[7] & (0x3<<6)) {
2733 				/* dr3 is enabled */
2734 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2735 					return (EINVAL);
2736 			}
2737 		}
2738 
2739 		pcb->pcb_dr0 = dbregs->dr[0];
2740 		pcb->pcb_dr1 = dbregs->dr[1];
2741 		pcb->pcb_dr2 = dbregs->dr[2];
2742 		pcb->pcb_dr3 = dbregs->dr[3];
2743 		pcb->pcb_dr6 = dbregs->dr[6];
2744 		pcb->pcb_dr7 = dbregs->dr[7];
2745 
2746 		pcb->pcb_flags |= PCB_DBREGS;
2747 	}
2748 
2749 	return (0);
2750 }
2751 
2752 /*
2753  * Return > 0 if a hardware breakpoint has been hit, and the
2754  * breakpoint was in user space.  Return 0, otherwise.
2755  */
2756 int
2757 user_dbreg_trap(void)
2758 {
2759         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2760         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2761         int nbp;            /* number of breakpoints that triggered */
2762         caddr_t addr[4];    /* breakpoint addresses */
2763         int i;
2764 
2765         dr7 = rdr7();
2766         if ((dr7 & 0xff) == 0) {
2767                 /*
2768                  * all GE and LE bits in the dr7 register are zero,
2769                  * thus the trap couldn't have been caused by the
2770                  * hardware debug registers
2771                  */
2772                 return 0;
2773         }
2774 
2775         nbp = 0;
2776         dr6 = rdr6();
2777         bp = dr6 & 0xf;
2778 
2779         if (bp == 0) {
2780                 /*
2781                  * None of the breakpoint bits are set meaning this
2782                  * trap was not caused by any of the debug registers
2783                  */
2784                 return 0;
2785         }
2786 
2787         /*
2788          * at least one of the breakpoints were hit, check to see
2789          * which ones and if any of them are user space addresses
2790          */
2791 
2792         if (bp & 0x01) {
2793                 addr[nbp++] = (caddr_t)rdr0();
2794         }
2795         if (bp & 0x02) {
2796                 addr[nbp++] = (caddr_t)rdr1();
2797         }
2798         if (bp & 0x04) {
2799                 addr[nbp++] = (caddr_t)rdr2();
2800         }
2801         if (bp & 0x08) {
2802                 addr[nbp++] = (caddr_t)rdr3();
2803         }
2804 
2805         for (i=0; i<nbp; i++) {
2806                 if (addr[i] <
2807                     (caddr_t)VM_MAX_USER_ADDRESS) {
2808                         /*
2809                          * addr[i] is in user space
2810                          */
2811                         return nbp;
2812                 }
2813         }
2814 
2815         /*
2816          * None of the breakpoints are in user space.
2817          */
2818         return 0;
2819 }
2820 
2821 
2822 #ifndef DDB
2823 void
2824 Debugger(const char *msg)
2825 {
2826 	kprintf("Debugger(\"%s\") called.\n", msg);
2827 }
2828 #endif /* no DDB */
2829 
2830 #ifdef DDB
2831 
2832 /*
2833  * Provide inb() and outb() as functions.  They are normally only
2834  * available as macros calling inlined functions, thus cannot be
2835  * called inside DDB.
2836  *
2837  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2838  */
2839 
2840 #undef inb
2841 #undef outb
2842 
2843 /* silence compiler warnings */
2844 u_char inb(u_int);
2845 void outb(u_int, u_char);
2846 
2847 u_char
2848 inb(u_int port)
2849 {
2850 	u_char	data;
2851 	/*
2852 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2853 	 * %edx, while gcc generates inferior code (movw instead of movl)
2854 	 * if we tell it to load (u_short) port.
2855 	 */
2856 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2857 	return (data);
2858 }
2859 
2860 void
2861 outb(u_int port, u_char data)
2862 {
2863 	u_char	al;
2864 	/*
2865 	 * Use an unnecessary assignment to help gcc's register allocator.
2866 	 * This make a large difference for gcc-1.40 and a tiny difference
2867 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2868 	 * best results.  gcc-2.6.0 can't handle this.
2869 	 */
2870 	al = data;
2871 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2872 }
2873 
2874 #endif /* DDB */
2875 
2876 
2877 
2878 /*
2879  * initialize all the SMP locks
2880  */
2881 
2882 /* critical region when masking or unmasking interupts */
2883 struct spinlock_deprecated imen_spinlock;
2884 
2885 /* lock region used by kernel profiling */
2886 struct spinlock_deprecated mcount_spinlock;
2887 
2888 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2889 struct spinlock_deprecated com_spinlock;
2890 
2891 /* lock regions around the clock hardware */
2892 struct spinlock_deprecated clock_spinlock;
2893 
2894 static void
2895 init_locks(void)
2896 {
2897 	/*
2898 	 * Get the initial mplock with a count of 1 for the BSP.
2899 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2900 	 */
2901 	cpu_get_initial_mplock();
2902 	/* DEPRECATED */
2903 	spin_init_deprecated(&mcount_spinlock);
2904 	spin_init_deprecated(&imen_spinlock);
2905 	spin_init_deprecated(&com_spinlock);
2906 	spin_init_deprecated(&clock_spinlock);
2907 
2908 	/* our token pool needs to work early */
2909 	lwkt_token_pool_init();
2910 }
2911 
2912 boolean_t
2913 cpu_mwait_hint_valid(uint32_t hint)
2914 {
2915 	int cx_idx, sub;
2916 
2917 	cx_idx = MWAIT_EAX_TO_CX(hint);
2918 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2919 		return FALSE;
2920 
2921 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2922 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2923 		return FALSE;
2924 
2925 	return TRUE;
2926 }
2927 
2928 void
2929 cpu_mwait_cx_no_bmsts(void)
2930 {
2931 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2932 }
2933 
2934 void
2935 cpu_mwait_cx_no_bmarb(void)
2936 {
2937 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2938 }
2939 
2940 static int
2941 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2942 {
2943 	int old_cx_idx, sub = 0;
2944 
2945 	if (hint >= 0) {
2946 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
2947 		sub = MWAIT_EAX_TO_CX_SUB(hint);
2948 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
2949 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
2950 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
2951 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
2952 	} else {
2953 		old_cx_idx = CPU_MWAIT_CX_MAX;
2954 	}
2955 
2956 	if (!CPU_MWAIT_HAS_CX)
2957 		strlcpy(name, "NONE", namelen);
2958 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
2959 		strlcpy(name, "AUTO", namelen);
2960 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
2961 		strlcpy(name, "AUTODEEP", namelen);
2962 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
2963 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
2964 		strlcpy(name, "INVALID", namelen);
2965 	else
2966 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
2967 
2968 	return old_cx_idx;
2969 }
2970 
2971 static int
2972 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
2973 {
2974 	int cx_idx, sub, hint;
2975 	char *ptr, *start;
2976 
2977 	if (allow_auto && strcmp(name, "AUTO") == 0) {
2978 		hint = CPU_MWAIT_HINT_AUTO;
2979 		cx_idx = CPU_MWAIT_C2;
2980 		goto done;
2981 	}
2982 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
2983 		hint = CPU_MWAIT_HINT_AUTODEEP;
2984 		cx_idx = CPU_MWAIT_C3;
2985 		goto done;
2986 	}
2987 
2988 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
2989 		return -1;
2990 	start = &name[1];
2991 	ptr = NULL;
2992 
2993 	cx_idx = strtol(start, &ptr, 10);
2994 	if (ptr == start || *ptr != '/')
2995 		return -1;
2996 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
2997 		return -1;
2998 
2999 	start = ptr + 1;
3000 	ptr = NULL;
3001 
3002 	sub = strtol(start, &ptr, 10);
3003 	if (*ptr != '\0')
3004 		return -1;
3005 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3006 		return -1;
3007 
3008 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3009 done:
3010 	*hint0 = hint;
3011 	return cx_idx;
3012 }
3013 
3014 static int
3015 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3016 {
3017 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3018 		return EOPNOTSUPP;
3019 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3020 		int error;
3021 
3022 		error = cputimer_intr_powersave_addreq();
3023 		if (error)
3024 			return error;
3025 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3026 		cputimer_intr_powersave_remreq();
3027 	}
3028 	return 0;
3029 }
3030 
3031 static int
3032 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3033     boolean_t allow_auto)
3034 {
3035 	int error, cx_idx, old_cx_idx, hint;
3036 	char name[CPU_MWAIT_CX_NAMELEN];
3037 
3038 	hint = *hint0;
3039 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3040 	    allow_auto);
3041 
3042 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3043 	if (error != 0 || req->newptr == NULL)
3044 		return error;
3045 
3046 	if (!CPU_MWAIT_HAS_CX)
3047 		return EOPNOTSUPP;
3048 
3049 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3050 	if (cx_idx < 0)
3051 		return EINVAL;
3052 
3053 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3054 	if (error)
3055 		return error;
3056 
3057 	*hint0 = hint;
3058 	return 0;
3059 }
3060 
3061 static int
3062 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3063 {
3064 	int error, cx_idx, old_cx_idx, hint;
3065 	char name[CPU_MWAIT_CX_NAMELEN];
3066 
3067 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3068 
3069 	hint = stat->hint;
3070 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3071 
3072 	strlcpy(name, cx_name, sizeof(name));
3073 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3074 	if (cx_idx < 0)
3075 		return EINVAL;
3076 
3077 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3078 	if (error)
3079 		return error;
3080 
3081 	stat->hint = hint;
3082 	return 0;
3083 }
3084 
3085 static int
3086 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3087 {
3088 	int hint = cpu_mwait_halt_global;
3089 	int error, cx_idx, cpu;
3090 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3091 
3092 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3093 
3094 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3095 	if (error != 0 || req->newptr == NULL)
3096 		return error;
3097 
3098 	if (!CPU_MWAIT_HAS_CX)
3099 		return EOPNOTSUPP;
3100 
3101 	/* Save name for later per-cpu CX configuration */
3102 	strlcpy(cx_name, name, sizeof(cx_name));
3103 
3104 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3105 	if (cx_idx < 0)
3106 		return EINVAL;
3107 
3108 	/* Change per-cpu CX configuration */
3109 	for (cpu = 0; cpu < ncpus; ++cpu) {
3110 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3111 		if (error)
3112 			return error;
3113 	}
3114 
3115 	cpu_mwait_halt_global = hint;
3116 	return 0;
3117 }
3118 
3119 static int
3120 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3121 {
3122 	struct cpu_idle_stat *stat = arg1;
3123 	int error;
3124 
3125 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3126 	    &stat->hint, TRUE);
3127 	return error;
3128 }
3129 
3130 static int
3131 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3132 {
3133 	int error;
3134 
3135 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3136 	    &cpu_mwait_spin, FALSE);
3137 	return error;
3138 }
3139 
3140 /*
3141  * This manual debugging code is called unconditionally from Xtimer
3142  * (the per-cpu timer interrupt) whether the current thread is in a
3143  * critical section or not) and can be useful in tracking down lockups.
3144  *
3145  * NOTE: MANUAL DEBUG CODE
3146  */
3147 #if 0
3148 static int saveticks[SMP_MAXCPU];
3149 static int savecounts[SMP_MAXCPU];
3150 #endif
3151 
3152 void
3153 pcpu_timer_always(struct intrframe *frame)
3154 {
3155 #if 0
3156 	globaldata_t gd = mycpu;
3157 	int cpu = gd->gd_cpuid;
3158 	char buf[64];
3159 	short *gptr;
3160 	int i;
3161 
3162 	if (cpu <= 20) {
3163 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3164 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3165 		++gptr;
3166 
3167 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3168 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3169 		    gd->gd_infomsg);
3170 		for (i = 0; buf[i]; ++i) {
3171 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3172 		}
3173 	}
3174 #if 0
3175 	if (saveticks[gd->gd_cpuid] != ticks) {
3176 		saveticks[gd->gd_cpuid] = ticks;
3177 		savecounts[gd->gd_cpuid] = 0;
3178 	}
3179 	++savecounts[gd->gd_cpuid];
3180 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3181 		panic("cpud %d panicing on ticks failure",
3182 			gd->gd_cpuid);
3183 	}
3184 	for (i = 0; i < ncpus; ++i) {
3185 		int delta;
3186 		if (saveticks[i] && panicstr == NULL) {
3187 			delta = saveticks[i] - ticks;
3188 			if (delta < -10 || delta > 10) {
3189 				panic("cpu %d panicing on cpu %d watchdog",
3190 				      gd->gd_cpuid, i);
3191 			}
3192 		}
3193 	}
3194 #endif
3195 #endif
3196 }
3197