xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision 9d626b29)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <sys/efi.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 #if 0 /* JG */
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
140 
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
144 
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 static void init_locks(void);
148 
149 extern void pcpu_timer_always(struct intrframe *);
150 
151 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
152 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
153 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
154 
155 #ifdef DDB
156 extern vm_offset_t ksym_start, ksym_end;
157 #endif
158 
159 struct privatespace CPU_prvspace_bsp __aligned(4096);
160 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
161 
162 vm_paddr_t efi_systbl_phys;
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 cpumask_t smp_idleinvl_mask;
167 cpumask_t smp_idleinvl_reqs;
168 
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_HAS_CX	\
184 	((cpu_feature2 & CPUID2_MON) && \
185 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
186 
187 #define CPU_MWAIT_CX_NAMELEN	16
188 
189 #define CPU_MWAIT_C1		1
190 #define CPU_MWAIT_C2		2
191 #define CPU_MWAIT_C3		3
192 #define CPU_MWAIT_CX_MAX	8
193 
194 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
196 
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
199 
200 struct cpu_mwait_cx {
201 	int			subcnt;
202 	char			name[4];
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 };
206 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char			cpu_mwait_cx_supported[256];
208 
209 static int			cpu_mwait_c1_hints_cnt;
210 static int			cpu_mwait_hints_cnt;
211 static int			*cpu_mwait_hints;
212 
213 static int			cpu_mwait_deep_hints_cnt;
214 static int			*cpu_mwait_deep_hints;
215 
216 #define CPU_IDLE_REPEAT_DEFAULT	750
217 
218 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int			cpu_mwait_repeat_shift = 1;
221 
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
224 
225 static int			cpu_mwait_c3_preamble =
226 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
228 
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
233 
234 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 		    int *, boolean_t);
236 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
239 
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245     &cpu_mwait_repeat_shift, 0, "");
246 
247 long physmem = 0;
248 
249 u_long ebda_addr = 0;
250 
251 int imcr_present = 0;
252 
253 int naps = 0; /* # of Applications processors */
254 
255 u_int base_memory;
256 struct mtx dt_lock;		/* lock for GDT and LDT */
257 
258 static int
259 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
260 {
261 	u_long pmem = ctob(physmem);
262 
263 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
264 	return (error);
265 }
266 
267 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
268 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
269 
270 static int
271 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
272 {
273 	int error = sysctl_handle_int(oidp, 0,
274 		ctob(physmem - vmstats.v_wire_count), req);
275 	return (error);
276 }
277 
278 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
279 	0, 0, sysctl_hw_usermem, "IU", "");
280 
281 static int
282 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
283 {
284 	int error = sysctl_handle_int(oidp, 0,
285 		x86_64_btop(avail_end - avail_start), req);
286 	return (error);
287 }
288 
289 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
290 	0, 0, sysctl_hw_availpages, "I", "");
291 
292 vm_paddr_t Maxmem;
293 vm_paddr_t Realmem;
294 
295 /*
296  * The number of PHYSMAP entries must be one less than the number of
297  * PHYSSEG entries because the PHYSMAP entry that spans the largest
298  * physical address that is accessible by ISA DMA is split into two
299  * PHYSSEG entries.
300  */
301 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
302 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
303 
304 /* must be 1 less so 0 0 can signal end of chunks */
305 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
306 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
307 
308 static vm_offset_t buffer_sva, buffer_eva;
309 vm_offset_t clean_sva, clean_eva;
310 static vm_offset_t pager_sva, pager_eva;
311 static struct trapframe proc0_tf;
312 
313 static void
314 cpu_startup(void *dummy)
315 {
316 	caddr_t v;
317 	vm_size_t size = 0;
318 	vm_offset_t firstaddr;
319 
320 	/*
321 	 * Good {morning,afternoon,evening,night}.
322 	 */
323 	kprintf("%s", version);
324 	startrtclock();
325 	printcpuinfo();
326 	panicifcpuunsupported();
327 	kprintf("real memory  = %ju (%ju MB)\n",
328 		(intmax_t)Realmem,
329 		(intmax_t)Realmem / 1024 / 1024);
330 	/*
331 	 * Display any holes after the first chunk of extended memory.
332 	 */
333 	if (bootverbose) {
334 		int indx;
335 
336 		kprintf("Physical memory chunk(s):\n");
337 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
338 			vm_paddr_t size1;
339 
340 			size1 = phys_avail[indx].phys_end -
341 				phys_avail[indx].phys_beg;
342 
343 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
344 				(intmax_t)phys_avail[indx].phys_beg,
345 				(intmax_t)phys_avail[indx].phys_end - 1,
346 				(intmax_t)size1,
347 				(intmax_t)(size1 / PAGE_SIZE));
348 		}
349 	}
350 
351 	/*
352 	 * Allocate space for system data structures.
353 	 * The first available kernel virtual address is in "v".
354 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
355 	 * As pages of memory are allocated and cleared,
356 	 * "firstaddr" is incremented.
357 	 * An index into the kernel page table corresponding to the
358 	 * virtual memory address maintained in "v" is kept in "mapaddr".
359 	 */
360 
361 	/*
362 	 * Make two passes.  The first pass calculates how much memory is
363 	 * needed and allocates it.  The second pass assigns virtual
364 	 * addresses to the various data structures.
365 	 */
366 	firstaddr = 0;
367 again:
368 	v = (caddr_t)firstaddr;
369 
370 #define	valloc(name, type, num) \
371 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
372 #define	valloclim(name, type, num, lim) \
373 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
374 
375 	/*
376 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
377 	 * For the first 64MB of ram nominally allocate sufficient buffers to
378 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
379 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
380 	 * the buffer cache we limit the eventual kva reservation to
381 	 * maxbcache bytes.
382 	 *
383 	 * factor represents the 1/4 x ram conversion.
384 	 */
385 	if (nbuf == 0) {
386 		long factor = 4 * NBUFCALCSIZE / 1024;
387 		long kbytes = physmem * (PAGE_SIZE / 1024);
388 
389 		nbuf = 50;
390 		if (kbytes > 4096)
391 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
392 		if (kbytes > 65536)
393 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
394 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
395 			nbuf = maxbcache / NBUFCALCSIZE;
396 	}
397 
398 	/*
399 	 * Do not allow the buffer_map to be more then 1/2 the size of the
400 	 * kernel_map.
401 	 */
402 	if (nbuf > (virtual_end - virtual_start +
403 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
404 		nbuf = (virtual_end - virtual_start +
405 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
406 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
407 	}
408 
409 	/*
410 	 * Do not allow the buffer_map to use more than 50% of available
411 	 * physical-equivalent memory.  Since the VM pages which back
412 	 * individual buffers are typically wired, having too many bufs
413 	 * can prevent the system from paging properly.
414 	 */
415 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
416 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
417 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
418 	}
419 
420 	/*
421 	 * Do not allow the sizeof(struct buf) * nbuf to exceed half of
422 	 * the valloc space which is just the virtual_end - virtual_start
423 	 * section.  We use valloc() to allocate the buf header array.
424 	 */
425 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 2) {
426 		nbuf = (virtual_end - virtual_start) /
427 		       sizeof(struct buf) / 2;
428 		kprintf("Warning: nbufs capped at %ld due to valloc "
429 			"considerations\n", nbuf);
430 	}
431 
432 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
433 #ifdef NSWBUF_MIN
434 	if (nswbuf_mem < NSWBUF_MIN)
435 		nswbuf_mem = NSWBUF_MIN;
436 #endif
437 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
438 #ifdef NSWBUF_MIN
439 	if (nswbuf_kva < NSWBUF_MIN)
440 		nswbuf_kva = NSWBUF_MIN;
441 #endif
442 
443 	valloc(swbuf_mem, struct buf, nswbuf_mem);
444 	valloc(swbuf_kva, struct buf, nswbuf_kva);
445 	valloc(buf, struct buf, nbuf);
446 
447 	/*
448 	 * End of first pass, size has been calculated so allocate memory
449 	 */
450 	if (firstaddr == 0) {
451 		size = (vm_size_t)(v - firstaddr);
452 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
453 				       VM_SUBSYS_BUF);
454 		if (firstaddr == 0)
455 			panic("startup: no room for tables");
456 		goto again;
457 	}
458 
459 	/*
460 	 * End of second pass, addresses have been assigned
461 	 *
462 	 * nbuf is an int, make sure we don't overflow the field.
463 	 *
464 	 * On 64-bit systems we always reserve maximal allocations for
465 	 * buffer cache buffers and there are no fragmentation issues,
466 	 * so the KVA segment does not have to be excessively oversized.
467 	 */
468 	if ((vm_size_t)(v - firstaddr) != size)
469 		panic("startup: table size inconsistency");
470 
471 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
472 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
473 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
474 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
475 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
476 	buffer_map.system_map = 1;
477 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
478 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
479 		      pager_map_size);
480 	pager_map.system_map = 1;
481 	kprintf("avail memory = %ju (%ju MB)\n",
482 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
483 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
484 		1024 / 1024);
485 }
486 
487 struct cpu_idle_stat {
488 	int	hint;
489 	int	reserved;
490 	u_long	halt;
491 	u_long	spin;
492 	u_long	repeat;
493 	u_long	repeat_last;
494 	u_long	repeat_delta;
495 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
496 } __cachealign;
497 
498 #define CPU_IDLE_STAT_HALT	-1
499 #define CPU_IDLE_STAT_SPIN	-2
500 
501 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
502 
503 static int
504 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
505 {
506 	int idx = arg2, cpu, error;
507 	u_long val = 0;
508 
509 	if (idx == CPU_IDLE_STAT_HALT) {
510 		for (cpu = 0; cpu < ncpus; ++cpu)
511 			val += cpu_idle_stats[cpu].halt;
512 	} else if (idx == CPU_IDLE_STAT_SPIN) {
513 		for (cpu = 0; cpu < ncpus; ++cpu)
514 			val += cpu_idle_stats[cpu].spin;
515 	} else {
516 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
517 		    ("invalid index %d", idx));
518 		for (cpu = 0; cpu < ncpus; ++cpu)
519 			val += cpu_idle_stats[cpu].mwait_cx[idx];
520 	}
521 
522 	error = sysctl_handle_quad(oidp, &val, 0, req);
523         if (error || req->newptr == NULL)
524 	        return error;
525 
526 	if (idx == CPU_IDLE_STAT_HALT) {
527 		for (cpu = 0; cpu < ncpus; ++cpu)
528 			cpu_idle_stats[cpu].halt = 0;
529 		cpu_idle_stats[0].halt = val;
530 	} else if (idx == CPU_IDLE_STAT_SPIN) {
531 		for (cpu = 0; cpu < ncpus; ++cpu)
532 			cpu_idle_stats[cpu].spin = 0;
533 		cpu_idle_stats[0].spin = val;
534 	} else {
535 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
536 		    ("invalid index %d", idx));
537 		for (cpu = 0; cpu < ncpus; ++cpu)
538 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
539 		cpu_idle_stats[0].mwait_cx[idx] = val;
540 	}
541 	return 0;
542 }
543 
544 static void
545 cpu_mwait_attach(void)
546 {
547 	struct sbuf sb;
548 	int hint_idx, i;
549 
550 	if (!CPU_MWAIT_HAS_CX)
551 		return;
552 
553 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
554 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
555 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
556 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
557 		int bm_sts = 1;
558 
559 		/*
560 		 * Pentium dual-core, Core 2 and beyond do not need any
561 		 * additional activities to enter deep C-state, i.e. C3(+).
562 		 */
563 		cpu_mwait_cx_no_bmarb();
564 
565 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
566 		if (!bm_sts)
567 			cpu_mwait_cx_no_bmsts();
568 	}
569 
570 	sbuf_new(&sb, cpu_mwait_cx_supported,
571 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
572 
573 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
574 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
575 		int sub;
576 
577 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
578 
579 		sysctl_ctx_init(&cx->sysctl_ctx);
580 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
581 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
582 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
583 		if (cx->sysctl_tree == NULL)
584 			continue;
585 
586 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
587 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
588 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
589 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
590 		    "sub-state count");
591 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
592 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
593 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
594 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
595 
596 		for (sub = 0; sub < cx->subcnt; ++sub)
597 			sbuf_printf(&sb, "C%d/%d ", i, sub);
598 	}
599 	sbuf_trim(&sb);
600 	sbuf_finish(&sb);
601 
602 	/*
603 	 * Non-deep C-states
604 	 */
605 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
606 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
607 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
608 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
609 				  M_DEVBUF, M_WAITOK);
610 
611 	hint_idx = 0;
612 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
613 		int j, subcnt;
614 
615 		subcnt = cpu_mwait_cx_info[i].subcnt;
616 		for (j = 0; j < subcnt; ++j) {
617 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
618 			    ("invalid mwait hint index %d", hint_idx));
619 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
620 			++hint_idx;
621 		}
622 	}
623 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
624 	    ("mwait hint count %d != index %d",
625 	     cpu_mwait_hints_cnt, hint_idx));
626 
627 	if (bootverbose) {
628 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
629 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
630 			int hint = cpu_mwait_hints[i];
631 
632 			kprintf("  C%d/%d hint 0x%04x\n",
633 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
634 			    hint);
635 		}
636 	}
637 
638 	/*
639 	 * Deep C-states
640 	 */
641 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
642 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
643 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
644 	    M_DEVBUF, M_WAITOK);
645 
646 	hint_idx = 0;
647 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
648 		int j, subcnt;
649 
650 		subcnt = cpu_mwait_cx_info[i].subcnt;
651 		for (j = 0; j < subcnt; ++j) {
652 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
653 			    ("invalid mwait deep hint index %d", hint_idx));
654 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
655 			++hint_idx;
656 		}
657 	}
658 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
659 	    ("mwait deep hint count %d != index %d",
660 	     cpu_mwait_deep_hints_cnt, hint_idx));
661 
662 	if (bootverbose) {
663 		kprintf("MWAIT deep hints:\n");
664 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
665 			int hint = cpu_mwait_deep_hints[i];
666 
667 			kprintf("  C%d/%d hint 0x%04x\n",
668 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
669 			    hint);
670 		}
671 	}
672 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
673 
674 	for (i = 0; i < ncpus; ++i) {
675 		char name[16];
676 
677 		ksnprintf(name, sizeof(name), "idle%d", i);
678 		SYSCTL_ADD_PROC(NULL,
679 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
680 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
681 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
682 	}
683 }
684 
685 static void
686 cpu_finish(void *dummy __unused)
687 {
688 	cpu_setregs();
689 	cpu_mwait_attach();
690 }
691 
692 static void
693 pic_finish(void *dummy __unused)
694 {
695 	/* Log ELCR information */
696 	elcr_dump();
697 
698 	/* Log MPTABLE information */
699 	mptable_pci_int_dump();
700 
701 	/* Finalize PCI */
702 	MachIntrABI.finalize();
703 }
704 
705 /*
706  * Send an interrupt to process.
707  *
708  * Stack is set up to allow sigcode stored
709  * at top to call routine, followed by kcall
710  * to sigreturn routine below.  After sigreturn
711  * resets the signal mask, the stack, and the
712  * frame pointer, it returns to the user
713  * specified pc, psl.
714  */
715 void
716 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
717 {
718 	struct lwp *lp = curthread->td_lwp;
719 	struct proc *p = lp->lwp_proc;
720 	struct trapframe *regs;
721 	struct sigacts *psp = p->p_sigacts;
722 	struct sigframe sf, *sfp;
723 	int oonstack;
724 	char *sp;
725 
726 	regs = lp->lwp_md.md_regs;
727 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
728 
729 	/* Save user context */
730 	bzero(&sf, sizeof(struct sigframe));
731 	sf.sf_uc.uc_sigmask = *mask;
732 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
733 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
734 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
735 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
736 
737 	/* Make the size of the saved context visible to userland */
738 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
739 
740 	/* Allocate and validate space for the signal handler context. */
741         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
742 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
743 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
744 			      sizeof(struct sigframe));
745 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
746 	} else {
747 		/* We take red zone into account */
748 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
749 	}
750 
751 	/*
752 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
753 	 * the embedded ucontext is not at the front, so aligning this won't
754 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
755 	 * kernel is ok.
756 	 *
757 	 * The problem though is if userland winds up trying to use the
758 	 * context directly.
759 	 */
760 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
761 
762 	/* Translate the signal is appropriate */
763 	if (p->p_sysent->sv_sigtbl) {
764 		if (sig <= p->p_sysent->sv_sigsize)
765 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
766 	}
767 
768 	/*
769 	 * Build the argument list for the signal handler.
770 	 *
771 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
772 	 */
773 	regs->tf_rdi = sig;				/* argument 1 */
774 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
775 
776 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
777 		/*
778 		 * Signal handler installed with SA_SIGINFO.
779 		 *
780 		 * action(signo, siginfo, ucontext)
781 		 */
782 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
783 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
784 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
785 
786 		/* fill siginfo structure */
787 		sf.sf_si.si_signo = sig;
788 		sf.sf_si.si_code = code;
789 		sf.sf_si.si_addr = (void *)regs->tf_addr;
790 	} else {
791 		/*
792 		 * Old FreeBSD-style arguments.
793 		 *
794 		 * handler (signo, code, [uc], addr)
795 		 */
796 		regs->tf_rsi = (register_t)code;	/* argument 2 */
797 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
798 		sf.sf_ahu.sf_handler = catcher;
799 	}
800 
801 	/*
802 	 * If we're a vm86 process, we want to save the segment registers.
803 	 * We also change eflags to be our emulated eflags, not the actual
804 	 * eflags.
805 	 */
806 #if 0 /* JG */
807 	if (regs->tf_eflags & PSL_VM) {
808 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
809 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
810 
811 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
812 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
813 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
814 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
815 
816 		if (vm86->vm86_has_vme == 0)
817 			sf.sf_uc.uc_mcontext.mc_eflags =
818 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
819 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
820 
821 		/*
822 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
823 		 * syscalls made by the signal handler.  This just avoids
824 		 * wasting time for our lazy fixup of such faults.  PSL_NT
825 		 * does nothing in vm86 mode, but vm86 programs can set it
826 		 * almost legitimately in probes for old cpu types.
827 		 */
828 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
829 	}
830 #endif
831 
832 	/*
833 	 * Save the FPU state and reinit the FP unit
834 	 */
835 	npxpush(&sf.sf_uc.uc_mcontext);
836 
837 	/*
838 	 * Copy the sigframe out to the user's stack.
839 	 */
840 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
841 		/*
842 		 * Something is wrong with the stack pointer.
843 		 * ...Kill the process.
844 		 */
845 		sigexit(lp, SIGILL);
846 	}
847 
848 	regs->tf_rsp = (register_t)sfp;
849 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
850 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
851 
852 	/*
853 	 * i386 abi specifies that the direction flag must be cleared
854 	 * on function entry
855 	 */
856 	regs->tf_rflags &= ~(PSL_T | PSL_D);
857 
858 	/*
859 	 * 64 bit mode has a code and stack selector but
860 	 * no data or extra selector.  %fs and %gs are not
861 	 * stored in-context.
862 	 */
863 	regs->tf_cs = _ucodesel;
864 	regs->tf_ss = _udatasel;
865 	clear_quickret();
866 }
867 
868 /*
869  * Sanitize the trapframe for a virtual kernel passing control to a custom
870  * VM context.  Remove any items that would otherwise create a privilage
871  * issue.
872  *
873  * XXX at the moment we allow userland to set the resume flag.  Is this a
874  * bad idea?
875  */
876 int
877 cpu_sanitize_frame(struct trapframe *frame)
878 {
879 	frame->tf_cs = _ucodesel;
880 	frame->tf_ss = _udatasel;
881 	/* XXX VM (8086) mode not supported? */
882 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
883 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
884 
885 	return(0);
886 }
887 
888 /*
889  * Sanitize the tls so loading the descriptor does not blow up
890  * on us.  For x86_64 we don't have to do anything.
891  */
892 int
893 cpu_sanitize_tls(struct savetls *tls)
894 {
895 	return(0);
896 }
897 
898 /*
899  * sigreturn(ucontext_t *sigcntxp)
900  *
901  * System call to cleanup state after a signal
902  * has been taken.  Reset signal mask and
903  * stack state from context left by sendsig (above).
904  * Return to previous pc and psl as specified by
905  * context left by sendsig. Check carefully to
906  * make sure that the user has not modified the
907  * state to gain improper privileges.
908  *
909  * MPSAFE
910  */
911 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
912 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
913 
914 int
915 sys_sigreturn(struct sigreturn_args *uap)
916 {
917 	struct lwp *lp = curthread->td_lwp;
918 	struct trapframe *regs;
919 	ucontext_t uc;
920 	ucontext_t *ucp;
921 	register_t rflags;
922 	int cs;
923 	int error;
924 
925 	/*
926 	 * We have to copy the information into kernel space so userland
927 	 * can't modify it while we are sniffing it.
928 	 */
929 	regs = lp->lwp_md.md_regs;
930 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
931 	if (error)
932 		return (error);
933 	ucp = &uc;
934 	rflags = ucp->uc_mcontext.mc_rflags;
935 
936 	/* VM (8086) mode not supported */
937 	rflags &= ~PSL_VM_UNSUPP;
938 
939 #if 0 /* JG */
940 	if (eflags & PSL_VM) {
941 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
942 		struct vm86_kernel *vm86;
943 
944 		/*
945 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
946 		 * set up the vm86 area, and we can't enter vm86 mode.
947 		 */
948 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
949 			return (EINVAL);
950 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
951 		if (vm86->vm86_inited == 0)
952 			return (EINVAL);
953 
954 		/* go back to user mode if both flags are set */
955 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
956 			trapsignal(lp, SIGBUS, 0);
957 
958 		if (vm86->vm86_has_vme) {
959 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
960 			    (eflags & VME_USERCHANGE) | PSL_VM;
961 		} else {
962 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
963 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
964 			    (eflags & VM_USERCHANGE) | PSL_VM;
965 		}
966 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
967 		tf->tf_eflags = eflags;
968 		tf->tf_vm86_ds = tf->tf_ds;
969 		tf->tf_vm86_es = tf->tf_es;
970 		tf->tf_vm86_fs = tf->tf_fs;
971 		tf->tf_vm86_gs = tf->tf_gs;
972 		tf->tf_ds = _udatasel;
973 		tf->tf_es = _udatasel;
974 		tf->tf_fs = _udatasel;
975 		tf->tf_gs = _udatasel;
976 	} else
977 #endif
978 	{
979 		/*
980 		 * Don't allow users to change privileged or reserved flags.
981 		 */
982 		/*
983 		 * XXX do allow users to change the privileged flag PSL_RF.
984 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
985 		 * should sometimes set it there too.  tf_eflags is kept in
986 		 * the signal context during signal handling and there is no
987 		 * other place to remember it, so the PSL_RF bit may be
988 		 * corrupted by the signal handler without us knowing.
989 		 * Corruption of the PSL_RF bit at worst causes one more or
990 		 * one less debugger trap, so allowing it is fairly harmless.
991 		 */
992 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
993 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
994 	    		return(EINVAL);
995 		}
996 
997 		/*
998 		 * Don't allow users to load a valid privileged %cs.  Let the
999 		 * hardware check for invalid selectors, excess privilege in
1000 		 * other selectors, invalid %eip's and invalid %esp's.
1001 		 */
1002 		cs = ucp->uc_mcontext.mc_cs;
1003 		if (!CS_SECURE(cs)) {
1004 			kprintf("sigreturn: cs = 0x%x\n", cs);
1005 			trapsignal(lp, SIGBUS, T_PROTFLT);
1006 			return(EINVAL);
1007 		}
1008 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1009 	}
1010 
1011 	/*
1012 	 * Restore the FPU state from the frame
1013 	 */
1014 	crit_enter();
1015 	npxpop(&ucp->uc_mcontext);
1016 
1017 	if (ucp->uc_mcontext.mc_onstack & 1)
1018 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1019 	else
1020 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1021 
1022 	lp->lwp_sigmask = ucp->uc_sigmask;
1023 	SIG_CANTMASK(lp->lwp_sigmask);
1024 	clear_quickret();
1025 	crit_exit();
1026 	return(EJUSTRETURN);
1027 }
1028 
1029 /*
1030  * Machine dependent boot() routine
1031  *
1032  * I haven't seen anything to put here yet
1033  * Possibly some stuff might be grafted back here from boot()
1034  */
1035 void
1036 cpu_boot(int howto)
1037 {
1038 }
1039 
1040 /*
1041  * Shutdown the CPU as much as possible
1042  */
1043 void
1044 cpu_halt(void)
1045 {
1046 	for (;;)
1047 		__asm__ __volatile("hlt");
1048 }
1049 
1050 /*
1051  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1052  * (unless you want to blow things up!).  Instead we look for runnable threads
1053  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1054  *
1055  * The main loop is entered with a critical section held, we must release
1056  * the critical section before doing anything else.  lwkt_switch() will
1057  * check for pending interrupts due to entering and exiting its own
1058  * critical section.
1059  *
1060  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1061  *	 However, there are cases where the idlethread will be entered with
1062  *	 the possibility that no IPI will occur and in such cases
1063  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1064  *
1065  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1066  *	 must occur before it starts using ACPI halt.
1067  *
1068  * NOTE: Value overridden in hammer_time().
1069  */
1070 static int	cpu_idle_hlt = 2;
1071 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1072     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1073 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1074     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1075 
1076 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1077     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1078 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1079     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1080 
1081 static void
1082 cpu_idle_default_hook(void)
1083 {
1084 	/*
1085 	 * We must guarentee that hlt is exactly the instruction
1086 	 * following the sti.
1087 	 */
1088 	__asm __volatile("sti; hlt");
1089 }
1090 
1091 /* Other subsystems (e.g., ACPI) can hook this later. */
1092 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1093 
1094 static __inline int
1095 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1096 {
1097 	int hint, cx_idx;
1098 	u_int idx;
1099 
1100 	hint = stat->hint;
1101 	if (hint >= 0)
1102 		goto done;
1103 
1104 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1105 	    cpu_mwait_repeat_shift;
1106 	if (idx >= cpu_mwait_c1_hints_cnt) {
1107 		/* Step up faster, once we walked through all C1 states */
1108 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1109 	}
1110 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1111 		if (idx >= cpu_mwait_deep_hints_cnt)
1112 			idx = cpu_mwait_deep_hints_cnt - 1;
1113 		hint = cpu_mwait_deep_hints[idx];
1114 	} else {
1115 		if (idx >= cpu_mwait_hints_cnt)
1116 			idx = cpu_mwait_hints_cnt - 1;
1117 		hint = cpu_mwait_hints[idx];
1118 	}
1119 done:
1120 	cx_idx = MWAIT_EAX_TO_CX(hint);
1121 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1122 		stat->mwait_cx[cx_idx]++;
1123 	return hint;
1124 }
1125 
1126 void
1127 cpu_idle(void)
1128 {
1129 	globaldata_t gd = mycpu;
1130 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1131 	struct thread *td __debugvar = gd->gd_curthread;
1132 	int reqflags;
1133 	int quick;
1134 
1135 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1136 
1137 	crit_exit();
1138 	KKASSERT(td->td_critcount == 0);
1139 
1140 	for (;;) {
1141 		/*
1142 		 * See if there are any LWKTs ready to go.
1143 		 */
1144 		lwkt_switch();
1145 
1146 		/*
1147 		 * When halting inside a cli we must check for reqflags
1148 		 * races, particularly [re]schedule requests.  Running
1149 		 * splz() does the job.
1150 		 *
1151 		 * cpu_idle_hlt:
1152 		 *	0	Never halt, just spin
1153 		 *
1154 		 *	1	Always use MONITOR/MWAIT if avail, HLT
1155 		 *		otherwise.
1156 		 *
1157 		 *		Better default for modern (Haswell+) Intel
1158 		 *		cpus.
1159 		 *
1160 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1161 		 *		use the ACPI halt (default).  This is a hybrid
1162 		 *		approach.  See machdep.cpu_idle_repeat.
1163 		 *
1164 		 *		Better default for modern AMD cpus and older
1165 		 *		Intel cpus.
1166 		 *
1167 		 *	3	Always use the ACPI halt.  This typically
1168 		 *		eats the least amount of power but the cpu
1169 		 *		will be slow waking up.  Slows down e.g.
1170 		 *		compiles and other pipe/event oriented stuff.
1171 		 *
1172 		 *		Usually the best default for AMD cpus.
1173 		 *
1174 		 *	4	Always use HLT.
1175 		 *
1176 		 *	5	Always spin.
1177 		 *
1178 		 * NOTE: Interrupts are enabled and we are not in a critical
1179 		 *	 section.
1180 		 *
1181 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1182 		 *	 don't bother capping gd_idle_repeat, it is ok if
1183 		 *	 it overflows.
1184 		 *
1185 		 * Implement optimized invltlb operations when halted
1186 		 * in idle.  By setting the bit in smp_idleinvl_mask
1187 		 * we inform other cpus that they can set _reqs to
1188 		 * request an invltlb.  Current the code to do that
1189 		 * sets the bits in _reqs anyway, but then check _mask
1190 		 * to determine if they can assume the invltlb will execute.
1191 		 *
1192 		 * A critical section is required to ensure that interrupts
1193 		 * do not fully run until after we've had a chance to execute
1194 		 * the request.
1195 		 */
1196 		if (gd->gd_idle_repeat == 0) {
1197 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1198 			if (stat->repeat > cpu_idle_repeat_max)
1199 				stat->repeat = cpu_idle_repeat_max;
1200 			stat->repeat_last = 0;
1201 			stat->repeat_delta = 0;
1202 		}
1203 		++stat->repeat_last;
1204 
1205 		++gd->gd_idle_repeat;
1206 		reqflags = gd->gd_reqflags;
1207 		quick = (cpu_idle_hlt == 1) ||
1208 			(cpu_idle_hlt == 2 &&
1209 			 gd->gd_idle_repeat < cpu_idle_repeat);
1210 
1211 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1212 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1213 			splz(); /* XXX */
1214 			crit_enter_gd(gd);
1215 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1216 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1217 			    cpu_mwait_cx_hint(stat), 0);
1218 			stat->halt++;
1219 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1220 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1221 						      gd->gd_cpuid)) {
1222 				cpu_invltlb();
1223 				cpu_mfence();
1224 			}
1225 			crit_exit_gd(gd);
1226 		} else if (cpu_idle_hlt) {
1227 			__asm __volatile("cli");
1228 			splz();
1229 			crit_enter_gd(gd);
1230 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1231 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1232 				if (cpu_idle_hlt == 5) {
1233 					__asm __volatile("sti");
1234 				} else if (quick || cpu_idle_hlt == 4) {
1235 					cpu_idle_default_hook();
1236 				} else {
1237 					cpu_idle_hook();
1238 				}
1239 			}
1240 			__asm __volatile("sti");
1241 			stat->halt++;
1242 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1243 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1244 						      gd->gd_cpuid)) {
1245 				cpu_invltlb();
1246 				cpu_mfence();
1247 			}
1248 			crit_exit_gd(gd);
1249 		} else {
1250 			splz();
1251 			__asm __volatile("sti");
1252 			stat->spin++;
1253 			crit_enter_gd(gd);
1254 			crit_exit_gd(gd);
1255 		}
1256 	}
1257 }
1258 
1259 /*
1260  * Called in a loop indirectly via Xcpustop
1261  */
1262 void
1263 cpu_smp_stopped(void)
1264 {
1265 	globaldata_t gd = mycpu;
1266 	volatile __uint64_t *ptr;
1267 	__uint64_t ovalue;
1268 
1269 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1270 	ovalue = *ptr;
1271 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1272 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1273 			if (cpu_mwait_hints) {
1274 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1275 					   ovalue,
1276 					   cpu_mwait_hints[CPU_MWAIT_C1], 0);
1277 			} else {
1278 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1279 					   ovalue, 0, 0);
1280 			}
1281 		} else {
1282 			cpu_halt();	/* depend on lapic timer */
1283 		}
1284 	}
1285 }
1286 
1287 /*
1288  * This routine is called if a spinlock has been held through the
1289  * exponential backoff period and is seriously contested.  On a real cpu
1290  * we let it spin.
1291  */
1292 void
1293 cpu_spinlock_contested(void)
1294 {
1295 	cpu_pause();
1296 }
1297 
1298 /*
1299  * Clear registers on exec
1300  */
1301 void
1302 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1303 {
1304 	struct thread *td = curthread;
1305 	struct lwp *lp = td->td_lwp;
1306 	struct pcb *pcb = td->td_pcb;
1307 	struct trapframe *regs = lp->lwp_md.md_regs;
1308 
1309 	/* was i386_user_cleanup() in NetBSD */
1310 	user_ldt_free(pcb);
1311 
1312 	clear_quickret();
1313 	bzero((char *)regs, sizeof(struct trapframe));
1314 	regs->tf_rip = entry;
1315 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1316 	regs->tf_rdi = stack;		/* argv */
1317 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1318 	regs->tf_ss = _udatasel;
1319 	regs->tf_cs = _ucodesel;
1320 	regs->tf_rbx = ps_strings;
1321 
1322 	/*
1323 	 * Reset the hardware debug registers if they were in use.
1324 	 * They won't have any meaning for the newly exec'd process.
1325 	 */
1326 	if (pcb->pcb_flags & PCB_DBREGS) {
1327 		pcb->pcb_dr0 = 0;
1328 		pcb->pcb_dr1 = 0;
1329 		pcb->pcb_dr2 = 0;
1330 		pcb->pcb_dr3 = 0;
1331 		pcb->pcb_dr6 = 0;
1332 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1333 		if (pcb == td->td_pcb) {
1334 			/*
1335 			 * Clear the debug registers on the running
1336 			 * CPU, otherwise they will end up affecting
1337 			 * the next process we switch to.
1338 			 */
1339 			reset_dbregs();
1340 		}
1341 		pcb->pcb_flags &= ~PCB_DBREGS;
1342 	}
1343 
1344 	/*
1345 	 * Initialize the math emulator (if any) for the current process.
1346 	 * Actually, just clear the bit that says that the emulator has
1347 	 * been initialized.  Initialization is delayed until the process
1348 	 * traps to the emulator (if it is done at all) mainly because
1349 	 * emulators don't provide an entry point for initialization.
1350 	 */
1351 	pcb->pcb_flags &= ~FP_SOFTFP;
1352 
1353 	/*
1354 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1355 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1356 	 *	 may panic in npxdna().
1357 	 */
1358 	crit_enter();
1359 	load_cr0(rcr0() | CR0_MP);
1360 
1361 	/*
1362 	 * NOTE: The MSR values must be correct so we can return to
1363 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1364 	 *	 code knows what the current MSR values are.
1365 	 */
1366 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1367 	pcb->pcb_gsbase = 0;
1368 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1369 	mdcpu->gd_user_gs = 0;
1370 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1371 	wrmsr(MSR_KGSBASE, 0);
1372 
1373 	/* Initialize the npx (if any) for the current process. */
1374 	npxinit();
1375 	crit_exit();
1376 
1377 	pcb->pcb_ds = _udatasel;
1378 	pcb->pcb_es = _udatasel;
1379 	pcb->pcb_fs = _udatasel;
1380 	pcb->pcb_gs = _udatasel;
1381 }
1382 
1383 void
1384 cpu_setregs(void)
1385 {
1386 	register_t cr0;
1387 
1388 	cr0 = rcr0();
1389 	cr0 |= CR0_NE;			/* Done by npxinit() */
1390 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1391 	cr0 |= CR0_WP | CR0_AM;
1392 	load_cr0(cr0);
1393 	load_gs(_udatasel);
1394 }
1395 
1396 static int
1397 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1398 {
1399 	int error;
1400 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1401 		req);
1402 	if (!error && req->newptr)
1403 		resettodr();
1404 	return (error);
1405 }
1406 
1407 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1408 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1409 
1410 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1411 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1412 
1413 #if 0 /* JG */
1414 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1415 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1416 #endif
1417 
1418 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1419 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1420 
1421 static int
1422 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1423 {
1424 	struct efi_map_header *efihdr;
1425 	caddr_t kmdp;
1426 	uint32_t efisize;
1427 
1428 	kmdp = preload_search_by_type("elf kernel");
1429 	if (kmdp == NULL)
1430 		kmdp = preload_search_by_type("elf64 kernel");
1431 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1432 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1433 	if (efihdr == NULL)
1434 		return (0);
1435 	efisize = *((uint32_t *)efihdr - 1);
1436 	return (SYSCTL_OUT(req, efihdr, efisize));
1437 }
1438 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1439     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1440 
1441 /*
1442  * Initialize 386 and configure to run kernel
1443  */
1444 
1445 /*
1446  * Initialize segments & interrupt table
1447  */
1448 
1449 int _default_ldt;
1450 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1451 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1452 #if 0 /* JG */
1453 union descriptor ldt[NLDT];		/* local descriptor table */
1454 #endif
1455 
1456 /* table descriptors - used to load tables by cpu */
1457 struct region_descriptor r_gdt;
1458 struct region_descriptor r_idt_arr[MAXCPU];
1459 
1460 /* JG proc0paddr is a virtual address */
1461 void *proc0paddr;
1462 /* JG alignment? */
1463 char proc0paddr_buff[LWKT_THREAD_STACK];
1464 
1465 
1466 /* software prototypes -- in more palatable form */
1467 struct soft_segment_descriptor gdt_segs[] = {
1468 /* GNULL_SEL	0 Null Descriptor */
1469 {	0x0,			/* segment base address  */
1470 	0x0,			/* length */
1471 	0,			/* segment type */
1472 	0,			/* segment descriptor priority level */
1473 	0,			/* segment descriptor present */
1474 	0,			/* long */
1475 	0,			/* default 32 vs 16 bit size */
1476 	0  			/* limit granularity (byte/page units)*/ },
1477 /* GCODE_SEL	1 Code Descriptor for kernel */
1478 {	0x0,			/* segment base address  */
1479 	0xfffff,		/* length - all address space */
1480 	SDT_MEMERA,		/* segment type */
1481 	SEL_KPL,		/* segment descriptor priority level */
1482 	1,			/* segment descriptor present */
1483 	1,			/* long */
1484 	0,			/* default 32 vs 16 bit size */
1485 	1  			/* limit granularity (byte/page units)*/ },
1486 /* GDATA_SEL	2 Data Descriptor for kernel */
1487 {	0x0,			/* segment base address  */
1488 	0xfffff,		/* length - all address space */
1489 	SDT_MEMRWA,		/* segment type */
1490 	SEL_KPL,		/* segment descriptor priority level */
1491 	1,			/* segment descriptor present */
1492 	1,			/* long */
1493 	0,			/* default 32 vs 16 bit size */
1494 	1  			/* limit granularity (byte/page units)*/ },
1495 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1496 {	0x0,			/* segment base address  */
1497 	0xfffff,		/* length - all address space */
1498 	SDT_MEMERA,		/* segment type */
1499 	SEL_UPL,		/* segment descriptor priority level */
1500 	1,			/* segment descriptor present */
1501 	0,			/* long */
1502 	1,			/* default 32 vs 16 bit size */
1503 	1  			/* limit granularity (byte/page units)*/ },
1504 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1505 {	0x0,			/* segment base address  */
1506 	0xfffff,		/* length - all address space */
1507 	SDT_MEMRWA,		/* segment type */
1508 	SEL_UPL,		/* segment descriptor priority level */
1509 	1,			/* segment descriptor present */
1510 	0,			/* long */
1511 	1,			/* default 32 vs 16 bit size */
1512 	1  			/* limit granularity (byte/page units)*/ },
1513 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1514 {	0x0,			/* segment base address  */
1515 	0xfffff,		/* length - all address space */
1516 	SDT_MEMERA,		/* segment type */
1517 	SEL_UPL,		/* segment descriptor priority level */
1518 	1,			/* segment descriptor present */
1519 	1,			/* long */
1520 	0,			/* default 32 vs 16 bit size */
1521 	1  			/* limit granularity (byte/page units)*/ },
1522 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1523 {
1524 	0x0,			/* segment base address */
1525 	sizeof(struct x86_64tss)-1,/* length - all address space */
1526 	SDT_SYSTSS,		/* segment type */
1527 	SEL_KPL,		/* segment descriptor priority level */
1528 	1,			/* segment descriptor present */
1529 	0,			/* long */
1530 	0,			/* unused - default 32 vs 16 bit size */
1531 	0  			/* limit granularity (byte/page units)*/ },
1532 /* Actually, the TSS is a system descriptor which is double size */
1533 {	0x0,			/* segment base address  */
1534 	0x0,			/* length */
1535 	0,			/* segment type */
1536 	0,			/* segment descriptor priority level */
1537 	0,			/* segment descriptor present */
1538 	0,			/* long */
1539 	0,			/* default 32 vs 16 bit size */
1540 	0  			/* limit granularity (byte/page units)*/ },
1541 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1542 {	0x0,			/* segment base address  */
1543 	0xfffff,		/* length - all address space */
1544 	SDT_MEMRWA,		/* segment type */
1545 	SEL_UPL,		/* segment descriptor priority level */
1546 	1,			/* segment descriptor present */
1547 	0,			/* long */
1548 	1,			/* default 32 vs 16 bit size */
1549 	1  			/* limit granularity (byte/page units)*/ },
1550 };
1551 
1552 void
1553 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1554 {
1555 	int cpu;
1556 
1557 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1558 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1559 
1560 		ip->gd_looffset = (uintptr_t)func;
1561 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1562 		ip->gd_ist = ist;
1563 		ip->gd_xx = 0;
1564 		ip->gd_type = typ;
1565 		ip->gd_dpl = dpl;
1566 		ip->gd_p = 1;
1567 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1568 	}
1569 }
1570 
1571 void
1572 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1573 {
1574 	struct gate_descriptor *ip;
1575 
1576 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1577 
1578 	ip = &idt_arr[cpu][idx];
1579 	ip->gd_looffset = (uintptr_t)func;
1580 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1581 	ip->gd_ist = ist;
1582 	ip->gd_xx = 0;
1583 	ip->gd_type = typ;
1584 	ip->gd_dpl = dpl;
1585 	ip->gd_p = 1;
1586 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1587 }
1588 
1589 #define	IDTVEC(name)	__CONCAT(X,name)
1590 
1591 extern inthand_t
1592 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1593 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1594 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1595 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1596 	IDTVEC(xmm), IDTVEC(dblfault),
1597 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1598 
1599 void
1600 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1601 {
1602 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1603 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1604 	ssd->ssd_type  = sd->sd_type;
1605 	ssd->ssd_dpl   = sd->sd_dpl;
1606 	ssd->ssd_p     = sd->sd_p;
1607 	ssd->ssd_def32 = sd->sd_def32;
1608 	ssd->ssd_gran  = sd->sd_gran;
1609 }
1610 
1611 void
1612 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1613 {
1614 
1615 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1616 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1617 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1618 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1619 	sd->sd_type  = ssd->ssd_type;
1620 	sd->sd_dpl   = ssd->ssd_dpl;
1621 	sd->sd_p     = ssd->ssd_p;
1622 	sd->sd_long  = ssd->ssd_long;
1623 	sd->sd_def32 = ssd->ssd_def32;
1624 	sd->sd_gran  = ssd->ssd_gran;
1625 }
1626 
1627 void
1628 ssdtosyssd(struct soft_segment_descriptor *ssd,
1629     struct system_segment_descriptor *sd)
1630 {
1631 
1632 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1633 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1634 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1635 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1636 	sd->sd_type  = ssd->ssd_type;
1637 	sd->sd_dpl   = ssd->ssd_dpl;
1638 	sd->sd_p     = ssd->ssd_p;
1639 	sd->sd_gran  = ssd->ssd_gran;
1640 }
1641 
1642 /*
1643  * Populate the (physmap) array with base/bound pairs describing the
1644  * available physical memory in the system, then test this memory and
1645  * build the phys_avail array describing the actually-available memory.
1646  *
1647  * If we cannot accurately determine the physical memory map, then use
1648  * value from the 0xE801 call, and failing that, the RTC.
1649  *
1650  * Total memory size may be set by the kernel environment variable
1651  * hw.physmem or the compile-time define MAXMEM.
1652  *
1653  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1654  * of PAGE_SIZE.  This also greatly reduces the memory test time
1655  * which would otherwise be excessive on machines with > 8G of ram.
1656  *
1657  * XXX first should be vm_paddr_t.
1658  */
1659 
1660 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1661 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1662 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1663 
1664 vm_paddr_t physmap[PHYSMAP_SIZE];
1665 struct bios_smap *smapbase, *smap, *smapend;
1666 struct efi_map_header *efihdrbase;
1667 u_int32_t smapsize;
1668 
1669 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1670 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1671 
1672 static void
1673 add_smap_entries(int *physmap_idx)
1674 {
1675 	int i;
1676 
1677 	smapsize = *((u_int32_t *)smapbase - 1);
1678 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1679 
1680 	for (smap = smapbase; smap < smapend; smap++) {
1681 		if (boothowto & RB_VERBOSE)
1682 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1683 			    smap->type, smap->base, smap->length);
1684 
1685 		if (smap->type != SMAP_TYPE_MEMORY)
1686 			continue;
1687 
1688 		if (smap->length == 0)
1689 			continue;
1690 
1691 		for (i = 0; i <= *physmap_idx; i += 2) {
1692 			if (smap->base < physmap[i + 1]) {
1693 				if (boothowto & RB_VERBOSE) {
1694 					kprintf("Overlapping or non-monotonic "
1695 						"memory region, ignoring "
1696 						"second region\n");
1697 				}
1698 				break;
1699 			}
1700 		}
1701 		if (i <= *physmap_idx)
1702 			continue;
1703 
1704 		Realmem += smap->length;
1705 
1706 		if (smap->base == physmap[*physmap_idx + 1]) {
1707 			physmap[*physmap_idx + 1] += smap->length;
1708 			continue;
1709 		}
1710 
1711 		*physmap_idx += 2;
1712 		if (*physmap_idx == PHYSMAP_SIZE) {
1713 			kprintf("Too many segments in the physical "
1714 				"address map, giving up\n");
1715 			break;
1716 		}
1717 		physmap[*physmap_idx] = smap->base;
1718 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1719 	}
1720 }
1721 
1722 static void
1723 add_efi_map_entries(int *physmap_idx)
1724 {
1725 	 struct efi_md *map, *p;
1726 	 const char *type;
1727 	 size_t efisz;
1728 	 int i, ndesc;
1729 
1730 	static const char *types[] = {
1731 		"Reserved",
1732 		"LoaderCode",
1733 		"LoaderData",
1734 		"BootServicesCode",
1735 		"BootServicesData",
1736 		"RuntimeServicesCode",
1737 		"RuntimeServicesData",
1738 		"ConventionalMemory",
1739 		"UnusableMemory",
1740 		"ACPIReclaimMemory",
1741 		"ACPIMemoryNVS",
1742 		"MemoryMappedIO",
1743 		"MemoryMappedIOPortSpace",
1744 		"PalCode"
1745 	 };
1746 
1747 	/*
1748 	 * Memory map data provided by UEFI via the GetMemoryMap
1749 	 * Boot Services API.
1750 	 */
1751 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1752 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1753 
1754 	if (efihdrbase->descriptor_size == 0)
1755 		return;
1756 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1757 
1758 	if (boothowto & RB_VERBOSE)
1759 		kprintf("%23s %12s %12s %8s %4s\n",
1760 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1761 
1762 	for (i = 0, p = map; i < ndesc; i++,
1763 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1764 		if (boothowto & RB_VERBOSE) {
1765 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1766 				type = types[p->md_type];
1767 			else
1768 				type = "<INVALID>";
1769 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1770 			    p->md_virt, p->md_pages);
1771 			if (p->md_attr & EFI_MD_ATTR_UC)
1772 				kprintf("UC ");
1773 			if (p->md_attr & EFI_MD_ATTR_WC)
1774 				kprintf("WC ");
1775 			if (p->md_attr & EFI_MD_ATTR_WT)
1776 				kprintf("WT ");
1777 			if (p->md_attr & EFI_MD_ATTR_WB)
1778 				kprintf("WB ");
1779 			if (p->md_attr & EFI_MD_ATTR_UCE)
1780 				kprintf("UCE ");
1781 			if (p->md_attr & EFI_MD_ATTR_WP)
1782 				kprintf("WP ");
1783 			if (p->md_attr & EFI_MD_ATTR_RP)
1784 				kprintf("RP ");
1785 			if (p->md_attr & EFI_MD_ATTR_XP)
1786 				kprintf("XP ");
1787 			if (p->md_attr & EFI_MD_ATTR_RT)
1788 				kprintf("RUNTIME");
1789 			kprintf("\n");
1790 		}
1791 
1792 		switch (p->md_type) {
1793 		case EFI_MD_TYPE_CODE:
1794 		case EFI_MD_TYPE_DATA:
1795 		case EFI_MD_TYPE_BS_CODE:
1796 		case EFI_MD_TYPE_BS_DATA:
1797 		case EFI_MD_TYPE_FREE:
1798 			/*
1799 			 * We're allowed to use any entry with these types.
1800 			 */
1801 			break;
1802 		default:
1803 			continue;
1804 		}
1805 
1806 		Realmem += p->md_pages * PAGE_SIZE;
1807 
1808 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1809 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1810 			continue;
1811 		}
1812 
1813 		*physmap_idx += 2;
1814 		if (*physmap_idx == PHYSMAP_SIZE) {
1815 			kprintf("Too many segments in the physical "
1816 				"address map, giving up\n");
1817 			break;
1818 		}
1819 		physmap[*physmap_idx] = p->md_phys;
1820 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1821 	 }
1822 }
1823 
1824 struct fb_info efi_fb_info;
1825 static int have_efi_framebuffer = 0;
1826 
1827 static void
1828 efi_fb_init_vaddr(int direct_map)
1829 {
1830 	uint64_t sz;
1831 	vm_offset_t addr, v;
1832 
1833 	v = efi_fb_info.vaddr;
1834 	sz = efi_fb_info.stride * efi_fb_info.height;
1835 
1836 	if (direct_map) {
1837 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1838 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1839 			efi_fb_info.vaddr = addr;
1840 	} else {
1841 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1842 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1843 	}
1844 }
1845 
1846 int
1847 probe_efi_fb(int early)
1848 {
1849 	struct efi_fb	*efifb;
1850 	caddr_t		kmdp;
1851 
1852 	if (have_efi_framebuffer) {
1853 		if (!early &&
1854 		    (efi_fb_info.vaddr == 0 ||
1855 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1856 			efi_fb_init_vaddr(0);
1857 		return 0;
1858 	}
1859 
1860 	kmdp = preload_search_by_type("elf kernel");
1861 	if (kmdp == NULL)
1862 		kmdp = preload_search_by_type("elf64 kernel");
1863 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1864 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1865 	if (efifb == NULL)
1866 		return 1;
1867 
1868 	have_efi_framebuffer = 1;
1869 
1870 	efi_fb_info.is_vga_boot_display = 1;
1871 	efi_fb_info.width = efifb->fb_width;
1872 	efi_fb_info.height = efifb->fb_height;
1873 	efi_fb_info.stride = efifb->fb_stride * 4;
1874 	efi_fb_info.depth = 32;
1875 	efi_fb_info.paddr = efifb->fb_addr;
1876 	if (early) {
1877 		efi_fb_info.vaddr = 0;
1878 	} else {
1879 		efi_fb_init_vaddr(0);
1880 	}
1881 	efi_fb_info.fbops.fb_set_par = NULL;
1882 	efi_fb_info.fbops.fb_blank = NULL;
1883 	efi_fb_info.fbops.fb_debug_enter = NULL;
1884 	efi_fb_info.device = NULL;
1885 
1886 	return 0;
1887 }
1888 
1889 static void
1890 efifb_startup(void *arg)
1891 {
1892 	probe_efi_fb(0);
1893 }
1894 
1895 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1896 
1897 static void
1898 getmemsize(caddr_t kmdp, u_int64_t first)
1899 {
1900 	int off, physmap_idx, pa_indx, da_indx;
1901 	int i, j;
1902 	vm_paddr_t pa;
1903 	vm_paddr_t msgbuf_size;
1904 	u_long physmem_tunable;
1905 	pt_entry_t *pte;
1906 	quad_t dcons_addr, dcons_size;
1907 
1908 	bzero(physmap, sizeof(physmap));
1909 	physmap_idx = 0;
1910 
1911 	/*
1912 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1913 	 *
1914 	 * subr_module.c says:
1915 	 * "Consumer may safely assume that size value precedes data."
1916 	 * ie: an int32_t immediately precedes smap.
1917 	 */
1918 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1919 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
1920 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1921 		   MODINFO_METADATA | MODINFOMD_SMAP);
1922 	if (smapbase == NULL && efihdrbase == NULL)
1923 		panic("No BIOS smap or EFI map info from loader!");
1924 
1925 	if (efihdrbase == NULL)
1926 		add_smap_entries(&physmap_idx);
1927 	else
1928 		add_efi_map_entries(&physmap_idx);
1929 
1930 	base_memory = physmap[1] / 1024;
1931 	/* make hole for AP bootstrap code */
1932 	physmap[1] = mp_bootaddress(base_memory);
1933 
1934 	/* Save EBDA address, if any */
1935 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1936 	ebda_addr <<= 4;
1937 
1938 	/*
1939 	 * Maxmem isn't the "maximum memory", it's one larger than the
1940 	 * highest page of the physical address space.  It should be
1941 	 * called something like "Maxphyspage".  We may adjust this
1942 	 * based on ``hw.physmem'' and the results of the memory test.
1943 	 */
1944 	Maxmem = atop(physmap[physmap_idx + 1]);
1945 
1946 #ifdef MAXMEM
1947 	Maxmem = MAXMEM / 4;
1948 #endif
1949 
1950 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1951 		Maxmem = atop(physmem_tunable);
1952 
1953 	/*
1954 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1955 	 * in the system.
1956 	 */
1957 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1958 		Maxmem = atop(physmap[physmap_idx + 1]);
1959 
1960 	/*
1961 	 * Blowing out the DMAP will blow up the system.
1962 	 */
1963 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1964 		kprintf("Limiting Maxmem due to DMAP size\n");
1965 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1966 	}
1967 
1968 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1969 	    (boothowto & RB_VERBOSE)) {
1970 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1971 	}
1972 
1973 	/*
1974 	 * Call pmap initialization to make new kernel address space
1975 	 *
1976 	 * Mask off page 0.
1977 	 */
1978 	pmap_bootstrap(&first);
1979 	physmap[0] = PAGE_SIZE;
1980 
1981 	/*
1982 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1983 	 * exceeding Maxmem.
1984 	 */
1985 	for (i = j = 0; i <= physmap_idx; i += 2) {
1986 		if (physmap[i+1] > ptoa(Maxmem))
1987 			physmap[i+1] = ptoa(Maxmem);
1988 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1989 			     ~PHYSMAP_ALIGN_MASK;
1990 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1991 
1992 		physmap[j] = physmap[i];
1993 		physmap[j+1] = physmap[i+1];
1994 
1995 		if (physmap[i] < physmap[i+1])
1996 			j += 2;
1997 	}
1998 	physmap_idx = j - 2;
1999 
2000 	/*
2001 	 * Align anything else used in the validation loop.
2002 	 */
2003 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2004 
2005 	/*
2006 	 * Size up each available chunk of physical memory.
2007 	 */
2008 	pa_indx = 0;
2009 	da_indx = 0;
2010 	phys_avail[pa_indx].phys_beg = physmap[0];
2011 	phys_avail[pa_indx].phys_end = physmap[0];
2012 	dump_avail[da_indx].phys_beg = 0;
2013 	dump_avail[da_indx].phys_end = physmap[0];
2014 	pte = CMAP1;
2015 
2016 	/*
2017 	 * Get dcons buffer address
2018 	 */
2019 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2020 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2021 		dcons_addr = 0;
2022 
2023 	/*
2024 	 * Validate the physical memory.  The physical memory segments
2025 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2026 	 * of PAGE_SIZE.
2027 	 */
2028 	for (i = 0; i <= physmap_idx; i += 2) {
2029 		vm_paddr_t end;
2030 		vm_paddr_t incr = PHYSMAP_ALIGN;
2031 
2032 		end = physmap[i + 1];
2033 
2034 		for (pa = physmap[i]; pa < end; pa += incr) {
2035 			int page_bad, full;
2036 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2037 			uint64_t tmp;
2038 
2039 			incr = PHYSMAP_ALIGN;
2040 			full = FALSE;
2041 
2042 			/*
2043 			 * block out kernel memory as not available.
2044 			 */
2045 			if (pa >= 0x200000 && pa < first)
2046 				goto do_dump_avail;
2047 
2048 			/*
2049 			 * block out dcons buffer
2050 			 */
2051 			if (dcons_addr > 0
2052 			    && pa >= trunc_page(dcons_addr)
2053 			    && pa < dcons_addr + dcons_size) {
2054 				goto do_dump_avail;
2055 			}
2056 
2057 			page_bad = FALSE;
2058 
2059 			/*
2060 			 * Always test the first and last block supplied in
2061 			 * the map entry, but it just takes too long to run
2062 			 * the test these days and we already have to skip
2063 			 * pages.  Handwave it on PHYSMAP_HANDWAVE boundaries.
2064 			 */
2065 			if (pa != physmap[i]) {
2066 				vm_paddr_t bytes = end - pa;
2067 				if ((pa & PHYSMAP_HANDWAVE_MASK) == 0 &&
2068 				    bytes >= PHYSMAP_HANDWAVE + PHYSMAP_ALIGN) {
2069 					incr = PHYSMAP_HANDWAVE;
2070 					goto handwaved;
2071 				}
2072 			}
2073 
2074 			/*
2075 			 * map page into kernel: valid, read/write,non-cacheable
2076 			 */
2077 			*pte = pa |
2078 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2079 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2080 			    kernel_pmap.pmap_bits[PG_N_IDX];
2081 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2082 			cpu_mfence();
2083 
2084 			tmp = *ptr;
2085 			/*
2086 			 * Test for alternating 1's and 0's
2087 			 */
2088 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2089 			cpu_mfence();
2090 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2091 				page_bad = TRUE;
2092 			/*
2093 			 * Test for alternating 0's and 1's
2094 			 */
2095 			*ptr = 0x5555555555555555LLU;
2096 			cpu_mfence();
2097 			if (*ptr != 0x5555555555555555LLU)
2098 				page_bad = TRUE;
2099 			/*
2100 			 * Test for all 1's
2101 			 */
2102 			*ptr = 0xffffffffffffffffLLU;
2103 			cpu_mfence();
2104 			if (*ptr != 0xffffffffffffffffLLU)
2105 				page_bad = TRUE;
2106 			/*
2107 			 * Test for all 0's
2108 			 */
2109 			*ptr = 0x0;
2110 			cpu_mfence();
2111 			if (*ptr != 0x0)
2112 				page_bad = TRUE;
2113 			/*
2114 			 * Restore original value.
2115 			 */
2116 			*ptr = tmp;
2117 handwaved:
2118 
2119 			/*
2120 			 * Adjust array of valid/good pages.
2121 			 */
2122 			if (page_bad == TRUE)
2123 				continue;
2124 
2125 			/*
2126 			 * If this good page is a continuation of the
2127 			 * previous set of good pages, then just increase
2128 			 * the end pointer. Otherwise start a new chunk.
2129 			 * Note that "end" points one higher than end,
2130 			 * making the range >= start and < end.
2131 			 * If we're also doing a speculative memory
2132 			 * test and we at or past the end, bump up Maxmem
2133 			 * so that we keep going. The first bad page
2134 			 * will terminate the loop.
2135 			 */
2136 			if (phys_avail[pa_indx].phys_end == pa) {
2137 				phys_avail[pa_indx].phys_end += incr;
2138 			} else {
2139 				++pa_indx;
2140 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2141 					kprintf(
2142 		"Too many holes in the physical address space, giving up\n");
2143 					--pa_indx;
2144 					full = TRUE;
2145 					goto do_dump_avail;
2146 				}
2147 				phys_avail[pa_indx].phys_beg = pa;
2148 				phys_avail[pa_indx].phys_end = pa + incr;
2149 			}
2150 			physmem += incr / PAGE_SIZE;
2151 do_dump_avail:
2152 			if (dump_avail[da_indx].phys_end == pa) {
2153 				dump_avail[da_indx].phys_end += incr;
2154 			} else {
2155 				++da_indx;
2156 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2157 					--da_indx;
2158 					goto do_next;
2159 				}
2160 				dump_avail[da_indx].phys_beg = pa;
2161 				dump_avail[da_indx].phys_end = pa + incr;
2162 			}
2163 do_next:
2164 			if (full)
2165 				break;
2166 		}
2167 	}
2168 	*pte = 0;
2169 	cpu_invltlb();
2170 	cpu_mfence();
2171 
2172 	/*
2173 	 * The last chunk must contain at least one page plus the message
2174 	 * buffer to avoid complicating other code (message buffer address
2175 	 * calculation, etc.).
2176 	 */
2177 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2178 
2179 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2180 	       phys_avail[pa_indx].phys_end) {
2181 		physmem -= atop(phys_avail[pa_indx].phys_end -
2182 				phys_avail[pa_indx].phys_beg);
2183 		phys_avail[pa_indx].phys_beg = 0;
2184 		phys_avail[pa_indx].phys_end = 0;
2185 		--pa_indx;
2186 	}
2187 
2188 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2189 
2190 	/* Trim off space for the message buffer. */
2191 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2192 
2193 	avail_end = phys_avail[pa_indx].phys_end;
2194 
2195 	/* Map the message buffer. */
2196 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2197 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2198 	}
2199 	/* Try to get EFI framebuffer working as early as possible */
2200 	if (have_efi_framebuffer)
2201 		efi_fb_init_vaddr(1);
2202 }
2203 
2204 struct machintr_abi MachIntrABI;
2205 
2206 /*
2207  * IDT VECTORS:
2208  *	0	Divide by zero
2209  *	1	Debug
2210  *	2	NMI
2211  *	3	BreakPoint
2212  *	4	OverFlow
2213  *	5	Bound-Range
2214  *	6	Invalid OpCode
2215  *	7	Device Not Available (x87)
2216  *	8	Double-Fault
2217  *	9	Coprocessor Segment overrun (unsupported, reserved)
2218  *	10	Invalid-TSS
2219  *	11	Segment not present
2220  *	12	Stack
2221  *	13	General Protection
2222  *	14	Page Fault
2223  *	15	Reserved
2224  *	16	x87 FP Exception pending
2225  *	17	Alignment Check
2226  *	18	Machine Check
2227  *	19	SIMD floating point
2228  *	20-31	reserved
2229  *	32-255	INTn/external sources
2230  */
2231 u_int64_t
2232 hammer_time(u_int64_t modulep, u_int64_t physfree)
2233 {
2234 	caddr_t kmdp;
2235 	int gsel_tss, x, cpu;
2236 #if 0 /* JG */
2237 	int metadata_missing, off;
2238 #endif
2239 	struct mdglobaldata *gd;
2240 	u_int64_t msr;
2241 
2242 	/*
2243 	 * Prevent lowering of the ipl if we call tsleep() early.
2244 	 */
2245 	gd = &CPU_prvspace[0]->mdglobaldata;
2246 	bzero(gd, sizeof(*gd));
2247 
2248 	/*
2249 	 * Note: on both UP and SMP curthread must be set non-NULL
2250 	 * early in the boot sequence because the system assumes
2251 	 * that 'curthread' is never NULL.
2252 	 */
2253 
2254 	gd->mi.gd_curthread = &thread0;
2255 	thread0.td_gd = &gd->mi;
2256 
2257 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2258 
2259 #if 0 /* JG */
2260 	metadata_missing = 0;
2261 	if (bootinfo.bi_modulep) {
2262 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2263 		preload_bootstrap_relocate(KERNBASE);
2264 	} else {
2265 		metadata_missing = 1;
2266 	}
2267 	if (bootinfo.bi_envp)
2268 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2269 #endif
2270 
2271 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2272 	preload_bootstrap_relocate(PTOV_OFFSET);
2273 	kmdp = preload_search_by_type("elf kernel");
2274 	if (kmdp == NULL)
2275 		kmdp = preload_search_by_type("elf64 kernel");
2276 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2277 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2278 #ifdef DDB
2279 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2280 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2281 #endif
2282 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2283 
2284 	if (boothowto & RB_VERBOSE)
2285 		bootverbose++;
2286 
2287 	/*
2288 	 * Default MachIntrABI to ICU
2289 	 */
2290 	MachIntrABI = MachIntrABI_ICU;
2291 
2292 	/*
2293 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
2294 	 * and ncpus_fit_mask remain 0.
2295 	 */
2296 	ncpus = 1;
2297 	ncpus2 = 1;
2298 	ncpus_fit = 1;
2299 	/* Init basic tunables, hz etc */
2300 	init_param1();
2301 
2302 	/*
2303 	 * make gdt memory segments
2304 	 */
2305 	gdt_segs[GPROC0_SEL].ssd_base =
2306 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2307 
2308 	gd->mi.gd_prvspace = CPU_prvspace[0];
2309 
2310 	for (x = 0; x < NGDT; x++) {
2311 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2312 			ssdtosd(&gdt_segs[x], &gdt[x]);
2313 	}
2314 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2315 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2316 
2317 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2318 	r_gdt.rd_base =  (long) gdt;
2319 	lgdt(&r_gdt);
2320 
2321 	wrmsr(MSR_FSBASE, 0);		/* User value */
2322 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2323 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2324 
2325 	mi_gdinit(&gd->mi, 0);
2326 	cpu_gdinit(gd, 0);
2327 	proc0paddr = proc0paddr_buff;
2328 	mi_proc0init(&gd->mi, proc0paddr);
2329 	safepri = TDPRI_MAX;
2330 
2331 	/* spinlocks and the BGL */
2332 	init_locks();
2333 
2334 	/* exceptions */
2335 	for (x = 0; x < NIDT; x++)
2336 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2337 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2338 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2339 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2340  	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2341 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2342 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2343 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2344 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2345 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2346 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2347 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2348 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2349 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2350 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2351 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2352 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2353 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2354 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2355 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2356 
2357 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2358 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2359 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2360 	}
2361 
2362 	lidt(&r_idt_arr[0]);
2363 
2364 	/*
2365 	 * Initialize the console before we print anything out.
2366 	 */
2367 	cninit();
2368 
2369 #if 0 /* JG */
2370 	if (metadata_missing)
2371 		kprintf("WARNING: loader(8) metadata is missing!\n");
2372 #endif
2373 
2374 #if	NISA >0
2375 	elcr_probe();
2376 	isa_defaultirq();
2377 #endif
2378 	rand_initialize();
2379 
2380 	/*
2381 	 * Initialize IRQ mapping
2382 	 *
2383 	 * NOTE:
2384 	 * SHOULD be after elcr_probe()
2385 	 */
2386 	MachIntrABI_ICU.initmap();
2387 	MachIntrABI_IOAPIC.initmap();
2388 
2389 #ifdef DDB
2390 	kdb_init();
2391 	if (boothowto & RB_KDB)
2392 		Debugger("Boot flags requested debugger");
2393 #endif
2394 
2395 #if 0 /* JG */
2396 	finishidentcpu();	/* Final stage of CPU initialization */
2397 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2398 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2399 #endif
2400 	identify_cpu();		/* Final stage of CPU initialization */
2401 	initializecpu(0);	/* Initialize CPU registers */
2402 
2403 	/*
2404 	 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2405 	 * because the cpu does significant power management in MWAIT
2406 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2407 	 *
2408 	 * On modern AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2409 	 * significant power management only when using ACPI halt mode.
2410 	 *
2411 	 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2412 	 * is needed to reduce power consumption, but wakeup times are often
2413 	 * too long longer.
2414 	 */
2415 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2416 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2417 		cpu_idle_hlt = 1;
2418 	}
2419 	if (cpu_vendor_id == CPU_VENDOR_AMD) {
2420 		if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2421 			/* Ryzen or later */
2422 			cpu_idle_hlt = 3;
2423 		} else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2424 			/* Bobcat or later */
2425 			cpu_idle_hlt = 3;
2426 		}
2427 	}
2428 
2429 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2430 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2431 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2432 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2433 
2434 	/*
2435 	 * Some of the virtual machines do not work w/ I/O APIC
2436 	 * enabled.  If the user does not explicitly enable or
2437 	 * disable the I/O APIC (ioapic_enable < 0), then we
2438 	 * disable I/O APIC on all virtual machines.
2439 	 *
2440 	 * NOTE:
2441 	 * This must be done after identify_cpu(), which sets
2442 	 * 'cpu_feature2'
2443 	 */
2444 	if (ioapic_enable < 0) {
2445 		if (cpu_feature2 & CPUID2_VMM)
2446 			ioapic_enable = 0;
2447 		else
2448 			ioapic_enable = 1;
2449 	}
2450 
2451 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2452 	gd->gd_common_tss.tss_rsp0 =
2453 		(register_t)(thread0.td_kstack +
2454 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2455 	/* Ensure the stack is aligned to 16 bytes */
2456 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2457 
2458 	/* double fault stack */
2459 	gd->gd_common_tss.tss_ist1 =
2460 		(long)&gd->mi.gd_prvspace->idlestack[
2461 			sizeof(gd->mi.gd_prvspace->idlestack)];
2462 
2463 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2464 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2465 
2466 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2467 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2468 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2469 	ltr(gsel_tss);
2470 
2471 	/* Set up the fast syscall stuff */
2472 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2473 	wrmsr(MSR_EFER, msr);
2474 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2475 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2476 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2477 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2478 	wrmsr(MSR_STAR, msr);
2479 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2480 
2481 	getmemsize(kmdp, physfree);
2482 	init_param2(physmem);
2483 
2484 	/* now running on new page tables, configured,and u/iom is accessible */
2485 
2486 	/* Map the message buffer. */
2487 #if 0 /* JG */
2488 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2489 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2490 #endif
2491 
2492 	msgbufinit(msgbufp, MSGBUF_SIZE);
2493 
2494 
2495 	/* transfer to user mode */
2496 
2497 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2498 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2499 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2500 
2501 	load_ds(_udatasel);
2502 	load_es(_udatasel);
2503 	load_fs(_udatasel);
2504 
2505 	/* setup proc 0's pcb */
2506 	thread0.td_pcb->pcb_flags = 0;
2507 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2508 	thread0.td_pcb->pcb_ext = NULL;
2509 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2510 
2511 	/* Location of kernel stack for locore */
2512 	return ((u_int64_t)thread0.td_pcb);
2513 }
2514 
2515 /*
2516  * Initialize machine-dependant portions of the global data structure.
2517  * Note that the global data area and cpu0's idlestack in the private
2518  * data space were allocated in locore.
2519  *
2520  * Note: the idlethread's cpl is 0
2521  *
2522  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2523  */
2524 void
2525 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2526 {
2527 	if (cpu)
2528 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2529 
2530 	lwkt_init_thread(&gd->mi.gd_idlethread,
2531 			gd->mi.gd_prvspace->idlestack,
2532 			sizeof(gd->mi.gd_prvspace->idlestack),
2533 			0, &gd->mi);
2534 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2535 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2536 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2537 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2538 }
2539 
2540 /*
2541  * We only have to check for DMAP bounds, the globaldata space is
2542  * actually part of the kernel_map so we don't have to waste time
2543  * checking CPU_prvspace[*].
2544  */
2545 int
2546 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2547 {
2548 #if 0
2549 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2550 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2551 		return (TRUE);
2552 	}
2553 #endif
2554 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2555 		return (TRUE);
2556 	return (FALSE);
2557 }
2558 
2559 struct globaldata *
2560 globaldata_find(int cpu)
2561 {
2562 	KKASSERT(cpu >= 0 && cpu < ncpus);
2563 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2564 }
2565 
2566 /*
2567  * This path should be safe from the SYSRET issue because only stopped threads
2568  * can have their %rip adjusted this way (and all heavy weight thread switches
2569  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2570  * convoluted so add a safety by forcing %rip to be cannonical.
2571  */
2572 int
2573 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2574 {
2575 	if (addr & 0x0000800000000000LLU)
2576 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2577 	else
2578 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2579 	return (0);
2580 }
2581 
2582 int
2583 ptrace_single_step(struct lwp *lp)
2584 {
2585 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2586 	return (0);
2587 }
2588 
2589 int
2590 fill_regs(struct lwp *lp, struct reg *regs)
2591 {
2592 	struct trapframe *tp;
2593 
2594 	if ((tp = lp->lwp_md.md_regs) == NULL)
2595 		return EINVAL;
2596 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2597 	return (0);
2598 }
2599 
2600 int
2601 set_regs(struct lwp *lp, struct reg *regs)
2602 {
2603 	struct trapframe *tp;
2604 
2605 	tp = lp->lwp_md.md_regs;
2606 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2607 	    !CS_SECURE(regs->r_cs))
2608 		return (EINVAL);
2609 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2610 	clear_quickret();
2611 	return (0);
2612 }
2613 
2614 static void
2615 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2616 {
2617 	struct env87 *penv_87 = &sv_87->sv_env;
2618 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2619 	int i;
2620 
2621 	/* FPU control/status */
2622 	penv_87->en_cw = penv_xmm->en_cw;
2623 	penv_87->en_sw = penv_xmm->en_sw;
2624 	penv_87->en_tw = penv_xmm->en_tw;
2625 	penv_87->en_fip = penv_xmm->en_fip;
2626 	penv_87->en_fcs = penv_xmm->en_fcs;
2627 	penv_87->en_opcode = penv_xmm->en_opcode;
2628 	penv_87->en_foo = penv_xmm->en_foo;
2629 	penv_87->en_fos = penv_xmm->en_fos;
2630 
2631 	/* FPU registers */
2632 	for (i = 0; i < 8; ++i)
2633 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2634 }
2635 
2636 static void
2637 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2638 {
2639 	struct env87 *penv_87 = &sv_87->sv_env;
2640 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2641 	int i;
2642 
2643 	/* FPU control/status */
2644 	penv_xmm->en_cw = penv_87->en_cw;
2645 	penv_xmm->en_sw = penv_87->en_sw;
2646 	penv_xmm->en_tw = penv_87->en_tw;
2647 	penv_xmm->en_fip = penv_87->en_fip;
2648 	penv_xmm->en_fcs = penv_87->en_fcs;
2649 	penv_xmm->en_opcode = penv_87->en_opcode;
2650 	penv_xmm->en_foo = penv_87->en_foo;
2651 	penv_xmm->en_fos = penv_87->en_fos;
2652 
2653 	/* FPU registers */
2654 	for (i = 0; i < 8; ++i)
2655 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2656 }
2657 
2658 int
2659 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2660 {
2661 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2662 		return EINVAL;
2663 	if (cpu_fxsr) {
2664 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2665 				(struct save87 *)fpregs);
2666 		return (0);
2667 	}
2668 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2669 	return (0);
2670 }
2671 
2672 int
2673 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2674 {
2675 	if (cpu_fxsr) {
2676 		set_fpregs_xmm((struct save87 *)fpregs,
2677 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2678 		return (0);
2679 	}
2680 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2681 	return (0);
2682 }
2683 
2684 int
2685 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2686 {
2687 	struct pcb *pcb;
2688 
2689         if (lp == NULL) {
2690                 dbregs->dr[0] = rdr0();
2691                 dbregs->dr[1] = rdr1();
2692                 dbregs->dr[2] = rdr2();
2693                 dbregs->dr[3] = rdr3();
2694                 dbregs->dr[4] = rdr4();
2695                 dbregs->dr[5] = rdr5();
2696                 dbregs->dr[6] = rdr6();
2697                 dbregs->dr[7] = rdr7();
2698 		return (0);
2699         }
2700 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2701 		return EINVAL;
2702 	dbregs->dr[0] = pcb->pcb_dr0;
2703 	dbregs->dr[1] = pcb->pcb_dr1;
2704 	dbregs->dr[2] = pcb->pcb_dr2;
2705 	dbregs->dr[3] = pcb->pcb_dr3;
2706 	dbregs->dr[4] = 0;
2707 	dbregs->dr[5] = 0;
2708 	dbregs->dr[6] = pcb->pcb_dr6;
2709 	dbregs->dr[7] = pcb->pcb_dr7;
2710 	return (0);
2711 }
2712 
2713 int
2714 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2715 {
2716 	if (lp == NULL) {
2717 		load_dr0(dbregs->dr[0]);
2718 		load_dr1(dbregs->dr[1]);
2719 		load_dr2(dbregs->dr[2]);
2720 		load_dr3(dbregs->dr[3]);
2721 		load_dr4(dbregs->dr[4]);
2722 		load_dr5(dbregs->dr[5]);
2723 		load_dr6(dbregs->dr[6]);
2724 		load_dr7(dbregs->dr[7]);
2725 	} else {
2726 		struct pcb *pcb;
2727 		struct ucred *ucred;
2728 		int i;
2729 		uint64_t mask1, mask2;
2730 
2731 		/*
2732 		 * Don't let an illegal value for dr7 get set.	Specifically,
2733 		 * check for undefined settings.  Setting these bit patterns
2734 		 * result in undefined behaviour and can lead to an unexpected
2735 		 * TRCTRAP.
2736 		 */
2737 		/* JG this loop looks unreadable */
2738 		/* Check 4 2-bit fields for invalid patterns.
2739 		 * These fields are R/Wi, for i = 0..3
2740 		 */
2741 		/* Is 10 in LENi allowed when running in compatibility mode? */
2742 		/* Pattern 10 in R/Wi might be used to indicate
2743 		 * breakpoint on I/O. Further analysis should be
2744 		 * carried to decide if it is safe and useful to
2745 		 * provide access to that capability
2746 		 */
2747 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2748 		     i++, mask1 <<= 4, mask2 <<= 4)
2749 			if ((dbregs->dr[7] & mask1) == mask2)
2750 				return (EINVAL);
2751 
2752 		pcb = lp->lwp_thread->td_pcb;
2753 		ucred = lp->lwp_proc->p_ucred;
2754 
2755 		/*
2756 		 * Don't let a process set a breakpoint that is not within the
2757 		 * process's address space.  If a process could do this, it
2758 		 * could halt the system by setting a breakpoint in the kernel
2759 		 * (if ddb was enabled).  Thus, we need to check to make sure
2760 		 * that no breakpoints are being enabled for addresses outside
2761 		 * process's address space, unless, perhaps, we were called by
2762 		 * uid 0.
2763 		 *
2764 		 * XXX - what about when the watched area of the user's
2765 		 * address space is written into from within the kernel
2766 		 * ... wouldn't that still cause a breakpoint to be generated
2767 		 * from within kernel mode?
2768 		 */
2769 
2770 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2771 			if (dbregs->dr[7] & 0x3) {
2772 				/* dr0 is enabled */
2773 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2774 					return (EINVAL);
2775 			}
2776 
2777 			if (dbregs->dr[7] & (0x3<<2)) {
2778 				/* dr1 is enabled */
2779 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2780 					return (EINVAL);
2781 			}
2782 
2783 			if (dbregs->dr[7] & (0x3<<4)) {
2784 				/* dr2 is enabled */
2785 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2786 					return (EINVAL);
2787 			}
2788 
2789 			if (dbregs->dr[7] & (0x3<<6)) {
2790 				/* dr3 is enabled */
2791 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2792 					return (EINVAL);
2793 			}
2794 		}
2795 
2796 		pcb->pcb_dr0 = dbregs->dr[0];
2797 		pcb->pcb_dr1 = dbregs->dr[1];
2798 		pcb->pcb_dr2 = dbregs->dr[2];
2799 		pcb->pcb_dr3 = dbregs->dr[3];
2800 		pcb->pcb_dr6 = dbregs->dr[6];
2801 		pcb->pcb_dr7 = dbregs->dr[7];
2802 
2803 		pcb->pcb_flags |= PCB_DBREGS;
2804 	}
2805 
2806 	return (0);
2807 }
2808 
2809 /*
2810  * Return > 0 if a hardware breakpoint has been hit, and the
2811  * breakpoint was in user space.  Return 0, otherwise.
2812  */
2813 int
2814 user_dbreg_trap(void)
2815 {
2816         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2817         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2818         int nbp;            /* number of breakpoints that triggered */
2819         caddr_t addr[4];    /* breakpoint addresses */
2820         int i;
2821 
2822         dr7 = rdr7();
2823         if ((dr7 & 0xff) == 0) {
2824                 /*
2825                  * all GE and LE bits in the dr7 register are zero,
2826                  * thus the trap couldn't have been caused by the
2827                  * hardware debug registers
2828                  */
2829                 return 0;
2830         }
2831 
2832         nbp = 0;
2833         dr6 = rdr6();
2834         bp = dr6 & 0xf;
2835 
2836         if (bp == 0) {
2837                 /*
2838                  * None of the breakpoint bits are set meaning this
2839                  * trap was not caused by any of the debug registers
2840                  */
2841                 return 0;
2842         }
2843 
2844         /*
2845          * at least one of the breakpoints were hit, check to see
2846          * which ones and if any of them are user space addresses
2847          */
2848 
2849         if (bp & 0x01) {
2850                 addr[nbp++] = (caddr_t)rdr0();
2851         }
2852         if (bp & 0x02) {
2853                 addr[nbp++] = (caddr_t)rdr1();
2854         }
2855         if (bp & 0x04) {
2856                 addr[nbp++] = (caddr_t)rdr2();
2857         }
2858         if (bp & 0x08) {
2859                 addr[nbp++] = (caddr_t)rdr3();
2860         }
2861 
2862         for (i=0; i<nbp; i++) {
2863                 if (addr[i] <
2864                     (caddr_t)VM_MAX_USER_ADDRESS) {
2865                         /*
2866                          * addr[i] is in user space
2867                          */
2868                         return nbp;
2869                 }
2870         }
2871 
2872         /*
2873          * None of the breakpoints are in user space.
2874          */
2875         return 0;
2876 }
2877 
2878 
2879 #ifndef DDB
2880 void
2881 Debugger(const char *msg)
2882 {
2883 	kprintf("Debugger(\"%s\") called.\n", msg);
2884 }
2885 #endif /* no DDB */
2886 
2887 #ifdef DDB
2888 
2889 /*
2890  * Provide inb() and outb() as functions.  They are normally only
2891  * available as macros calling inlined functions, thus cannot be
2892  * called inside DDB.
2893  *
2894  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2895  */
2896 
2897 #undef inb
2898 #undef outb
2899 
2900 /* silence compiler warnings */
2901 u_char inb(u_int);
2902 void outb(u_int, u_char);
2903 
2904 u_char
2905 inb(u_int port)
2906 {
2907 	u_char	data;
2908 	/*
2909 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2910 	 * %edx, while gcc generates inferior code (movw instead of movl)
2911 	 * if we tell it to load (u_short) port.
2912 	 */
2913 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2914 	return (data);
2915 }
2916 
2917 void
2918 outb(u_int port, u_char data)
2919 {
2920 	u_char	al;
2921 	/*
2922 	 * Use an unnecessary assignment to help gcc's register allocator.
2923 	 * This make a large difference for gcc-1.40 and a tiny difference
2924 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2925 	 * best results.  gcc-2.6.0 can't handle this.
2926 	 */
2927 	al = data;
2928 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2929 }
2930 
2931 #endif /* DDB */
2932 
2933 
2934 
2935 /*
2936  * initialize all the SMP locks
2937  */
2938 
2939 /* critical region when masking or unmasking interupts */
2940 struct spinlock_deprecated imen_spinlock;
2941 
2942 /* lock region used by kernel profiling */
2943 struct spinlock_deprecated mcount_spinlock;
2944 
2945 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2946 struct spinlock_deprecated com_spinlock;
2947 
2948 /* lock regions around the clock hardware */
2949 struct spinlock_deprecated clock_spinlock;
2950 
2951 static void
2952 init_locks(void)
2953 {
2954 	/*
2955 	 * Get the initial mplock with a count of 1 for the BSP.
2956 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2957 	 */
2958 	cpu_get_initial_mplock();
2959 	/* DEPRECATED */
2960 	spin_init_deprecated(&mcount_spinlock);
2961 	spin_init_deprecated(&imen_spinlock);
2962 	spin_init_deprecated(&com_spinlock);
2963 	spin_init_deprecated(&clock_spinlock);
2964 
2965 	/* our token pool needs to work early */
2966 	lwkt_token_pool_init();
2967 }
2968 
2969 boolean_t
2970 cpu_mwait_hint_valid(uint32_t hint)
2971 {
2972 	int cx_idx, sub;
2973 
2974 	cx_idx = MWAIT_EAX_TO_CX(hint);
2975 	if (cx_idx >= CPU_MWAIT_CX_MAX)
2976 		return FALSE;
2977 
2978 	sub = MWAIT_EAX_TO_CX_SUB(hint);
2979 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
2980 		return FALSE;
2981 
2982 	return TRUE;
2983 }
2984 
2985 void
2986 cpu_mwait_cx_no_bmsts(void)
2987 {
2988 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
2989 }
2990 
2991 void
2992 cpu_mwait_cx_no_bmarb(void)
2993 {
2994 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
2995 }
2996 
2997 static int
2998 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
2999 {
3000 	int old_cx_idx, sub = 0;
3001 
3002 	if (hint >= 0) {
3003 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
3004 		sub = MWAIT_EAX_TO_CX_SUB(hint);
3005 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
3006 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3007 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3008 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3009 	} else {
3010 		old_cx_idx = CPU_MWAIT_CX_MAX;
3011 	}
3012 
3013 	if (!CPU_MWAIT_HAS_CX)
3014 		strlcpy(name, "NONE", namelen);
3015 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3016 		strlcpy(name, "AUTO", namelen);
3017 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3018 		strlcpy(name, "AUTODEEP", namelen);
3019 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3020 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3021 		strlcpy(name, "INVALID", namelen);
3022 	else
3023 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3024 
3025 	return old_cx_idx;
3026 }
3027 
3028 static int
3029 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3030 {
3031 	int cx_idx, sub, hint;
3032 	char *ptr, *start;
3033 
3034 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3035 		hint = CPU_MWAIT_HINT_AUTO;
3036 		cx_idx = CPU_MWAIT_C2;
3037 		goto done;
3038 	}
3039 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3040 		hint = CPU_MWAIT_HINT_AUTODEEP;
3041 		cx_idx = CPU_MWAIT_C3;
3042 		goto done;
3043 	}
3044 
3045 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3046 		return -1;
3047 	start = &name[1];
3048 	ptr = NULL;
3049 
3050 	cx_idx = strtol(start, &ptr, 10);
3051 	if (ptr == start || *ptr != '/')
3052 		return -1;
3053 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3054 		return -1;
3055 
3056 	start = ptr + 1;
3057 	ptr = NULL;
3058 
3059 	sub = strtol(start, &ptr, 10);
3060 	if (*ptr != '\0')
3061 		return -1;
3062 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3063 		return -1;
3064 
3065 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3066 done:
3067 	*hint0 = hint;
3068 	return cx_idx;
3069 }
3070 
3071 static int
3072 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3073 {
3074 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3075 		return EOPNOTSUPP;
3076 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3077 		int error;
3078 
3079 		error = cputimer_intr_powersave_addreq();
3080 		if (error)
3081 			return error;
3082 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3083 		cputimer_intr_powersave_remreq();
3084 	}
3085 	return 0;
3086 }
3087 
3088 static int
3089 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3090     boolean_t allow_auto)
3091 {
3092 	int error, cx_idx, old_cx_idx, hint;
3093 	char name[CPU_MWAIT_CX_NAMELEN];
3094 
3095 	hint = *hint0;
3096 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3097 	    allow_auto);
3098 
3099 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3100 	if (error != 0 || req->newptr == NULL)
3101 		return error;
3102 
3103 	if (!CPU_MWAIT_HAS_CX)
3104 		return EOPNOTSUPP;
3105 
3106 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3107 	if (cx_idx < 0)
3108 		return EINVAL;
3109 
3110 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3111 	if (error)
3112 		return error;
3113 
3114 	*hint0 = hint;
3115 	return 0;
3116 }
3117 
3118 static int
3119 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3120 {
3121 	int error, cx_idx, old_cx_idx, hint;
3122 	char name[CPU_MWAIT_CX_NAMELEN];
3123 
3124 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3125 
3126 	hint = stat->hint;
3127 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3128 
3129 	strlcpy(name, cx_name, sizeof(name));
3130 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3131 	if (cx_idx < 0)
3132 		return EINVAL;
3133 
3134 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3135 	if (error)
3136 		return error;
3137 
3138 	stat->hint = hint;
3139 	return 0;
3140 }
3141 
3142 static int
3143 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3144 {
3145 	int hint = cpu_mwait_halt_global;
3146 	int error, cx_idx, cpu;
3147 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3148 
3149 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3150 
3151 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3152 	if (error != 0 || req->newptr == NULL)
3153 		return error;
3154 
3155 	if (!CPU_MWAIT_HAS_CX)
3156 		return EOPNOTSUPP;
3157 
3158 	/* Save name for later per-cpu CX configuration */
3159 	strlcpy(cx_name, name, sizeof(cx_name));
3160 
3161 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3162 	if (cx_idx < 0)
3163 		return EINVAL;
3164 
3165 	/* Change per-cpu CX configuration */
3166 	for (cpu = 0; cpu < ncpus; ++cpu) {
3167 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3168 		if (error)
3169 			return error;
3170 	}
3171 
3172 	cpu_mwait_halt_global = hint;
3173 	return 0;
3174 }
3175 
3176 static int
3177 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3178 {
3179 	struct cpu_idle_stat *stat = arg1;
3180 	int error;
3181 
3182 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3183 	    &stat->hint, TRUE);
3184 	return error;
3185 }
3186 
3187 static int
3188 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3189 {
3190 	int error;
3191 
3192 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3193 	    &cpu_mwait_spin, FALSE);
3194 	return error;
3195 }
3196 
3197 /*
3198  * This manual debugging code is called unconditionally from Xtimer
3199  * (the per-cpu timer interrupt) whether the current thread is in a
3200  * critical section or not) and can be useful in tracking down lockups.
3201  *
3202  * NOTE: MANUAL DEBUG CODE
3203  */
3204 #if 0
3205 static int saveticks[SMP_MAXCPU];
3206 static int savecounts[SMP_MAXCPU];
3207 #endif
3208 
3209 void
3210 pcpu_timer_always(struct intrframe *frame)
3211 {
3212 #if 0
3213 	globaldata_t gd = mycpu;
3214 	int cpu = gd->gd_cpuid;
3215 	char buf[64];
3216 	short *gptr;
3217 	int i;
3218 
3219 	if (cpu <= 20) {
3220 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3221 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3222 		++gptr;
3223 
3224 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3225 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3226 		    gd->gd_infomsg);
3227 		for (i = 0; buf[i]; ++i) {
3228 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3229 		}
3230 	}
3231 #if 0
3232 	if (saveticks[gd->gd_cpuid] != ticks) {
3233 		saveticks[gd->gd_cpuid] = ticks;
3234 		savecounts[gd->gd_cpuid] = 0;
3235 	}
3236 	++savecounts[gd->gd_cpuid];
3237 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3238 		panic("cpud %d panicing on ticks failure",
3239 			gd->gd_cpuid);
3240 	}
3241 	for (i = 0; i < ncpus; ++i) {
3242 		int delta;
3243 		if (saveticks[i] && panicstr == NULL) {
3244 			delta = saveticks[i] - ticks;
3245 			if (delta < -10 || delta > 10) {
3246 				panic("cpu %d panicing on cpu %d watchdog",
3247 				      gd->gd_cpuid, i);
3248 			}
3249 		}
3250 	}
3251 #endif
3252 #endif
3253 }
3254