xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision a4f37ab4)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008-2017 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_inet.h"
48 #include "opt_msgbuf.h"
49 #include "opt_swap.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/sysproto.h>
54 #include <sys/signalvar.h>
55 #include <sys/kernel.h>
56 #include <sys/linker.h>
57 #include <sys/malloc.h>
58 #include <sys/proc.h>
59 #include <sys/priv.h>
60 #include <sys/buf.h>
61 #include <sys/reboot.h>
62 #include <sys/mbuf.h>
63 #include <sys/msgbuf.h>
64 #include <sys/sysent.h>
65 #include <sys/sysctl.h>
66 #include <sys/vmmeter.h>
67 #include <sys/bus.h>
68 #include <sys/usched.h>
69 #include <sys/reg.h>
70 #include <sys/sbuf.h>
71 #include <sys/ctype.h>
72 #include <sys/serialize.h>
73 #include <sys/systimer.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 #include <sys/lock.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_page.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_pager.h>
83 #include <vm/vm_extern.h>
84 
85 #include <sys/thread2.h>
86 #include <sys/mplock2.h>
87 #include <sys/mutex2.h>
88 
89 #include <sys/user.h>
90 #include <sys/exec.h>
91 #include <sys/cons.h>
92 
93 #include <sys/efi.h>
94 
95 #include <ddb/ddb.h>
96 
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #if 0 /* JG */
101 #include <machine/bootinfo.h>
102 #endif
103 #include <machine/md_var.h>
104 #include <machine/metadata.h>
105 #include <machine/pc/bios.h>
106 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
107 #include <machine/globaldata.h>		/* CPU_prvspace */
108 #include <machine/smp.h>
109 #include <machine/cputypes.h>
110 #include <machine/intr_machdep.h>
111 #include <machine/framebuffer.h>
112 
113 #ifdef OLD_BUS_ARCH
114 #include <bus/isa/isa_device.h>
115 #endif
116 #include <machine_base/isa/isa_intr.h>
117 #include <bus/isa/rtc.h>
118 #include <sys/random.h>
119 #include <sys/ptrace.h>
120 #include <machine/sigframe.h>
121 
122 #include <sys/machintr.h>
123 #include <machine_base/icu/icu_abi.h>
124 #include <machine_base/icu/elcr_var.h>
125 #include <machine_base/apic/lapic.h>
126 #include <machine_base/apic/ioapic.h>
127 #include <machine_base/apic/ioapic_abi.h>
128 #include <machine/mptable.h>
129 
130 #define PHYSMAP_ENTRIES		10
131 
132 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
133 
134 extern void printcpuinfo(void);	/* XXX header file */
135 extern void identify_cpu(void);
136 #if 0 /* JG */
137 extern void finishidentcpu(void);
138 #endif
139 extern void panicifcpuunsupported(void);
140 
141 static void cpu_startup(void *);
142 static void pic_finish(void *);
143 static void cpu_finish(void *);
144 
145 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
146 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
147 static void init_locks(void);
148 
149 extern void pcpu_timer_always(struct intrframe *);
150 
151 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
152 SYSINIT(pic_finish, SI_BOOT2_FINISH_PIC, SI_ORDER_FIRST, pic_finish, NULL);
153 SYSINIT(cpu_finish, SI_BOOT2_FINISH_CPU, SI_ORDER_FIRST, cpu_finish, NULL);
154 
155 #ifdef DDB
156 extern vm_offset_t ksym_start, ksym_end;
157 #endif
158 
159 struct privatespace CPU_prvspace_bsp __aligned(4096);
160 struct privatespace *CPU_prvspace[MAXCPU] = { &CPU_prvspace_bsp };
161 
162 vm_paddr_t efi_systbl_phys;
163 int	_udatasel, _ucodesel, _ucode32sel;
164 u_long	atdevbase;
165 int64_t tsc_offsets[MAXCPU];
166 cpumask_t smp_idleinvl_mask;
167 cpumask_t smp_idleinvl_reqs;
168 
169 static int cpu_mwait_halt_global; /* MWAIT hint (EAX) or CPU_MWAIT_HINT_ */
170 
171 #if defined(SWTCH_OPTIM_STATS)
172 extern int swtch_optim_stats;
173 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
174 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
175 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
176 	CTLFLAG_RD, &tlb_flush_count, 0, "");
177 #endif
178 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_halt,
179 	CTLFLAG_RD, &cpu_mwait_halt_global, 0, "");
180 SYSCTL_INT(_hw, OID_AUTO, cpu_mwait_spin, CTLFLAG_RD, &cpu_mwait_spin, 0,
181     "monitor/mwait target state");
182 
183 #define CPU_MWAIT_HAS_CX	\
184 	((cpu_feature2 & CPUID2_MON) && \
185 	 (cpu_mwait_feature & CPUID_MWAIT_EXT))
186 
187 #define CPU_MWAIT_CX_NAMELEN	16
188 
189 #define CPU_MWAIT_C1		1
190 #define CPU_MWAIT_C2		2
191 #define CPU_MWAIT_C3		3
192 #define CPU_MWAIT_CX_MAX	8
193 
194 #define CPU_MWAIT_HINT_AUTO	-1	/* C1 and C2 */
195 #define CPU_MWAIT_HINT_AUTODEEP	-2	/* C3+ */
196 
197 SYSCTL_NODE(_machdep, OID_AUTO, mwait, CTLFLAG_RW, 0, "MWAIT features");
198 SYSCTL_NODE(_machdep_mwait, OID_AUTO, CX, CTLFLAG_RW, 0, "MWAIT Cx settings");
199 
200 struct cpu_mwait_cx {
201 	int			subcnt;
202 	char			name[4];
203 	struct sysctl_ctx_list	sysctl_ctx;
204 	struct sysctl_oid	*sysctl_tree;
205 };
206 static struct cpu_mwait_cx	cpu_mwait_cx_info[CPU_MWAIT_CX_MAX];
207 static char			cpu_mwait_cx_supported[256];
208 
209 static int			cpu_mwait_c1_hints_cnt;
210 static int			cpu_mwait_hints_cnt;
211 static int			*cpu_mwait_hints;
212 
213 static int			cpu_mwait_deep_hints_cnt;
214 static int			*cpu_mwait_deep_hints;
215 
216 #define CPU_IDLE_REPEAT_DEFAULT	750
217 
218 static u_int			cpu_idle_repeat = CPU_IDLE_REPEAT_DEFAULT;
219 static u_long			cpu_idle_repeat_max = CPU_IDLE_REPEAT_DEFAULT;
220 static u_int			cpu_mwait_repeat_shift = 1;
221 
222 #define CPU_MWAIT_C3_PREAMBLE_BM_ARB	0x1
223 #define CPU_MWAIT_C3_PREAMBLE_BM_STS	0x2
224 
225 static int			cpu_mwait_c3_preamble =
226 				    CPU_MWAIT_C3_PREAMBLE_BM_ARB |
227 				    CPU_MWAIT_C3_PREAMBLE_BM_STS;
228 
229 SYSCTL_STRING(_machdep_mwait_CX, OID_AUTO, supported, CTLFLAG_RD,
230     cpu_mwait_cx_supported, 0, "MWAIT supported C states");
231 SYSCTL_INT(_machdep_mwait_CX, OID_AUTO, c3_preamble, CTLFLAG_RD,
232     &cpu_mwait_c3_preamble, 0, "C3+ preamble mask");
233 
234 static int	cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS,
235 		    int *, boolean_t);
236 static int	cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS);
237 static int	cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS);
238 static int	cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS);
239 
240 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, idle, CTLTYPE_STRING|CTLFLAG_RW,
241     NULL, 0, cpu_mwait_cx_idle_sysctl, "A", "");
242 SYSCTL_PROC(_machdep_mwait_CX, OID_AUTO, spin, CTLTYPE_STRING|CTLFLAG_RW,
243     NULL, 0, cpu_mwait_cx_spin_sysctl, "A", "");
244 SYSCTL_UINT(_machdep_mwait_CX, OID_AUTO, repeat_shift, CTLFLAG_RW,
245     &cpu_mwait_repeat_shift, 0, "");
246 
247 long physmem = 0;
248 
249 u_long ebda_addr = 0;
250 
251 int imcr_present = 0;
252 
253 int naps = 0; /* # of Applications processors */
254 
255 u_int base_memory;
256 
257 static int
258 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
259 {
260 	u_long pmem = ctob(physmem);
261 	int error;
262 
263 	error = sysctl_handle_long(oidp, &pmem, 0, req);
264 
265 	return (error);
266 }
267 
268 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
269 	0, 0, sysctl_hw_physmem, "LU",
270 	"Total system memory in bytes (number of pages * page size)");
271 
272 static int
273 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
274 {
275 	u_long usermem = ctob(physmem - vmstats.v_wire_count);
276 	int error;
277 
278 	error = sysctl_handle_long(oidp, &usermem, 0, req);
279 
280 	return (error);
281 }
282 
283 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_ULONG|CTLFLAG_RD,
284 	0, 0, sysctl_hw_usermem, "LU", "");
285 
286 static int
287 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
288 {
289 	int error;
290 	u_long availpages;
291 
292 	availpages = x86_64_btop(avail_end - avail_start);
293 	error = sysctl_handle_long(oidp, &availpages, 0, req);
294 
295 	return (error);
296 }
297 
298 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_ULONG|CTLFLAG_RD,
299 	0, 0, sysctl_hw_availpages, "LU", "");
300 
301 vm_paddr_t Maxmem;
302 vm_paddr_t Realmem;
303 
304 /*
305  * The number of PHYSMAP entries must be one less than the number of
306  * PHYSSEG entries because the PHYSMAP entry that spans the largest
307  * physical address that is accessible by ISA DMA is split into two
308  * PHYSSEG entries.
309  */
310 vm_phystable_t phys_avail[VM_PHYSSEG_MAX + 1];
311 vm_phystable_t dump_avail[VM_PHYSSEG_MAX + 1];
312 
313 /* must be 1 less so 0 0 can signal end of chunks */
314 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 1)
315 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 1)
316 
317 static vm_offset_t buffer_sva, buffer_eva;
318 vm_offset_t clean_sva, clean_eva;
319 static vm_offset_t pager_sva, pager_eva;
320 static struct trapframe proc0_tf;
321 
322 static void
323 cpu_startup(void *dummy)
324 {
325 	caddr_t v;
326 	vm_size_t size = 0;
327 	vm_offset_t firstaddr;
328 
329 	/*
330 	 * Good {morning,afternoon,evening,night}.
331 	 */
332 	kprintf("%s", version);
333 	startrtclock();
334 	printcpuinfo();
335 	panicifcpuunsupported();
336 	kprintf("real memory  = %ju (%ju MB)\n",
337 		(intmax_t)Realmem,
338 		(intmax_t)Realmem / 1024 / 1024);
339 	/*
340 	 * Display any holes after the first chunk of extended memory.
341 	 */
342 	if (bootverbose) {
343 		int indx;
344 
345 		kprintf("Physical memory chunk(s):\n");
346 		for (indx = 0; phys_avail[indx].phys_end != 0; ++indx) {
347 			vm_paddr_t size1;
348 
349 			size1 = phys_avail[indx].phys_end -
350 				phys_avail[indx].phys_beg;
351 
352 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
353 				(intmax_t)phys_avail[indx].phys_beg,
354 				(intmax_t)phys_avail[indx].phys_end - 1,
355 				(intmax_t)size1,
356 				(intmax_t)(size1 / PAGE_SIZE));
357 		}
358 	}
359 
360 	/*
361 	 * Allocate space for system data structures.
362 	 * The first available kernel virtual address is in "v".
363 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
364 	 * As pages of memory are allocated and cleared,
365 	 * "firstaddr" is incremented.
366 	 * An index into the kernel page table corresponding to the
367 	 * virtual memory address maintained in "v" is kept in "mapaddr".
368 	 */
369 
370 	/*
371 	 * Make two passes.  The first pass calculates how much memory is
372 	 * needed and allocates it.  The second pass assigns virtual
373 	 * addresses to the various data structures.
374 	 */
375 	firstaddr = 0;
376 again:
377 	v = (caddr_t)firstaddr;
378 
379 #define	valloc(name, type, num) \
380 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
381 #define	valloclim(name, type, num, lim) \
382 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
383 
384 	/*
385 	 * The nominal buffer size (and minimum KVA allocation) is MAXBSIZE.
386 	 * For the first 64MB of ram nominally allocate sufficient buffers to
387 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
388 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
389 	 * the buffer cache we limit the eventual kva reservation to
390 	 * maxbcache bytes.
391 	 *
392 	 * factor represents the 1/4 x ram conversion.
393 	 */
394 	if (nbuf == 0) {
395 		long factor = 4 * NBUFCALCSIZE / 1024;
396 		long kbytes = physmem * (PAGE_SIZE / 1024);
397 
398 		nbuf = 50;
399 		if (kbytes > 4096)
400 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
401 		if (kbytes > 65536)
402 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
403 		if (maxbcache && nbuf > maxbcache / NBUFCALCSIZE)
404 			nbuf = maxbcache / NBUFCALCSIZE;
405 	}
406 
407 	/*
408 	 * Do not allow the buffer_map to be more then 1/2 the size of the
409 	 * kernel_map.
410 	 */
411 	if (nbuf > (virtual_end - virtual_start +
412 		    virtual2_end - virtual2_start) / (MAXBSIZE * 2)) {
413 		nbuf = (virtual_end - virtual_start +
414 			virtual2_end - virtual2_start) / (MAXBSIZE * 2);
415 		kprintf("Warning: nbufs capped at %ld due to kvm\n", nbuf);
416 	}
417 
418 	/*
419 	 * Do not allow the buffer_map to use more than 50% of available
420 	 * physical-equivalent memory.  Since the VM pages which back
421 	 * individual buffers are typically wired, having too many bufs
422 	 * can prevent the system from paging properly.
423 	 */
424 	if (nbuf > physmem * PAGE_SIZE / (NBUFCALCSIZE * 2)) {
425 		nbuf = physmem * PAGE_SIZE / (NBUFCALCSIZE * 2);
426 		kprintf("Warning: nbufs capped at %ld due to physmem\n", nbuf);
427 	}
428 
429 	/*
430 	 * Do not allow the sizeof(struct buf) * nbuf to exceed 1/4 of
431 	 * the valloc space which is just the virtual_end - virtual_start
432 	 * section.  This is typically ~2GB regardless of the amount of
433 	 * memory, so we use 500MB as a metric.
434 	 *
435 	 * This is because we use valloc() to allocate the buf header array.
436 	 *
437 	 * NOTE: buffer space in bytes is limited by vfs.*bufspace sysctls.
438 	 */
439 	if (nbuf > (virtual_end - virtual_start) / sizeof(struct buf) / 4) {
440 		nbuf = (virtual_end - virtual_start) /
441 		       sizeof(struct buf) / 2;
442 		kprintf("Warning: nbufs capped at %ld due to "
443 			"valloc considerations\n",
444 			nbuf);
445 	}
446 
447 	nswbuf_mem = lmax(lmin(nbuf / 32, 512), 8);
448 #ifdef NSWBUF_MIN
449 	if (nswbuf_mem < NSWBUF_MIN)
450 		nswbuf_mem = NSWBUF_MIN;
451 #endif
452 	nswbuf_kva = lmax(lmin(nbuf / 4, 512), 16);
453 #ifdef NSWBUF_MIN
454 	if (nswbuf_kva < NSWBUF_MIN)
455 		nswbuf_kva = NSWBUF_MIN;
456 #endif
457 
458 	valloc(swbuf_mem, struct buf, nswbuf_mem);
459 	valloc(swbuf_kva, struct buf, nswbuf_kva);
460 	valloc(buf, struct buf, nbuf);
461 
462 	/*
463 	 * End of first pass, size has been calculated so allocate memory
464 	 */
465 	if (firstaddr == 0) {
466 		size = (vm_size_t)(v - firstaddr);
467 		firstaddr = kmem_alloc(&kernel_map, round_page(size),
468 				       VM_SUBSYS_BUF);
469 		if (firstaddr == 0)
470 			panic("startup: no room for tables");
471 		goto again;
472 	}
473 
474 	/*
475 	 * End of second pass, addresses have been assigned
476 	 *
477 	 * nbuf is an int, make sure we don't overflow the field.
478 	 *
479 	 * On 64-bit systems we always reserve maximal allocations for
480 	 * buffer cache buffers and there are no fragmentation issues,
481 	 * so the KVA segment does not have to be excessively oversized.
482 	 */
483 	if ((vm_size_t)(v - firstaddr) != size)
484 		panic("startup: table size inconsistency");
485 
486 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
487 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE) +
488 		      ((nswbuf_mem + nswbuf_kva) * MAXPHYS) + pager_map_size);
489 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
490 		      ((vm_offset_t)(nbuf + 16) * MAXBSIZE));
491 	buffer_map.system_map = 1;
492 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
493 		      ((vm_offset_t)(nswbuf_mem + nswbuf_kva) * MAXPHYS) +
494 		      pager_map_size);
495 	pager_map.system_map = 1;
496 	kprintf("avail memory = %ju (%ju MB)\n",
497 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages),
498 		(uintmax_t)ptoa(vmstats.v_free_count + vmstats.v_dma_pages) /
499 		1024 / 1024);
500 }
501 
502 struct cpu_idle_stat {
503 	int	hint;
504 	int	reserved;
505 	u_long	halt;
506 	u_long	spin;
507 	u_long	repeat;
508 	u_long	repeat_last;
509 	u_long	repeat_delta;
510 	u_long	mwait_cx[CPU_MWAIT_CX_MAX];
511 } __cachealign;
512 
513 #define CPU_IDLE_STAT_HALT	-1
514 #define CPU_IDLE_STAT_SPIN	-2
515 
516 static struct cpu_idle_stat	cpu_idle_stats[MAXCPU];
517 
518 static int
519 sysctl_cpu_idle_cnt(SYSCTL_HANDLER_ARGS)
520 {
521 	int idx = arg2, cpu, error;
522 	u_long val = 0;
523 
524 	if (idx == CPU_IDLE_STAT_HALT) {
525 		for (cpu = 0; cpu < ncpus; ++cpu)
526 			val += cpu_idle_stats[cpu].halt;
527 	} else if (idx == CPU_IDLE_STAT_SPIN) {
528 		for (cpu = 0; cpu < ncpus; ++cpu)
529 			val += cpu_idle_stats[cpu].spin;
530 	} else {
531 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
532 		    ("invalid index %d", idx));
533 		for (cpu = 0; cpu < ncpus; ++cpu)
534 			val += cpu_idle_stats[cpu].mwait_cx[idx];
535 	}
536 
537 	error = sysctl_handle_quad(oidp, &val, 0, req);
538         if (error || req->newptr == NULL)
539 	        return error;
540 
541 	if (idx == CPU_IDLE_STAT_HALT) {
542 		for (cpu = 0; cpu < ncpus; ++cpu)
543 			cpu_idle_stats[cpu].halt = 0;
544 		cpu_idle_stats[0].halt = val;
545 	} else if (idx == CPU_IDLE_STAT_SPIN) {
546 		for (cpu = 0; cpu < ncpus; ++cpu)
547 			cpu_idle_stats[cpu].spin = 0;
548 		cpu_idle_stats[0].spin = val;
549 	} else {
550 		KASSERT(idx >= 0 && idx < CPU_MWAIT_CX_MAX,
551 		    ("invalid index %d", idx));
552 		for (cpu = 0; cpu < ncpus; ++cpu)
553 			cpu_idle_stats[cpu].mwait_cx[idx] = 0;
554 		cpu_idle_stats[0].mwait_cx[idx] = val;
555 	}
556 	return 0;
557 }
558 
559 static void
560 cpu_mwait_attach(void)
561 {
562 	struct sbuf sb;
563 	int hint_idx, i;
564 
565 	if (!CPU_MWAIT_HAS_CX)
566 		return;
567 
568 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
569 	    (CPUID_TO_FAMILY(cpu_id) > 0xf ||
570 	     (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
571 	      CPUID_TO_MODEL(cpu_id) >= 0xf))) {
572 		int bm_sts = 1;
573 
574 		/*
575 		 * Pentium dual-core, Core 2 and beyond do not need any
576 		 * additional activities to enter deep C-state, i.e. C3(+).
577 		 */
578 		cpu_mwait_cx_no_bmarb();
579 
580 		TUNABLE_INT_FETCH("machdep.cpu.mwait.bm_sts", &bm_sts);
581 		if (!bm_sts)
582 			cpu_mwait_cx_no_bmsts();
583 	}
584 
585 	sbuf_new(&sb, cpu_mwait_cx_supported,
586 	    sizeof(cpu_mwait_cx_supported), SBUF_FIXEDLEN);
587 
588 	for (i = 0; i < CPU_MWAIT_CX_MAX; ++i) {
589 		struct cpu_mwait_cx *cx = &cpu_mwait_cx_info[i];
590 		int sub;
591 
592 		ksnprintf(cx->name, sizeof(cx->name), "C%d", i);
593 
594 		sysctl_ctx_init(&cx->sysctl_ctx);
595 		cx->sysctl_tree = SYSCTL_ADD_NODE(&cx->sysctl_ctx,
596 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait), OID_AUTO,
597 		    cx->name, CTLFLAG_RW, NULL, "Cx control/info");
598 		if (cx->sysctl_tree == NULL)
599 			continue;
600 
601 		cx->subcnt = CPUID_MWAIT_CX_SUBCNT(cpu_mwait_extemu, i);
602 		SYSCTL_ADD_INT(&cx->sysctl_ctx,
603 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
604 		    "subcnt", CTLFLAG_RD, &cx->subcnt, 0,
605 		    "sub-state count");
606 		SYSCTL_ADD_PROC(&cx->sysctl_ctx,
607 		    SYSCTL_CHILDREN(cx->sysctl_tree), OID_AUTO,
608 		    "entered", (CTLTYPE_QUAD | CTLFLAG_RW), 0,
609 		    i, sysctl_cpu_idle_cnt, "Q", "# of times entered");
610 
611 		for (sub = 0; sub < cx->subcnt; ++sub)
612 			sbuf_printf(&sb, "C%d/%d ", i, sub);
613 	}
614 	sbuf_trim(&sb);
615 	sbuf_finish(&sb);
616 
617 	/*
618 	 * Non-deep C-states
619 	 */
620 	cpu_mwait_c1_hints_cnt = cpu_mwait_cx_info[CPU_MWAIT_C1].subcnt;
621 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i)
622 		cpu_mwait_hints_cnt += cpu_mwait_cx_info[i].subcnt;
623 	cpu_mwait_hints = kmalloc(sizeof(int) * cpu_mwait_hints_cnt,
624 				  M_DEVBUF, M_WAITOK);
625 
626 	hint_idx = 0;
627 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_C3; ++i) {
628 		int j, subcnt;
629 
630 		subcnt = cpu_mwait_cx_info[i].subcnt;
631 		for (j = 0; j < subcnt; ++j) {
632 			KASSERT(hint_idx < cpu_mwait_hints_cnt,
633 			    ("invalid mwait hint index %d", hint_idx));
634 			cpu_mwait_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
635 			++hint_idx;
636 		}
637 	}
638 	KASSERT(hint_idx == cpu_mwait_hints_cnt,
639 	    ("mwait hint count %d != index %d",
640 	     cpu_mwait_hints_cnt, hint_idx));
641 
642 	if (bootverbose) {
643 		kprintf("MWAIT hints (%d C1 hints):\n", cpu_mwait_c1_hints_cnt);
644 		for (i = 0; i < cpu_mwait_hints_cnt; ++i) {
645 			int hint = cpu_mwait_hints[i];
646 
647 			kprintf("  C%d/%d hint 0x%04x\n",
648 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
649 			    hint);
650 		}
651 	}
652 
653 	/*
654 	 * Deep C-states
655 	 */
656 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i)
657 		cpu_mwait_deep_hints_cnt += cpu_mwait_cx_info[i].subcnt;
658 	cpu_mwait_deep_hints = kmalloc(sizeof(int) * cpu_mwait_deep_hints_cnt,
659 	    M_DEVBUF, M_WAITOK);
660 
661 	hint_idx = 0;
662 	for (i = CPU_MWAIT_C1; i < CPU_MWAIT_CX_MAX; ++i) {
663 		int j, subcnt;
664 
665 		subcnt = cpu_mwait_cx_info[i].subcnt;
666 		for (j = 0; j < subcnt; ++j) {
667 			KASSERT(hint_idx < cpu_mwait_deep_hints_cnt,
668 			    ("invalid mwait deep hint index %d", hint_idx));
669 			cpu_mwait_deep_hints[hint_idx] = MWAIT_EAX_HINT(i, j);
670 			++hint_idx;
671 		}
672 	}
673 	KASSERT(hint_idx == cpu_mwait_deep_hints_cnt,
674 	    ("mwait deep hint count %d != index %d",
675 	     cpu_mwait_deep_hints_cnt, hint_idx));
676 
677 	if (bootverbose) {
678 		kprintf("MWAIT deep hints:\n");
679 		for (i = 0; i < cpu_mwait_deep_hints_cnt; ++i) {
680 			int hint = cpu_mwait_deep_hints[i];
681 
682 			kprintf("  C%d/%d hint 0x%04x\n",
683 			    MWAIT_EAX_TO_CX(hint), MWAIT_EAX_TO_CX_SUB(hint),
684 			    hint);
685 		}
686 	}
687 	cpu_idle_repeat_max = 256 * cpu_mwait_deep_hints_cnt;
688 
689 	for (i = 0; i < ncpus; ++i) {
690 		char name[16];
691 
692 		ksnprintf(name, sizeof(name), "idle%d", i);
693 		SYSCTL_ADD_PROC(NULL,
694 		    SYSCTL_STATIC_CHILDREN(_machdep_mwait_CX), OID_AUTO,
695 		    name, (CTLTYPE_STRING | CTLFLAG_RW), &cpu_idle_stats[i],
696 		    0, cpu_mwait_cx_pcpu_idle_sysctl, "A", "");
697 	}
698 }
699 
700 static void
701 cpu_finish(void *dummy __unused)
702 {
703 	cpu_setregs();
704 	cpu_mwait_attach();
705 }
706 
707 static void
708 pic_finish(void *dummy __unused)
709 {
710 	/* Log ELCR information */
711 	elcr_dump();
712 
713 	/* Log MPTABLE information */
714 	mptable_pci_int_dump();
715 
716 	/* Finalize PCI */
717 	MachIntrABI.finalize();
718 }
719 
720 /*
721  * Send an interrupt to process.
722  *
723  * Stack is set up to allow sigcode stored
724  * at top to call routine, followed by kcall
725  * to sigreturn routine below.  After sigreturn
726  * resets the signal mask, the stack, and the
727  * frame pointer, it returns to the user
728  * specified pc, psl.
729  */
730 void
731 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
732 {
733 	struct lwp *lp = curthread->td_lwp;
734 	struct proc *p = lp->lwp_proc;
735 	struct trapframe *regs;
736 	struct sigacts *psp = p->p_sigacts;
737 	struct sigframe sf, *sfp;
738 	int oonstack;
739 	char *sp;
740 
741 	regs = lp->lwp_md.md_regs;
742 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
743 
744 	/* Save user context */
745 	bzero(&sf, sizeof(struct sigframe));
746 	sf.sf_uc.uc_sigmask = *mask;
747 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
748 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
749 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
750 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
751 
752 	/* Make the size of the saved context visible to userland */
753 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
754 
755 	/* Allocate and validate space for the signal handler context. */
756         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
757 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
758 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
759 			      sizeof(struct sigframe));
760 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
761 	} else {
762 		/* We take red zone into account */
763 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
764 	}
765 
766 	/*
767 	 * XXX AVX needs 64-byte alignment but sigframe has other fields and
768 	 * the embedded ucontext is not at the front, so aligning this won't
769 	 * help us.  Fortunately we bcopy in/out of the sigframe, so the
770 	 * kernel is ok.
771 	 *
772 	 * The problem though is if userland winds up trying to use the
773 	 * context directly.
774 	 */
775 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
776 
777 	/* Translate the signal is appropriate */
778 	if (p->p_sysent->sv_sigtbl) {
779 		if (sig <= p->p_sysent->sv_sigsize)
780 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
781 	}
782 
783 	/*
784 	 * Build the argument list for the signal handler.
785 	 *
786 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
787 	 */
788 	regs->tf_rdi = sig;				/* argument 1 */
789 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
790 
791 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
792 		/*
793 		 * Signal handler installed with SA_SIGINFO.
794 		 *
795 		 * action(signo, siginfo, ucontext)
796 		 */
797 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
798 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
799 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
800 
801 		/* fill siginfo structure */
802 		sf.sf_si.si_signo = sig;
803 		sf.sf_si.si_code = code;
804 		sf.sf_si.si_addr = (void *)regs->tf_addr;
805 	} else {
806 		/*
807 		 * Old FreeBSD-style arguments.
808 		 *
809 		 * handler (signo, code, [uc], addr)
810 		 */
811 		regs->tf_rsi = (register_t)code;	/* argument 2 */
812 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
813 		sf.sf_ahu.sf_handler = catcher;
814 	}
815 
816 	/*
817 	 * If we're a vm86 process, we want to save the segment registers.
818 	 * We also change eflags to be our emulated eflags, not the actual
819 	 * eflags.
820 	 */
821 #if 0 /* JG */
822 	if (regs->tf_eflags & PSL_VM) {
823 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
824 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
825 
826 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
827 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
828 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
829 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
830 
831 		if (vm86->vm86_has_vme == 0)
832 			sf.sf_uc.uc_mcontext.mc_eflags =
833 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
834 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
835 
836 		/*
837 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
838 		 * syscalls made by the signal handler.  This just avoids
839 		 * wasting time for our lazy fixup of such faults.  PSL_NT
840 		 * does nothing in vm86 mode, but vm86 programs can set it
841 		 * almost legitimately in probes for old cpu types.
842 		 */
843 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
844 	}
845 #endif
846 
847 	/*
848 	 * Save the FPU state and reinit the FP unit
849 	 */
850 	npxpush(&sf.sf_uc.uc_mcontext);
851 
852 	/*
853 	 * Copy the sigframe out to the user's stack.
854 	 */
855 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
856 		/*
857 		 * Something is wrong with the stack pointer.
858 		 * ...Kill the process.
859 		 */
860 		sigexit(lp, SIGILL);
861 	}
862 
863 	regs->tf_rsp = (register_t)sfp;
864 	regs->tf_rip = trunc_page64(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
865 	regs->tf_rip -= SZSIGCODE_EXTRA_BYTES;
866 
867 	/*
868 	 * x86 abi specifies that the direction flag must be cleared
869 	 * on function entry
870 	 */
871 	regs->tf_rflags &= ~(PSL_T | PSL_D);
872 
873 	/*
874 	 * 64 bit mode has a code and stack selector but
875 	 * no data or extra selector.  %fs and %gs are not
876 	 * stored in-context.
877 	 */
878 	regs->tf_cs = _ucodesel;
879 	regs->tf_ss = _udatasel;
880 	clear_quickret();
881 }
882 
883 /*
884  * Sanitize the trapframe for a virtual kernel passing control to a custom
885  * VM context.  Remove any items that would otherwise create a privilage
886  * issue.
887  *
888  * XXX at the moment we allow userland to set the resume flag.  Is this a
889  * bad idea?
890  */
891 int
892 cpu_sanitize_frame(struct trapframe *frame)
893 {
894 	frame->tf_cs = _ucodesel;
895 	frame->tf_ss = _udatasel;
896 	/* XXX VM (8086) mode not supported? */
897 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
898 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
899 
900 	return(0);
901 }
902 
903 /*
904  * Sanitize the tls so loading the descriptor does not blow up
905  * on us.  For x86_64 we don't have to do anything.
906  */
907 int
908 cpu_sanitize_tls(struct savetls *tls)
909 {
910 	return(0);
911 }
912 
913 /*
914  * sigreturn(ucontext_t *sigcntxp)
915  *
916  * System call to cleanup state after a signal
917  * has been taken.  Reset signal mask and
918  * stack state from context left by sendsig (above).
919  * Return to previous pc and psl as specified by
920  * context left by sendsig. Check carefully to
921  * make sure that the user has not modified the
922  * state to gain improper privileges.
923  *
924  * MPSAFE
925  */
926 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
927 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
928 
929 int
930 sys_sigreturn(struct sigreturn_args *uap)
931 {
932 	struct lwp *lp = curthread->td_lwp;
933 	struct trapframe *regs;
934 	ucontext_t uc;
935 	ucontext_t *ucp;
936 	register_t rflags;
937 	int cs;
938 	int error;
939 
940 	/*
941 	 * We have to copy the information into kernel space so userland
942 	 * can't modify it while we are sniffing it.
943 	 */
944 	regs = lp->lwp_md.md_regs;
945 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
946 	if (error)
947 		return (error);
948 	ucp = &uc;
949 	rflags = ucp->uc_mcontext.mc_rflags;
950 
951 	/* VM (8086) mode not supported */
952 	rflags &= ~PSL_VM_UNSUPP;
953 
954 #if 0 /* JG */
955 	if (eflags & PSL_VM) {
956 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
957 		struct vm86_kernel *vm86;
958 
959 		/*
960 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
961 		 * set up the vm86 area, and we can't enter vm86 mode.
962 		 */
963 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
964 			return (EINVAL);
965 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
966 		if (vm86->vm86_inited == 0)
967 			return (EINVAL);
968 
969 		/* go back to user mode if both flags are set */
970 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
971 			trapsignal(lp, SIGBUS, 0);
972 
973 		if (vm86->vm86_has_vme) {
974 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
975 			    (eflags & VME_USERCHANGE) | PSL_VM;
976 		} else {
977 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
978 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
979 			    (eflags & VM_USERCHANGE) | PSL_VM;
980 		}
981 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
982 		tf->tf_eflags = eflags;
983 		tf->tf_vm86_ds = tf->tf_ds;
984 		tf->tf_vm86_es = tf->tf_es;
985 		tf->tf_vm86_fs = tf->tf_fs;
986 		tf->tf_vm86_gs = tf->tf_gs;
987 		tf->tf_ds = _udatasel;
988 		tf->tf_es = _udatasel;
989 		tf->tf_fs = _udatasel;
990 		tf->tf_gs = _udatasel;
991 	} else
992 #endif
993 	{
994 		/*
995 		 * Don't allow users to change privileged or reserved flags.
996 		 */
997 		/*
998 		 * XXX do allow users to change the privileged flag PSL_RF.
999 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
1000 		 * should sometimes set it there too.  tf_eflags is kept in
1001 		 * the signal context during signal handling and there is no
1002 		 * other place to remember it, so the PSL_RF bit may be
1003 		 * corrupted by the signal handler without us knowing.
1004 		 * Corruption of the PSL_RF bit at worst causes one more or
1005 		 * one less debugger trap, so allowing it is fairly harmless.
1006 		 */
1007 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
1008 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
1009 			return(EINVAL);
1010 		}
1011 
1012 		/*
1013 		 * Don't allow users to load a valid privileged %cs.  Let the
1014 		 * hardware check for invalid selectors, excess privilege in
1015 		 * other selectors, invalid %eip's and invalid %esp's.
1016 		 */
1017 		cs = ucp->uc_mcontext.mc_cs;
1018 		if (!CS_SECURE(cs)) {
1019 			kprintf("sigreturn: cs = 0x%x\n", cs);
1020 			trapsignal(lp, SIGBUS, T_PROTFLT);
1021 			return(EINVAL);
1022 		}
1023 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
1024 	}
1025 
1026 	/*
1027 	 * Restore the FPU state from the frame
1028 	 */
1029 	crit_enter();
1030 	npxpop(&ucp->uc_mcontext);
1031 
1032 	if (ucp->uc_mcontext.mc_onstack & 1)
1033 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
1034 	else
1035 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
1036 
1037 	lp->lwp_sigmask = ucp->uc_sigmask;
1038 	SIG_CANTMASK(lp->lwp_sigmask);
1039 	clear_quickret();
1040 	crit_exit();
1041 	return(EJUSTRETURN);
1042 }
1043 
1044 /*
1045  * Machine dependent boot() routine
1046  *
1047  * I haven't seen anything to put here yet
1048  * Possibly some stuff might be grafted back here from boot()
1049  */
1050 void
1051 cpu_boot(int howto)
1052 {
1053 }
1054 
1055 /*
1056  * Shutdown the CPU as much as possible
1057  */
1058 void
1059 cpu_halt(void)
1060 {
1061 	for (;;)
1062 		__asm__ __volatile("hlt");
1063 }
1064 
1065 /*
1066  * cpu_idle() represents the idle LWKT.  You cannot return from this function
1067  * (unless you want to blow things up!).  Instead we look for runnable threads
1068  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
1069  *
1070  * The main loop is entered with a critical section held, we must release
1071  * the critical section before doing anything else.  lwkt_switch() will
1072  * check for pending interrupts due to entering and exiting its own
1073  * critical section.
1074  *
1075  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
1076  *	 However, there are cases where the idlethread will be entered with
1077  *	 the possibility that no IPI will occur and in such cases
1078  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
1079  *
1080  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
1081  *	 must occur before it starts using ACPI halt.
1082  *
1083  * NOTE: Value overridden in hammer_time().
1084  */
1085 static int	cpu_idle_hlt = 2;
1086 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
1087     &cpu_idle_hlt, 0, "Idle loop HLT enable");
1088 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
1089     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
1090 
1091 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_hltcnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1092     0, CPU_IDLE_STAT_HALT, sysctl_cpu_idle_cnt, "Q", "Idle loop entry halts");
1093 SYSCTL_PROC(_machdep, OID_AUTO, cpu_idle_spincnt, (CTLTYPE_QUAD | CTLFLAG_RW),
1094     0, CPU_IDLE_STAT_SPIN, sysctl_cpu_idle_cnt, "Q", "Idle loop entry spins");
1095 
1096 static void
1097 cpu_idle_default_hook(void)
1098 {
1099 	/*
1100 	 * We must guarentee that hlt is exactly the instruction
1101 	 * following the sti.
1102 	 */
1103 	__asm __volatile("sti; hlt");
1104 }
1105 
1106 /* Other subsystems (e.g., ACPI) can hook this later. */
1107 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
1108 
1109 static __inline int
1110 cpu_mwait_cx_hint(struct cpu_idle_stat *stat)
1111 {
1112 	int hint, cx_idx;
1113 	u_int idx;
1114 
1115 	hint = stat->hint;
1116 	if (hint >= 0)
1117 		goto done;
1118 
1119 	idx = (stat->repeat + stat->repeat_last + stat->repeat_delta) >>
1120 	    cpu_mwait_repeat_shift;
1121 	if (idx >= cpu_mwait_c1_hints_cnt) {
1122 		/* Step up faster, once we walked through all C1 states */
1123 		stat->repeat_delta += 1 << (cpu_mwait_repeat_shift + 1);
1124 	}
1125 	if (hint == CPU_MWAIT_HINT_AUTODEEP) {
1126 		if (idx >= cpu_mwait_deep_hints_cnt)
1127 			idx = cpu_mwait_deep_hints_cnt - 1;
1128 		hint = cpu_mwait_deep_hints[idx];
1129 	} else {
1130 		if (idx >= cpu_mwait_hints_cnt)
1131 			idx = cpu_mwait_hints_cnt - 1;
1132 		hint = cpu_mwait_hints[idx];
1133 	}
1134 done:
1135 	cx_idx = MWAIT_EAX_TO_CX(hint);
1136 	if (cx_idx >= 0 && cx_idx < CPU_MWAIT_CX_MAX)
1137 		stat->mwait_cx[cx_idx]++;
1138 	return hint;
1139 }
1140 
1141 void
1142 cpu_idle(void)
1143 {
1144 	globaldata_t gd = mycpu;
1145 	struct cpu_idle_stat *stat = &cpu_idle_stats[gd->gd_cpuid];
1146 	struct thread *td __debugvar = gd->gd_curthread;
1147 	int reqflags;
1148 	int quick;
1149 
1150 	stat->repeat = stat->repeat_last = cpu_idle_repeat_max;
1151 
1152 	crit_exit();
1153 	KKASSERT(td->td_critcount == 0);
1154 
1155 	for (;;) {
1156 		/*
1157 		 * See if there are any LWKTs ready to go.
1158 		 */
1159 		lwkt_switch();
1160 
1161 		/*
1162 		 * When halting inside a cli we must check for reqflags
1163 		 * races, particularly [re]schedule requests.  Running
1164 		 * splz() does the job.
1165 		 *
1166 		 * cpu_idle_hlt:
1167 		 *	0	Never halt, just spin
1168 		 *
1169 		 *	1	Always use MONITOR/MWAIT if avail, HLT
1170 		 *		otherwise.
1171 		 *
1172 		 *		Better default for modern (Haswell+) Intel
1173 		 *		cpus.
1174 		 *
1175 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
1176 		 *		use the ACPI halt (default).  This is a hybrid
1177 		 *		approach.  See machdep.cpu_idle_repeat.
1178 		 *
1179 		 *		Better default for modern AMD cpus and older
1180 		 *		Intel cpus.
1181 		 *
1182 		 *	3	Always use the ACPI halt.  This typically
1183 		 *		eats the least amount of power but the cpu
1184 		 *		will be slow waking up.  Slows down e.g.
1185 		 *		compiles and other pipe/event oriented stuff.
1186 		 *
1187 		 *		Usually the best default for AMD cpus.
1188 		 *
1189 		 *	4	Always use HLT.
1190 		 *
1191 		 *	5	Always spin.
1192 		 *
1193 		 * NOTE: Interrupts are enabled and we are not in a critical
1194 		 *	 section.
1195 		 *
1196 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
1197 		 *	 don't bother capping gd_idle_repeat, it is ok if
1198 		 *	 it overflows.
1199 		 *
1200 		 * Implement optimized invltlb operations when halted
1201 		 * in idle.  By setting the bit in smp_idleinvl_mask
1202 		 * we inform other cpus that they can set _reqs to
1203 		 * request an invltlb.  Current the code to do that
1204 		 * sets the bits in _reqs anyway, but then check _mask
1205 		 * to determine if they can assume the invltlb will execute.
1206 		 *
1207 		 * A critical section is required to ensure that interrupts
1208 		 * do not fully run until after we've had a chance to execute
1209 		 * the request.
1210 		 */
1211 		if (gd->gd_idle_repeat == 0) {
1212 			stat->repeat = (stat->repeat + stat->repeat_last) >> 1;
1213 			if (stat->repeat > cpu_idle_repeat_max)
1214 				stat->repeat = cpu_idle_repeat_max;
1215 			stat->repeat_last = 0;
1216 			stat->repeat_delta = 0;
1217 		}
1218 		++stat->repeat_last;
1219 
1220 		++gd->gd_idle_repeat;
1221 		reqflags = gd->gd_reqflags;
1222 		quick = (cpu_idle_hlt == 1) ||
1223 			(cpu_idle_hlt == 2 &&
1224 			 gd->gd_idle_repeat < cpu_idle_repeat);
1225 
1226 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
1227 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1228 			splz(); /* XXX */
1229 			crit_enter_gd(gd);
1230 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1231 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags,
1232 			    cpu_mwait_cx_hint(stat), 0);
1233 			stat->halt++;
1234 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1235 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1236 						      gd->gd_cpuid)) {
1237 				cpu_invltlb();
1238 				cpu_mfence();
1239 			}
1240 			crit_exit_gd(gd);
1241 		} else if (cpu_idle_hlt) {
1242 			__asm __volatile("cli");
1243 			splz();
1244 			crit_enter_gd(gd);
1245 			ATOMIC_CPUMASK_ORBIT(smp_idleinvl_mask, gd->gd_cpuid);
1246 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
1247 				if (cpu_idle_hlt == 5) {
1248 					__asm __volatile("sti");
1249 				} else if (quick || cpu_idle_hlt == 4) {
1250 					cpu_idle_default_hook();
1251 				} else {
1252 					cpu_idle_hook();
1253 				}
1254 			}
1255 			__asm __volatile("sti");
1256 			stat->halt++;
1257 			ATOMIC_CPUMASK_NANDBIT(smp_idleinvl_mask, gd->gd_cpuid);
1258 			if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs,
1259 						      gd->gd_cpuid)) {
1260 				cpu_invltlb();
1261 				cpu_mfence();
1262 			}
1263 			crit_exit_gd(gd);
1264 		} else {
1265 			splz();
1266 			__asm __volatile("sti");
1267 			stat->spin++;
1268 			crit_enter_gd(gd);
1269 			crit_exit_gd(gd);
1270 		}
1271 	}
1272 }
1273 
1274 /*
1275  * Called in a loop indirectly via Xcpustop
1276  */
1277 void
1278 cpu_smp_stopped(void)
1279 {
1280 	globaldata_t gd = mycpu;
1281 	volatile __uint64_t *ptr;
1282 	__uint64_t ovalue;
1283 
1284 	ptr = CPUMASK_ADDR(started_cpus, gd->gd_cpuid);
1285 	ovalue = *ptr;
1286 	if ((ovalue & CPUMASK_SIMPLE(gd->gd_cpuid & 63)) == 0) {
1287 		if (cpu_mi_feature & CPU_MI_MONITOR) {
1288 			if (cpu_mwait_hints) {
1289 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1290 					   ovalue,
1291 					   cpu_mwait_hints[CPU_MWAIT_C1], 0);
1292 			} else {
1293 				cpu_mmw_pause_long(__DEVOLATILE(void *, ptr),
1294 					   ovalue, 0, 0);
1295 			}
1296 		} else {
1297 			cpu_halt();	/* depend on lapic timer */
1298 		}
1299 	}
1300 }
1301 
1302 /*
1303  * This routine is called if a spinlock has been held through the
1304  * exponential backoff period and is seriously contested.  On a real cpu
1305  * we let it spin.
1306  */
1307 void
1308 cpu_spinlock_contested(void)
1309 {
1310 	cpu_pause();
1311 }
1312 
1313 /*
1314  * Clear registers on exec
1315  */
1316 void
1317 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1318 {
1319 	struct thread *td = curthread;
1320 	struct lwp *lp = td->td_lwp;
1321 	struct pcb *pcb = td->td_pcb;
1322 	struct trapframe *regs = lp->lwp_md.md_regs;
1323 
1324 	user_ldt_free(pcb);
1325 
1326 	clear_quickret();
1327 	bzero((char *)regs, sizeof(struct trapframe));
1328 	regs->tf_rip = entry;
1329 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1330 	regs->tf_rdi = stack;		/* argv */
1331 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1332 	regs->tf_ss = _udatasel;
1333 	regs->tf_cs = _ucodesel;
1334 	regs->tf_rbx = ps_strings;
1335 
1336 	/*
1337 	 * Reset the hardware debug registers if they were in use.
1338 	 * They won't have any meaning for the newly exec'd process.
1339 	 */
1340 	if (pcb->pcb_flags & PCB_DBREGS) {
1341 		pcb->pcb_dr0 = 0;
1342 		pcb->pcb_dr1 = 0;
1343 		pcb->pcb_dr2 = 0;
1344 		pcb->pcb_dr3 = 0;
1345 		pcb->pcb_dr6 = 0;
1346 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1347 		if (pcb == td->td_pcb) {
1348 			/*
1349 			 * Clear the debug registers on the running
1350 			 * CPU, otherwise they will end up affecting
1351 			 * the next process we switch to.
1352 			 */
1353 			reset_dbregs();
1354 		}
1355 		pcb->pcb_flags &= ~PCB_DBREGS;
1356 	}
1357 
1358 	/*
1359 	 * Initialize the math emulator (if any) for the current process.
1360 	 * Actually, just clear the bit that says that the emulator has
1361 	 * been initialized.  Initialization is delayed until the process
1362 	 * traps to the emulator (if it is done at all) mainly because
1363 	 * emulators don't provide an entry point for initialization.
1364 	 */
1365 	pcb->pcb_flags &= ~FP_SOFTFP;
1366 
1367 	/*
1368 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1369 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1370 	 *	 may panic in npxdna().
1371 	 */
1372 	crit_enter();
1373 	load_cr0(rcr0() | CR0_MP);
1374 
1375 	/*
1376 	 * NOTE: The MSR values must be correct so we can return to
1377 	 *	 userland.  gd_user_fs/gs must be correct so the switch
1378 	 *	 code knows what the current MSR values are.
1379 	 */
1380 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1381 	pcb->pcb_gsbase = 0;
1382 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1383 	mdcpu->gd_user_gs = 0;
1384 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1385 	wrmsr(MSR_KGSBASE, 0);
1386 
1387 	/* Initialize the npx (if any) for the current process. */
1388 	npxinit();
1389 	crit_exit();
1390 
1391 	pcb->pcb_ds = _udatasel;
1392 	pcb->pcb_es = _udatasel;
1393 	pcb->pcb_fs = _udatasel;
1394 	pcb->pcb_gs = _udatasel;
1395 }
1396 
1397 void
1398 cpu_setregs(void)
1399 {
1400 	register_t cr0;
1401 
1402 	cr0 = rcr0();
1403 	cr0 |= CR0_NE;			/* Done by npxinit() */
1404 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1405 	cr0 |= CR0_WP | CR0_AM;
1406 	load_cr0(cr0);
1407 	load_gs(_udatasel);
1408 }
1409 
1410 static int
1411 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1412 {
1413 	int error;
1414 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1415 		req);
1416 	if (!error && req->newptr)
1417 		resettodr();
1418 	return (error);
1419 }
1420 
1421 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1422 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1423 
1424 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1425 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1426 
1427 #if 0 /* JG */
1428 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1429 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1430 #endif
1431 
1432 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1433 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1434 
1435 static int
1436 efi_map_sysctl_handler(SYSCTL_HANDLER_ARGS)
1437 {
1438 	struct efi_map_header *efihdr;
1439 	caddr_t kmdp;
1440 	uint32_t efisize;
1441 
1442 	kmdp = preload_search_by_type("elf kernel");
1443 	if (kmdp == NULL)
1444 		kmdp = preload_search_by_type("elf64 kernel");
1445 	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1446 	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1447 	if (efihdr == NULL)
1448 		return (0);
1449 	efisize = *((uint32_t *)efihdr - 1);
1450 	return (SYSCTL_OUT(req, efihdr, efisize));
1451 }
1452 SYSCTL_PROC(_machdep, OID_AUTO, efi_map, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0,
1453     efi_map_sysctl_handler, "S,efi_map_header", "Raw EFI Memory Map");
1454 
1455 /*
1456  * Initialize x86 and configure to run kernel
1457  */
1458 
1459 /*
1460  * Initialize segments & interrupt table
1461  */
1462 
1463 int _default_ldt;
1464 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1465 struct gate_descriptor idt_arr[MAXCPU][NIDT];
1466 #if 0 /* JG */
1467 union descriptor ldt[NLDT];		/* local descriptor table */
1468 #endif
1469 
1470 /* table descriptors - used to load tables by cpu */
1471 struct region_descriptor r_gdt;
1472 struct region_descriptor r_idt_arr[MAXCPU];
1473 
1474 /* JG proc0paddr is a virtual address */
1475 void *proc0paddr;
1476 /* JG alignment? */
1477 char proc0paddr_buff[LWKT_THREAD_STACK];
1478 
1479 
1480 /* software prototypes -- in more palatable form */
1481 struct soft_segment_descriptor gdt_segs[] = {
1482 /* GNULL_SEL	0 Null Descriptor */
1483 {	0x0,			/* segment base address  */
1484 	0x0,			/* length */
1485 	0,			/* segment type */
1486 	0,			/* segment descriptor priority level */
1487 	0,			/* segment descriptor present */
1488 	0,			/* long */
1489 	0,			/* default 32 vs 16 bit size */
1490 	0			/* limit granularity (byte/page units)*/ },
1491 /* GCODE_SEL	1 Code Descriptor for kernel */
1492 {	0x0,			/* segment base address  */
1493 	0xfffff,		/* length - all address space */
1494 	SDT_MEMERA,		/* segment type */
1495 	SEL_KPL,		/* segment descriptor priority level */
1496 	1,			/* segment descriptor present */
1497 	1,			/* long */
1498 	0,			/* default 32 vs 16 bit size */
1499 	1			/* limit granularity (byte/page units)*/ },
1500 /* GDATA_SEL	2 Data Descriptor for kernel */
1501 {	0x0,			/* segment base address  */
1502 	0xfffff,		/* length - all address space */
1503 	SDT_MEMRWA,		/* segment type */
1504 	SEL_KPL,		/* segment descriptor priority level */
1505 	1,			/* segment descriptor present */
1506 	1,			/* long */
1507 	0,			/* default 32 vs 16 bit size */
1508 	1			/* limit granularity (byte/page units)*/ },
1509 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1510 {	0x0,			/* segment base address  */
1511 	0xfffff,		/* length - all address space */
1512 	SDT_MEMERA,		/* segment type */
1513 	SEL_UPL,		/* segment descriptor priority level */
1514 	1,			/* segment descriptor present */
1515 	0,			/* long */
1516 	1,			/* default 32 vs 16 bit size */
1517 	1			/* limit granularity (byte/page units)*/ },
1518 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1519 {	0x0,			/* segment base address  */
1520 	0xfffff,		/* length - all address space */
1521 	SDT_MEMRWA,		/* segment type */
1522 	SEL_UPL,		/* segment descriptor priority level */
1523 	1,			/* segment descriptor present */
1524 	0,			/* long */
1525 	1,			/* default 32 vs 16 bit size */
1526 	1			/* limit granularity (byte/page units)*/ },
1527 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1528 {	0x0,			/* segment base address  */
1529 	0xfffff,		/* length - all address space */
1530 	SDT_MEMERA,		/* segment type */
1531 	SEL_UPL,		/* segment descriptor priority level */
1532 	1,			/* segment descriptor present */
1533 	1,			/* long */
1534 	0,			/* default 32 vs 16 bit size */
1535 	1			/* limit granularity (byte/page units)*/ },
1536 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1537 {
1538 	0x0,			/* segment base address */
1539 	sizeof(struct x86_64tss)-1,/* length - all address space */
1540 	SDT_SYSTSS,		/* segment type */
1541 	SEL_KPL,		/* segment descriptor priority level */
1542 	1,			/* segment descriptor present */
1543 	0,			/* long */
1544 	0,			/* unused - default 32 vs 16 bit size */
1545 	0			/* limit granularity (byte/page units)*/ },
1546 /* Actually, the TSS is a system descriptor which is double size */
1547 {	0x0,			/* segment base address  */
1548 	0x0,			/* length */
1549 	0,			/* segment type */
1550 	0,			/* segment descriptor priority level */
1551 	0,			/* segment descriptor present */
1552 	0,			/* long */
1553 	0,			/* default 32 vs 16 bit size */
1554 	0			/* limit granularity (byte/page units)*/ },
1555 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1556 {	0x0,			/* segment base address  */
1557 	0xfffff,		/* length - all address space */
1558 	SDT_MEMRWA,		/* segment type */
1559 	SEL_UPL,		/* segment descriptor priority level */
1560 	1,			/* segment descriptor present */
1561 	0,			/* long */
1562 	1,			/* default 32 vs 16 bit size */
1563 	1			/* limit granularity (byte/page units)*/ },
1564 };
1565 
1566 void
1567 setidt_global(int idx, inthand_t *func, int typ, int dpl, int ist)
1568 {
1569 	int cpu;
1570 
1571 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
1572 		struct gate_descriptor *ip = &idt_arr[cpu][idx];
1573 
1574 		ip->gd_looffset = (uintptr_t)func;
1575 		ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1576 		ip->gd_ist = ist;
1577 		ip->gd_xx = 0;
1578 		ip->gd_type = typ;
1579 		ip->gd_dpl = dpl;
1580 		ip->gd_p = 1;
1581 		ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1582 	}
1583 }
1584 
1585 void
1586 setidt(int idx, inthand_t *func, int typ, int dpl, int ist, int cpu)
1587 {
1588 	struct gate_descriptor *ip;
1589 
1590 	KASSERT(cpu >= 0 && cpu < ncpus, ("invalid cpu %d", cpu));
1591 
1592 	ip = &idt_arr[cpu][idx];
1593 	ip->gd_looffset = (uintptr_t)func;
1594 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1595 	ip->gd_ist = ist;
1596 	ip->gd_xx = 0;
1597 	ip->gd_type = typ;
1598 	ip->gd_dpl = dpl;
1599 	ip->gd_p = 1;
1600 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1601 }
1602 
1603 #define	IDTVEC(name)	__CONCAT(X,name)
1604 
1605 extern inthand_t
1606 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1607 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1608 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1609 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1610 	IDTVEC(xmm), IDTVEC(dblfault),
1611 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1612 
1613 void
1614 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1615 {
1616 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1617 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1618 	ssd->ssd_type  = sd->sd_type;
1619 	ssd->ssd_dpl   = sd->sd_dpl;
1620 	ssd->ssd_p     = sd->sd_p;
1621 	ssd->ssd_def32 = sd->sd_def32;
1622 	ssd->ssd_gran  = sd->sd_gran;
1623 }
1624 
1625 void
1626 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1627 {
1628 
1629 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1630 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1631 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1632 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1633 	sd->sd_type  = ssd->ssd_type;
1634 	sd->sd_dpl   = ssd->ssd_dpl;
1635 	sd->sd_p     = ssd->ssd_p;
1636 	sd->sd_long  = ssd->ssd_long;
1637 	sd->sd_def32 = ssd->ssd_def32;
1638 	sd->sd_gran  = ssd->ssd_gran;
1639 }
1640 
1641 void
1642 ssdtosyssd(struct soft_segment_descriptor *ssd,
1643     struct system_segment_descriptor *sd)
1644 {
1645 
1646 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1647 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1648 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1649 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1650 	sd->sd_type  = ssd->ssd_type;
1651 	sd->sd_dpl   = ssd->ssd_dpl;
1652 	sd->sd_p     = ssd->ssd_p;
1653 	sd->sd_gran  = ssd->ssd_gran;
1654 }
1655 
1656 /*
1657  * Populate the (physmap) array with base/bound pairs describing the
1658  * available physical memory in the system, then test this memory and
1659  * build the phys_avail array describing the actually-available memory.
1660  *
1661  * If we cannot accurately determine the physical memory map, then use
1662  * value from the 0xE801 call, and failing that, the RTC.
1663  *
1664  * Total memory size may be set by the kernel environment variable
1665  * hw.physmem or the compile-time define MAXMEM.
1666  *
1667  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1668  * of PAGE_SIZE.  This also greatly reduces the memory test time
1669  * which would otherwise be excessive on machines with > 8G of ram.
1670  *
1671  * XXX first should be vm_paddr_t.
1672  */
1673 
1674 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1675 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1676 #define PHYSMAP_SIZE		VM_PHYSSEG_MAX
1677 
1678 vm_paddr_t physmap[PHYSMAP_SIZE];
1679 struct bios_smap *smapbase, *smap, *smapend;
1680 struct efi_map_header *efihdrbase;
1681 u_int32_t smapsize;
1682 
1683 #define PHYSMAP_HANDWAVE	(vm_paddr_t)(2 * 1024 * 1024)
1684 #define PHYSMAP_HANDWAVE_MASK	(PHYSMAP_HANDWAVE - 1)
1685 
1686 static void
1687 add_smap_entries(int *physmap_idx)
1688 {
1689 	int i;
1690 
1691 	smapsize = *((u_int32_t *)smapbase - 1);
1692 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1693 
1694 	for (smap = smapbase; smap < smapend; smap++) {
1695 		if (boothowto & RB_VERBOSE)
1696 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1697 			    smap->type, smap->base, smap->length);
1698 
1699 		if (smap->type != SMAP_TYPE_MEMORY)
1700 			continue;
1701 
1702 		if (smap->length == 0)
1703 			continue;
1704 
1705 		for (i = 0; i <= *physmap_idx; i += 2) {
1706 			if (smap->base < physmap[i + 1]) {
1707 				if (boothowto & RB_VERBOSE) {
1708 					kprintf("Overlapping or non-monotonic "
1709 						"memory region, ignoring "
1710 						"second region\n");
1711 				}
1712 				break;
1713 			}
1714 		}
1715 		if (i <= *physmap_idx)
1716 			continue;
1717 
1718 		Realmem += smap->length;
1719 
1720 		if (smap->base == physmap[*physmap_idx + 1]) {
1721 			physmap[*physmap_idx + 1] += smap->length;
1722 			continue;
1723 		}
1724 
1725 		*physmap_idx += 2;
1726 		if (*physmap_idx == PHYSMAP_SIZE) {
1727 			kprintf("Too many segments in the physical "
1728 				"address map, giving up\n");
1729 			break;
1730 		}
1731 		physmap[*physmap_idx] = smap->base;
1732 		physmap[*physmap_idx + 1] = smap->base + smap->length;
1733 	}
1734 }
1735 
1736 static void
1737 add_efi_map_entries(int *physmap_idx)
1738 {
1739 	 struct efi_md *map, *p;
1740 	 const char *type;
1741 	 size_t efisz;
1742 	 int i, ndesc;
1743 
1744 	static const char *types[] = {
1745 		"Reserved",
1746 		"LoaderCode",
1747 		"LoaderData",
1748 		"BootServicesCode",
1749 		"BootServicesData",
1750 		"RuntimeServicesCode",
1751 		"RuntimeServicesData",
1752 		"ConventionalMemory",
1753 		"UnusableMemory",
1754 		"ACPIReclaimMemory",
1755 		"ACPIMemoryNVS",
1756 		"MemoryMappedIO",
1757 		"MemoryMappedIOPortSpace",
1758 		"PalCode"
1759 	 };
1760 
1761 	/*
1762 	 * Memory map data provided by UEFI via the GetMemoryMap
1763 	 * Boot Services API.
1764 	 */
1765 	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;
1766 	map = (struct efi_md *)((uint8_t *)efihdrbase + efisz);
1767 
1768 	if (efihdrbase->descriptor_size == 0)
1769 		return;
1770 	ndesc = efihdrbase->memory_size / efihdrbase->descriptor_size;
1771 
1772 	if (boothowto & RB_VERBOSE)
1773 		kprintf("%23s %12s %12s %8s %4s\n",
1774 		    "Type", "Physical", "Virtual", "#Pages", "Attr");
1775 
1776 	for (i = 0, p = map; i < ndesc; i++,
1777 	    p = efi_next_descriptor(p, efihdrbase->descriptor_size)) {
1778 		if (boothowto & RB_VERBOSE) {
1779 			if (p->md_type <= EFI_MD_TYPE_PALCODE)
1780 				type = types[p->md_type];
1781 			else
1782 				type = "<INVALID>";
1783 			kprintf("%23s %012lx %12p %08lx ", type, p->md_phys,
1784 			    p->md_virt, p->md_pages);
1785 			if (p->md_attr & EFI_MD_ATTR_UC)
1786 				kprintf("UC ");
1787 			if (p->md_attr & EFI_MD_ATTR_WC)
1788 				kprintf("WC ");
1789 			if (p->md_attr & EFI_MD_ATTR_WT)
1790 				kprintf("WT ");
1791 			if (p->md_attr & EFI_MD_ATTR_WB)
1792 				kprintf("WB ");
1793 			if (p->md_attr & EFI_MD_ATTR_UCE)
1794 				kprintf("UCE ");
1795 			if (p->md_attr & EFI_MD_ATTR_WP)
1796 				kprintf("WP ");
1797 			if (p->md_attr & EFI_MD_ATTR_RP)
1798 				kprintf("RP ");
1799 			if (p->md_attr & EFI_MD_ATTR_XP)
1800 				kprintf("XP ");
1801 			if (p->md_attr & EFI_MD_ATTR_RT)
1802 				kprintf("RUNTIME");
1803 			kprintf("\n");
1804 		}
1805 
1806 		switch (p->md_type) {
1807 		case EFI_MD_TYPE_CODE:
1808 		case EFI_MD_TYPE_DATA:
1809 		case EFI_MD_TYPE_BS_CODE:
1810 		case EFI_MD_TYPE_BS_DATA:
1811 		case EFI_MD_TYPE_FREE:
1812 			/*
1813 			 * We're allowed to use any entry with these types.
1814 			 */
1815 			break;
1816 		default:
1817 			continue;
1818 		}
1819 
1820 		Realmem += p->md_pages * PAGE_SIZE;
1821 
1822 		if (p->md_phys == physmap[*physmap_idx + 1]) {
1823 			physmap[*physmap_idx + 1] += p->md_pages * PAGE_SIZE;
1824 			continue;
1825 		}
1826 
1827 		*physmap_idx += 2;
1828 		if (*physmap_idx == PHYSMAP_SIZE) {
1829 			kprintf("Too many segments in the physical "
1830 				"address map, giving up\n");
1831 			break;
1832 		}
1833 		physmap[*physmap_idx] = p->md_phys;
1834 		physmap[*physmap_idx + 1] = p->md_phys + p->md_pages * PAGE_SIZE;
1835 	 }
1836 }
1837 
1838 struct fb_info efi_fb_info;
1839 static int have_efi_framebuffer = 0;
1840 
1841 static void
1842 efi_fb_init_vaddr(int direct_map)
1843 {
1844 	uint64_t sz;
1845 	vm_offset_t addr, v;
1846 
1847 	v = efi_fb_info.vaddr;
1848 	sz = efi_fb_info.stride * efi_fb_info.height;
1849 
1850 	if (direct_map) {
1851 		addr = PHYS_TO_DMAP(efi_fb_info.paddr);
1852 		if (addr >= DMAP_MIN_ADDRESS && addr + sz < DMAP_MAX_ADDRESS)
1853 			efi_fb_info.vaddr = addr;
1854 	} else {
1855 		efi_fb_info.vaddr = (vm_offset_t)pmap_mapdev_attr(
1856 		    efi_fb_info.paddr, sz, PAT_WRITE_COMBINING);
1857 	}
1858 }
1859 
1860 static u_int
1861 efifb_color_depth(struct efi_fb *efifb)
1862 {
1863 	uint32_t mask;
1864 	u_int depth;
1865 
1866 	mask = efifb->fb_mask_red | efifb->fb_mask_green |
1867 	    efifb->fb_mask_blue | efifb->fb_mask_reserved;
1868 	if (mask == 0)
1869 		return (0);
1870 	for (depth = 1; mask != 1; depth++)
1871 		mask >>= 1;
1872 	return (depth);
1873 }
1874 
1875 int
1876 probe_efi_fb(int early)
1877 {
1878 	struct efi_fb	*efifb;
1879 	caddr_t		kmdp;
1880 	u_int		depth;
1881 
1882 	if (have_efi_framebuffer) {
1883 		if (!early &&
1884 		    (efi_fb_info.vaddr == 0 ||
1885 		     efi_fb_info.vaddr == PHYS_TO_DMAP(efi_fb_info.paddr)))
1886 			efi_fb_init_vaddr(0);
1887 		return 0;
1888 	}
1889 
1890 	kmdp = preload_search_by_type("elf kernel");
1891 	if (kmdp == NULL)
1892 		kmdp = preload_search_by_type("elf64 kernel");
1893 	efifb = (struct efi_fb *)preload_search_info(kmdp,
1894 	    MODINFO_METADATA | MODINFOMD_EFI_FB);
1895 	if (efifb == NULL)
1896 		return 1;
1897 
1898 	depth = efifb_color_depth(efifb);
1899 	/*
1900 	 * Our bootloader should already notice, when we won't be able to
1901 	 * use the UEFI framebuffer.
1902 	 */
1903 	if (depth != 24 && depth != 32)
1904 		return 1;
1905 
1906 	have_efi_framebuffer = 1;
1907 
1908 	efi_fb_info.is_vga_boot_display = 1;
1909 	efi_fb_info.width = efifb->fb_width;
1910 	efi_fb_info.height = efifb->fb_height;
1911 	efi_fb_info.depth = depth;
1912 	efi_fb_info.stride = efifb->fb_stride * (depth / 8);
1913 	efi_fb_info.paddr = efifb->fb_addr;
1914 	if (early) {
1915 		efi_fb_info.vaddr = 0;
1916 	} else {
1917 		efi_fb_init_vaddr(0);
1918 	}
1919 	efi_fb_info.fbops.fb_set_par = NULL;
1920 	efi_fb_info.fbops.fb_blank = NULL;
1921 	efi_fb_info.fbops.fb_debug_enter = NULL;
1922 	efi_fb_info.device = NULL;
1923 
1924 	return 0;
1925 }
1926 
1927 static void
1928 efifb_startup(void *arg)
1929 {
1930 	probe_efi_fb(0);
1931 }
1932 
1933 SYSINIT(efi_fb_info, SI_BOOT1_POST, SI_ORDER_FIRST, efifb_startup, NULL);
1934 
1935 static void
1936 getmemsize(caddr_t kmdp, u_int64_t first)
1937 {
1938 	int off, physmap_idx, pa_indx, da_indx;
1939 	int i, j;
1940 	vm_paddr_t pa;
1941 	vm_paddr_t msgbuf_size;
1942 	u_long physmem_tunable;
1943 	pt_entry_t *pte;
1944 	quad_t dcons_addr, dcons_size;
1945 
1946 	bzero(physmap, sizeof(physmap));
1947 	physmap_idx = 0;
1948 
1949 	/*
1950 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1951 	 *
1952 	 * subr_module.c says:
1953 	 * "Consumer may safely assume that size value precedes data."
1954 	 * ie: an int32_t immediately precedes smap.
1955 	 */
1956 	efihdrbase = (struct efi_map_header *)preload_search_info(kmdp,
1957 		     MODINFO_METADATA | MODINFOMD_EFI_MAP);
1958 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1959 		   MODINFO_METADATA | MODINFOMD_SMAP);
1960 	if (smapbase == NULL && efihdrbase == NULL)
1961 		panic("No BIOS smap or EFI map info from loader!");
1962 
1963 	if (efihdrbase == NULL)
1964 		add_smap_entries(&physmap_idx);
1965 	else
1966 		add_efi_map_entries(&physmap_idx);
1967 
1968 	base_memory = physmap[1] / 1024;
1969 	/* make hole for AP bootstrap code */
1970 	physmap[1] = mp_bootaddress(base_memory);
1971 
1972 	/* Save EBDA address, if any */
1973 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1974 	ebda_addr <<= 4;
1975 
1976 	/*
1977 	 * Maxmem isn't the "maximum memory", it's one larger than the
1978 	 * highest page of the physical address space.  It should be
1979 	 * called something like "Maxphyspage".  We may adjust this
1980 	 * based on ``hw.physmem'' and the results of the memory test.
1981 	 */
1982 	Maxmem = atop(physmap[physmap_idx + 1]);
1983 
1984 #ifdef MAXMEM
1985 	Maxmem = MAXMEM / 4;
1986 #endif
1987 
1988 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1989 		Maxmem = atop(physmem_tunable);
1990 
1991 	/*
1992 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1993 	 * in the system.
1994 	 */
1995 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1996 		Maxmem = atop(physmap[physmap_idx + 1]);
1997 
1998 	/*
1999 	 * Blowing out the DMAP will blow up the system.
2000 	 */
2001 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
2002 		kprintf("Limiting Maxmem due to DMAP size\n");
2003 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
2004 	}
2005 
2006 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
2007 	    (boothowto & RB_VERBOSE)) {
2008 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
2009 	}
2010 
2011 	/*
2012 	 * Call pmap initialization to make new kernel address space
2013 	 *
2014 	 * Mask off page 0.
2015 	 */
2016 	pmap_bootstrap(&first);
2017 	physmap[0] = PAGE_SIZE;
2018 
2019 	/*
2020 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
2021 	 * exceeding Maxmem.
2022 	 */
2023 	for (i = j = 0; i <= physmap_idx; i += 2) {
2024 		if (physmap[i+1] > ptoa(Maxmem))
2025 			physmap[i+1] = ptoa(Maxmem);
2026 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
2027 			     ~PHYSMAP_ALIGN_MASK;
2028 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
2029 
2030 		physmap[j] = physmap[i];
2031 		physmap[j+1] = physmap[i+1];
2032 
2033 		if (physmap[i] < physmap[i+1])
2034 			j += 2;
2035 	}
2036 	physmap_idx = j - 2;
2037 
2038 	/*
2039 	 * Align anything else used in the validation loop.
2040 	 *
2041 	 * Also make sure that our 2MB kernel text+data+bss mappings
2042 	 * do not overlap potentially allocatable space.
2043 	 */
2044 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2045 
2046 	/*
2047 	 * Size up each available chunk of physical memory.
2048 	 */
2049 	pa_indx = 0;
2050 	da_indx = 0;
2051 	phys_avail[pa_indx].phys_beg = physmap[0];
2052 	phys_avail[pa_indx].phys_end = physmap[0];
2053 	dump_avail[da_indx].phys_beg = 0;
2054 	dump_avail[da_indx].phys_end = physmap[0];
2055 	pte = CMAP1;
2056 
2057 	/*
2058 	 * Get dcons buffer address
2059 	 */
2060 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
2061 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
2062 		dcons_addr = 0;
2063 
2064 	/*
2065 	 * Validate the physical memory.  The physical memory segments
2066 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
2067 	 * of PAGE_SIZE.
2068 	 *
2069 	 * We no longer perform an exhaustive memory test.  Instead we
2070 	 * simply test the first and last word in each physmap[]
2071 	 * segment.
2072 	 */
2073 	for (i = 0; i <= physmap_idx; i += 2) {
2074 		vm_paddr_t end;
2075 		vm_paddr_t incr;
2076 
2077 		end = physmap[i + 1];
2078 
2079 		for (pa = physmap[i]; pa < end; pa += incr) {
2080 			int page_bad, full;
2081 			volatile uint64_t *ptr = (uint64_t *)CADDR1;
2082 			uint64_t tmp;
2083 
2084 			full = FALSE;
2085 
2086 			/*
2087 			 * Calculate incr.  Just test the first and
2088 			 * last page in each physmap[] segment.
2089 			 */
2090 			if (pa == end - PAGE_SIZE)
2091 				incr = PAGE_SIZE;
2092 			else
2093 				incr = end - pa - PAGE_SIZE;
2094 
2095 			/*
2096 			 * Make sure we don't skip blacked out areas.
2097 			 */
2098 			if (pa < 0x200000 && 0x200000 < end) {
2099 				incr = 0x200000 - pa;
2100 			}
2101 			if (dcons_addr > 0 &&
2102 			    pa < dcons_addr &&
2103 			    dcons_addr < end) {
2104 				incr = dcons_addr - pa;
2105 			}
2106 
2107 			/*
2108 			 * Block out kernel memory as not available.
2109 			 */
2110 			if (pa >= 0x200000 && pa < first) {
2111 				incr = first - pa;
2112 				if (pa + incr > end)
2113 					incr = end - pa;
2114 				goto do_dump_avail;
2115 			}
2116 
2117 			/*
2118 			 * Block out the dcons buffer if it exists.
2119 			 */
2120 			if (dcons_addr > 0 &&
2121 			    pa >= trunc_page(dcons_addr) &&
2122 			    pa < dcons_addr + dcons_size) {
2123 				incr = dcons_addr + dcons_size - pa;
2124 				incr = (incr + PAGE_MASK) &
2125 				       ~(vm_paddr_t)PAGE_MASK;
2126 				if (pa + incr > end)
2127 					incr = end - pa;
2128 				goto do_dump_avail;
2129 			}
2130 
2131 			page_bad = FALSE;
2132 
2133 			/*
2134 			 * Map the page non-cacheable for the memory
2135 			 * test.
2136 			 */
2137 			*pte = pa |
2138 			    kernel_pmap.pmap_bits[PG_V_IDX] |
2139 			    kernel_pmap.pmap_bits[PG_RW_IDX] |
2140 			    kernel_pmap.pmap_bits[PG_N_IDX];
2141 			cpu_invlpg(__DEVOLATILE(void *, ptr));
2142 			cpu_mfence();
2143 
2144 			/*
2145 			 * Save original value for restoration later.
2146 			 */
2147 			tmp = *ptr;
2148 
2149 			/*
2150 			 * Test for alternating 1's and 0's
2151 			 */
2152 			*ptr = 0xaaaaaaaaaaaaaaaaLLU;
2153 			cpu_mfence();
2154 			if (*ptr != 0xaaaaaaaaaaaaaaaaLLU)
2155 				page_bad = TRUE;
2156 			/*
2157 			 * Test for alternating 0's and 1's
2158 			 */
2159 			*ptr = 0x5555555555555555LLU;
2160 			cpu_mfence();
2161 			if (*ptr != 0x5555555555555555LLU)
2162 				page_bad = TRUE;
2163 			/*
2164 			 * Test for all 1's
2165 			 */
2166 			*ptr = 0xffffffffffffffffLLU;
2167 			cpu_mfence();
2168 			if (*ptr != 0xffffffffffffffffLLU)
2169 				page_bad = TRUE;
2170 			/*
2171 			 * Test for all 0's
2172 			 */
2173 			*ptr = 0x0;
2174 			cpu_mfence();
2175 			if (*ptr != 0x0)
2176 				page_bad = TRUE;
2177 
2178 			/*
2179 			 * Restore original value.
2180 			 */
2181 			*ptr = tmp;
2182 
2183 			/*
2184 			 * Adjust array of valid/good pages.
2185 			 */
2186 			if (page_bad == TRUE) {
2187 				incr = PAGE_SIZE;
2188 				continue;
2189 			}
2190 
2191 			/*
2192 			 * Collapse page address into phys_avail[].  Do a
2193 			 * continuation of the current phys_avail[] index
2194 			 * when possible.
2195 			 */
2196 			if (phys_avail[pa_indx].phys_end == pa) {
2197 				/*
2198 				 * Continuation
2199 				 */
2200 				phys_avail[pa_indx].phys_end += incr;
2201 			} else if (phys_avail[pa_indx].phys_beg ==
2202 				   phys_avail[pa_indx].phys_end) {
2203 				/*
2204 				 * Current phys_avail is completely empty,
2205 				 * reuse the index.
2206 				 */
2207 				phys_avail[pa_indx].phys_beg = pa;
2208 				phys_avail[pa_indx].phys_end = pa + incr;
2209 			} else {
2210 				/*
2211 				 * Allocate next phys_avail index.
2212 				 */
2213 				++pa_indx;
2214 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
2215 					kprintf(
2216 		"Too many holes in the physical address space, giving up\n");
2217 					--pa_indx;
2218 					full = TRUE;
2219 					goto do_dump_avail;
2220 				}
2221 				phys_avail[pa_indx].phys_beg = pa;
2222 				phys_avail[pa_indx].phys_end = pa + incr;
2223 			}
2224 			physmem += incr / PAGE_SIZE;
2225 
2226 			/*
2227 			 * pa available for dumping
2228 			 */
2229 do_dump_avail:
2230 			if (dump_avail[da_indx].phys_end == pa) {
2231 				dump_avail[da_indx].phys_end += incr;
2232 			} else {
2233 				++da_indx;
2234 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
2235 					--da_indx;
2236 					goto do_next;
2237 				}
2238 				dump_avail[da_indx].phys_beg = pa;
2239 				dump_avail[da_indx].phys_end = pa + incr;
2240 			}
2241 do_next:
2242 			if (full)
2243 				break;
2244 		}
2245 	}
2246 	*pte = 0;
2247 	cpu_invltlb();
2248 	cpu_mfence();
2249 
2250 	/*
2251 	 * The last chunk must contain at least one page plus the message
2252 	 * buffer to avoid complicating other code (message buffer address
2253 	 * calculation, etc.).
2254 	 */
2255 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
2256 
2257 	while (phys_avail[pa_indx].phys_beg + PHYSMAP_ALIGN + msgbuf_size >=
2258 	       phys_avail[pa_indx].phys_end) {
2259 		physmem -= atop(phys_avail[pa_indx].phys_end -
2260 				phys_avail[pa_indx].phys_beg);
2261 		phys_avail[pa_indx].phys_beg = 0;
2262 		phys_avail[pa_indx].phys_end = 0;
2263 		--pa_indx;
2264 	}
2265 
2266 	Maxmem = atop(phys_avail[pa_indx].phys_end);
2267 
2268 	/* Trim off space for the message buffer. */
2269 	phys_avail[pa_indx].phys_end -= msgbuf_size;
2270 
2271 	avail_end = phys_avail[pa_indx].phys_end;
2272 
2273 	/* Map the message buffer. */
2274 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
2275 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2276 	}
2277 	/* Try to get EFI framebuffer working as early as possible */
2278 	if (have_efi_framebuffer)
2279 		efi_fb_init_vaddr(1);
2280 }
2281 
2282 struct machintr_abi MachIntrABI;
2283 
2284 /*
2285  * IDT VECTORS:
2286  *	0	Divide by zero
2287  *	1	Debug
2288  *	2	NMI
2289  *	3	BreakPoint
2290  *	4	OverFlow
2291  *	5	Bound-Range
2292  *	6	Invalid OpCode
2293  *	7	Device Not Available (x87)
2294  *	8	Double-Fault
2295  *	9	Coprocessor Segment overrun (unsupported, reserved)
2296  *	10	Invalid-TSS
2297  *	11	Segment not present
2298  *	12	Stack
2299  *	13	General Protection
2300  *	14	Page Fault
2301  *	15	Reserved
2302  *	16	x87 FP Exception pending
2303  *	17	Alignment Check
2304  *	18	Machine Check
2305  *	19	SIMD floating point
2306  *	20-31	reserved
2307  *	32-255	INTn/external sources
2308  */
2309 u_int64_t
2310 hammer_time(u_int64_t modulep, u_int64_t physfree)
2311 {
2312 	caddr_t kmdp;
2313 	int gsel_tss, x, cpu;
2314 #if 0 /* JG */
2315 	int metadata_missing, off;
2316 #endif
2317 	struct mdglobaldata *gd;
2318 	u_int64_t msr;
2319 
2320 	/*
2321 	 * Prevent lowering of the ipl if we call tsleep() early.
2322 	 */
2323 	gd = &CPU_prvspace[0]->mdglobaldata;
2324 	bzero(gd, sizeof(*gd));
2325 
2326 	/*
2327 	 * Note: on both UP and SMP curthread must be set non-NULL
2328 	 * early in the boot sequence because the system assumes
2329 	 * that 'curthread' is never NULL.
2330 	 */
2331 
2332 	gd->mi.gd_curthread = &thread0;
2333 	thread0.td_gd = &gd->mi;
2334 
2335 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
2336 
2337 #if 0 /* JG */
2338 	metadata_missing = 0;
2339 	if (bootinfo.bi_modulep) {
2340 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
2341 		preload_bootstrap_relocate(KERNBASE);
2342 	} else {
2343 		metadata_missing = 1;
2344 	}
2345 	if (bootinfo.bi_envp)
2346 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
2347 #endif
2348 
2349 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
2350 	preload_bootstrap_relocate(PTOV_OFFSET);
2351 	kmdp = preload_search_by_type("elf kernel");
2352 	if (kmdp == NULL)
2353 		kmdp = preload_search_by_type("elf64 kernel");
2354 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
2355 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
2356 #ifdef DDB
2357 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
2358 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
2359 #endif
2360 	efi_systbl_phys = MD_FETCH(kmdp, MODINFOMD_FW_HANDLE, vm_paddr_t);
2361 
2362 	if (boothowto & RB_VERBOSE)
2363 		bootverbose++;
2364 
2365 	/*
2366 	 * Default MachIntrABI to ICU
2367 	 */
2368 	MachIntrABI = MachIntrABI_ICU;
2369 
2370 	/*
2371 	 * start with one cpu.  Note: with one cpu, ncpus_fit_mask remain 0.
2372 	 */
2373 	ncpus = 1;
2374 	ncpus_fit = 1;
2375 	/* Init basic tunables, hz etc */
2376 	init_param1();
2377 
2378 	/*
2379 	 * make gdt memory segments
2380 	 */
2381 	gdt_segs[GPROC0_SEL].ssd_base =
2382 		(uintptr_t) &CPU_prvspace[0]->mdglobaldata.gd_common_tss;
2383 
2384 	gd->mi.gd_prvspace = CPU_prvspace[0];
2385 
2386 	for (x = 0; x < NGDT; x++) {
2387 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
2388 			ssdtosd(&gdt_segs[x], &gdt[x]);
2389 	}
2390 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
2391 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
2392 
2393 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
2394 	r_gdt.rd_base =  (long) gdt;
2395 	lgdt(&r_gdt);
2396 
2397 	wrmsr(MSR_FSBASE, 0);		/* User value */
2398 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
2399 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
2400 
2401 	mi_gdinit(&gd->mi, 0);
2402 	cpu_gdinit(gd, 0);
2403 	proc0paddr = proc0paddr_buff;
2404 	mi_proc0init(&gd->mi, proc0paddr);
2405 	safepri = TDPRI_MAX;
2406 
2407 	/* spinlocks and the BGL */
2408 	init_locks();
2409 
2410 	/* exceptions */
2411 	for (x = 0; x < NIDT; x++)
2412 		setidt_global(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
2413 	setidt_global(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
2414 	setidt_global(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
2415 	setidt_global(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
2416 	setidt_global(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
2417 	setidt_global(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
2418 	setidt_global(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
2419 	setidt_global(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
2420 	setidt_global(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
2421 	setidt_global(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
2422 	setidt_global(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
2423 	setidt_global(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
2424 	setidt_global(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
2425 	setidt_global(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
2426 	setidt_global(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
2427 	setidt_global(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
2428 	setidt_global(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
2429 	setidt_global(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
2430 	setidt_global(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
2431 	setidt_global(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
2432 
2433 	for (cpu = 0; cpu < MAXCPU; ++cpu) {
2434 		r_idt_arr[cpu].rd_limit = sizeof(idt_arr[cpu]) - 1;
2435 		r_idt_arr[cpu].rd_base = (long) &idt_arr[cpu][0];
2436 	}
2437 
2438 	lidt(&r_idt_arr[0]);
2439 
2440 	/*
2441 	 * Initialize the console before we print anything out.
2442 	 */
2443 	cninit();
2444 
2445 #if 0 /* JG */
2446 	if (metadata_missing)
2447 		kprintf("WARNING: loader(8) metadata is missing!\n");
2448 #endif
2449 
2450 #if	NISA >0
2451 	elcr_probe();
2452 	isa_defaultirq();
2453 #endif
2454 	rand_initialize();
2455 
2456 	/*
2457 	 * Initialize IRQ mapping
2458 	 *
2459 	 * NOTE:
2460 	 * SHOULD be after elcr_probe()
2461 	 */
2462 	MachIntrABI_ICU.initmap();
2463 	MachIntrABI_IOAPIC.initmap();
2464 
2465 #ifdef DDB
2466 	kdb_init();
2467 	if (boothowto & RB_KDB)
2468 		Debugger("Boot flags requested debugger");
2469 #endif
2470 
2471 	identify_cpu();		/* Final stage of CPU initialization */
2472 	initializecpu(0);	/* Initialize CPU registers */
2473 
2474 	/*
2475 	 * On modern Intel cpus, haswell or later, cpu_idle_hlt=1 is better
2476 	 * because the cpu does significant power management in MWAIT
2477 	 * (also suggested is to set sysctl machdep.mwait.CX.idle=AUTODEEP).
2478 	 *
2479 	 * On modern AMD cpus cpu_idle_hlt=3 is better, because the cpu does
2480 	 * significant power management only when using ACPI halt mode.
2481 	 *
2482 	 * On older AMD or Intel cpus, cpu_idle_hlt=2 is better because ACPI
2483 	 * is needed to reduce power consumption, but wakeup times are often
2484 	 * too long longer.
2485 	 */
2486 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
2487 	    CPUID_TO_MODEL(cpu_id) >= 0x3C) {	/* Haswell or later */
2488 		cpu_idle_hlt = 1;
2489 	}
2490 	if (cpu_vendor_id == CPU_VENDOR_AMD) {
2491 		if (CPUID_TO_FAMILY(cpu_id) >= 0x17) {
2492 			/* Ryzen or later */
2493 			cpu_idle_hlt = 3;
2494 		} else if (CPUID_TO_FAMILY(cpu_id) >= 0x14) {
2495 			/* Bobcat or later */
2496 			cpu_idle_hlt = 3;
2497 		}
2498 	}
2499 
2500 	TUNABLE_INT_FETCH("hw.apic_io_enable", &ioapic_enable); /* for compat */
2501 	TUNABLE_INT_FETCH("hw.ioapic_enable", &ioapic_enable);
2502 	TUNABLE_INT_FETCH("hw.lapic_enable", &lapic_enable);
2503 	TUNABLE_INT_FETCH("machdep.cpu_idle_hlt", &cpu_idle_hlt);
2504 
2505 	/*
2506 	 * Some of the virtual machines do not work w/ I/O APIC
2507 	 * enabled.  If the user does not explicitly enable or
2508 	 * disable the I/O APIC (ioapic_enable < 0), then we
2509 	 * disable I/O APIC on all virtual machines.
2510 	 *
2511 	 * NOTE:
2512 	 * This must be done after identify_cpu(), which sets
2513 	 * 'cpu_feature2'
2514 	 */
2515 	if (ioapic_enable < 0) {
2516 		if (cpu_feature2 & CPUID2_VMM)
2517 			ioapic_enable = 0;
2518 		else
2519 			ioapic_enable = 1;
2520 	}
2521 
2522 	/* make an initial tss so cpu can get interrupt stack on syscall! */
2523 	gd->gd_common_tss.tss_rsp0 =
2524 		(register_t)(thread0.td_kstack +
2525 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
2526 	/* Ensure the stack is aligned to 16 bytes */
2527 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
2528 
2529 	/* double fault stack */
2530 	gd->gd_common_tss.tss_ist1 =
2531 		(long)&gd->mi.gd_prvspace->idlestack[
2532 			sizeof(gd->mi.gd_prvspace->idlestack)];
2533 
2534 	/* Set the IO permission bitmap (empty due to tss seg limit) */
2535 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
2536 
2537 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2538 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
2539 	gd->gd_common_tssd = *gd->gd_tss_gdt;
2540 	ltr(gsel_tss);
2541 
2542 	/* Set up the fast syscall stuff */
2543 	msr = rdmsr(MSR_EFER) | EFER_SCE;
2544 	wrmsr(MSR_EFER, msr);
2545 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
2546 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
2547 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
2548 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
2549 	wrmsr(MSR_STAR, msr);
2550 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
2551 
2552 	getmemsize(kmdp, physfree);
2553 	init_param2(physmem);
2554 
2555 	/* now running on new page tables, configured,and u/iom is accessible */
2556 
2557 	/* Map the message buffer. */
2558 #if 0 /* JG */
2559 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2560 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2561 #endif
2562 
2563 	msgbufinit(msgbufp, MSGBUF_SIZE);
2564 
2565 
2566 	/* transfer to user mode */
2567 
2568 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
2569 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
2570 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
2571 
2572 	load_ds(_udatasel);
2573 	load_es(_udatasel);
2574 	load_fs(_udatasel);
2575 
2576 	/* setup proc 0's pcb */
2577 	thread0.td_pcb->pcb_flags = 0;
2578 	thread0.td_pcb->pcb_cr3 = KPML4phys;
2579 	thread0.td_pcb->pcb_ext = NULL;
2580 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
2581 
2582 	/* Location of kernel stack for locore */
2583 	return ((u_int64_t)thread0.td_pcb);
2584 }
2585 
2586 /*
2587  * Initialize machine-dependant portions of the global data structure.
2588  * Note that the global data area and cpu0's idlestack in the private
2589  * data space were allocated in locore.
2590  *
2591  * Note: the idlethread's cpl is 0
2592  *
2593  * WARNING!  Called from early boot, 'mycpu' may not work yet.
2594  */
2595 void
2596 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2597 {
2598 	if (cpu)
2599 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2600 
2601 	lwkt_init_thread(&gd->mi.gd_idlethread,
2602 			gd->mi.gd_prvspace->idlestack,
2603 			sizeof(gd->mi.gd_prvspace->idlestack),
2604 			0, &gd->mi);
2605 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2606 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2607 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2608 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2609 }
2610 
2611 /*
2612  * We only have to check for DMAP bounds, the globaldata space is
2613  * actually part of the kernel_map so we don't have to waste time
2614  * checking CPU_prvspace[*].
2615  */
2616 int
2617 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2618 {
2619 #if 0
2620 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2621 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2622 		return (TRUE);
2623 	}
2624 #endif
2625 	if (saddr >= DMAP_MIN_ADDRESS && eaddr <= DMAP_MAX_ADDRESS)
2626 		return (TRUE);
2627 	return (FALSE);
2628 }
2629 
2630 struct globaldata *
2631 globaldata_find(int cpu)
2632 {
2633 	KKASSERT(cpu >= 0 && cpu < ncpus);
2634 	return(&CPU_prvspace[cpu]->mdglobaldata.mi);
2635 }
2636 
2637 /*
2638  * This path should be safe from the SYSRET issue because only stopped threads
2639  * can have their %rip adjusted this way (and all heavy weight thread switches
2640  * clear QUICKREF and thus do not use SYSRET).  However, the code path is
2641  * convoluted so add a safety by forcing %rip to be cannonical.
2642  */
2643 int
2644 ptrace_set_pc(struct lwp *lp, unsigned long addr)
2645 {
2646 	if (addr & 0x0000800000000000LLU)
2647 		lp->lwp_md.md_regs->tf_rip = addr | 0xFFFF000000000000LLU;
2648 	else
2649 		lp->lwp_md.md_regs->tf_rip = addr & 0x0000FFFFFFFFFFFFLLU;
2650 	return (0);
2651 }
2652 
2653 int
2654 ptrace_single_step(struct lwp *lp)
2655 {
2656 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
2657 	return (0);
2658 }
2659 
2660 int
2661 fill_regs(struct lwp *lp, struct reg *regs)
2662 {
2663 	struct trapframe *tp;
2664 
2665 	if ((tp = lp->lwp_md.md_regs) == NULL)
2666 		return EINVAL;
2667 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2668 	return (0);
2669 }
2670 
2671 int
2672 set_regs(struct lwp *lp, struct reg *regs)
2673 {
2674 	struct trapframe *tp;
2675 
2676 	tp = lp->lwp_md.md_regs;
2677 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2678 	    !CS_SECURE(regs->r_cs))
2679 		return (EINVAL);
2680 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2681 	clear_quickret();
2682 	return (0);
2683 }
2684 
2685 static void
2686 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2687 {
2688 	struct env87 *penv_87 = &sv_87->sv_env;
2689 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2690 	int i;
2691 
2692 	/* FPU control/status */
2693 	penv_87->en_cw = penv_xmm->en_cw;
2694 	penv_87->en_sw = penv_xmm->en_sw;
2695 	penv_87->en_tw = penv_xmm->en_tw;
2696 	penv_87->en_fip = penv_xmm->en_fip;
2697 	penv_87->en_fcs = penv_xmm->en_fcs;
2698 	penv_87->en_opcode = penv_xmm->en_opcode;
2699 	penv_87->en_foo = penv_xmm->en_foo;
2700 	penv_87->en_fos = penv_xmm->en_fos;
2701 
2702 	/* FPU registers */
2703 	for (i = 0; i < 8; ++i)
2704 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2705 }
2706 
2707 static void
2708 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2709 {
2710 	struct env87 *penv_87 = &sv_87->sv_env;
2711 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2712 	int i;
2713 
2714 	/* FPU control/status */
2715 	penv_xmm->en_cw = penv_87->en_cw;
2716 	penv_xmm->en_sw = penv_87->en_sw;
2717 	penv_xmm->en_tw = penv_87->en_tw;
2718 	penv_xmm->en_fip = penv_87->en_fip;
2719 	penv_xmm->en_fcs = penv_87->en_fcs;
2720 	penv_xmm->en_opcode = penv_87->en_opcode;
2721 	penv_xmm->en_foo = penv_87->en_foo;
2722 	penv_xmm->en_fos = penv_87->en_fos;
2723 
2724 	/* FPU registers */
2725 	for (i = 0; i < 8; ++i)
2726 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2727 }
2728 
2729 int
2730 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2731 {
2732 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
2733 		return EINVAL;
2734 	if (cpu_fxsr) {
2735 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2736 				(struct save87 *)fpregs);
2737 		return (0);
2738 	}
2739 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2740 	return (0);
2741 }
2742 
2743 int
2744 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2745 {
2746 	if (cpu_fxsr) {
2747 		set_fpregs_xmm((struct save87 *)fpregs,
2748 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2749 		return (0);
2750 	}
2751 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2752 	return (0);
2753 }
2754 
2755 int
2756 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2757 {
2758 	struct pcb *pcb;
2759 
2760         if (lp == NULL) {
2761                 dbregs->dr[0] = rdr0();
2762                 dbregs->dr[1] = rdr1();
2763                 dbregs->dr[2] = rdr2();
2764                 dbregs->dr[3] = rdr3();
2765                 dbregs->dr[4] = rdr4();
2766                 dbregs->dr[5] = rdr5();
2767                 dbregs->dr[6] = rdr6();
2768                 dbregs->dr[7] = rdr7();
2769 		return (0);
2770         }
2771 	if (lp->lwp_thread == NULL || (pcb = lp->lwp_thread->td_pcb) == NULL)
2772 		return EINVAL;
2773 	dbregs->dr[0] = pcb->pcb_dr0;
2774 	dbregs->dr[1] = pcb->pcb_dr1;
2775 	dbregs->dr[2] = pcb->pcb_dr2;
2776 	dbregs->dr[3] = pcb->pcb_dr3;
2777 	dbregs->dr[4] = 0;
2778 	dbregs->dr[5] = 0;
2779 	dbregs->dr[6] = pcb->pcb_dr6;
2780 	dbregs->dr[7] = pcb->pcb_dr7;
2781 	return (0);
2782 }
2783 
2784 int
2785 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2786 {
2787 	if (lp == NULL) {
2788 		load_dr0(dbregs->dr[0]);
2789 		load_dr1(dbregs->dr[1]);
2790 		load_dr2(dbregs->dr[2]);
2791 		load_dr3(dbregs->dr[3]);
2792 		load_dr4(dbregs->dr[4]);
2793 		load_dr5(dbregs->dr[5]);
2794 		load_dr6(dbregs->dr[6]);
2795 		load_dr7(dbregs->dr[7]);
2796 	} else {
2797 		struct pcb *pcb;
2798 		struct ucred *ucred;
2799 		int i;
2800 		uint64_t mask1, mask2;
2801 
2802 		/*
2803 		 * Don't let an illegal value for dr7 get set.	Specifically,
2804 		 * check for undefined settings.  Setting these bit patterns
2805 		 * result in undefined behaviour and can lead to an unexpected
2806 		 * TRCTRAP.
2807 		 */
2808 		/* JG this loop looks unreadable */
2809 		/* Check 4 2-bit fields for invalid patterns.
2810 		 * These fields are R/Wi, for i = 0..3
2811 		 */
2812 		/* Is 10 in LENi allowed when running in compatibility mode? */
2813 		/* Pattern 10 in R/Wi might be used to indicate
2814 		 * breakpoint on I/O. Further analysis should be
2815 		 * carried to decide if it is safe and useful to
2816 		 * provide access to that capability
2817 		 */
2818 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2819 		     i++, mask1 <<= 4, mask2 <<= 4)
2820 			if ((dbregs->dr[7] & mask1) == mask2)
2821 				return (EINVAL);
2822 
2823 		pcb = lp->lwp_thread->td_pcb;
2824 		ucred = lp->lwp_proc->p_ucred;
2825 
2826 		/*
2827 		 * Don't let a process set a breakpoint that is not within the
2828 		 * process's address space.  If a process could do this, it
2829 		 * could halt the system by setting a breakpoint in the kernel
2830 		 * (if ddb was enabled).  Thus, we need to check to make sure
2831 		 * that no breakpoints are being enabled for addresses outside
2832 		 * process's address space, unless, perhaps, we were called by
2833 		 * uid 0.
2834 		 *
2835 		 * XXX - what about when the watched area of the user's
2836 		 * address space is written into from within the kernel
2837 		 * ... wouldn't that still cause a breakpoint to be generated
2838 		 * from within kernel mode?
2839 		 */
2840 
2841 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2842 			if (dbregs->dr[7] & 0x3) {
2843 				/* dr0 is enabled */
2844 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2845 					return (EINVAL);
2846 			}
2847 
2848 			if (dbregs->dr[7] & (0x3<<2)) {
2849 				/* dr1 is enabled */
2850 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2851 					return (EINVAL);
2852 			}
2853 
2854 			if (dbregs->dr[7] & (0x3<<4)) {
2855 				/* dr2 is enabled */
2856 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2857 					return (EINVAL);
2858 			}
2859 
2860 			if (dbregs->dr[7] & (0x3<<6)) {
2861 				/* dr3 is enabled */
2862 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2863 					return (EINVAL);
2864 			}
2865 		}
2866 
2867 		pcb->pcb_dr0 = dbregs->dr[0];
2868 		pcb->pcb_dr1 = dbregs->dr[1];
2869 		pcb->pcb_dr2 = dbregs->dr[2];
2870 		pcb->pcb_dr3 = dbregs->dr[3];
2871 		pcb->pcb_dr6 = dbregs->dr[6];
2872 		pcb->pcb_dr7 = dbregs->dr[7];
2873 
2874 		pcb->pcb_flags |= PCB_DBREGS;
2875 	}
2876 
2877 	return (0);
2878 }
2879 
2880 /*
2881  * Return > 0 if a hardware breakpoint has been hit, and the
2882  * breakpoint was in user space.  Return 0, otherwise.
2883  */
2884 int
2885 user_dbreg_trap(void)
2886 {
2887         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2888         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2889         int nbp;            /* number of breakpoints that triggered */
2890         caddr_t addr[4];    /* breakpoint addresses */
2891         int i;
2892 
2893         dr7 = rdr7();
2894         if ((dr7 & 0xff) == 0) {
2895                 /*
2896                  * all GE and LE bits in the dr7 register are zero,
2897                  * thus the trap couldn't have been caused by the
2898                  * hardware debug registers
2899                  */
2900                 return 0;
2901         }
2902 
2903         nbp = 0;
2904         dr6 = rdr6();
2905         bp = dr6 & 0xf;
2906 
2907         if (bp == 0) {
2908                 /*
2909                  * None of the breakpoint bits are set meaning this
2910                  * trap was not caused by any of the debug registers
2911                  */
2912                 return 0;
2913         }
2914 
2915         /*
2916          * at least one of the breakpoints were hit, check to see
2917          * which ones and if any of them are user space addresses
2918          */
2919 
2920         if (bp & 0x01) {
2921                 addr[nbp++] = (caddr_t)rdr0();
2922         }
2923         if (bp & 0x02) {
2924                 addr[nbp++] = (caddr_t)rdr1();
2925         }
2926         if (bp & 0x04) {
2927                 addr[nbp++] = (caddr_t)rdr2();
2928         }
2929         if (bp & 0x08) {
2930                 addr[nbp++] = (caddr_t)rdr3();
2931         }
2932 
2933         for (i=0; i<nbp; i++) {
2934                 if (addr[i] <
2935                     (caddr_t)VM_MAX_USER_ADDRESS) {
2936                         /*
2937                          * addr[i] is in user space
2938                          */
2939                         return nbp;
2940                 }
2941         }
2942 
2943         /*
2944          * None of the breakpoints are in user space.
2945          */
2946         return 0;
2947 }
2948 
2949 
2950 #ifndef DDB
2951 void
2952 Debugger(const char *msg)
2953 {
2954 	kprintf("Debugger(\"%s\") called.\n", msg);
2955 }
2956 #endif /* no DDB */
2957 
2958 #ifdef DDB
2959 
2960 /*
2961  * Provide inb() and outb() as functions.  They are normally only
2962  * available as macros calling inlined functions, thus cannot be
2963  * called inside DDB.
2964  *
2965  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2966  */
2967 
2968 #undef inb
2969 #undef outb
2970 
2971 /* silence compiler warnings */
2972 u_char inb(u_int);
2973 void outb(u_int, u_char);
2974 
2975 u_char
2976 inb(u_int port)
2977 {
2978 	u_char	data;
2979 	/*
2980 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2981 	 * %edx, while gcc generates inferior code (movw instead of movl)
2982 	 * if we tell it to load (u_short) port.
2983 	 */
2984 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2985 	return (data);
2986 }
2987 
2988 void
2989 outb(u_int port, u_char data)
2990 {
2991 	u_char	al;
2992 	/*
2993 	 * Use an unnecessary assignment to help gcc's register allocator.
2994 	 * This make a large difference for gcc-1.40 and a tiny difference
2995 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2996 	 * best results.  gcc-2.6.0 can't handle this.
2997 	 */
2998 	al = data;
2999 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
3000 }
3001 
3002 #endif /* DDB */
3003 
3004 
3005 
3006 /*
3007  * initialize all the SMP locks
3008  */
3009 
3010 /* critical region when masking or unmasking interupts */
3011 struct spinlock_deprecated imen_spinlock;
3012 
3013 /* lock region used by kernel profiling */
3014 struct spinlock_deprecated mcount_spinlock;
3015 
3016 /* locks com (tty) data/hardware accesses: a FASTINTR() */
3017 struct spinlock_deprecated com_spinlock;
3018 
3019 /* lock regions around the clock hardware */
3020 struct spinlock_deprecated clock_spinlock;
3021 
3022 static void
3023 init_locks(void)
3024 {
3025 	/*
3026 	 * Get the initial mplock with a count of 1 for the BSP.
3027 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
3028 	 */
3029 	cpu_get_initial_mplock();
3030 	/* DEPRECATED */
3031 	spin_init_deprecated(&mcount_spinlock);
3032 	spin_init_deprecated(&imen_spinlock);
3033 	spin_init_deprecated(&com_spinlock);
3034 	spin_init_deprecated(&clock_spinlock);
3035 
3036 	/* our token pool needs to work early */
3037 	lwkt_token_pool_init();
3038 }
3039 
3040 boolean_t
3041 cpu_mwait_hint_valid(uint32_t hint)
3042 {
3043 	int cx_idx, sub;
3044 
3045 	cx_idx = MWAIT_EAX_TO_CX(hint);
3046 	if (cx_idx >= CPU_MWAIT_CX_MAX)
3047 		return FALSE;
3048 
3049 	sub = MWAIT_EAX_TO_CX_SUB(hint);
3050 	if (sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3051 		return FALSE;
3052 
3053 	return TRUE;
3054 }
3055 
3056 void
3057 cpu_mwait_cx_no_bmsts(void)
3058 {
3059 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_STS);
3060 }
3061 
3062 void
3063 cpu_mwait_cx_no_bmarb(void)
3064 {
3065 	atomic_clear_int(&cpu_mwait_c3_preamble, CPU_MWAIT_C3_PREAMBLE_BM_ARB);
3066 }
3067 
3068 static int
3069 cpu_mwait_cx_hint2name(int hint, char *name, int namelen, boolean_t allow_auto)
3070 {
3071 	int old_cx_idx, sub = 0;
3072 
3073 	if (hint >= 0) {
3074 		old_cx_idx = MWAIT_EAX_TO_CX(hint);
3075 		sub = MWAIT_EAX_TO_CX_SUB(hint);
3076 	} else if (hint == CPU_MWAIT_HINT_AUTO) {
3077 		old_cx_idx = allow_auto ? CPU_MWAIT_C2 : CPU_MWAIT_CX_MAX;
3078 	} else if (hint == CPU_MWAIT_HINT_AUTODEEP) {
3079 		old_cx_idx = allow_auto ? CPU_MWAIT_C3 : CPU_MWAIT_CX_MAX;
3080 	} else {
3081 		old_cx_idx = CPU_MWAIT_CX_MAX;
3082 	}
3083 
3084 	if (!CPU_MWAIT_HAS_CX)
3085 		strlcpy(name, "NONE", namelen);
3086 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTO)
3087 		strlcpy(name, "AUTO", namelen);
3088 	else if (allow_auto && hint == CPU_MWAIT_HINT_AUTODEEP)
3089 		strlcpy(name, "AUTODEEP", namelen);
3090 	else if (old_cx_idx >= CPU_MWAIT_CX_MAX ||
3091 	    sub >= cpu_mwait_cx_info[old_cx_idx].subcnt)
3092 		strlcpy(name, "INVALID", namelen);
3093 	else
3094 		ksnprintf(name, namelen, "C%d/%d", old_cx_idx, sub);
3095 
3096 	return old_cx_idx;
3097 }
3098 
3099 static int
3100 cpu_mwait_cx_name2hint(char *name, int *hint0, boolean_t allow_auto)
3101 {
3102 	int cx_idx, sub, hint;
3103 	char *ptr, *start;
3104 
3105 	if (allow_auto && strcmp(name, "AUTO") == 0) {
3106 		hint = CPU_MWAIT_HINT_AUTO;
3107 		cx_idx = CPU_MWAIT_C2;
3108 		goto done;
3109 	}
3110 	if (allow_auto && strcmp(name, "AUTODEEP") == 0) {
3111 		hint = CPU_MWAIT_HINT_AUTODEEP;
3112 		cx_idx = CPU_MWAIT_C3;
3113 		goto done;
3114 	}
3115 
3116 	if (strlen(name) < 4 || toupper(name[0]) != 'C')
3117 		return -1;
3118 	start = &name[1];
3119 	ptr = NULL;
3120 
3121 	cx_idx = strtol(start, &ptr, 10);
3122 	if (ptr == start || *ptr != '/')
3123 		return -1;
3124 	if (cx_idx < 0 || cx_idx >= CPU_MWAIT_CX_MAX)
3125 		return -1;
3126 
3127 	start = ptr + 1;
3128 	ptr = NULL;
3129 
3130 	sub = strtol(start, &ptr, 10);
3131 	if (*ptr != '\0')
3132 		return -1;
3133 	if (sub < 0 || sub >= cpu_mwait_cx_info[cx_idx].subcnt)
3134 		return -1;
3135 
3136 	hint = MWAIT_EAX_HINT(cx_idx, sub);
3137 done:
3138 	*hint0 = hint;
3139 	return cx_idx;
3140 }
3141 
3142 static int
3143 cpu_mwait_cx_transit(int old_cx_idx, int cx_idx)
3144 {
3145 	if (cx_idx >= CPU_MWAIT_C3 && cpu_mwait_c3_preamble)
3146 		return EOPNOTSUPP;
3147 	if (old_cx_idx < CPU_MWAIT_C3 && cx_idx >= CPU_MWAIT_C3) {
3148 		int error;
3149 
3150 		error = cputimer_intr_powersave_addreq();
3151 		if (error)
3152 			return error;
3153 	} else if (old_cx_idx >= CPU_MWAIT_C3 && cx_idx < CPU_MWAIT_C3) {
3154 		cputimer_intr_powersave_remreq();
3155 	}
3156 	return 0;
3157 }
3158 
3159 static int
3160 cpu_mwait_cx_select_sysctl(SYSCTL_HANDLER_ARGS, int *hint0,
3161     boolean_t allow_auto)
3162 {
3163 	int error, cx_idx, old_cx_idx, hint;
3164 	char name[CPU_MWAIT_CX_NAMELEN];
3165 
3166 	hint = *hint0;
3167 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name),
3168 	    allow_auto);
3169 
3170 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3171 	if (error != 0 || req->newptr == NULL)
3172 		return error;
3173 
3174 	if (!CPU_MWAIT_HAS_CX)
3175 		return EOPNOTSUPP;
3176 
3177 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, allow_auto);
3178 	if (cx_idx < 0)
3179 		return EINVAL;
3180 
3181 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3182 	if (error)
3183 		return error;
3184 
3185 	*hint0 = hint;
3186 	return 0;
3187 }
3188 
3189 static int
3190 cpu_mwait_cx_setname(struct cpu_idle_stat *stat, const char *cx_name)
3191 {
3192 	int error, cx_idx, old_cx_idx, hint;
3193 	char name[CPU_MWAIT_CX_NAMELEN];
3194 
3195 	KASSERT(CPU_MWAIT_HAS_CX, ("cpu does not support mwait CX extension"));
3196 
3197 	hint = stat->hint;
3198 	old_cx_idx = cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3199 
3200 	strlcpy(name, cx_name, sizeof(name));
3201 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3202 	if (cx_idx < 0)
3203 		return EINVAL;
3204 
3205 	error = cpu_mwait_cx_transit(old_cx_idx, cx_idx);
3206 	if (error)
3207 		return error;
3208 
3209 	stat->hint = hint;
3210 	return 0;
3211 }
3212 
3213 static int
3214 cpu_mwait_cx_idle_sysctl(SYSCTL_HANDLER_ARGS)
3215 {
3216 	int hint = cpu_mwait_halt_global;
3217 	int error, cx_idx, cpu;
3218 	char name[CPU_MWAIT_CX_NAMELEN], cx_name[CPU_MWAIT_CX_NAMELEN];
3219 
3220 	cpu_mwait_cx_hint2name(hint, name, sizeof(name), TRUE);
3221 
3222 	error = sysctl_handle_string(oidp, name, sizeof(name), req);
3223 	if (error != 0 || req->newptr == NULL)
3224 		return error;
3225 
3226 	if (!CPU_MWAIT_HAS_CX)
3227 		return EOPNOTSUPP;
3228 
3229 	/* Save name for later per-cpu CX configuration */
3230 	strlcpy(cx_name, name, sizeof(cx_name));
3231 
3232 	cx_idx = cpu_mwait_cx_name2hint(name, &hint, TRUE);
3233 	if (cx_idx < 0)
3234 		return EINVAL;
3235 
3236 	/* Change per-cpu CX configuration */
3237 	for (cpu = 0; cpu < ncpus; ++cpu) {
3238 		error = cpu_mwait_cx_setname(&cpu_idle_stats[cpu], cx_name);
3239 		if (error)
3240 			return error;
3241 	}
3242 
3243 	cpu_mwait_halt_global = hint;
3244 	return 0;
3245 }
3246 
3247 static int
3248 cpu_mwait_cx_pcpu_idle_sysctl(SYSCTL_HANDLER_ARGS)
3249 {
3250 	struct cpu_idle_stat *stat = arg1;
3251 	int error;
3252 
3253 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3254 	    &stat->hint, TRUE);
3255 	return error;
3256 }
3257 
3258 static int
3259 cpu_mwait_cx_spin_sysctl(SYSCTL_HANDLER_ARGS)
3260 {
3261 	int error;
3262 
3263 	error = cpu_mwait_cx_select_sysctl(oidp, arg1, arg2, req,
3264 	    &cpu_mwait_spin, FALSE);
3265 	return error;
3266 }
3267 
3268 /*
3269  * This manual debugging code is called unconditionally from Xtimer
3270  * (the per-cpu timer interrupt) whether the current thread is in a
3271  * critical section or not) and can be useful in tracking down lockups.
3272  *
3273  * NOTE: MANUAL DEBUG CODE
3274  */
3275 #if 0
3276 static int saveticks[SMP_MAXCPU];
3277 static int savecounts[SMP_MAXCPU];
3278 #endif
3279 
3280 void
3281 pcpu_timer_always(struct intrframe *frame)
3282 {
3283 #if 0
3284 	globaldata_t gd = mycpu;
3285 	int cpu = gd->gd_cpuid;
3286 	char buf[64];
3287 	short *gptr;
3288 	int i;
3289 
3290 	if (cpu <= 20) {
3291 		gptr = (short *)0xFFFFFFFF800b8000 + 80 * cpu;
3292 		*gptr = ((*gptr + 1) & 0x00FF) | 0x0700;
3293 		++gptr;
3294 
3295 		ksnprintf(buf, sizeof(buf), " %p %16s %d %16s ",
3296 		    (void *)frame->if_rip, gd->gd_curthread->td_comm, ticks,
3297 		    gd->gd_infomsg);
3298 		for (i = 0; buf[i]; ++i) {
3299 			gptr[i] = 0x0700 | (unsigned char)buf[i];
3300 		}
3301 	}
3302 #if 0
3303 	if (saveticks[gd->gd_cpuid] != ticks) {
3304 		saveticks[gd->gd_cpuid] = ticks;
3305 		savecounts[gd->gd_cpuid] = 0;
3306 	}
3307 	++savecounts[gd->gd_cpuid];
3308 	if (savecounts[gd->gd_cpuid] > 2000 && panicstr == NULL) {
3309 		panic("cpud %d panicing on ticks failure",
3310 			gd->gd_cpuid);
3311 	}
3312 	for (i = 0; i < ncpus; ++i) {
3313 		int delta;
3314 		if (saveticks[i] && panicstr == NULL) {
3315 			delta = saveticks[i] - ticks;
3316 			if (delta < -10 || delta > 10) {
3317 				panic("cpu %d panicing on cpu %d watchdog",
3318 				      gd->gd_cpuid, i);
3319 			}
3320 		}
3321 	}
3322 #endif
3323 #endif
3324 }
3325