xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 38b930d0)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_compat.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_directio.h"
49 #include "opt_inet.h"
50 #include "opt_ipx.h"
51 #include "opt_msgbuf.h"
52 #include "opt_swap.h"
53 
54 #include <sys/param.h>
55 #include <sys/systm.h>
56 #include <sys/sysproto.h>
57 #include <sys/signalvar.h>
58 #include <sys/kernel.h>
59 #include <sys/linker.h>
60 #include <sys/malloc.h>
61 #include <sys/proc.h>
62 #include <sys/priv.h>
63 #include <sys/buf.h>
64 #include <sys/reboot.h>
65 #include <sys/mbuf.h>
66 #include <sys/msgbuf.h>
67 #include <sys/sysent.h>
68 #include <sys/sysctl.h>
69 #include <sys/vmmeter.h>
70 #include <sys/bus.h>
71 #include <sys/usched.h>
72 #include <sys/reg.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <sys/lock.h>
77 #include <vm/vm_kern.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_pager.h>
82 #include <vm/vm_extern.h>
83 
84 #include <sys/thread2.h>
85 #include <sys/mplock2.h>
86 #include <sys/mutex2.h>
87 
88 #include <sys/user.h>
89 #include <sys/exec.h>
90 #include <sys/cons.h>
91 
92 #include <ddb/ddb.h>
93 
94 #include <machine/cpu.h>
95 #include <machine/clock.h>
96 #include <machine/specialreg.h>
97 #if JG
98 #include <machine/bootinfo.h>
99 #endif
100 #include <machine/md_var.h>
101 #include <machine/metadata.h>
102 #include <machine/pc/bios.h>
103 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
104 #include <machine/globaldata.h>		/* CPU_prvspace */
105 #include <machine/smp.h>
106 #ifdef PERFMON
107 #include <machine/perfmon.h>
108 #endif
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 
112 #ifdef OLD_BUS_ARCH
113 #include <bus/isa/isa_device.h>
114 #endif
115 #include <machine_base/isa/isa_intr.h>
116 #include <bus/isa/rtc.h>
117 #include <sys/random.h>
118 #include <sys/ptrace.h>
119 #include <machine/sigframe.h>
120 
121 #include <sys/machintr.h>
122 #include <machine_base/icu/icu_abi.h>
123 #include <machine_base/icu/elcr_var.h>
124 #include <machine_base/apic/lapic.h>
125 #include <machine_base/apic/ioapic.h>
126 #include <machine_base/apic/ioapic_abi.h>
127 #include <machine/mptable.h>
128 
129 #define PHYSMAP_ENTRIES		10
130 
131 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
132 
133 extern void printcpuinfo(void);	/* XXX header file */
134 extern void identify_cpu(void);
135 #if JG
136 extern void finishidentcpu(void);
137 #endif
138 extern void panicifcpuunsupported(void);
139 
140 static void cpu_startup(void *);
141 static void pic_finish(void *);
142 static void cpu_finish(void *);
143 
144 #ifndef CPU_DISABLE_SSE
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 #endif /* CPU_DISABLE_SSE */
148 #ifdef DIRECTIO
149 extern void ffs_rawread_setup(void);
150 #endif /* DIRECTIO */
151 static void init_locks(void);
152 
153 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
154 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL)
155 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL)
156 
157 #ifdef DDB
158 extern vm_offset_t ksym_start, ksym_end;
159 #endif
160 
161 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
162 
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 int cpu_mwait_halt;
167 
168 #if defined(SWTCH_OPTIM_STATS)
169 extern int swtch_optim_stats;
170 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
171 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
172 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
173 	CTLFLAG_RD, &tlb_flush_count, 0, "");
174 #endif
175 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
176 	CTLFLAG_RW, &cpu_mwait_halt, 0, "");
177 
178 long physmem = 0;
179 
180 u_long ebda_addr = 0;
181 
182 int imcr_present = 0;
183 
184 int naps = 0; /* # of Applications processors */
185 
186 u_int base_memory;
187 struct mtx dt_lock;		/* lock for GDT and LDT */
188 
189 static int
190 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
191 {
192 	u_long pmem = ctob(physmem);
193 
194 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
195 	return (error);
196 }
197 
198 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
199 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
200 
201 static int
202 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
203 {
204 	int error = sysctl_handle_int(oidp, 0,
205 		ctob(physmem - vmstats.v_wire_count), req);
206 	return (error);
207 }
208 
209 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
210 	0, 0, sysctl_hw_usermem, "IU", "");
211 
212 static int
213 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
214 {
215 	int error = sysctl_handle_int(oidp, 0,
216 		x86_64_btop(avail_end - avail_start), req);
217 	return (error);
218 }
219 
220 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
221 	0, 0, sysctl_hw_availpages, "I", "");
222 
223 vm_paddr_t Maxmem;
224 vm_paddr_t Realmem;
225 
226 /*
227  * The number of PHYSMAP entries must be one less than the number of
228  * PHYSSEG entries because the PHYSMAP entry that spans the largest
229  * physical address that is accessible by ISA DMA is split into two
230  * PHYSSEG entries.
231  */
232 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
233 
234 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
235 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
236 
237 /* must be 2 less so 0 0 can signal end of chunks */
238 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
239 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
240 
241 static vm_offset_t buffer_sva, buffer_eva;
242 vm_offset_t clean_sva, clean_eva;
243 static vm_offset_t pager_sva, pager_eva;
244 static struct trapframe proc0_tf;
245 
246 static void
247 cpu_startup(void *dummy)
248 {
249 	caddr_t v;
250 	vm_size_t size = 0;
251 	vm_offset_t firstaddr;
252 
253 	/*
254 	 * Good {morning,afternoon,evening,night}.
255 	 */
256 	kprintf("%s", version);
257 	startrtclock();
258 	printcpuinfo();
259 	panicifcpuunsupported();
260 #ifdef PERFMON
261 	perfmon_init();
262 #endif
263 	kprintf("real memory  = %ju (%ju MB)\n",
264 		(intmax_t)Realmem,
265 		(intmax_t)Realmem / 1024 / 1024);
266 	/*
267 	 * Display any holes after the first chunk of extended memory.
268 	 */
269 	if (bootverbose) {
270 		int indx;
271 
272 		kprintf("Physical memory chunk(s):\n");
273 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
274 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
275 
276 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
277 				(intmax_t)phys_avail[indx],
278 				(intmax_t)phys_avail[indx + 1] - 1,
279 				(intmax_t)size1,
280 				(intmax_t)(size1 / PAGE_SIZE));
281 		}
282 	}
283 
284 	/*
285 	 * Allocate space for system data structures.
286 	 * The first available kernel virtual address is in "v".
287 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
288 	 * As pages of memory are allocated and cleared,
289 	 * "firstaddr" is incremented.
290 	 * An index into the kernel page table corresponding to the
291 	 * virtual memory address maintained in "v" is kept in "mapaddr".
292 	 */
293 
294 	/*
295 	 * Make two passes.  The first pass calculates how much memory is
296 	 * needed and allocates it.  The second pass assigns virtual
297 	 * addresses to the various data structures.
298 	 */
299 	firstaddr = 0;
300 again:
301 	v = (caddr_t)firstaddr;
302 
303 #define	valloc(name, type, num) \
304 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
305 #define	valloclim(name, type, num, lim) \
306 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
307 
308 	/*
309 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
310 	 * For the first 64MB of ram nominally allocate sufficient buffers to
311 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
312 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
313 	 * the buffer cache we limit the eventual kva reservation to
314 	 * maxbcache bytes.
315 	 *
316 	 * factor represents the 1/4 x ram conversion.
317 	 */
318 	if (nbuf == 0) {
319 		long factor = 4 * BKVASIZE / 1024;
320 		long kbytes = physmem * (PAGE_SIZE / 1024);
321 
322 		nbuf = 50;
323 		if (kbytes > 4096)
324 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
325 		if (kbytes > 65536)
326 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
327 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
328 			nbuf = maxbcache / BKVASIZE;
329 	}
330 
331 	/*
332 	 * Do not allow the buffer_map to be more then 1/2 the size of the
333 	 * kernel_map.
334 	 */
335 	if (nbuf > (virtual_end - virtual_start +
336 		    virtual2_end - virtual2_start) / (BKVASIZE * 2)) {
337 		nbuf = (virtual_end - virtual_start +
338 			virtual2_end - virtual2_start) / (BKVASIZE * 2);
339 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
340 	}
341 
342 	/*
343 	 * Do not allow the buffer_map to use more than 50% of available
344 	 * physical-equivalent memory.  Since the VM pages which back
345 	 * individual buffers are typically wired, having too many bufs
346 	 * can prevent the system from paging properly.
347 	 */
348 	if (nbuf > physmem * PAGE_SIZE / (BKVASIZE * 2)) {
349 		nbuf = physmem * PAGE_SIZE / (BKVASIZE * 2);
350 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
351 	}
352 
353 	/*
354 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
355 	 * the valloc space which is just the virtual_end - virtual_start
356 	 * section.  We use valloc() to allocate the buf header array.
357 	 */
358 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
359 		nbuf = (virtual_end - virtual_start) /
360 		       sizeof(struct buf) / 2;
361 		kprintf("Warning: nbufs capped at %ld due to valloc "
362 			"considerations", nbuf);
363 	}
364 
365 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
366 #ifdef NSWBUF_MIN
367 	if (nswbuf < NSWBUF_MIN)
368 		nswbuf = NSWBUF_MIN;
369 #endif
370 #ifdef DIRECTIO
371 	ffs_rawread_setup();
372 #endif
373 
374 	valloc(swbuf, struct buf, nswbuf);
375 	valloc(buf, struct buf, nbuf);
376 
377 	/*
378 	 * End of first pass, size has been calculated so allocate memory
379 	 */
380 	if (firstaddr == 0) {
381 		size = (vm_size_t)(v - firstaddr);
382 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
383 		if (firstaddr == 0)
384 			panic("startup: no room for tables");
385 		goto again;
386 	}
387 
388 	/*
389 	 * End of second pass, addresses have been assigned
390 	 *
391 	 * nbuf is an int, make sure we don't overflow the field.
392 	 *
393 	 * On 64-bit systems we always reserve maximal allocations for
394 	 * buffer cache buffers and there are no fragmentation issues,
395 	 * so the KVA segment does not have to be excessively oversized.
396 	 */
397 	if ((vm_size_t)(v - firstaddr) != size)
398 		panic("startup: table size inconsistency");
399 
400 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
401 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE) +
402 		      (nswbuf * MAXPHYS) + pager_map_size);
403 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
404 		      ((vm_offset_t)(nbuf + 16) * BKVASIZE));
405 	buffer_map.system_map = 1;
406 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
407 		      ((vm_offset_t)nswbuf * MAXPHYS) + pager_map_size);
408 	pager_map.system_map = 1;
409 
410 #if defined(USERCONFIG)
411 	userconfig();
412 	cninit();		/* the preferred console may have changed */
413 #endif
414 
415 	kprintf("avail memory = %ju (%ju MB)\n",
416 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
417 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
418 		1024 / 1024);
419 }
420 
421 static void
422 cpu_finish(void *dummy __unused)
423 {
424 	cpu_setregs();
425 }
426 
427 static void
428 pic_finish(void *dummy __unused)
429 {
430 	/* Log ELCR information */
431 	elcr_dump();
432 
433 	/* Log MPTABLE information */
434 	mptable_pci_int_dump();
435 
436 	/* Finalize PCI */
437 	MachIntrABI.finalize();
438 }
439 
440 /*
441  * Send an interrupt to process.
442  *
443  * Stack is set up to allow sigcode stored
444  * at top to call routine, followed by kcall
445  * to sigreturn routine below.  After sigreturn
446  * resets the signal mask, the stack, and the
447  * frame pointer, it returns to the user
448  * specified pc, psl.
449  */
450 void
451 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
452 {
453 	struct lwp *lp = curthread->td_lwp;
454 	struct proc *p = lp->lwp_proc;
455 	struct trapframe *regs;
456 	struct sigacts *psp = p->p_sigacts;
457 	struct sigframe sf, *sfp;
458 	int oonstack;
459 	char *sp;
460 
461 	regs = lp->lwp_md.md_regs;
462 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
463 
464 	/* Save user context */
465 	bzero(&sf, sizeof(struct sigframe));
466 	sf.sf_uc.uc_sigmask = *mask;
467 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
468 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
469 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
470 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
471 
472 	/* Make the size of the saved context visible to userland */
473 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
474 
475 	/* Allocate and validate space for the signal handler context. */
476         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
477 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
478 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
479 			      sizeof(struct sigframe));
480 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
481 	} else {
482 		/* We take red zone into account */
483 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
484 	}
485 
486 	/*
487 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
488 	 * the embedded ucontext is not at the front, so aligning this won't
489 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
490 	 * kernel is ok.
491 	 *
492 	 * The problem though is if userland winds up trying to use the
493 	 * context directly.
494 	 */
495 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
496 
497 	/* Translate the signal is appropriate */
498 	if (p->p_sysent->sv_sigtbl) {
499 		if (sig <= p->p_sysent->sv_sigsize)
500 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
501 	}
502 
503 	/*
504 	 * Build the argument list for the signal handler.
505 	 *
506 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
507 	 */
508 	regs->tf_rdi = sig;				/* argument 1 */
509 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
510 
511 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
512 		/*
513 		 * Signal handler installed with SA_SIGINFO.
514 		 *
515 		 * action(signo, siginfo, ucontext)
516 		 */
517 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
518 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
519 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
520 
521 		/* fill siginfo structure */
522 		sf.sf_si.si_signo = sig;
523 		sf.sf_si.si_code = code;
524 		sf.sf_si.si_addr = (void *)regs->tf_addr;
525 	} else {
526 		/*
527 		 * Old FreeBSD-style arguments.
528 		 *
529 		 * handler (signo, code, [uc], addr)
530 		 */
531 		regs->tf_rsi = (register_t)code;	/* argument 2 */
532 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
533 		sf.sf_ahu.sf_handler = catcher;
534 	}
535 
536 	/*
537 	 * If we're a vm86 process, we want to save the segment registers.
538 	 * We also change eflags to be our emulated eflags, not the actual
539 	 * eflags.
540 	 */
541 #if JG
542 	if (regs->tf_eflags & PSL_VM) {
543 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
544 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
545 
546 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
547 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
548 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
549 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
550 
551 		if (vm86->vm86_has_vme == 0)
552 			sf.sf_uc.uc_mcontext.mc_eflags =
553 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
554 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
555 
556 		/*
557 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
558 		 * syscalls made by the signal handler.  This just avoids
559 		 * wasting time for our lazy fixup of such faults.  PSL_NT
560 		 * does nothing in vm86 mode, but vm86 programs can set it
561 		 * almost legitimately in probes for old cpu types.
562 		 */
563 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
564 	}
565 #endif
566 
567 	/*
568 	 * Save the FPU state and reinit the FP unit
569 	 */
570 	npxpush(&sf.sf_uc.uc_mcontext);
571 
572 	/*
573 	 * Copy the sigframe out to the user's stack.
574 	 */
575 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
576 		/*
577 		 * Something is wrong with the stack pointer.
578 		 * ...Kill the process.
579 		 */
580 		sigexit(lp, SIGILL);
581 	}
582 
583 	regs->tf_rsp = (register_t)sfp;
584 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
585 
586 	/*
587 	 * i386 abi specifies that the direction flag must be cleared
588 	 * on function entry
589 	 */
590 	regs->tf_rflags &= ~(PSL_T|PSL_D);
591 
592 	/*
593 	 * 64 bit mode has a code and stack selector but
594 	 * no data or extra selector.  %fs and %gs are not
595 	 * stored in-context.
596 	 */
597 	regs->tf_cs = _ucodesel;
598 	regs->tf_ss = _udatasel;
599 	clear_quickret();
600 }
601 
602 /*
603  * Sanitize the trapframe for a virtual kernel passing control to a custom
604  * VM context.  Remove any items that would otherwise create a privilage
605  * issue.
606  *
607  * XXX at the moment we allow userland to set the resume flag.  Is this a
608  * bad idea?
609  */
610 int
611 cpu_sanitize_frame(struct trapframe *frame)
612 {
613 	frame->tf_cs = _ucodesel;
614 	frame->tf_ss = _udatasel;
615 	/* XXX VM (8086) mode not supported? */
616 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
617 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
618 
619 	return(0);
620 }
621 
622 /*
623  * Sanitize the tls so loading the descriptor does not blow up
624  * on us.  For x86_64 we don't have to do anything.
625  */
626 int
627 cpu_sanitize_tls(struct savetls *tls)
628 {
629 	return(0);
630 }
631 
632 /*
633  * sigreturn(ucontext_t *sigcntxp)
634  *
635  * System call to cleanup state after a signal
636  * has been taken.  Reset signal mask and
637  * stack state from context left by sendsig (above).
638  * Return to previous pc and psl as specified by
639  * context left by sendsig. Check carefully to
640  * make sure that the user has not modified the
641  * state to gain improper privileges.
642  *
643  * MPSAFE
644  */
645 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
646 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
647 
648 int
649 sys_sigreturn(struct sigreturn_args *uap)
650 {
651 	struct lwp *lp = curthread->td_lwp;
652 	struct trapframe *regs;
653 	ucontext_t uc;
654 	ucontext_t *ucp;
655 	register_t rflags;
656 	int cs;
657 	int error;
658 
659 	/*
660 	 * We have to copy the information into kernel space so userland
661 	 * can't modify it while we are sniffing it.
662 	 */
663 	regs = lp->lwp_md.md_regs;
664 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
665 	if (error)
666 		return (error);
667 	ucp = &uc;
668 	rflags = ucp->uc_mcontext.mc_rflags;
669 
670 	/* VM (8086) mode not supported */
671 	rflags &= ~PSL_VM_UNSUPP;
672 
673 #if JG
674 	if (eflags & PSL_VM) {
675 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
676 		struct vm86_kernel *vm86;
677 
678 		/*
679 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
680 		 * set up the vm86 area, and we can't enter vm86 mode.
681 		 */
682 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
683 			return (EINVAL);
684 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
685 		if (vm86->vm86_inited == 0)
686 			return (EINVAL);
687 
688 		/* go back to user mode if both flags are set */
689 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
690 			trapsignal(lp, SIGBUS, 0);
691 
692 		if (vm86->vm86_has_vme) {
693 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
694 			    (eflags & VME_USERCHANGE) | PSL_VM;
695 		} else {
696 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
697 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
698 			    (eflags & VM_USERCHANGE) | PSL_VM;
699 		}
700 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
701 		tf->tf_eflags = eflags;
702 		tf->tf_vm86_ds = tf->tf_ds;
703 		tf->tf_vm86_es = tf->tf_es;
704 		tf->tf_vm86_fs = tf->tf_fs;
705 		tf->tf_vm86_gs = tf->tf_gs;
706 		tf->tf_ds = _udatasel;
707 		tf->tf_es = _udatasel;
708 		tf->tf_fs = _udatasel;
709 		tf->tf_gs = _udatasel;
710 	} else
711 #endif
712 	{
713 		/*
714 		 * Don't allow users to change privileged or reserved flags.
715 		 */
716 		/*
717 		 * XXX do allow users to change the privileged flag PSL_RF.
718 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
719 		 * should sometimes set it there too.  tf_eflags is kept in
720 		 * the signal context during signal handling and there is no
721 		 * other place to remember it, so the PSL_RF bit may be
722 		 * corrupted by the signal handler without us knowing.
723 		 * Corruption of the PSL_RF bit at worst causes one more or
724 		 * one less debugger trap, so allowing it is fairly harmless.
725 		 */
726 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
727 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
728 	    		return(EINVAL);
729 		}
730 
731 		/*
732 		 * Don't allow users to load a valid privileged %cs.  Let the
733 		 * hardware check for invalid selectors, excess privilege in
734 		 * other selectors, invalid %eip's and invalid %esp's.
735 		 */
736 		cs = ucp->uc_mcontext.mc_cs;
737 		if (!CS_SECURE(cs)) {
738 			kprintf("sigreturn: cs = 0x%x\n", cs);
739 			trapsignal(lp, SIGBUS, T_PROTFLT);
740 			return(EINVAL);
741 		}
742 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
743 	}
744 
745 	/*
746 	 * Restore the FPU state from the frame
747 	 */
748 	crit_enter();
749 	npxpop(&ucp->uc_mcontext);
750 
751 	if (ucp->uc_mcontext.mc_onstack & 1)
752 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
753 	else
754 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
755 
756 	lp->lwp_sigmask = ucp->uc_sigmask;
757 	SIG_CANTMASK(lp->lwp_sigmask);
758 	clear_quickret();
759 	crit_exit();
760 	return(EJUSTRETURN);
761 }
762 
763 /*
764  * Machine dependent boot() routine
765  *
766  * I haven't seen anything to put here yet
767  * Possibly some stuff might be grafted back here from boot()
768  */
769 void
770 cpu_boot(int howto)
771 {
772 }
773 
774 /*
775  * Shutdown the CPU as much as possible
776  */
777 void
778 cpu_halt(void)
779 {
780 	for (;;)
781 		__asm__ __volatile("hlt");
782 }
783 
784 /*
785  * cpu_idle() represents the idle LWKT.  You cannot return from this function
786  * (unless you want to blow things up!).  Instead we look for runnable threads
787  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
788  *
789  * The main loop is entered with a critical section held, we must release
790  * the critical section before doing anything else.  lwkt_switch() will
791  * check for pending interrupts due to entering and exiting its own
792  * critical section.
793  *
794  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
795  *	 However, there are cases where the idlethread will be entered with
796  *	 the possibility that no IPI will occur and in such cases
797  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
798  *
799  * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states).  Set to
800  *	 1 to just use hlt and for debugging purposes.
801  *
802  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
803  *	 must occur before it starts using ACPI halt.
804  */
805 static int	cpu_idle_hlt = 2;
806 static int	cpu_idle_hltcnt;
807 static int	cpu_idle_spincnt;
808 static u_int	cpu_idle_repeat = 750;
809 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
810     &cpu_idle_hlt, 0, "Idle loop HLT enable");
811 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
812     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
813 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
814     &cpu_idle_spincnt, 0, "Idle loop entry spins");
815 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
816     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
817 
818 static void
819 cpu_idle_default_hook(void)
820 {
821 	/*
822 	 * We must guarentee that hlt is exactly the instruction
823 	 * following the sti.
824 	 */
825 	__asm __volatile("sti; hlt");
826 }
827 
828 /* Other subsystems (e.g., ACPI) can hook this later. */
829 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
830 
831 void
832 cpu_idle(void)
833 {
834 	globaldata_t gd = mycpu;
835 	struct thread *td __debugvar = gd->gd_curthread;
836 	int reqflags;
837 	int quick;
838 
839 	crit_exit();
840 	KKASSERT(td->td_critcount == 0);
841 	for (;;) {
842 		/*
843 		 * See if there are any LWKTs ready to go.
844 		 */
845 		lwkt_switch();
846 
847 		/*
848 		 * When halting inside a cli we must check for reqflags
849 		 * races, particularly [re]schedule requests.  Running
850 		 * splz() does the job.
851 		 *
852 		 * cpu_idle_hlt:
853 		 *	0	Never halt, just spin
854 		 *
855 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
856 		 *		This typically eats more power than the
857 		 *		ACPI halt.
858 		 *
859 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
860 		 *		use the ACPI halt (default).  This is a hybrid
861 		 *		approach.  See machdep.cpu_idle_repeat.
862 		 *
863 		 *	3	Always use the ACPI halt.  This typically
864 		 *		eats the least amount of power but the cpu
865 		 *		will be slow waking up.  Slows down e.g.
866 		 *		compiles and other pipe/event oriented stuff.
867 		 *
868 		 * NOTE: Interrupts are enabled and we are not in a critical
869 		 *	 section.
870 		 *
871 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
872 		 *	 don't bother capping gd_idle_repeat, it is ok if
873 		 *	 it overflows.
874 		 */
875 		++gd->gd_idle_repeat;
876 		reqflags = gd->gd_reqflags;
877 		quick = (cpu_idle_hlt == 1) ||
878 			(cpu_idle_hlt < 3 &&
879 			 gd->gd_idle_repeat < cpu_idle_repeat);
880 
881 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
882 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
883 			splz(); /* XXX */
884 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
885 					  cpu_mwait_halt);
886 			++cpu_idle_hltcnt;
887 		} else if (cpu_idle_hlt) {
888 			__asm __volatile("cli");
889 			splz();
890 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
891 				if (quick)
892 					cpu_idle_default_hook();
893 				else
894 					cpu_idle_hook();
895 			}
896 			__asm __volatile("sti");
897 			++cpu_idle_hltcnt;
898 		} else {
899 			splz();
900 			__asm __volatile("sti");
901 			++cpu_idle_spincnt;
902 		}
903 	}
904 }
905 
906 /*
907  * This routine is called if a spinlock has been held through the
908  * exponential backoff period and is seriously contested.  On a real cpu
909  * we let it spin.
910  */
911 void
912 cpu_spinlock_contested(void)
913 {
914 	cpu_pause();
915 }
916 
917 /*
918  * Clear registers on exec
919  */
920 void
921 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
922 {
923 	struct thread *td = curthread;
924 	struct lwp *lp = td->td_lwp;
925 	struct pcb *pcb = td->td_pcb;
926 	struct trapframe *regs = lp->lwp_md.md_regs;
927 
928 	/* was i386_user_cleanup() in NetBSD */
929 	user_ldt_free(pcb);
930 
931 	clear_quickret();
932 	bzero((char *)regs, sizeof(struct trapframe));
933 	regs->tf_rip = entry;
934 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
935 	regs->tf_rdi = stack;		/* argv */
936 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
937 	regs->tf_ss = _udatasel;
938 	regs->tf_cs = _ucodesel;
939 	regs->tf_rbx = ps_strings;
940 
941 	/*
942 	 * Reset the hardware debug registers if they were in use.
943 	 * They won't have any meaning for the newly exec'd process.
944 	 */
945 	if (pcb->pcb_flags & PCB_DBREGS) {
946 		pcb->pcb_dr0 = 0;
947 		pcb->pcb_dr1 = 0;
948 		pcb->pcb_dr2 = 0;
949 		pcb->pcb_dr3 = 0;
950 		pcb->pcb_dr6 = 0;
951 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
952 		if (pcb == td->td_pcb) {
953 			/*
954 			 * Clear the debug registers on the running
955 			 * CPU, otherwise they will end up affecting
956 			 * the next process we switch to.
957 			 */
958 			reset_dbregs();
959 		}
960 		pcb->pcb_flags &= ~PCB_DBREGS;
961 	}
962 
963 	/*
964 	 * Initialize the math emulator (if any) for the current process.
965 	 * Actually, just clear the bit that says that the emulator has
966 	 * been initialized.  Initialization is delayed until the process
967 	 * traps to the emulator (if it is done at all) mainly because
968 	 * emulators don't provide an entry point for initialization.
969 	 */
970 	pcb->pcb_flags &= ~FP_SOFTFP;
971 
972 	/*
973 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
974 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
975 	 *	 may panic in npxdna().
976 	 */
977 	crit_enter();
978 	load_cr0(rcr0() | CR0_MP);
979 
980 	/*
981 	 * NOTE: The MSR values must be correct so we can return to
982 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
983 	 *	 code knows what the current MSR values are.
984 	 */
985 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
986 	pcb->pcb_gsbase = 0;
987 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
988 	mdcpu->gd_user_gs = 0;
989 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
990 	wrmsr(MSR_KGSBASE, 0);
991 
992 	/* Initialize the npx (if any) for the current process. */
993 	npxinit(__INITIAL_FPUCW__);
994 	crit_exit();
995 
996 	pcb->pcb_ds = _udatasel;
997 	pcb->pcb_es = _udatasel;
998 	pcb->pcb_fs = _udatasel;
999 	pcb->pcb_gs = _udatasel;
1000 }
1001 
1002 void
1003 cpu_setregs(void)
1004 {
1005 	register_t cr0;
1006 
1007 	cr0 = rcr0();
1008 	cr0 |= CR0_NE;			/* Done by npxinit() */
1009 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1010 	cr0 |= CR0_WP | CR0_AM;
1011 	load_cr0(cr0);
1012 	load_gs(_udatasel);
1013 }
1014 
1015 static int
1016 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1017 {
1018 	int error;
1019 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1020 		req);
1021 	if (!error && req->newptr)
1022 		resettodr();
1023 	return (error);
1024 }
1025 
1026 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1027 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1028 
1029 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1030 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1031 
1032 #if JG
1033 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1034 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1035 #endif
1036 
1037 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1038 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1039 
1040 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1041 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1042 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1043 
1044 /*
1045  * Initialize 386 and configure to run kernel
1046  */
1047 
1048 /*
1049  * Initialize segments & interrupt table
1050  */
1051 
1052 int _default_ldt;
1053 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1054 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1055 #if JG
1056 union descriptor ldt[NLDT];		/* local descriptor table */
1057 #endif
1058 
1059 /* table descriptors - used to load tables by cpu */
1060 struct region_descriptor r_gdt;
1061 struct region_descriptor r_idt_arr[MAXCPU];
1062 
1063 /* JG proc0paddr is a virtual address */
1064 void *proc0paddr;
1065 /* JG alignment? */
1066 char proc0paddr_buff[LWKT_THREAD_STACK];
1067 
1068 
1069 /* software prototypes -- in more palatable form */
1070 struct soft_segment_descriptor gdt_segs[] = {
1071 /* GNULL_SEL	0 Null Descriptor */
1072 {	0x0,			/* segment base address  */
1073 	0x0,			/* length */
1074 	0,			/* segment type */
1075 	0,			/* segment descriptor priority level */
1076 	0,			/* segment descriptor present */
1077 	0,			/* long */
1078 	0,			/* default 32 vs 16 bit size */
1079 	0  			/* limit granularity (byte/page units)*/ },
1080 /* GCODE_SEL	1 Code Descriptor for kernel */
1081 {	0x0,			/* segment base address  */
1082 	0xfffff,		/* length - all address space */
1083 	SDT_MEMERA,		/* segment type */
1084 	SEL_KPL,		/* segment descriptor priority level */
1085 	1,			/* segment descriptor present */
1086 	1,			/* long */
1087 	0,			/* default 32 vs 16 bit size */
1088 	1  			/* limit granularity (byte/page units)*/ },
1089 /* GDATA_SEL	2 Data Descriptor for kernel */
1090 {	0x0,			/* segment base address  */
1091 	0xfffff,		/* length - all address space */
1092 	SDT_MEMRWA,		/* segment type */
1093 	SEL_KPL,		/* segment descriptor priority level */
1094 	1,			/* segment descriptor present */
1095 	1,			/* long */
1096 	0,			/* default 32 vs 16 bit size */
1097 	1  			/* limit granularity (byte/page units)*/ },
1098 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1099 {	0x0,			/* segment base address  */
1100 	0xfffff,		/* length - all address space */
1101 	SDT_MEMERA,		/* segment type */
1102 	SEL_UPL,		/* segment descriptor priority level */
1103 	1,			/* segment descriptor present */
1104 	0,			/* long */
1105 	1,			/* default 32 vs 16 bit size */
1106 	1  			/* limit granularity (byte/page units)*/ },
1107 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1108 {	0x0,			/* segment base address  */
1109 	0xfffff,		/* length - all address space */
1110 	SDT_MEMRWA,		/* segment type */
1111 	SEL_UPL,		/* segment descriptor priority level */
1112 	1,			/* segment descriptor present */
1113 	0,			/* long */
1114 	1,			/* default 32 vs 16 bit size */
1115 	1  			/* limit granularity (byte/page units)*/ },
1116 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1117 {	0x0,			/* segment base address  */
1118 	0xfffff,		/* length - all address space */
1119 	SDT_MEMERA,		/* segment type */
1120 	SEL_UPL,		/* segment descriptor priority level */
1121 	1,			/* segment descriptor present */
1122 	1,			/* long */
1123 	0,			/* default 32 vs 16 bit size */
1124 	1  			/* limit granularity (byte/page units)*/ },
1125 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1126 {
1127 	0x0,			/* segment base address */
1128 	sizeof(struct x86_64tss)-1,/* length - all address space */
1129 	SDT_SYSTSS,		/* segment type */
1130 	SEL_KPL,		/* segment descriptor priority level */
1131 	1,			/* segment descriptor present */
1132 	0,			/* long */
1133 	0,			/* unused - default 32 vs 16 bit size */
1134 	0  			/* limit granularity (byte/page units)*/ },
1135 /* Actually, the TSS is a system descriptor which is double size */
1136 {	0x0,			/* segment base address  */
1137 	0x0,			/* length */
1138 	0,			/* segment type */
1139 	0,			/* segment descriptor priority level */
1140 	0,			/* segment descriptor present */
1141 	0,			/* long */
1142 	0,			/* default 32 vs 16 bit size */
1143 	0  			/* limit granularity (byte/page units)*/ },
1144 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1145 {	0x0,			/* segment base address  */
1146 	0xfffff,		/* length - all address space */
1147 	SDT_MEMRWA,		/* segment type */
1148 	SEL_UPL,		/* segment descriptor priority level */
1149 	1,			/* segment descriptor present */
1150 	0,			/* long */
1151 	1,			/* default 32 vs 16 bit size */
1152 	1  			/* limit granularity (byte/page units)*/ },
1153 };
1154 
1155 void
1156 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1157 {
1158 	int cpu;
1159 
1160 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1161 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1162 
1163 		ip->gd_looffset = (uintptr_t)func;
1164 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1165 		ip->gd_ist = ist;
1166 		ip->gd_xx = 0;
1167 		ip->gd_type = typ;
1168 		ip->gd_dpl = dpl;
1169 		ip->gd_p = 1;
1170 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1171 	}
1172 }
1173 
1174 void
1175 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1176 {
1177 	struct gate_descriptor *ip;
1178 
1179 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1180 
1181 	ip = &idt_arr[cpu][idx];
1182 	ip->gd_looffset = (uintptr_t)func;
1183 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1184 	ip->gd_ist = ist;
1185 	ip->gd_xx = 0;
1186 	ip->gd_type = typ;
1187 	ip->gd_dpl = dpl;
1188 	ip->gd_p = 1;
1189 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1190 }
1191 
1192 #define	IDTVEC(name)	__CONCAT(X,name)
1193 
1194 extern inthand_t
1195 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1196 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1197 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1198 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1199 	IDTVEC(xmm), IDTVEC(dblfault),
1200 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1201 
1202 #ifdef DEBUG_INTERRUPTS
1203 extern inthand_t *Xrsvdary[256];
1204 #endif
1205 
1206 void
1207 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1208 {
1209 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1210 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1211 	ssd->ssd_type  = sd->sd_type;
1212 	ssd->ssd_dpl   = sd->sd_dpl;
1213 	ssd->ssd_p     = sd->sd_p;
1214 	ssd->ssd_def32 = sd->sd_def32;
1215 	ssd->ssd_gran  = sd->sd_gran;
1216 }
1217 
1218 void
1219 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1220 {
1221 
1222 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1223 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1224 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1225 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1226 	sd->sd_type  = ssd->ssd_type;
1227 	sd->sd_dpl   = ssd->ssd_dpl;
1228 	sd->sd_p     = ssd->ssd_p;
1229 	sd->sd_long  = ssd->ssd_long;
1230 	sd->sd_def32 = ssd->ssd_def32;
1231 	sd->sd_gran  = ssd->ssd_gran;
1232 }
1233 
1234 void
1235 ssdtosyssd(struct soft_segment_descriptor *ssd,
1236     struct system_segment_descriptor *sd)
1237 {
1238 
1239 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1240 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1241 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1242 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1243 	sd->sd_type  = ssd->ssd_type;
1244 	sd->sd_dpl   = ssd->ssd_dpl;
1245 	sd->sd_p     = ssd->ssd_p;
1246 	sd->sd_gran  = ssd->ssd_gran;
1247 }
1248 
1249 /*
1250  * Populate the (physmap) array with base/bound pairs describing the
1251  * available physical memory in the system, then test this memory and
1252  * build the phys_avail array describing the actually-available memory.
1253  *
1254  * If we cannot accurately determine the physical memory map, then use
1255  * value from the 0xE801 call, and failing that, the RTC.
1256  *
1257  * Total memory size may be set by the kernel environment variable
1258  * hw.physmem or the compile-time define MAXMEM.
1259  *
1260  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1261  * of PAGE_SIZE.  This also greatly reduces the memory test time
1262  * which would otherwise be excessive on machines with > 8G of ram.
1263  *
1264  * XXX first should be vm_paddr_t.
1265  */
1266 
1267 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1268 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1269 
1270 static void
1271 getmemsize(caddr_t kmdp, u_int64_t first)
1272 {
1273 	int off, physmap_idx, pa_indx, da_indx;
1274 	int i, j;
1275 	vm_paddr_t physmap[PHYSMAP_SIZE];
1276 	vm_paddr_t pa;
1277 	vm_paddr_t msgbuf_size;
1278 	u_long physmem_tunable;
1279 	pt_entry_t *pte;
1280 	struct bios_smap *smapbase, *smap, *smapend;
1281 	u_int32_t smapsize;
1282 	quad_t dcons_addr, dcons_size;
1283 
1284 	bzero(physmap, sizeof(physmap));
1285 	physmap_idx = 0;
1286 
1287 	/*
1288 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1289 	 *
1290 	 * subr_module.c says:
1291 	 * "Consumer may safely assume that size value precedes data."
1292 	 * ie: an int32_t immediately precedes smap.
1293 	 */
1294 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1295 	    MODINFO_METADATA | MODINFOMD_SMAP);
1296 	if (smapbase == NULL)
1297 		panic("No BIOS smap info from loader!");
1298 
1299 	smapsize = *((u_int32_t *)smapbase - 1);
1300 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1301 
1302 	for (smap = smapbase; smap < smapend; smap++) {
1303 		if (boothowto & RB_VERBOSE)
1304 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1305 			    smap->type, smap->base, smap->length);
1306 
1307 		if (smap->type != SMAP_TYPE_MEMORY)
1308 			continue;
1309 
1310 		if (smap->length == 0)
1311 			continue;
1312 
1313 		for (i = 0; i <= physmap_idx; i += 2) {
1314 			if (smap->base < physmap[i + 1]) {
1315 				if (boothowto & RB_VERBOSE) {
1316 					kprintf("Overlapping or non-monotonic "
1317 						"memory region, ignoring "
1318 						"second region\n");
1319 				}
1320 				break;
1321 			}
1322 		}
1323 		if (i <= physmap_idx)
1324 			continue;
1325 
1326 		Realmem += smap->length;
1327 
1328 		if (smap->base == physmap[physmap_idx + 1]) {
1329 			physmap[physmap_idx + 1] += smap->length;
1330 			continue;
1331 		}
1332 
1333 		physmap_idx += 2;
1334 		if (physmap_idx == PHYSMAP_SIZE) {
1335 			kprintf("Too many segments in the physical "
1336 				"address map, giving up\n");
1337 			break;
1338 		}
1339 		physmap[physmap_idx] = smap->base;
1340 		physmap[physmap_idx + 1] = smap->base + smap->length;
1341 	}
1342 
1343 	base_memory = physmap[1] / 1024;
1344 	/* make hole for AP bootstrap code */
1345 	physmap[1] = mp_bootaddress(base_memory);
1346 
1347 	/* Save EBDA address, if any */
1348 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1349 	ebda_addr <<= 4;
1350 
1351 	/*
1352 	 * Maxmem isn't the "maximum memory", it's one larger than the
1353 	 * highest page of the physical address space.  It should be
1354 	 * called something like "Maxphyspage".  We may adjust this
1355 	 * based on ``hw.physmem'' and the results of the memory test.
1356 	 */
1357 	Maxmem = atop(physmap[physmap_idx + 1]);
1358 
1359 #ifdef MAXMEM
1360 	Maxmem = MAXMEM / 4;
1361 #endif
1362 
1363 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1364 		Maxmem = atop(physmem_tunable);
1365 
1366 	/*
1367 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1368 	 * in the system.
1369 	 */
1370 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1371 		Maxmem = atop(physmap[physmap_idx + 1]);
1372 
1373 	/*
1374 	 * Blowing out the DMAP will blow up the system.
1375 	 */
1376 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1377 		kprintf("Limiting Maxmem due to DMAP size\n");
1378 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1379 	}
1380 
1381 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1382 	    (boothowto & RB_VERBOSE)) {
1383 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1384 	}
1385 
1386 	/*
1387 	 * Call pmap initialization to make new kernel address space
1388 	 *
1389 	 * Mask off page 0.
1390 	 */
1391 	pmap_bootstrap(&first);
1392 	physmap[0] = PAGE_SIZE;
1393 
1394 	/*
1395 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1396 	 * exceeding Maxmem.
1397 	 */
1398 	for (i = j = 0; i <= physmap_idx; i += 2) {
1399 		if (physmap[i+1] > ptoa(Maxmem))
1400 			physmap[i+1] = ptoa(Maxmem);
1401 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1402 			     ~PHYSMAP_ALIGN_MASK;
1403 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1404 
1405 		physmap[j] = physmap[i];
1406 		physmap[j+1] = physmap[i+1];
1407 
1408 		if (physmap[i] < physmap[i+1])
1409 			j += 2;
1410 	}
1411 	physmap_idx = j - 2;
1412 
1413 	/*
1414 	 * Align anything else used in the validation loop.
1415 	 */
1416 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1417 
1418 	/*
1419 	 * Size up each available chunk of physical memory.
1420 	 */
1421 	pa_indx = 0;
1422 	da_indx = 1;
1423 	phys_avail[pa_indx++] = physmap[0];
1424 	phys_avail[pa_indx] = physmap[0];
1425 	dump_avail[da_indx] = physmap[0];
1426 	pte = CMAP1;
1427 
1428 	/*
1429 	 * Get dcons buffer address
1430 	 */
1431 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1432 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1433 		dcons_addr = 0;
1434 
1435 	/*
1436 	 * Validate the physical memory.  The physical memory segments
1437 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1438 	 * of PAGE_SIZE.
1439 	 */
1440 	for (i = 0; i <= physmap_idx; i += 2) {
1441 		vm_paddr_t end;
1442 
1443 		end = physmap[i + 1];
1444 
1445 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1446 			int tmp, page_bad, full;
1447 			int *ptr = (int *)CADDR1;
1448 
1449 			full = FALSE;
1450 			/*
1451 			 * block out kernel memory as not available.
1452 			 */
1453 			if (pa >= 0x200000 && pa < first)
1454 				goto do_dump_avail;
1455 
1456 			/*
1457 			 * block out dcons buffer
1458 			 */
1459 			if (dcons_addr > 0
1460 			    && pa >= trunc_page(dcons_addr)
1461 			    && pa < dcons_addr + dcons_size) {
1462 				goto do_dump_avail;
1463 			}
1464 
1465 			page_bad = FALSE;
1466 
1467 			/*
1468 			 * map page into kernel: valid, read/write,non-cacheable
1469 			 */
1470 			*pte = pa |
1471 			    kernel_pmap.pmap_bits[PG_V_IDX] |
1472 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
1473 			    kernel_pmap.pmap_bits[PG_N_IDX];
1474 			cpu_invltlb();
1475 
1476 			tmp = *ptr;
1477 			/*
1478 			 * Test for alternating 1's and 0's
1479 			 */
1480 			*(volatile int *)ptr = 0xaaaaaaaa;
1481 			cpu_mfence();
1482 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1483 				page_bad = TRUE;
1484 			/*
1485 			 * Test for alternating 0's and 1's
1486 			 */
1487 			*(volatile int *)ptr = 0x55555555;
1488 			cpu_mfence();
1489 			if (*(volatile int *)ptr != 0x55555555)
1490 				page_bad = TRUE;
1491 			/*
1492 			 * Test for all 1's
1493 			 */
1494 			*(volatile int *)ptr = 0xffffffff;
1495 			cpu_mfence();
1496 			if (*(volatile int *)ptr != 0xffffffff)
1497 				page_bad = TRUE;
1498 			/*
1499 			 * Test for all 0's
1500 			 */
1501 			*(volatile int *)ptr = 0x0;
1502 			cpu_mfence();
1503 			if (*(volatile int *)ptr != 0x0)
1504 				page_bad = TRUE;
1505 			/*
1506 			 * Restore original value.
1507 			 */
1508 			*ptr = tmp;
1509 
1510 			/*
1511 			 * Adjust array of valid/good pages.
1512 			 */
1513 			if (page_bad == TRUE)
1514 				continue;
1515 			/*
1516 			 * If this good page is a continuation of the
1517 			 * previous set of good pages, then just increase
1518 			 * the end pointer. Otherwise start a new chunk.
1519 			 * Note that "end" points one higher than end,
1520 			 * making the range >= start and < end.
1521 			 * If we're also doing a speculative memory
1522 			 * test and we at or past the end, bump up Maxmem
1523 			 * so that we keep going. The first bad page
1524 			 * will terminate the loop.
1525 			 */
1526 			if (phys_avail[pa_indx] == pa) {
1527 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1528 			} else {
1529 				pa_indx++;
1530 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1531 					kprintf(
1532 		"Too many holes in the physical address space, giving up\n");
1533 					pa_indx--;
1534 					full = TRUE;
1535 					goto do_dump_avail;
1536 				}
1537 				phys_avail[pa_indx++] = pa;
1538 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1539 			}
1540 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1541 do_dump_avail:
1542 			if (dump_avail[da_indx] == pa) {
1543 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1544 			} else {
1545 				da_indx++;
1546 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1547 					da_indx--;
1548 					goto do_next;
1549 				}
1550 				dump_avail[da_indx++] = pa;
1551 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1552 			}
1553 do_next:
1554 			if (full)
1555 				break;
1556 		}
1557 	}
1558 	*pte = 0;
1559 	cpu_invltlb();
1560 
1561 	/*
1562 	 * The last chunk must contain at least one page plus the message
1563 	 * buffer to avoid complicating other code (message buffer address
1564 	 * calculation, etc.).
1565 	 */
1566 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1567 
1568 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1569 	       msgbuf_size >= phys_avail[pa_indx]) {
1570 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1571 		phys_avail[pa_indx--] = 0;
1572 		phys_avail[pa_indx--] = 0;
1573 	}
1574 
1575 	Maxmem = atop(phys_avail[pa_indx]);
1576 
1577 	/* Trim off space for the message buffer. */
1578 	phys_avail[pa_indx] -= msgbuf_size;
1579 
1580 	avail_end = phys_avail[pa_indx];
1581 
1582 	/* Map the message buffer. */
1583 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1584 		pmap_kenter((vm_offset_t)msgbufp + off,
1585 			    phys_avail[pa_indx] + off);
1586 	}
1587 }
1588 
1589 struct machintr_abi MachIntrABI;
1590 
1591 /*
1592  * IDT VECTORS:
1593  *	0	Divide by zero
1594  *	1	Debug
1595  *	2	NMI
1596  *	3	BreakPoint
1597  *	4	OverFlow
1598  *	5	Bound-Range
1599  *	6	Invalid OpCode
1600  *	7	Device Not Available (x87)
1601  *	8	Double-Fault
1602  *	9	Coprocessor Segment overrun (unsupported, reserved)
1603  *	10	Invalid-TSS
1604  *	11	Segment not present
1605  *	12	Stack
1606  *	13	General Protection
1607  *	14	Page Fault
1608  *	15	Reserved
1609  *	16	x87 FP Exception pending
1610  *	17	Alignment Check
1611  *	18	Machine Check
1612  *	19	SIMD floating point
1613  *	20-31	reserved
1614  *	32-255	INTn/external sources
1615  */
1616 u_int64_t
1617 hammer_time(u_int64_t modulep, u_int64_t physfree)
1618 {
1619 	caddr_t kmdp;
1620 	int gsel_tss, x, cpu;
1621 #if JG
1622 	int metadata_missing, off;
1623 #endif
1624 	struct mdglobaldata *gd;
1625 	u_int64_t msr;
1626 
1627 	/*
1628 	 * Prevent lowering of the ipl if we call tsleep() early.
1629 	 */
1630 	gd = &CPU_prvspace[0].mdglobaldata;
1631 	bzero(gd, sizeof(*gd));
1632 
1633 	/*
1634 	 * Note: on both UP and SMP curthread must be set non-NULL
1635 	 * early in the boot sequence because the system assumes
1636 	 * that 'curthread' is never NULL.
1637 	 */
1638 
1639 	gd->mi.gd_curthread = &thread0;
1640 	thread0.td_gd = &gd->mi;
1641 
1642 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1643 
1644 #if JG
1645 	metadata_missing = 0;
1646 	if (bootinfo.bi_modulep) {
1647 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1648 		preload_bootstrap_relocate(KERNBASE);
1649 	} else {
1650 		metadata_missing = 1;
1651 	}
1652 	if (bootinfo.bi_envp)
1653 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1654 #endif
1655 
1656 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1657 	preload_bootstrap_relocate(PTOV_OFFSET);
1658 	kmdp = preload_search_by_type("elf kernel");
1659 	if (kmdp == NULL)
1660 		kmdp = preload_search_by_type("elf64 kernel");
1661 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1662 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1663 #ifdef DDB
1664 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1665 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1666 #endif
1667 
1668 	if (boothowto & RB_VERBOSE)
1669 		bootverbose++;
1670 
1671 	/*
1672 	 * Default MachIntrABI to ICU
1673 	 */
1674 	MachIntrABI = MachIntrABI_ICU;
1675 
1676 	/*
1677 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1678 	 * and ncpus_fit_mask remain 0.
1679 	 */
1680 	ncpus = 1;
1681 	ncpus2 = 1;
1682 	ncpus_fit = 1;
1683 	/* Init basic tunables, hz etc */
1684 	init_param1();
1685 
1686 	/*
1687 	 * make gdt memory segments
1688 	 */
1689 	gdt_segs[GPROC0_SEL].ssd_base =
1690 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1691 
1692 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1693 
1694 	for (x = 0; x < NGDT; x++) {
1695 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1696 			ssdtosd(&gdt_segs[x], &gdt[x]);
1697 	}
1698 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1699 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1700 
1701 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1702 	r_gdt.rd_base =  (long) gdt;
1703 	lgdt(&r_gdt);
1704 
1705 	wrmsr(MSR_FSBASE, 0);		/* User value */
1706 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1707 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1708 
1709 	mi_gdinit(&gd->mi, 0);
1710 	cpu_gdinit(gd, 0);
1711 	proc0paddr = proc0paddr_buff;
1712 	mi_proc0init(&gd->mi, proc0paddr);
1713 	safepri = TDPRI_MAX;
1714 
1715 	/* spinlocks and the BGL */
1716 	init_locks();
1717 
1718 	/* exceptions */
1719 	for (x = 0; x < NIDT; x++)
1720 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1721 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1722 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1723 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1724  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1725 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1726 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1727 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1728 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1729 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1730 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1731 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1732 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1733 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1734 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1735 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1736 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1737 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1738 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1739 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1740 
1741 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1742 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
1743 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
1744 	}
1745 
1746 	lidt(&r_idt_arr[0]);
1747 
1748 	/*
1749 	 * Initialize the console before we print anything out.
1750 	 */
1751 	cninit();
1752 
1753 #if JG
1754 	if (metadata_missing)
1755 		kprintf("WARNING: loader(8) metadata is missing!\n");
1756 #endif
1757 
1758 #if	NISA >0
1759 	elcr_probe();
1760 	isa_defaultirq();
1761 #endif
1762 	rand_initialize();
1763 
1764 	/*
1765 	 * Initialize IRQ mapping
1766 	 *
1767 	 * NOTE:
1768 	 * SHOULD be after elcr_probe()
1769 	 */
1770 	MachIntrABI_ICU.initmap();
1771 	MachIntrABI_IOAPIC.initmap();
1772 
1773 #ifdef DDB
1774 	kdb_init();
1775 	if (boothowto & RB_KDB)
1776 		Debugger("Boot flags requested debugger");
1777 #endif
1778 
1779 #if JG
1780 	finishidentcpu();	/* Final stage of CPU initialization */
1781 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1782 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1783 #endif
1784 	identify_cpu();		/* Final stage of CPU initialization */
1785 	initializecpu(0);	/* Initialize CPU registers */
1786 
1787 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
1788 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
1789 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
1790 
1791 	/*
1792 	 * Some of the virtual machines do not work w/ I/O APIC
1793 	 * enabled.  If the user does not explicitly enable or
1794 	 * disable the I/O APIC (ioapic_enable < 0), then we
1795 	 * disable I/O APIC on all virtual machines.
1796 	 *
1797 	 * NOTE:
1798 	 * This must be done after identify_cpu(), which sets
1799 	 * 'cpu_feature2'
1800 	 */
1801 	if (ioapic_enable < 0) {
1802 		if (cpu_feature2 & CPUID2_VMM)
1803 			ioapic_enable = 0;
1804 		else
1805 			ioapic_enable = 1;
1806 	}
1807 
1808 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1809 	gd->gd_common_tss.tss_rsp0 =
1810 		(register_t)(thread0.td_kstack +
1811 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1812 	/* Ensure the stack is aligned to 16 bytes */
1813 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1814 
1815 	/* double fault stack */
1816 	gd->gd_common_tss.tss_ist1 =
1817 		(long)&gd->mi.gd_prvspace->idlestack[
1818 			sizeof(gd->mi.gd_prvspace->idlestack)];
1819 
1820 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1821 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1822 
1823 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1824 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1825 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1826 	ltr(gsel_tss);
1827 
1828 	/* Set up the fast syscall stuff */
1829 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1830 	wrmsr(MSR_EFER, msr);
1831 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1832 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1833 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1834 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1835 	wrmsr(MSR_STAR, msr);
1836 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
1837 
1838 	getmemsize(kmdp, physfree);
1839 	init_param2(physmem);
1840 
1841 	/* now running on new page tables, configured,and u/iom is accessible */
1842 
1843 	/* Map the message buffer. */
1844 #if JG
1845 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1846 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1847 #endif
1848 
1849 	msgbufinit(msgbufp, MSGBUF_SIZE);
1850 
1851 
1852 	/* transfer to user mode */
1853 
1854 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1855 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1856 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1857 
1858 	load_ds(_udatasel);
1859 	load_es(_udatasel);
1860 	load_fs(_udatasel);
1861 
1862 	/* setup proc 0's pcb */
1863 	thread0.td_pcb->pcb_flags = 0;
1864 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1865 	thread0.td_pcb->pcb_ext = NULL;
1866 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
1867 
1868 	/* Location of kernel stack for locore */
1869 	return ((u_int64_t)thread0.td_pcb);
1870 }
1871 
1872 /*
1873  * Initialize machine-dependant portions of the global data structure.
1874  * Note that the global data area and cpu0's idlestack in the private
1875  * data space were allocated in locore.
1876  *
1877  * Note: the idlethread's cpl is 0
1878  *
1879  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1880  */
1881 void
1882 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1883 {
1884 	if (cpu)
1885 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1886 
1887 	lwkt_init_thread(&gd->mi.gd_idlethread,
1888 			gd->mi.gd_prvspace->idlestack,
1889 			sizeof(gd->mi.gd_prvspace->idlestack),
1890 			0, &gd->mi);
1891 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1892 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1893 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1894 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1895 }
1896 
1897 int
1898 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1899 {
1900 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1901 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1902 		return (TRUE);
1903 	}
1904 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
1905 		return (TRUE);
1906 	return (FALSE);
1907 }
1908 
1909 struct globaldata *
1910 globaldata_find(int cpu)
1911 {
1912 	KKASSERT(cpu >= 0 && cpu < ncpus);
1913 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
1914 }
1915 
1916 int
1917 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1918 {
1919 	lp->lwp_md.md_regs->tf_rip = addr;
1920 	return (0);
1921 }
1922 
1923 int
1924 ptrace_single_step(struct lwp *lp)
1925 {
1926 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1927 	return (0);
1928 }
1929 
1930 int
1931 fill_regs(struct lwp *lp, struct reg *regs)
1932 {
1933 	struct trapframe *tp;
1934 
1935 	if ((tp = lp->lwp_md.md_regs) == NULL)
1936 		return EINVAL;
1937 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
1938 	return (0);
1939 }
1940 
1941 int
1942 set_regs(struct lwp *lp, struct reg *regs)
1943 {
1944 	struct trapframe *tp;
1945 
1946 	tp = lp->lwp_md.md_regs;
1947 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
1948 	    !CS_SECURE(regs->r_cs))
1949 		return (EINVAL);
1950 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
1951 	clear_quickret();
1952 	return (0);
1953 }
1954 
1955 #ifndef CPU_DISABLE_SSE
1956 static void
1957 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
1958 {
1959 	struct env87 *penv_87 = &sv_87->sv_env;
1960 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1961 	int i;
1962 
1963 	/* FPU control/status */
1964 	penv_87->en_cw = penv_xmm->en_cw;
1965 	penv_87->en_sw = penv_xmm->en_sw;
1966 	penv_87->en_tw = penv_xmm->en_tw;
1967 	penv_87->en_fip = penv_xmm->en_fip;
1968 	penv_87->en_fcs = penv_xmm->en_fcs;
1969 	penv_87->en_opcode = penv_xmm->en_opcode;
1970 	penv_87->en_foo = penv_xmm->en_foo;
1971 	penv_87->en_fos = penv_xmm->en_fos;
1972 
1973 	/* FPU registers */
1974 	for (i = 0; i < 8; ++i)
1975 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
1976 }
1977 
1978 static void
1979 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
1980 {
1981 	struct env87 *penv_87 = &sv_87->sv_env;
1982 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
1983 	int i;
1984 
1985 	/* FPU control/status */
1986 	penv_xmm->en_cw = penv_87->en_cw;
1987 	penv_xmm->en_sw = penv_87->en_sw;
1988 	penv_xmm->en_tw = penv_87->en_tw;
1989 	penv_xmm->en_fip = penv_87->en_fip;
1990 	penv_xmm->en_fcs = penv_87->en_fcs;
1991 	penv_xmm->en_opcode = penv_87->en_opcode;
1992 	penv_xmm->en_foo = penv_87->en_foo;
1993 	penv_xmm->en_fos = penv_87->en_fos;
1994 
1995 	/* FPU registers */
1996 	for (i = 0; i < 8; ++i)
1997 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
1998 }
1999 #endif /* CPU_DISABLE_SSE */
2000 
2001 int
2002 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2003 {
2004 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2005 		return EINVAL;
2006 #ifndef CPU_DISABLE_SSE
2007 	if (cpu_fxsr) {
2008 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2009 				(struct save87 *)fpregs);
2010 		return (0);
2011 	}
2012 #endif /* CPU_DISABLE_SSE */
2013 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2014 	return (0);
2015 }
2016 
2017 int
2018 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2019 {
2020 #ifndef CPU_DISABLE_SSE
2021 	if (cpu_fxsr) {
2022 		set_fpregs_xmm((struct save87 *)fpregs,
2023 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2024 		return (0);
2025 	}
2026 #endif /* CPU_DISABLE_SSE */
2027 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2028 	return (0);
2029 }
2030 
2031 int
2032 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2033 {
2034 	struct pcb *pcb;
2035 
2036         if (lp == NULL) {
2037                 dbregs->dr[0] = rdr0();
2038                 dbregs->dr[1] = rdr1();
2039                 dbregs->dr[2] = rdr2();
2040                 dbregs->dr[3] = rdr3();
2041                 dbregs->dr[4] = rdr4();
2042                 dbregs->dr[5] = rdr5();
2043                 dbregs->dr[6] = rdr6();
2044                 dbregs->dr[7] = rdr7();
2045 		return (0);
2046         }
2047 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2048 		return EINVAL;
2049 	dbregs->dr[0] = pcb->pcb_dr0;
2050 	dbregs->dr[1] = pcb->pcb_dr1;
2051 	dbregs->dr[2] = pcb->pcb_dr2;
2052 	dbregs->dr[3] = pcb->pcb_dr3;
2053 	dbregs->dr[4] = 0;
2054 	dbregs->dr[5] = 0;
2055 	dbregs->dr[6] = pcb->pcb_dr6;
2056 	dbregs->dr[7] = pcb->pcb_dr7;
2057 	return (0);
2058 }
2059 
2060 int
2061 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2062 {
2063 	if (lp == NULL) {
2064 		load_dr0(dbregs->dr[0]);
2065 		load_dr1(dbregs->dr[1]);
2066 		load_dr2(dbregs->dr[2]);
2067 		load_dr3(dbregs->dr[3]);
2068 		load_dr4(dbregs->dr[4]);
2069 		load_dr5(dbregs->dr[5]);
2070 		load_dr6(dbregs->dr[6]);
2071 		load_dr7(dbregs->dr[7]);
2072 	} else {
2073 		struct pcb *pcb;
2074 		struct ucred *ucred;
2075 		int i;
2076 		uint64_t mask1, mask2;
2077 
2078 		/*
2079 		 * Don't let an illegal value for dr7 get set.	Specifically,
2080 		 * check for undefined settings.  Setting these bit patterns
2081 		 * result in undefined behaviour and can lead to an unexpected
2082 		 * TRCTRAP.
2083 		 */
2084 		/* JG this loop looks unreadable */
2085 		/* Check 4 2-bit fields for invalid patterns.
2086 		 * These fields are R/Wi, for i = 0..3
2087 		 */
2088 		/* Is 10 in LENi allowed when running in compatibility mode? */
2089 		/* Pattern 10 in R/Wi might be used to indicate
2090 		 * breakpoint on I/O. Further analysis should be
2091 		 * carried to decide if it is safe and useful to
2092 		 * provide access to that capability
2093 		 */
2094 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2095 		     i++, mask1 <<= 4, mask2 <<= 4)
2096 			if ((dbregs->dr[7] & mask1) == mask2)
2097 				return (EINVAL);
2098 
2099 		pcb = lp->lwp_thread->td_pcb;
2100 		ucred = lp->lwp_proc->p_ucred;
2101 
2102 		/*
2103 		 * Don't let a process set a breakpoint that is not within the
2104 		 * process's address space.  If a process could do this, it
2105 		 * could halt the system by setting a breakpoint in the kernel
2106 		 * (if ddb was enabled).  Thus, we need to check to make sure
2107 		 * that no breakpoints are being enabled for addresses outside
2108 		 * process's address space, unless, perhaps, we were called by
2109 		 * uid 0.
2110 		 *
2111 		 * XXX - what about when the watched area of the user's
2112 		 * address space is written into from within the kernel
2113 		 * ... wouldn't that still cause a breakpoint to be generated
2114 		 * from within kernel mode?
2115 		 */
2116 
2117 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2118 			if (dbregs->dr[7] & 0x3) {
2119 				/* dr0 is enabled */
2120 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2121 					return (EINVAL);
2122 			}
2123 
2124 			if (dbregs->dr[7] & (0x3<<2)) {
2125 				/* dr1 is enabled */
2126 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2127 					return (EINVAL);
2128 			}
2129 
2130 			if (dbregs->dr[7] & (0x3<<4)) {
2131 				/* dr2 is enabled */
2132 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2133 					return (EINVAL);
2134 			}
2135 
2136 			if (dbregs->dr[7] & (0x3<<6)) {
2137 				/* dr3 is enabled */
2138 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2139 					return (EINVAL);
2140 			}
2141 		}
2142 
2143 		pcb->pcb_dr0 = dbregs->dr[0];
2144 		pcb->pcb_dr1 = dbregs->dr[1];
2145 		pcb->pcb_dr2 = dbregs->dr[2];
2146 		pcb->pcb_dr3 = dbregs->dr[3];
2147 		pcb->pcb_dr6 = dbregs->dr[6];
2148 		pcb->pcb_dr7 = dbregs->dr[7];
2149 
2150 		pcb->pcb_flags |= PCB_DBREGS;
2151 	}
2152 
2153 	return (0);
2154 }
2155 
2156 /*
2157  * Return > 0 if a hardware breakpoint has been hit, and the
2158  * breakpoint was in user space.  Return 0, otherwise.
2159  */
2160 int
2161 user_dbreg_trap(void)
2162 {
2163         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2164         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2165         int nbp;            /* number of breakpoints that triggered */
2166         caddr_t addr[4];    /* breakpoint addresses */
2167         int i;
2168 
2169         dr7 = rdr7();
2170         if ((dr7 & 0xff) == 0) {
2171                 /*
2172                  * all GE and LE bits in the dr7 register are zero,
2173                  * thus the trap couldn't have been caused by the
2174                  * hardware debug registers
2175                  */
2176                 return 0;
2177         }
2178 
2179         nbp = 0;
2180         dr6 = rdr6();
2181         bp = dr6 & 0xf;
2182 
2183         if (bp == 0) {
2184                 /*
2185                  * None of the breakpoint bits are set meaning this
2186                  * trap was not caused by any of the debug registers
2187                  */
2188                 return 0;
2189         }
2190 
2191         /*
2192          * at least one of the breakpoints were hit, check to see
2193          * which ones and if any of them are user space addresses
2194          */
2195 
2196         if (bp & 0x01) {
2197                 addr[nbp++] = (caddr_t)rdr0();
2198         }
2199         if (bp & 0x02) {
2200                 addr[nbp++] = (caddr_t)rdr1();
2201         }
2202         if (bp & 0x04) {
2203                 addr[nbp++] = (caddr_t)rdr2();
2204         }
2205         if (bp & 0x08) {
2206                 addr[nbp++] = (caddr_t)rdr3();
2207         }
2208 
2209         for (i=0; i<nbp; i++) {
2210                 if (addr[i] <
2211                     (caddr_t)VM_MAX_USER_ADDRESS) {
2212                         /*
2213                          * addr[i] is in user space
2214                          */
2215                         return nbp;
2216                 }
2217         }
2218 
2219         /*
2220          * None of the breakpoints are in user space.
2221          */
2222         return 0;
2223 }
2224 
2225 
2226 #ifndef DDB
2227 void
2228 Debugger(const char *msg)
2229 {
2230 	kprintf("Debugger(\"%s\") called.\n", msg);
2231 }
2232 #endif /* no DDB */
2233 
2234 #ifdef DDB
2235 
2236 /*
2237  * Provide inb() and outb() as functions.  They are normally only
2238  * available as macros calling inlined functions, thus cannot be
2239  * called inside DDB.
2240  *
2241  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2242  */
2243 
2244 #undef inb
2245 #undef outb
2246 
2247 /* silence compiler warnings */
2248 u_char inb(u_int);
2249 void outb(u_int, u_char);
2250 
2251 u_char
2252 inb(u_int port)
2253 {
2254 	u_char	data;
2255 	/*
2256 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2257 	 * %edx, while gcc generates inferior code (movw instead of movl)
2258 	 * if we tell it to load (u_short) port.
2259 	 */
2260 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2261 	return (data);
2262 }
2263 
2264 void
2265 outb(u_int port, u_char data)
2266 {
2267 	u_char	al;
2268 	/*
2269 	 * Use an unnecessary assignment to help gcc's register allocator.
2270 	 * This make a large difference for gcc-1.40 and a tiny difference
2271 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2272 	 * best results.  gcc-2.6.0 can't handle this.
2273 	 */
2274 	al = data;
2275 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2276 }
2277 
2278 #endif /* DDB */
2279 
2280 
2281 
2282 /*
2283  * initialize all the SMP locks
2284  */
2285 
2286 /* critical region when masking or unmasking interupts */
2287 struct spinlock_deprecated imen_spinlock;
2288 
2289 /* critical region for old style disable_intr/enable_intr */
2290 struct spinlock_deprecated mpintr_spinlock;
2291 
2292 /* critical region around INTR() routines */
2293 struct spinlock_deprecated intr_spinlock;
2294 
2295 /* lock region used by kernel profiling */
2296 struct spinlock_deprecated mcount_spinlock;
2297 
2298 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2299 struct spinlock_deprecated com_spinlock;
2300 
2301 /* lock regions around the clock hardware */
2302 struct spinlock_deprecated clock_spinlock;
2303 
2304 static void
2305 init_locks(void)
2306 {
2307 	/*
2308 	 * Get the initial mplock with a count of 1 for the BSP.
2309 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2310 	 */
2311 	cpu_get_initial_mplock();
2312 	/* DEPRECATED */
2313 	spin_lock_init(&mcount_spinlock);
2314 	spin_lock_init(&intr_spinlock);
2315 	spin_lock_init(&mpintr_spinlock);
2316 	spin_lock_init(&imen_spinlock);
2317 	spin_lock_init(&com_spinlock);
2318 	spin_lock_init(&clock_spinlock);
2319 
2320 	/* our token pool needs to work early */
2321 	lwkt_token_pool_init();
2322 }
2323 
2324