xref: /dragonfly/sys/platform/pc64/x86_64/machdep.c (revision fcf53d9b)
1 /*-
2  * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
3  * Copyright (c) 1992 Terrence R. Lambert.
4  * Copyright (c) 2003 Peter Wemm.
5  * Copyright (c) 2008 The DragonFly Project.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
40  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
41  */
42 
43 //#include "use_npx.h"
44 #include "use_isa.h"
45 #include "opt_atalk.h"
46 #include "opt_compat.h"
47 #include "opt_cpu.h"
48 #include "opt_ddb.h"
49 #include "opt_directio.h"
50 #include "opt_inet.h"
51 #include "opt_ipx.h"
52 #include "opt_msgbuf.h"
53 #include "opt_swap.h"
54 #include "opt_apic.h"
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/sysproto.h>
59 #include <sys/signalvar.h>
60 #include <sys/kernel.h>
61 #include <sys/linker.h>
62 #include <sys/malloc.h>
63 #include <sys/proc.h>
64 #include <sys/priv.h>
65 #include <sys/buf.h>
66 #include <sys/reboot.h>
67 #include <sys/mbuf.h>
68 #include <sys/msgbuf.h>
69 #include <sys/sysent.h>
70 #include <sys/sysctl.h>
71 #include <sys/vmmeter.h>
72 #include <sys/bus.h>
73 #include <sys/upcall.h>
74 #include <sys/usched.h>
75 #include <sys/reg.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_object.h>
82 #include <vm/vm_page.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_pager.h>
85 #include <vm/vm_extern.h>
86 
87 #include <sys/thread2.h>
88 #include <sys/mplock2.h>
89 
90 #include <sys/user.h>
91 #include <sys/exec.h>
92 #include <sys/cons.h>
93 
94 #include <ddb/ddb.h>
95 
96 #include <machine/cpu.h>
97 #include <machine/clock.h>
98 #include <machine/specialreg.h>
99 #if JG
100 #include <machine/bootinfo.h>
101 #endif
102 #include <machine/md_var.h>
103 #include <machine/metadata.h>
104 #include <machine/pc/bios.h>
105 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
106 #include <machine/globaldata.h>		/* CPU_prvspace */
107 #include <machine/smp.h>
108 #ifdef PERFMON
109 #include <machine/perfmon.h>
110 #endif
111 #include <machine/cputypes.h>
112 #include <machine/intr_machdep.h>
113 
114 #ifdef OLD_BUS_ARCH
115 #include <bus/isa/isa_device.h>
116 #endif
117 #include <machine_base/isa/isa_intr.h>
118 #include <bus/isa/rtc.h>
119 #include <sys/random.h>
120 #include <sys/ptrace.h>
121 #include <machine/sigframe.h>
122 
123 #include <sys/machintr.h>
124 #include <machine_base/icu/icu_abi.h>
125 #include <machine_base/icu/elcr_var.h>
126 #include <machine_base/apic/ioapic_abi.h>
127 
128 #define PHYSMAP_ENTRIES		10
129 
130 extern u_int64_t hammer_time(u_int64_t, u_int64_t);
131 
132 extern void printcpuinfo(void);	/* XXX header file */
133 extern void identify_cpu(void);
134 #if JG
135 extern void finishidentcpu(void);
136 #endif
137 extern void panicifcpuunsupported(void);
138 
139 static void cpu_startup(void *);
140 #ifndef CPU_DISABLE_SSE
141 static void set_fpregs_xmm(struct save87 *, struct savexmm *);
142 static void fill_fpregs_xmm(struct savexmm *, struct save87 *);
143 #endif /* CPU_DISABLE_SSE */
144 #ifdef DIRECTIO
145 extern void ffs_rawread_setup(void);
146 #endif /* DIRECTIO */
147 static void init_locks(void);
148 
149 SYSINIT(cpu, SI_BOOT2_SMP, SI_ORDER_FIRST, cpu_startup, NULL)
150 
151 #ifdef DDB
152 extern vm_offset_t ksym_start, ksym_end;
153 #endif
154 
155 struct privatespace CPU_prvspace[MAXCPU] __aligned(4096); /* XXX */
156 
157 int	_udatasel, _ucodesel, _ucode32sel;
158 u_long	atdevbase;
159 #ifdef SMP
160 int64_t tsc_offsets[MAXCPU];
161 #else
162 int64_t tsc_offsets[1];
163 #endif
164 
165 #if defined(SWTCH_OPTIM_STATS)
166 extern int swtch_optim_stats;
167 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
168 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
169 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
170 	CTLFLAG_RD, &tlb_flush_count, 0, "");
171 #endif
172 
173 long physmem = 0;
174 
175 u_long ebda_addr = 0;
176 
177 static int
178 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
179 {
180 	u_long pmem = ctob(physmem);
181 
182 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
183 	return (error);
184 }
185 
186 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
187 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
188 
189 static int
190 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
191 {
192 	int error = sysctl_handle_int(oidp, 0,
193 		ctob(physmem - vmstats.v_wire_count), req);
194 	return (error);
195 }
196 
197 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
198 	0, 0, sysctl_hw_usermem, "IU", "");
199 
200 static int
201 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
202 {
203 	int error = sysctl_handle_int(oidp, 0,
204 		x86_64_btop(avail_end - avail_start), req);
205 	return (error);
206 }
207 
208 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
209 	0, 0, sysctl_hw_availpages, "I", "");
210 
211 vm_paddr_t Maxmem;
212 vm_paddr_t Realmem;
213 
214 /*
215  * The number of PHYSMAP entries must be one less than the number of
216  * PHYSSEG entries because the PHYSMAP entry that spans the largest
217  * physical address that is accessible by ISA DMA is split into two
218  * PHYSSEG entries.
219  */
220 #define	PHYSMAP_SIZE	(2 * (VM_PHYSSEG_MAX - 1))
221 
222 vm_paddr_t phys_avail[PHYSMAP_SIZE + 2];
223 vm_paddr_t dump_avail[PHYSMAP_SIZE + 2];
224 
225 /* must be 2 less so 0 0 can signal end of chunks */
226 #define PHYS_AVAIL_ARRAY_END (NELEM(phys_avail) - 2)
227 #define DUMP_AVAIL_ARRAY_END (NELEM(dump_avail) - 2)
228 
229 static vm_offset_t buffer_sva, buffer_eva;
230 vm_offset_t clean_sva, clean_eva;
231 static vm_offset_t pager_sva, pager_eva;
232 static struct trapframe proc0_tf;
233 
234 static void
235 cpu_startup(void *dummy)
236 {
237 	caddr_t v;
238 	vm_size_t size = 0;
239 	vm_offset_t firstaddr;
240 
241 	/*
242 	 * Good {morning,afternoon,evening,night}.
243 	 */
244 	kprintf("%s", version);
245 	startrtclock();
246 	printcpuinfo();
247 	panicifcpuunsupported();
248 #ifdef PERFMON
249 	perfmon_init();
250 #endif
251 	kprintf("real memory  = %ju (%ju MB)\n",
252 		(intmax_t)Realmem,
253 		(intmax_t)Realmem / 1024 / 1024);
254 	/*
255 	 * Display any holes after the first chunk of extended memory.
256 	 */
257 	if (bootverbose) {
258 		int indx;
259 
260 		kprintf("Physical memory chunk(s):\n");
261 		for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
262 			vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
263 
264 			kprintf("0x%08jx - 0x%08jx, %ju bytes (%ju pages)\n",
265 				(intmax_t)phys_avail[indx],
266 				(intmax_t)phys_avail[indx + 1] - 1,
267 				(intmax_t)size1,
268 				(intmax_t)(size1 / PAGE_SIZE));
269 		}
270 	}
271 
272 	/*
273 	 * Allocate space for system data structures.
274 	 * The first available kernel virtual address is in "v".
275 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
276 	 * As pages of memory are allocated and cleared,
277 	 * "firstaddr" is incremented.
278 	 * An index into the kernel page table corresponding to the
279 	 * virtual memory address maintained in "v" is kept in "mapaddr".
280 	 */
281 
282 	/*
283 	 * Make two passes.  The first pass calculates how much memory is
284 	 * needed and allocates it.  The second pass assigns virtual
285 	 * addresses to the various data structures.
286 	 */
287 	firstaddr = 0;
288 again:
289 	v = (caddr_t)firstaddr;
290 
291 #define	valloc(name, type, num) \
292 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
293 #define	valloclim(name, type, num, lim) \
294 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
295 
296 	/*
297 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
298 	 * For the first 64MB of ram nominally allocate sufficient buffers to
299 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
300 	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
301 	 * the buffer cache we limit the eventual kva reservation to
302 	 * maxbcache bytes.
303 	 *
304 	 * factor represents the 1/4 x ram conversion.
305 	 */
306 	if (nbuf == 0) {
307 		int factor = 4 * BKVASIZE / 1024;
308 		int kbytes = physmem * (PAGE_SIZE / 1024);
309 
310 		nbuf = 50;
311 		if (kbytes > 4096)
312 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
313 		if (kbytes > 65536)
314 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
315 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
316 			nbuf = maxbcache / BKVASIZE;
317 	}
318 
319 	/*
320 	 * Do not allow the buffer_map to be more then 1/2 the size of the
321 	 * kernel_map.
322 	 */
323 	if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
324 		nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
325 		kprintf("Warning: nbufs capped at %d\n", nbuf);
326 	}
327 
328 	nswbuf = max(min(nbuf/4, 256), 16);
329 #ifdef NSWBUF_MIN
330 	if (nswbuf < NSWBUF_MIN)
331 		nswbuf = NSWBUF_MIN;
332 #endif
333 #ifdef DIRECTIO
334 	ffs_rawread_setup();
335 #endif
336 
337 	valloc(swbuf, struct buf, nswbuf);
338 	valloc(buf, struct buf, nbuf);
339 
340 	/*
341 	 * End of first pass, size has been calculated so allocate memory
342 	 */
343 	if (firstaddr == 0) {
344 		size = (vm_size_t)(v - firstaddr);
345 		firstaddr = kmem_alloc(&kernel_map, round_page(size));
346 		if (firstaddr == 0)
347 			panic("startup: no room for tables");
348 		goto again;
349 	}
350 
351 	/*
352 	 * End of second pass, addresses have been assigned
353 	 */
354 	if ((vm_size_t)(v - firstaddr) != size)
355 		panic("startup: table size inconsistency");
356 
357 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
358 		      (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
359 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
360 		      (nbuf*BKVASIZE));
361 	buffer_map.system_map = 1;
362 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
363 		      (nswbuf*MAXPHYS) + pager_map_size);
364 	pager_map.system_map = 1;
365 
366 #if defined(USERCONFIG)
367 	userconfig();
368 	cninit();		/* the preferred console may have changed */
369 #endif
370 
371 	kprintf("avail memory = %ju (%ju MB)\n",
372 		(uintmax_t)ptoa(vmstats.v_free_count),
373 		(uintmax_t)ptoa(vmstats.v_free_count) / 1024 / 1024);
374 
375 	/*
376 	 * Set up buffers, so they can be used to read disk labels.
377 	 */
378 	bufinit();
379 	vm_pager_bufferinit();
380 
381 	/* Log ELCR information */
382 	elcr_dump();
383 
384 #ifdef SMP
385 	/*
386 	 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
387 	 */
388 	mp_start();			/* fire up the APs and APICs */
389 	mp_announce();
390 #else
391 	MachIntrABI.finalize();
392 #endif  /* SMP */
393 	cpu_setregs();
394 }
395 
396 /*
397  * Send an interrupt to process.
398  *
399  * Stack is set up to allow sigcode stored
400  * at top to call routine, followed by kcall
401  * to sigreturn routine below.  After sigreturn
402  * resets the signal mask, the stack, and the
403  * frame pointer, it returns to the user
404  * specified pc, psl.
405  */
406 void
407 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
408 {
409 	struct lwp *lp = curthread->td_lwp;
410 	struct proc *p = lp->lwp_proc;
411 	struct trapframe *regs;
412 	struct sigacts *psp = p->p_sigacts;
413 	struct sigframe sf, *sfp;
414 	int oonstack;
415 	char *sp;
416 
417 	regs = lp->lwp_md.md_regs;
418 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
419 
420 	/* Save user context */
421 	bzero(&sf, sizeof(struct sigframe));
422 	sf.sf_uc.uc_sigmask = *mask;
423 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
424 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
425 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
426 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
427 
428 	/* Make the size of the saved context visible to userland */
429 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
430 
431 	/* Save mailbox pending state for syscall interlock semantics */
432 	if (p->p_flag & P_MAILBOX)
433 		sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
434 
435 	/* Allocate and validate space for the signal handler context. */
436         if ((lp->lwp_flag & LWP_ALTSTACK) != 0 && !oonstack &&
437 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
438 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
439 			      sizeof(struct sigframe));
440 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
441 	} else {
442 		/* We take red zone into account */
443 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
444 	}
445 
446 	/* Align to 16 bytes */
447 	sfp = (struct sigframe *)((intptr_t)sp & ~(intptr_t)0xF);
448 
449 	/* Translate the signal is appropriate */
450 	if (p->p_sysent->sv_sigtbl) {
451 		if (sig <= p->p_sysent->sv_sigsize)
452 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
453 	}
454 
455 	/*
456 	 * Build the argument list for the signal handler.
457 	 *
458 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
459 	 */
460 	regs->tf_rdi = sig;				/* argument 1 */
461 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
462 
463 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
464 		/*
465 		 * Signal handler installed with SA_SIGINFO.
466 		 *
467 		 * action(signo, siginfo, ucontext)
468 		 */
469 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
470 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
471 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
472 
473 		/* fill siginfo structure */
474 		sf.sf_si.si_signo = sig;
475 		sf.sf_si.si_code = code;
476 		sf.sf_si.si_addr = (void *)regs->tf_addr;
477 	} else {
478 		/*
479 		 * Old FreeBSD-style arguments.
480 		 *
481 		 * handler (signo, code, [uc], addr)
482 		 */
483 		regs->tf_rsi = (register_t)code;	/* argument 2 */
484 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
485 		sf.sf_ahu.sf_handler = catcher;
486 	}
487 
488 	/*
489 	 * If we're a vm86 process, we want to save the segment registers.
490 	 * We also change eflags to be our emulated eflags, not the actual
491 	 * eflags.
492 	 */
493 #if JG
494 	if (regs->tf_eflags & PSL_VM) {
495 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
496 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
497 
498 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
499 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
500 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
501 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
502 
503 		if (vm86->vm86_has_vme == 0)
504 			sf.sf_uc.uc_mcontext.mc_eflags =
505 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
506 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
507 
508 		/*
509 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
510 		 * syscalls made by the signal handler.  This just avoids
511 		 * wasting time for our lazy fixup of such faults.  PSL_NT
512 		 * does nothing in vm86 mode, but vm86 programs can set it
513 		 * almost legitimately in probes for old cpu types.
514 		 */
515 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
516 	}
517 #endif
518 
519 	/*
520 	 * Save the FPU state and reinit the FP unit
521 	 */
522 	npxpush(&sf.sf_uc.uc_mcontext);
523 
524 	/*
525 	 * Copy the sigframe out to the user's stack.
526 	 */
527 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
528 		/*
529 		 * Something is wrong with the stack pointer.
530 		 * ...Kill the process.
531 		 */
532 		sigexit(lp, SIGILL);
533 	}
534 
535 	regs->tf_rsp = (register_t)sfp;
536 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
537 
538 	/*
539 	 * i386 abi specifies that the direction flag must be cleared
540 	 * on function entry
541 	 */
542 	regs->tf_rflags &= ~(PSL_T|PSL_D);
543 
544 	/*
545 	 * 64 bit mode has a code and stack selector but
546 	 * no data or extra selector.  %fs and %gs are not
547 	 * stored in-context.
548 	 */
549 	regs->tf_cs = _ucodesel;
550 	regs->tf_ss = _udatasel;
551 }
552 
553 /*
554  * Sanitize the trapframe for a virtual kernel passing control to a custom
555  * VM context.  Remove any items that would otherwise create a privilage
556  * issue.
557  *
558  * XXX at the moment we allow userland to set the resume flag.  Is this a
559  * bad idea?
560  */
561 int
562 cpu_sanitize_frame(struct trapframe *frame)
563 {
564 	frame->tf_cs = _ucodesel;
565 	frame->tf_ss = _udatasel;
566 	/* XXX VM (8086) mode not supported? */
567 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
568 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
569 
570 	return(0);
571 }
572 
573 /*
574  * Sanitize the tls so loading the descriptor does not blow up
575  * on us.  For x86_64 we don't have to do anything.
576  */
577 int
578 cpu_sanitize_tls(struct savetls *tls)
579 {
580 	return(0);
581 }
582 
583 /*
584  * sigreturn(ucontext_t *sigcntxp)
585  *
586  * System call to cleanup state after a signal
587  * has been taken.  Reset signal mask and
588  * stack state from context left by sendsig (above).
589  * Return to previous pc and psl as specified by
590  * context left by sendsig. Check carefully to
591  * make sure that the user has not modified the
592  * state to gain improper privileges.
593  *
594  * MPSAFE
595  */
596 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
597 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
598 
599 int
600 sys_sigreturn(struct sigreturn_args *uap)
601 {
602 	struct lwp *lp = curthread->td_lwp;
603 	struct proc *p = lp->lwp_proc;
604 	struct trapframe *regs;
605 	ucontext_t uc;
606 	ucontext_t *ucp;
607 	register_t rflags;
608 	int cs;
609 	int error;
610 
611 	/*
612 	 * We have to copy the information into kernel space so userland
613 	 * can't modify it while we are sniffing it.
614 	 */
615 	regs = lp->lwp_md.md_regs;
616 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
617 	if (error)
618 		return (error);
619 	ucp = &uc;
620 	rflags = ucp->uc_mcontext.mc_rflags;
621 
622 	/* VM (8086) mode not supported */
623 	rflags &= ~PSL_VM_UNSUPP;
624 
625 #if JG
626 	if (eflags & PSL_VM) {
627 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
628 		struct vm86_kernel *vm86;
629 
630 		/*
631 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
632 		 * set up the vm86 area, and we can't enter vm86 mode.
633 		 */
634 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
635 			return (EINVAL);
636 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
637 		if (vm86->vm86_inited == 0)
638 			return (EINVAL);
639 
640 		/* go back to user mode if both flags are set */
641 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
642 			trapsignal(lp, SIGBUS, 0);
643 
644 		if (vm86->vm86_has_vme) {
645 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
646 			    (eflags & VME_USERCHANGE) | PSL_VM;
647 		} else {
648 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
649 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |
650 			    (eflags & VM_USERCHANGE) | PSL_VM;
651 		}
652 		bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
653 		tf->tf_eflags = eflags;
654 		tf->tf_vm86_ds = tf->tf_ds;
655 		tf->tf_vm86_es = tf->tf_es;
656 		tf->tf_vm86_fs = tf->tf_fs;
657 		tf->tf_vm86_gs = tf->tf_gs;
658 		tf->tf_ds = _udatasel;
659 		tf->tf_es = _udatasel;
660 		tf->tf_fs = _udatasel;
661 		tf->tf_gs = _udatasel;
662 	} else
663 #endif
664 	{
665 		/*
666 		 * Don't allow users to change privileged or reserved flags.
667 		 */
668 		/*
669 		 * XXX do allow users to change the privileged flag PSL_RF.
670 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
671 		 * should sometimes set it there too.  tf_eflags is kept in
672 		 * the signal context during signal handling and there is no
673 		 * other place to remember it, so the PSL_RF bit may be
674 		 * corrupted by the signal handler without us knowing.
675 		 * Corruption of the PSL_RF bit at worst causes one more or
676 		 * one less debugger trap, so allowing it is fairly harmless.
677 		 */
678 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
679 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
680 	    		return(EINVAL);
681 		}
682 
683 		/*
684 		 * Don't allow users to load a valid privileged %cs.  Let the
685 		 * hardware check for invalid selectors, excess privilege in
686 		 * other selectors, invalid %eip's and invalid %esp's.
687 		 */
688 		cs = ucp->uc_mcontext.mc_cs;
689 		if (!CS_SECURE(cs)) {
690 			kprintf("sigreturn: cs = 0x%x\n", cs);
691 			trapsignal(lp, SIGBUS, T_PROTFLT);
692 			return(EINVAL);
693 		}
694 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
695 	}
696 
697 	/*
698 	 * Restore the FPU state from the frame
699 	 */
700 	crit_enter();
701 	npxpop(&ucp->uc_mcontext);
702 
703 	/*
704 	 * Merge saved signal mailbox pending flag to maintain interlock
705 	 * semantics against system calls.
706 	 */
707 	if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
708 		p->p_flag |= P_MAILBOX;
709 
710 	if (ucp->uc_mcontext.mc_onstack & 1)
711 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
712 	else
713 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
714 
715 	lp->lwp_sigmask = ucp->uc_sigmask;
716 	SIG_CANTMASK(lp->lwp_sigmask);
717 	crit_exit();
718 	return(EJUSTRETURN);
719 }
720 
721 /*
722  * Stack frame on entry to function.  %rax will contain the function vector,
723  * %rcx will contain the function data.  flags, rcx, and rax will have
724  * already been pushed on the stack.
725  */
726 struct upc_frame {
727 	register_t	rax;
728 	register_t	rcx;
729 	register_t	rdx;
730 	register_t	flags;
731 	register_t	oldip;
732 };
733 
734 void
735 sendupcall(struct vmupcall *vu, int morepending)
736 {
737 	struct lwp *lp = curthread->td_lwp;
738 	struct trapframe *regs;
739 	struct upcall upcall;
740 	struct upc_frame upc_frame;
741 	int	crit_count = 0;
742 
743 	/*
744 	 * If we are a virtual kernel running an emulated user process
745 	 * context, switch back to the virtual kernel context before
746 	 * trying to post the signal.
747 	 */
748 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
749 		lp->lwp_md.md_regs->tf_trapno = 0;
750 		vkernel_trap(lp, lp->lwp_md.md_regs);
751 	}
752 
753 	/*
754 	 * Get the upcall data structure
755 	 */
756 	if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
757 	    copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
758 	) {
759 		vu->vu_pending = 0;
760 		kprintf("bad upcall address\n");
761 		return;
762 	}
763 
764 	/*
765 	 * If the data structure is already marked pending or has a critical
766 	 * section count, mark the data structure as pending and return
767 	 * without doing an upcall.  vu_pending is left set.
768 	 */
769 	if (upcall.upc_pending || crit_count >= vu->vu_pending) {
770 		if (upcall.upc_pending < vu->vu_pending) {
771 			upcall.upc_pending = vu->vu_pending;
772 			copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
773 				sizeof(upcall.upc_pending));
774 		}
775 		return;
776 	}
777 
778 	/*
779 	 * We can run this upcall now, clear vu_pending.
780 	 *
781 	 * Bump our critical section count and set or clear the
782 	 * user pending flag depending on whether more upcalls are
783 	 * pending.  The user will be responsible for calling
784 	 * upc_dispatch(-1) to process remaining upcalls.
785 	 */
786 	vu->vu_pending = 0;
787 	upcall.upc_pending = morepending;
788 	++crit_count;
789 	copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
790 		sizeof(upcall.upc_pending));
791 	copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
792 		sizeof(int));
793 
794 	/*
795 	 * Construct a stack frame and issue the upcall
796 	 */
797 	regs = lp->lwp_md.md_regs;
798 	upc_frame.rax = regs->tf_rax;
799 	upc_frame.rcx = regs->tf_rcx;
800 	upc_frame.rdx = regs->tf_rdx;
801 	upc_frame.flags = regs->tf_rflags;
802 	upc_frame.oldip = regs->tf_rip;
803 	if (copyout(&upc_frame, (void *)(regs->tf_rsp - sizeof(upc_frame)),
804 	    sizeof(upc_frame)) != 0) {
805 		kprintf("bad stack on upcall\n");
806 	} else {
807 		regs->tf_rax = (register_t)vu->vu_func;
808 		regs->tf_rcx = (register_t)vu->vu_data;
809 		regs->tf_rdx = (register_t)lp->lwp_upcall;
810 		regs->tf_rip = (register_t)vu->vu_ctx;
811 		regs->tf_rsp -= sizeof(upc_frame);
812 	}
813 }
814 
815 /*
816  * fetchupcall occurs in the context of a system call, which means that
817  * we have to return EJUSTRETURN in order to prevent eax and edx from
818  * being overwritten by the syscall return value.
819  *
820  * if vu is not NULL we return the new context in %edx, the new data in %ecx,
821  * and the function pointer in %eax.
822  */
823 int
824 fetchupcall(struct vmupcall *vu, int morepending, void *rsp)
825 {
826 	struct upc_frame upc_frame;
827 	struct lwp *lp = curthread->td_lwp;
828 	struct trapframe *regs;
829 	int error;
830 	struct upcall upcall;
831 	int crit_count;
832 
833 	regs = lp->lwp_md.md_regs;
834 
835 	error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
836 	if (error == 0) {
837 	    if (vu) {
838 		/*
839 		 * This jumps us to the next ready context.
840 		 */
841 		vu->vu_pending = 0;
842 		error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
843 		crit_count = 0;
844 		if (error == 0)
845 			error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
846 		++crit_count;
847 		if (error == 0)
848 			error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
849 		regs->tf_rax = (register_t)vu->vu_func;
850 		regs->tf_rcx = (register_t)vu->vu_data;
851 		regs->tf_rdx = (register_t)lp->lwp_upcall;
852 		regs->tf_rip = (register_t)vu->vu_ctx;
853 		regs->tf_rsp = (register_t)rsp;
854 	    } else {
855 		/*
856 		 * This returns us to the originally interrupted code.
857 		 */
858 		error = copyin(rsp, &upc_frame, sizeof(upc_frame));
859 		regs->tf_rax = upc_frame.rax;
860 		regs->tf_rcx = upc_frame.rcx;
861 		regs->tf_rdx = upc_frame.rdx;
862 		regs->tf_rflags = (regs->tf_rflags & ~PSL_USERCHANGE) |
863 				(upc_frame.flags & PSL_USERCHANGE);
864 		regs->tf_rip = upc_frame.oldip;
865 		regs->tf_rsp = (register_t)((char *)rsp + sizeof(upc_frame));
866 	    }
867 	}
868 	if (error == 0)
869 		error = EJUSTRETURN;
870 	return(error);
871 }
872 
873 /*
874  * Machine dependent boot() routine
875  *
876  * I haven't seen anything to put here yet
877  * Possibly some stuff might be grafted back here from boot()
878  */
879 void
880 cpu_boot(int howto)
881 {
882 }
883 
884 /*
885  * Shutdown the CPU as much as possible
886  */
887 void
888 cpu_halt(void)
889 {
890 	for (;;)
891 		__asm__ __volatile("hlt");
892 }
893 
894 /*
895  * cpu_idle() represents the idle LWKT.  You cannot return from this function
896  * (unless you want to blow things up!).  Instead we look for runnable threads
897  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
898  *
899  * The main loop is entered with a critical section held, we must release
900  * the critical section before doing anything else.  lwkt_switch() will
901  * check for pending interrupts due to entering and exiting its own
902  * critical section.
903  *
904  * NOTE: On an SMP system we rely on a scheduler IPI to wake a HLTed cpu up.
905  *	 However, there are cases where the idlethread will be entered with
906  *	 the possibility that no IPI will occur and in such cases
907  *	 lwkt_switch() sets TDF_IDLE_NOHLT.
908  *
909  * NOTE: cpu_idle_hlt again defaults to 2 (use ACPI sleep states).  Set to
910  *	 1 to just use hlt and for debugging purposes.
911  *
912  * NOTE: cpu_idle_repeat determines how many entries into the idle thread
913  *	 must occur before it starts using ACPI halt.
914  */
915 static int	cpu_idle_hlt = 2;
916 static int	cpu_idle_hltcnt;
917 static int	cpu_idle_spincnt;
918 static u_int	cpu_idle_repeat = 4;
919 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
920     &cpu_idle_hlt, 0, "Idle loop HLT enable");
921 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
922     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
923 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
924     &cpu_idle_spincnt, 0, "Idle loop entry spins");
925 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_repeat, CTLFLAG_RW,
926     &cpu_idle_repeat, 0, "Idle entries before acpi hlt");
927 
928 static void
929 cpu_idle_default_hook(void)
930 {
931 	/*
932 	 * We must guarentee that hlt is exactly the instruction
933 	 * following the sti.
934 	 */
935 	__asm __volatile("sti; hlt");
936 }
937 
938 /* Other subsystems (e.g., ACPI) can hook this later. */
939 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
940 
941 void
942 cpu_idle(void)
943 {
944 	globaldata_t gd = mycpu;
945 	struct thread *td __debugvar = gd->gd_curthread;
946 	int reqflags;
947 	int quick;
948 
949 	crit_exit();
950 	KKASSERT(td->td_critcount == 0);
951 	for (;;) {
952 		/*
953 		 * See if there are any LWKTs ready to go.
954 		 */
955 		lwkt_switch();
956 
957 		/*
958 		 * When halting inside a cli we must check for reqflags
959 		 * races, particularly [re]schedule requests.  Running
960 		 * splz() does the job.
961 		 *
962 		 * cpu_idle_hlt:
963 		 *	0	Never halt, just spin
964 		 *
965 		 *	1	Always use HLT (or MONITOR/MWAIT if avail).
966 		 *		This typically eats more power than the
967 		 *		ACPI halt.
968 		 *
969 		 *	2	Use HLT/MONITOR/MWAIT up to a point and then
970 		 *		use the ACPI halt (default).  This is a hybrid
971 		 *		approach.  See machdep.cpu_idle_repeat.
972 		 *
973 		 *	3	Always use the ACPI halt.  This typically
974 		 *		eats the least amount of power but the cpu
975 		 *		will be slow waking up.  Slows down e.g.
976 		 *		compiles and other pipe/event oriented stuff.
977 		 *
978 		 * NOTE: Interrupts are enabled and we are not in a critical
979 		 *	 section.
980 		 *
981 		 * NOTE: Preemptions do not reset gd_idle_repeat.   Also we
982 		 *	 don't bother capping gd_idle_repeat, it is ok if
983 		 *	 it overflows.
984 		 */
985 		++gd->gd_idle_repeat;
986 		reqflags = gd->gd_reqflags;
987 		quick = (cpu_idle_hlt == 1) ||
988 			(cpu_idle_hlt < 3 &&
989 			 gd->gd_idle_repeat < cpu_idle_repeat);
990 
991 		if (quick && (cpu_mi_feature & CPU_MI_MONITOR) &&
992 		    (reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
993 			cpu_mmw_pause_int(&gd->gd_reqflags, reqflags);
994 			++cpu_idle_hltcnt;
995 		} else if (cpu_idle_hlt) {
996 			__asm __volatile("cli");
997 			splz();
998 			if ((gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
999 				if (quick)
1000 					cpu_idle_default_hook();
1001 				else
1002 					cpu_idle_hook();
1003 			}
1004 			__asm __volatile("sti");
1005 			++cpu_idle_hltcnt;
1006 		} else {
1007 			splz();
1008 			__asm __volatile("sti");
1009 			++cpu_idle_spincnt;
1010 		}
1011 	}
1012 }
1013 
1014 #ifdef SMP
1015 
1016 /*
1017  * This routine is called if a spinlock has been held through the
1018  * exponential backoff period and is seriously contested.  On a real cpu
1019  * we let it spin.
1020  */
1021 void
1022 cpu_spinlock_contested(void)
1023 {
1024 	cpu_pause();
1025 }
1026 
1027 #endif
1028 
1029 /*
1030  * Clear registers on exec
1031  */
1032 void
1033 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
1034 {
1035 	struct thread *td = curthread;
1036 	struct lwp *lp = td->td_lwp;
1037 	struct pcb *pcb = td->td_pcb;
1038 	struct trapframe *regs = lp->lwp_md.md_regs;
1039 
1040 	/* was i386_user_cleanup() in NetBSD */
1041 	user_ldt_free(pcb);
1042 
1043 	bzero((char *)regs, sizeof(struct trapframe));
1044 	regs->tf_rip = entry;
1045 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
1046 	regs->tf_rdi = stack;		/* argv */
1047 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
1048 	regs->tf_ss = _udatasel;
1049 	regs->tf_cs = _ucodesel;
1050 	regs->tf_rbx = ps_strings;
1051 
1052 	/*
1053 	 * Reset the hardware debug registers if they were in use.
1054 	 * They won't have any meaning for the newly exec'd process.
1055 	 */
1056 	if (pcb->pcb_flags & PCB_DBREGS) {
1057 		pcb->pcb_dr0 = 0;
1058 		pcb->pcb_dr1 = 0;
1059 		pcb->pcb_dr2 = 0;
1060 		pcb->pcb_dr3 = 0;
1061 		pcb->pcb_dr6 = 0;
1062 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
1063 		if (pcb == td->td_pcb) {
1064 			/*
1065 			 * Clear the debug registers on the running
1066 			 * CPU, otherwise they will end up affecting
1067 			 * the next process we switch to.
1068 			 */
1069 			reset_dbregs();
1070 		}
1071 		pcb->pcb_flags &= ~PCB_DBREGS;
1072 	}
1073 
1074 	/*
1075 	 * Initialize the math emulator (if any) for the current process.
1076 	 * Actually, just clear the bit that says that the emulator has
1077 	 * been initialized.  Initialization is delayed until the process
1078 	 * traps to the emulator (if it is done at all) mainly because
1079 	 * emulators don't provide an entry point for initialization.
1080 	 */
1081 	pcb->pcb_flags &= ~FP_SOFTFP;
1082 
1083 	/*
1084 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
1085 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
1086 	 *	 may panic in npxdna().
1087 	 */
1088 	crit_enter();
1089 	load_cr0(rcr0() | CR0_MP);
1090 
1091 	/*
1092 	 * NOTE: The MSR values must be correct so we can return to
1093 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
1094 	 *	 code knows what the current MSR values are.
1095 	 */
1096 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
1097 	pcb->pcb_gsbase = 0;
1098 	mdcpu->gd_user_fs = 0;	/* Cache of current MSR values */
1099 	mdcpu->gd_user_gs = 0;
1100 	wrmsr(MSR_FSBASE, 0);	/* Set MSR values for return to userland */
1101 	wrmsr(MSR_KGSBASE, 0);
1102 
1103 	/* Initialize the npx (if any) for the current process. */
1104 	npxinit(__INITIAL_NPXCW__);
1105 	crit_exit();
1106 
1107 	pcb->pcb_ds = _udatasel;
1108 	pcb->pcb_es = _udatasel;
1109 	pcb->pcb_fs = _udatasel;
1110 	pcb->pcb_gs = _udatasel;
1111 }
1112 
1113 void
1114 cpu_setregs(void)
1115 {
1116 	register_t cr0;
1117 
1118 	cr0 = rcr0();
1119 	cr0 |= CR0_NE;			/* Done by npxinit() */
1120 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
1121 	cr0 |= CR0_WP | CR0_AM;
1122 	load_cr0(cr0);
1123 	load_gs(_udatasel);
1124 }
1125 
1126 static int
1127 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1128 {
1129 	int error;
1130 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1131 		req);
1132 	if (!error && req->newptr)
1133 		resettodr();
1134 	return (error);
1135 }
1136 
1137 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1138 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1139 
1140 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1141 	CTLFLAG_RW, &disable_rtc_set, 0, "");
1142 
1143 #if JG
1144 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1145 	CTLFLAG_RD, &bootinfo, bootinfo, "");
1146 #endif
1147 
1148 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1149 	CTLFLAG_RW, &wall_cmos_clock, 0, "");
1150 
1151 extern u_long bootdev;		/* not a cdev_t - encoding is different */
1152 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1153 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1154 
1155 /*
1156  * Initialize 386 and configure to run kernel
1157  */
1158 
1159 /*
1160  * Initialize segments & interrupt table
1161  */
1162 
1163 int _default_ldt;
1164 struct user_segment_descriptor gdt[NGDT * MAXCPU];	/* global descriptor table */
1165 static struct gate_descriptor idt0[NIDT];
1166 struct gate_descriptor *idt = &idt0[0];	/* interrupt descriptor table */
1167 #if JG
1168 union descriptor ldt[NLDT];		/* local descriptor table */
1169 #endif
1170 
1171 /* table descriptors - used to load tables by cpu */
1172 struct region_descriptor r_gdt, r_idt;
1173 
1174 /* JG proc0paddr is a virtual address */
1175 void *proc0paddr;
1176 /* JG alignment? */
1177 char proc0paddr_buff[LWKT_THREAD_STACK];
1178 
1179 
1180 /* software prototypes -- in more palatable form */
1181 struct soft_segment_descriptor gdt_segs[] = {
1182 /* GNULL_SEL	0 Null Descriptor */
1183 {	0x0,			/* segment base address  */
1184 	0x0,			/* length */
1185 	0,			/* segment type */
1186 	0,			/* segment descriptor priority level */
1187 	0,			/* segment descriptor present */
1188 	0,			/* long */
1189 	0,			/* default 32 vs 16 bit size */
1190 	0  			/* limit granularity (byte/page units)*/ },
1191 /* GCODE_SEL	1 Code Descriptor for kernel */
1192 {	0x0,			/* segment base address  */
1193 	0xfffff,		/* length - all address space */
1194 	SDT_MEMERA,		/* segment type */
1195 	SEL_KPL,		/* segment descriptor priority level */
1196 	1,			/* segment descriptor present */
1197 	1,			/* long */
1198 	0,			/* default 32 vs 16 bit size */
1199 	1  			/* limit granularity (byte/page units)*/ },
1200 /* GDATA_SEL	2 Data Descriptor for kernel */
1201 {	0x0,			/* segment base address  */
1202 	0xfffff,		/* length - all address space */
1203 	SDT_MEMRWA,		/* segment type */
1204 	SEL_KPL,		/* segment descriptor priority level */
1205 	1,			/* segment descriptor present */
1206 	1,			/* long */
1207 	0,			/* default 32 vs 16 bit size */
1208 	1  			/* limit granularity (byte/page units)*/ },
1209 /* GUCODE32_SEL	3 32 bit Code Descriptor for user */
1210 {	0x0,			/* segment base address  */
1211 	0xfffff,		/* length - all address space */
1212 	SDT_MEMERA,		/* segment type */
1213 	SEL_UPL,		/* segment descriptor priority level */
1214 	1,			/* segment descriptor present */
1215 	0,			/* long */
1216 	1,			/* default 32 vs 16 bit size */
1217 	1  			/* limit granularity (byte/page units)*/ },
1218 /* GUDATA_SEL	4 32/64 bit Data Descriptor for user */
1219 {	0x0,			/* segment base address  */
1220 	0xfffff,		/* length - all address space */
1221 	SDT_MEMRWA,		/* segment type */
1222 	SEL_UPL,		/* segment descriptor priority level */
1223 	1,			/* segment descriptor present */
1224 	0,			/* long */
1225 	1,			/* default 32 vs 16 bit size */
1226 	1  			/* limit granularity (byte/page units)*/ },
1227 /* GUCODE_SEL	5 64 bit Code Descriptor for user */
1228 {	0x0,			/* segment base address  */
1229 	0xfffff,		/* length - all address space */
1230 	SDT_MEMERA,		/* segment type */
1231 	SEL_UPL,		/* segment descriptor priority level */
1232 	1,			/* segment descriptor present */
1233 	1,			/* long */
1234 	0,			/* default 32 vs 16 bit size */
1235 	1  			/* limit granularity (byte/page units)*/ },
1236 /* GPROC0_SEL	6 Proc 0 Tss Descriptor */
1237 {
1238 	0x0,			/* segment base address */
1239 	sizeof(struct x86_64tss)-1,/* length - all address space */
1240 	SDT_SYSTSS,		/* segment type */
1241 	SEL_KPL,		/* segment descriptor priority level */
1242 	1,			/* segment descriptor present */
1243 	0,			/* long */
1244 	0,			/* unused - default 32 vs 16 bit size */
1245 	0  			/* limit granularity (byte/page units)*/ },
1246 /* Actually, the TSS is a system descriptor which is double size */
1247 {	0x0,			/* segment base address  */
1248 	0x0,			/* length */
1249 	0,			/* segment type */
1250 	0,			/* segment descriptor priority level */
1251 	0,			/* segment descriptor present */
1252 	0,			/* long */
1253 	0,			/* default 32 vs 16 bit size */
1254 	0  			/* limit granularity (byte/page units)*/ },
1255 /* GUGS32_SEL	8 32 bit GS Descriptor for user */
1256 {	0x0,			/* segment base address  */
1257 	0xfffff,		/* length - all address space */
1258 	SDT_MEMRWA,		/* segment type */
1259 	SEL_UPL,		/* segment descriptor priority level */
1260 	1,			/* segment descriptor present */
1261 	0,			/* long */
1262 	1,			/* default 32 vs 16 bit size */
1263 	1  			/* limit granularity (byte/page units)*/ },
1264 };
1265 
1266 void
1267 setidt(int idx, inthand_t *func, int typ, int dpl, int ist)
1268 {
1269 	struct gate_descriptor *ip;
1270 
1271 	ip = idt + idx;
1272 	ip->gd_looffset = (uintptr_t)func;
1273 	ip->gd_selector = GSEL(GCODE_SEL, SEL_KPL);
1274 	ip->gd_ist = ist;
1275 	ip->gd_xx = 0;
1276 	ip->gd_type = typ;
1277 	ip->gd_dpl = dpl;
1278 	ip->gd_p = 1;
1279 	ip->gd_hioffset = ((uintptr_t)func)>>16 ;
1280 }
1281 
1282 #define	IDTVEC(name)	__CONCAT(X,name)
1283 
1284 extern inthand_t
1285 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1286 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1287 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1288 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
1289 	IDTVEC(xmm), IDTVEC(dblfault),
1290 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
1291 
1292 #ifdef DEBUG_INTERRUPTS
1293 extern inthand_t *Xrsvdary[256];
1294 #endif
1295 
1296 void
1297 sdtossd(struct user_segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1298 {
1299 	ssd->ssd_base  = (sd->sd_hibase << 24) | sd->sd_lobase;
1300 	ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1301 	ssd->ssd_type  = sd->sd_type;
1302 	ssd->ssd_dpl   = sd->sd_dpl;
1303 	ssd->ssd_p     = sd->sd_p;
1304 	ssd->ssd_def32 = sd->sd_def32;
1305 	ssd->ssd_gran  = sd->sd_gran;
1306 }
1307 
1308 void
1309 ssdtosd(struct soft_segment_descriptor *ssd, struct user_segment_descriptor *sd)
1310 {
1311 
1312 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1313 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xff;
1314 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1315 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1316 	sd->sd_type  = ssd->ssd_type;
1317 	sd->sd_dpl   = ssd->ssd_dpl;
1318 	sd->sd_p     = ssd->ssd_p;
1319 	sd->sd_long  = ssd->ssd_long;
1320 	sd->sd_def32 = ssd->ssd_def32;
1321 	sd->sd_gran  = ssd->ssd_gran;
1322 }
1323 
1324 void
1325 ssdtosyssd(struct soft_segment_descriptor *ssd,
1326     struct system_segment_descriptor *sd)
1327 {
1328 
1329 	sd->sd_lobase = (ssd->ssd_base) & 0xffffff;
1330 	sd->sd_hibase = (ssd->ssd_base >> 24) & 0xfffffffffful;
1331 	sd->sd_lolimit = (ssd->ssd_limit) & 0xffff;
1332 	sd->sd_hilimit = (ssd->ssd_limit >> 16) & 0xf;
1333 	sd->sd_type  = ssd->ssd_type;
1334 	sd->sd_dpl   = ssd->ssd_dpl;
1335 	sd->sd_p     = ssd->ssd_p;
1336 	sd->sd_gran  = ssd->ssd_gran;
1337 }
1338 
1339 /*
1340  * Populate the (physmap) array with base/bound pairs describing the
1341  * available physical memory in the system, then test this memory and
1342  * build the phys_avail array describing the actually-available memory.
1343  *
1344  * If we cannot accurately determine the physical memory map, then use
1345  * value from the 0xE801 call, and failing that, the RTC.
1346  *
1347  * Total memory size may be set by the kernel environment variable
1348  * hw.physmem or the compile-time define MAXMEM.
1349  *
1350  * Memory is aligned to PHYSMAP_ALIGN which must be a multiple
1351  * of PAGE_SIZE.  This also greatly reduces the memory test time
1352  * which would otherwise be excessive on machines with > 8G of ram.
1353  *
1354  * XXX first should be vm_paddr_t.
1355  */
1356 
1357 #define PHYSMAP_ALIGN		(vm_paddr_t)(128 * 1024)
1358 #define PHYSMAP_ALIGN_MASK	(vm_paddr_t)(PHYSMAP_ALIGN - 1)
1359 
1360 static void
1361 getmemsize(caddr_t kmdp, u_int64_t first)
1362 {
1363 	int off, physmap_idx, pa_indx, da_indx;
1364 	int i, j;
1365 	vm_paddr_t physmap[PHYSMAP_SIZE];
1366 	vm_paddr_t pa;
1367 	vm_paddr_t msgbuf_size;
1368 	u_long physmem_tunable;
1369 	pt_entry_t *pte;
1370 	struct bios_smap *smapbase, *smap, *smapend;
1371 	u_int32_t smapsize;
1372 	quad_t dcons_addr, dcons_size;
1373 
1374 	bzero(physmap, sizeof(physmap));
1375 	physmap_idx = 0;
1376 
1377 	/*
1378 	 * get memory map from INT 15:E820, kindly supplied by the loader.
1379 	 *
1380 	 * subr_module.c says:
1381 	 * "Consumer may safely assume that size value precedes data."
1382 	 * ie: an int32_t immediately precedes smap.
1383 	 */
1384 	smapbase = (struct bios_smap *)preload_search_info(kmdp,
1385 	    MODINFO_METADATA | MODINFOMD_SMAP);
1386 	if (smapbase == NULL)
1387 		panic("No BIOS smap info from loader!");
1388 
1389 	smapsize = *((u_int32_t *)smapbase - 1);
1390 	smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize);
1391 
1392 	for (smap = smapbase; smap < smapend; smap++) {
1393 		if (boothowto & RB_VERBOSE)
1394 			kprintf("SMAP type=%02x base=%016lx len=%016lx\n",
1395 			    smap->type, smap->base, smap->length);
1396 
1397 		if (smap->type != SMAP_TYPE_MEMORY)
1398 			continue;
1399 
1400 		if (smap->length == 0)
1401 			continue;
1402 
1403 		for (i = 0; i <= physmap_idx; i += 2) {
1404 			if (smap->base < physmap[i + 1]) {
1405 				if (boothowto & RB_VERBOSE) {
1406 					kprintf("Overlapping or non-monotonic "
1407 						"memory region, ignoring "
1408 						"second region\n");
1409 				}
1410 				continue;
1411 			}
1412 		}
1413 		Realmem += smap->length;
1414 
1415 		if (smap->base == physmap[physmap_idx + 1]) {
1416 			physmap[physmap_idx + 1] += smap->length;
1417 			continue;
1418 		}
1419 
1420 		physmap_idx += 2;
1421 		if (physmap_idx == PHYSMAP_SIZE) {
1422 			kprintf("Too many segments in the physical "
1423 				"address map, giving up\n");
1424 			break;
1425 		}
1426 		physmap[physmap_idx] = smap->base;
1427 		physmap[physmap_idx + 1] = smap->base + smap->length;
1428 	}
1429 
1430 #ifdef SMP
1431 	/* make hole for AP bootstrap code */
1432 	physmap[1] = mp_bootaddress(physmap[1] / 1024);
1433 
1434 	/* Save EBDA address, if any */
1435 	ebda_addr = (u_long)(*(u_short *)(KERNBASE + 0x40e));
1436 	ebda_addr <<= 4;
1437 #endif
1438 
1439 	/*
1440 	 * Maxmem isn't the "maximum memory", it's one larger than the
1441 	 * highest page of the physical address space.  It should be
1442 	 * called something like "Maxphyspage".  We may adjust this
1443 	 * based on ``hw.physmem'' and the results of the memory test.
1444 	 */
1445 	Maxmem = atop(physmap[physmap_idx + 1]);
1446 
1447 #ifdef MAXMEM
1448 	Maxmem = MAXMEM / 4;
1449 #endif
1450 
1451 	if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable))
1452 		Maxmem = atop(physmem_tunable);
1453 
1454 	/*
1455 	 * Don't allow MAXMEM or hw.physmem to extend the amount of memory
1456 	 * in the system.
1457 	 */
1458 	if (Maxmem > atop(physmap[physmap_idx + 1]))
1459 		Maxmem = atop(physmap[physmap_idx + 1]);
1460 
1461 	/*
1462 	 * Blowing out the DMAP will blow up the system.
1463 	 */
1464 	if (Maxmem > atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS)) {
1465 		kprintf("Limiting Maxmem due to DMAP size\n");
1466 		Maxmem = atop(DMAP_MAX_ADDRESS - DMAP_MIN_ADDRESS);
1467 	}
1468 
1469 	if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1470 	    (boothowto & RB_VERBOSE)) {
1471 		kprintf("Physical memory use set to %ldK\n", Maxmem * 4);
1472 	}
1473 
1474 	/*
1475 	 * Call pmap initialization to make new kernel address space
1476 	 *
1477 	 * Mask off page 0.
1478 	 */
1479 	pmap_bootstrap(&first);
1480 	physmap[0] = PAGE_SIZE;
1481 
1482 	/*
1483 	 * Align the physmap to PHYSMAP_ALIGN and cut out anything
1484 	 * exceeding Maxmem.
1485 	 */
1486 	for (i = j = 0; i <= physmap_idx; i += 2) {
1487 		if (physmap[i+1] > ptoa((vm_paddr_t)Maxmem))
1488 			physmap[i+1] = ptoa((vm_paddr_t)Maxmem);
1489 		physmap[i] = (physmap[i] + PHYSMAP_ALIGN_MASK) &
1490 			     ~PHYSMAP_ALIGN_MASK;
1491 		physmap[i+1] = physmap[i+1] & ~PHYSMAP_ALIGN_MASK;
1492 
1493 		physmap[j] = physmap[i];
1494 		physmap[j+1] = physmap[i+1];
1495 
1496 		if (physmap[i] < physmap[i+1])
1497 			j += 2;
1498 	}
1499 	physmap_idx = j - 2;
1500 
1501 	/*
1502 	 * Align anything else used in the validation loop.
1503 	 */
1504 	first = (first + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1505 
1506 	/*
1507 	 * Size up each available chunk of physical memory.
1508 	 */
1509 	pa_indx = 0;
1510 	da_indx = 1;
1511 	phys_avail[pa_indx++] = physmap[0];
1512 	phys_avail[pa_indx] = physmap[0];
1513 	dump_avail[da_indx] = physmap[0];
1514 	pte = CMAP1;
1515 
1516 	/*
1517 	 * Get dcons buffer address
1518 	 */
1519 	if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1520 	    kgetenv_quad("dcons.size", &dcons_size) == 0)
1521 		dcons_addr = 0;
1522 
1523 	/*
1524 	 * Validate the physical memory.  The physical memory segments
1525 	 * have already been aligned to PHYSMAP_ALIGN which is a multiple
1526 	 * of PAGE_SIZE.
1527 	 */
1528 	for (i = 0; i <= physmap_idx; i += 2) {
1529 		vm_paddr_t end;
1530 
1531 		end = physmap[i + 1];
1532 
1533 		for (pa = physmap[i]; pa < end; pa += PHYSMAP_ALIGN) {
1534 			int tmp, page_bad, full;
1535 			int *ptr = (int *)CADDR1;
1536 
1537 			full = FALSE;
1538 			/*
1539 			 * block out kernel memory as not available.
1540 			 */
1541 			if (pa >= 0x100000 && pa < first)
1542 				goto do_dump_avail;
1543 
1544 			/*
1545 			 * block out dcons buffer
1546 			 */
1547 			if (dcons_addr > 0
1548 			    && pa >= trunc_page(dcons_addr)
1549 			    && pa < dcons_addr + dcons_size) {
1550 				goto do_dump_avail;
1551 			}
1552 
1553 			page_bad = FALSE;
1554 
1555 			/*
1556 			 * map page into kernel: valid, read/write,non-cacheable
1557 			 */
1558 			*pte = pa | PG_V | PG_RW | PG_N;
1559 			cpu_invltlb();
1560 
1561 			tmp = *(int *)ptr;
1562 			/*
1563 			 * Test for alternating 1's and 0's
1564 			 */
1565 			*(volatile int *)ptr = 0xaaaaaaaa;
1566 			cpu_mfence();
1567 			if (*(volatile int *)ptr != 0xaaaaaaaa)
1568 				page_bad = TRUE;
1569 			/*
1570 			 * Test for alternating 0's and 1's
1571 			 */
1572 			*(volatile int *)ptr = 0x55555555;
1573 			cpu_mfence();
1574 			if (*(volatile int *)ptr != 0x55555555)
1575 				page_bad = TRUE;
1576 			/*
1577 			 * Test for all 1's
1578 			 */
1579 			*(volatile int *)ptr = 0xffffffff;
1580 			cpu_mfence();
1581 			if (*(volatile int *)ptr != 0xffffffff)
1582 				page_bad = TRUE;
1583 			/*
1584 			 * Test for all 0's
1585 			 */
1586 			*(volatile int *)ptr = 0x0;
1587 			cpu_mfence();
1588 			if (*(volatile int *)ptr != 0x0)
1589 				page_bad = TRUE;
1590 			/*
1591 			 * Restore original value.
1592 			 */
1593 			*(int *)ptr = tmp;
1594 
1595 			/*
1596 			 * Adjust array of valid/good pages.
1597 			 */
1598 			if (page_bad == TRUE)
1599 				continue;
1600 			/*
1601 			 * If this good page is a continuation of the
1602 			 * previous set of good pages, then just increase
1603 			 * the end pointer. Otherwise start a new chunk.
1604 			 * Note that "end" points one higher than end,
1605 			 * making the range >= start and < end.
1606 			 * If we're also doing a speculative memory
1607 			 * test and we at or past the end, bump up Maxmem
1608 			 * so that we keep going. The first bad page
1609 			 * will terminate the loop.
1610 			 */
1611 			if (phys_avail[pa_indx] == pa) {
1612 				phys_avail[pa_indx] += PHYSMAP_ALIGN;
1613 			} else {
1614 				pa_indx++;
1615 				if (pa_indx == PHYS_AVAIL_ARRAY_END) {
1616 					kprintf(
1617 		"Too many holes in the physical address space, giving up\n");
1618 					pa_indx--;
1619 					full = TRUE;
1620 					goto do_dump_avail;
1621 				}
1622 				phys_avail[pa_indx++] = pa;
1623 				phys_avail[pa_indx] = pa + PHYSMAP_ALIGN;
1624 			}
1625 			physmem += PHYSMAP_ALIGN / PAGE_SIZE;
1626 do_dump_avail:
1627 			if (dump_avail[da_indx] == pa) {
1628 				dump_avail[da_indx] += PHYSMAP_ALIGN;
1629 			} else {
1630 				da_indx++;
1631 				if (da_indx == DUMP_AVAIL_ARRAY_END) {
1632 					da_indx--;
1633 					goto do_next;
1634 				}
1635 				dump_avail[da_indx++] = pa;
1636 				dump_avail[da_indx] = pa + PHYSMAP_ALIGN;
1637 			}
1638 do_next:
1639 			if (full)
1640 				break;
1641 		}
1642 	}
1643 	*pte = 0;
1644 	cpu_invltlb();
1645 
1646 	/*
1647 	 * The last chunk must contain at least one page plus the message
1648 	 * buffer to avoid complicating other code (message buffer address
1649 	 * calculation, etc.).
1650 	 */
1651 	msgbuf_size = (MSGBUF_SIZE + PHYSMAP_ALIGN_MASK) & ~PHYSMAP_ALIGN_MASK;
1652 
1653 	while (phys_avail[pa_indx - 1] + PHYSMAP_ALIGN +
1654 	       msgbuf_size >= phys_avail[pa_indx]) {
1655 		physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1656 		phys_avail[pa_indx--] = 0;
1657 		phys_avail[pa_indx--] = 0;
1658 	}
1659 
1660 	Maxmem = atop(phys_avail[pa_indx]);
1661 
1662 	/* Trim off space for the message buffer. */
1663 	phys_avail[pa_indx] -= msgbuf_size;
1664 
1665 	avail_end = phys_avail[pa_indx];
1666 
1667 	/* Map the message buffer. */
1668 	for (off = 0; off < msgbuf_size; off += PAGE_SIZE) {
1669 		pmap_kenter((vm_offset_t)msgbufp + off,
1670 			    phys_avail[pa_indx] + off);
1671 	}
1672 }
1673 
1674 #ifdef SMP
1675 #ifdef APIC_IO
1676 int apic_io_enable = 1; /* Enabled by default for kernels compiled w/APIC_IO */
1677 #else
1678 int apic_io_enable = 0; /* Disabled by default for kernels compiled without */
1679 #endif
1680 #endif
1681 
1682 struct machintr_abi MachIntrABI;
1683 
1684 /*
1685  * IDT VECTORS:
1686  *	0	Divide by zero
1687  *	1	Debug
1688  *	2	NMI
1689  *	3	BreakPoint
1690  *	4	OverFlow
1691  *	5	Bound-Range
1692  *	6	Invalid OpCode
1693  *	7	Device Not Available (x87)
1694  *	8	Double-Fault
1695  *	9	Coprocessor Segment overrun (unsupported, reserved)
1696  *	10	Invalid-TSS
1697  *	11	Segment not present
1698  *	12	Stack
1699  *	13	General Protection
1700  *	14	Page Fault
1701  *	15	Reserved
1702  *	16	x87 FP Exception pending
1703  *	17	Alignment Check
1704  *	18	Machine Check
1705  *	19	SIMD floating point
1706  *	20-31	reserved
1707  *	32-255	INTn/external sources
1708  */
1709 u_int64_t
1710 hammer_time(u_int64_t modulep, u_int64_t physfree)
1711 {
1712 	caddr_t kmdp;
1713 	int gsel_tss, x;
1714 #if JG
1715 	int metadata_missing, off;
1716 #endif
1717 	struct mdglobaldata *gd;
1718 	u_int64_t msr;
1719 
1720 	/*
1721 	 * Prevent lowering of the ipl if we call tsleep() early.
1722 	 */
1723 	gd = &CPU_prvspace[0].mdglobaldata;
1724 	bzero(gd, sizeof(*gd));
1725 
1726 	/*
1727 	 * Note: on both UP and SMP curthread must be set non-NULL
1728 	 * early in the boot sequence because the system assumes
1729 	 * that 'curthread' is never NULL.
1730 	 */
1731 
1732 	gd->mi.gd_curthread = &thread0;
1733 	thread0.td_gd = &gd->mi;
1734 
1735 	atdevbase = ISA_HOLE_START + PTOV_OFFSET;
1736 
1737 #if JG
1738 	metadata_missing = 0;
1739 	if (bootinfo.bi_modulep) {
1740 		preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1741 		preload_bootstrap_relocate(KERNBASE);
1742 	} else {
1743 		metadata_missing = 1;
1744 	}
1745 	if (bootinfo.bi_envp)
1746 		kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1747 #endif
1748 
1749 	preload_metadata = (caddr_t)(uintptr_t)(modulep + PTOV_OFFSET);
1750 	preload_bootstrap_relocate(PTOV_OFFSET);
1751 	kmdp = preload_search_by_type("elf kernel");
1752 	if (kmdp == NULL)
1753 		kmdp = preload_search_by_type("elf64 kernel");
1754 	boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
1755 	kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *) + PTOV_OFFSET;
1756 #ifdef DDB
1757 	ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
1758 	ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
1759 #endif
1760 
1761 	if (boothowto & RB_VERBOSE)
1762 		bootverbose++;
1763 
1764 	/*
1765 	 * Default MachIntrABI to ICU
1766 	 */
1767 	MachIntrABI = MachIntrABI_ICU;
1768 #ifdef SMP
1769 	TUNABLE_INT_FETCH("hw.apic_io_enable", &apic_io_enable);
1770 #endif
1771 
1772 	/*
1773 	 * start with one cpu.  Note: with one cpu, ncpus2_shift, ncpus2_mask,
1774 	 * and ncpus_fit_mask remain 0.
1775 	 */
1776 	ncpus = 1;
1777 	ncpus2 = 1;
1778 	ncpus_fit = 1;
1779 	/* Init basic tunables, hz etc */
1780 	init_param1();
1781 
1782 	/*
1783 	 * make gdt memory segments
1784 	 */
1785 	gdt_segs[GPROC0_SEL].ssd_base =
1786 		(uintptr_t) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1787 
1788 	gd->mi.gd_prvspace = &CPU_prvspace[0];
1789 
1790 	for (x = 0; x < NGDT; x++) {
1791 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
1792 			ssdtosd(&gdt_segs[x], &gdt[x]);
1793 	}
1794 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
1795 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
1796 
1797 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1798 	r_gdt.rd_base =  (long) gdt;
1799 	lgdt(&r_gdt);
1800 
1801 	wrmsr(MSR_FSBASE, 0);		/* User value */
1802 	wrmsr(MSR_GSBASE, (u_int64_t)&gd->mi);
1803 	wrmsr(MSR_KGSBASE, 0);		/* User value while in the kernel */
1804 
1805 	mi_gdinit(&gd->mi, 0);
1806 	cpu_gdinit(gd, 0);
1807 	proc0paddr = proc0paddr_buff;
1808 	mi_proc0init(&gd->mi, proc0paddr);
1809 	safepri = TDPRI_MAX;
1810 
1811 	/* spinlocks and the BGL */
1812 	init_locks();
1813 
1814 	/* exceptions */
1815 	for (x = 0; x < NIDT; x++)
1816 		setidt(x, &IDTVEC(rsvd), SDT_SYSIGT, SEL_KPL, 0);
1817 	setidt(IDT_DE, &IDTVEC(div),  SDT_SYSIGT, SEL_KPL, 0);
1818 	setidt(IDT_DB, &IDTVEC(dbg),  SDT_SYSIGT, SEL_KPL, 0);
1819 	setidt(IDT_NMI, &IDTVEC(nmi),  SDT_SYSIGT, SEL_KPL, 1);
1820  	setidt(IDT_BP, &IDTVEC(bpt),  SDT_SYSIGT, SEL_UPL, 0);
1821 	setidt(IDT_OF, &IDTVEC(ofl),  SDT_SYSIGT, SEL_KPL, 0);
1822 	setidt(IDT_BR, &IDTVEC(bnd),  SDT_SYSIGT, SEL_KPL, 0);
1823 	setidt(IDT_UD, &IDTVEC(ill),  SDT_SYSIGT, SEL_KPL, 0);
1824 	setidt(IDT_NM, &IDTVEC(dna),  SDT_SYSIGT, SEL_KPL, 0);
1825 	setidt(IDT_DF, &IDTVEC(dblfault), SDT_SYSIGT, SEL_KPL, 1);
1826 	setidt(IDT_FPUGP, &IDTVEC(fpusegm),  SDT_SYSIGT, SEL_KPL, 0);
1827 	setidt(IDT_TS, &IDTVEC(tss),  SDT_SYSIGT, SEL_KPL, 0);
1828 	setidt(IDT_NP, &IDTVEC(missing),  SDT_SYSIGT, SEL_KPL, 0);
1829 	setidt(IDT_SS, &IDTVEC(stk),  SDT_SYSIGT, SEL_KPL, 0);
1830 	setidt(IDT_GP, &IDTVEC(prot),  SDT_SYSIGT, SEL_KPL, 0);
1831 	setidt(IDT_PF, &IDTVEC(page),  SDT_SYSIGT, SEL_KPL, 0);
1832 	setidt(IDT_MF, &IDTVEC(fpu),  SDT_SYSIGT, SEL_KPL, 0);
1833 	setidt(IDT_AC, &IDTVEC(align), SDT_SYSIGT, SEL_KPL, 0);
1834 	setidt(IDT_MC, &IDTVEC(mchk),  SDT_SYSIGT, SEL_KPL, 0);
1835 	setidt(IDT_XF, &IDTVEC(xmm), SDT_SYSIGT, SEL_KPL, 0);
1836 
1837 	r_idt.rd_limit = sizeof(idt0) - 1;
1838 	r_idt.rd_base = (long) idt;
1839 	lidt(&r_idt);
1840 
1841 	/*
1842 	 * Initialize the console before we print anything out.
1843 	 */
1844 	cninit();
1845 
1846 #if JG
1847 	if (metadata_missing)
1848 		kprintf("WARNING: loader(8) metadata is missing!\n");
1849 #endif
1850 
1851 #if	NISA >0
1852 	elcr_probe();
1853 	isa_defaultirq();
1854 #endif
1855 	rand_initialize();
1856 
1857 	/*
1858 	 * Initialize IRQ mapping
1859 	 *
1860 	 * NOTE:
1861 	 * SHOULD be after elcr_probe()
1862 	 */
1863 	MachIntrABI_ICU.initmap();
1864 #ifdef SMP
1865 	MachIntrABI_IOAPIC.initmap();
1866 #endif
1867 
1868 #ifdef DDB
1869 	kdb_init();
1870 	if (boothowto & RB_KDB)
1871 		Debugger("Boot flags requested debugger");
1872 #endif
1873 
1874 #if JG
1875 	finishidentcpu();	/* Final stage of CPU initialization */
1876 	setidt(6, &IDTVEC(ill),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1877 	setidt(13, &IDTVEC(prot),  SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1878 #endif
1879 	identify_cpu();		/* Final stage of CPU initialization */
1880 	initializecpu();	/* Initialize CPU registers */
1881 
1882 	/* make an initial tss so cpu can get interrupt stack on syscall! */
1883 	gd->gd_common_tss.tss_rsp0 =
1884 		(register_t)(thread0.td_kstack +
1885 			     KSTACK_PAGES * PAGE_SIZE - sizeof(struct pcb));
1886 	/* Ensure the stack is aligned to 16 bytes */
1887 	gd->gd_common_tss.tss_rsp0 &= ~(register_t)0xF;
1888 
1889 	/* double fault stack */
1890 	gd->gd_common_tss.tss_ist1 =
1891 		(long)&gd->mi.gd_prvspace->idlestack[
1892 			sizeof(gd->mi.gd_prvspace->idlestack)];
1893 
1894 	/* Set the IO permission bitmap (empty due to tss seg limit) */
1895 	gd->gd_common_tss.tss_iobase = sizeof(struct x86_64tss);
1896 
1897 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
1898 	gd->gd_tss_gdt = &gdt[GPROC0_SEL];
1899 	gd->gd_common_tssd = *gd->gd_tss_gdt;
1900 	ltr(gsel_tss);
1901 
1902 	/* Set up the fast syscall stuff */
1903 	msr = rdmsr(MSR_EFER) | EFER_SCE;
1904 	wrmsr(MSR_EFER, msr);
1905 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
1906 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
1907 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
1908 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
1909 	wrmsr(MSR_STAR, msr);
1910 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D);
1911 
1912 	getmemsize(kmdp, physfree);
1913 	init_param2(physmem);
1914 
1915 	/* now running on new page tables, configured,and u/iom is accessible */
1916 
1917 	/* Map the message buffer. */
1918 #if JG
1919 	for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
1920 		pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
1921 #endif
1922 
1923 	msgbufinit(msgbufp, MSGBUF_SIZE);
1924 
1925 
1926 	/* transfer to user mode */
1927 
1928 	_ucodesel = GSEL(GUCODE_SEL, SEL_UPL);
1929 	_udatasel = GSEL(GUDATA_SEL, SEL_UPL);
1930 	_ucode32sel = GSEL(GUCODE32_SEL, SEL_UPL);
1931 
1932 	load_ds(_udatasel);
1933 	load_es(_udatasel);
1934 	load_fs(_udatasel);
1935 
1936 	/* setup proc 0's pcb */
1937 	thread0.td_pcb->pcb_flags = 0;
1938 	thread0.td_pcb->pcb_cr3 = KPML4phys;
1939 	thread0.td_pcb->pcb_ext = 0;
1940 	lwp0.lwp_md.md_regs = &proc0_tf;	/* XXX needed? */
1941 
1942 	/* Location of kernel stack for locore */
1943 	return ((u_int64_t)thread0.td_pcb);
1944 }
1945 
1946 /*
1947  * Initialize machine-dependant portions of the global data structure.
1948  * Note that the global data area and cpu0's idlestack in the private
1949  * data space were allocated in locore.
1950  *
1951  * Note: the idlethread's cpl is 0
1952  *
1953  * WARNING!  Called from early boot, 'mycpu' may not work yet.
1954  */
1955 void
1956 cpu_gdinit(struct mdglobaldata *gd, int cpu)
1957 {
1958 	if (cpu)
1959 		gd->mi.gd_curthread = &gd->mi.gd_idlethread;
1960 
1961 	lwkt_init_thread(&gd->mi.gd_idlethread,
1962 			gd->mi.gd_prvspace->idlestack,
1963 			sizeof(gd->mi.gd_prvspace->idlestack),
1964 			0, &gd->mi);
1965 	lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
1966 	gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
1967 	gd->mi.gd_idlethread.td_sp -= sizeof(void *);
1968 	*(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
1969 }
1970 
1971 int
1972 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
1973 {
1974 	if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
1975 	    eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
1976 		return (TRUE);
1977 	}
1978 	return (FALSE);
1979 }
1980 
1981 struct globaldata *
1982 globaldata_find(int cpu)
1983 {
1984 	KKASSERT(cpu >= 0 && cpu < ncpus);
1985 	return(&CPU_prvspace[cpu].mdglobaldata.mi);
1986 }
1987 
1988 int
1989 ptrace_set_pc(struct lwp *lp, unsigned long addr)
1990 {
1991 	lp->lwp_md.md_regs->tf_rip = addr;
1992 	return (0);
1993 }
1994 
1995 int
1996 ptrace_single_step(struct lwp *lp)
1997 {
1998 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
1999 	return (0);
2000 }
2001 
2002 int
2003 fill_regs(struct lwp *lp, struct reg *regs)
2004 {
2005 	struct trapframe *tp;
2006 
2007 	tp = lp->lwp_md.md_regs;
2008 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
2009 	return (0);
2010 }
2011 
2012 int
2013 set_regs(struct lwp *lp, struct reg *regs)
2014 {
2015 	struct trapframe *tp;
2016 
2017 	tp = lp->lwp_md.md_regs;
2018 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
2019 	    !CS_SECURE(regs->r_cs))
2020 		return (EINVAL);
2021 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
2022 	return (0);
2023 }
2024 
2025 #ifndef CPU_DISABLE_SSE
2026 static void
2027 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2028 {
2029 	struct env87 *penv_87 = &sv_87->sv_env;
2030 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2031 	int i;
2032 
2033 	/* FPU control/status */
2034 	penv_87->en_cw = penv_xmm->en_cw;
2035 	penv_87->en_sw = penv_xmm->en_sw;
2036 	penv_87->en_tw = penv_xmm->en_tw;
2037 	penv_87->en_fip = penv_xmm->en_fip;
2038 	penv_87->en_fcs = penv_xmm->en_fcs;
2039 	penv_87->en_opcode = penv_xmm->en_opcode;
2040 	penv_87->en_foo = penv_xmm->en_foo;
2041 	penv_87->en_fos = penv_xmm->en_fos;
2042 
2043 	/* FPU registers */
2044 	for (i = 0; i < 8; ++i)
2045 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2046 }
2047 
2048 static void
2049 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2050 {
2051 	struct env87 *penv_87 = &sv_87->sv_env;
2052 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
2053 	int i;
2054 
2055 	/* FPU control/status */
2056 	penv_xmm->en_cw = penv_87->en_cw;
2057 	penv_xmm->en_sw = penv_87->en_sw;
2058 	penv_xmm->en_tw = penv_87->en_tw;
2059 	penv_xmm->en_fip = penv_87->en_fip;
2060 	penv_xmm->en_fcs = penv_87->en_fcs;
2061 	penv_xmm->en_opcode = penv_87->en_opcode;
2062 	penv_xmm->en_foo = penv_87->en_foo;
2063 	penv_xmm->en_fos = penv_87->en_fos;
2064 
2065 	/* FPU registers */
2066 	for (i = 0; i < 8; ++i)
2067 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2068 }
2069 #endif /* CPU_DISABLE_SSE */
2070 
2071 int
2072 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2073 {
2074 #ifndef CPU_DISABLE_SSE
2075 	if (cpu_fxsr) {
2076 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2077 				(struct save87 *)fpregs);
2078 		return (0);
2079 	}
2080 #endif /* CPU_DISABLE_SSE */
2081 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2082 	return (0);
2083 }
2084 
2085 int
2086 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2087 {
2088 #ifndef CPU_DISABLE_SSE
2089 	if (cpu_fxsr) {
2090 		set_fpregs_xmm((struct save87 *)fpregs,
2091 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2092 		return (0);
2093 	}
2094 #endif /* CPU_DISABLE_SSE */
2095 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2096 	return (0);
2097 }
2098 
2099 int
2100 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2101 {
2102         if (lp == NULL) {
2103                 dbregs->dr[0] = rdr0();
2104                 dbregs->dr[1] = rdr1();
2105                 dbregs->dr[2] = rdr2();
2106                 dbregs->dr[3] = rdr3();
2107                 dbregs->dr[4] = rdr4();
2108                 dbregs->dr[5] = rdr5();
2109                 dbregs->dr[6] = rdr6();
2110                 dbregs->dr[7] = rdr7();
2111         } else {
2112 		struct pcb *pcb;
2113 
2114                 pcb = lp->lwp_thread->td_pcb;
2115                 dbregs->dr[0] = pcb->pcb_dr0;
2116                 dbregs->dr[1] = pcb->pcb_dr1;
2117                 dbregs->dr[2] = pcb->pcb_dr2;
2118                 dbregs->dr[3] = pcb->pcb_dr3;
2119                 dbregs->dr[4] = 0;
2120                 dbregs->dr[5] = 0;
2121                 dbregs->dr[6] = pcb->pcb_dr6;
2122                 dbregs->dr[7] = pcb->pcb_dr7;
2123         }
2124 	return (0);
2125 }
2126 
2127 int
2128 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2129 {
2130 	if (lp == NULL) {
2131 		load_dr0(dbregs->dr[0]);
2132 		load_dr1(dbregs->dr[1]);
2133 		load_dr2(dbregs->dr[2]);
2134 		load_dr3(dbregs->dr[3]);
2135 		load_dr4(dbregs->dr[4]);
2136 		load_dr5(dbregs->dr[5]);
2137 		load_dr6(dbregs->dr[6]);
2138 		load_dr7(dbregs->dr[7]);
2139 	} else {
2140 		struct pcb *pcb;
2141 		struct ucred *ucred;
2142 		int i;
2143 		uint64_t mask1, mask2;
2144 
2145 		/*
2146 		 * Don't let an illegal value for dr7 get set.	Specifically,
2147 		 * check for undefined settings.  Setting these bit patterns
2148 		 * result in undefined behaviour and can lead to an unexpected
2149 		 * TRCTRAP.
2150 		 */
2151 		/* JG this loop looks unreadable */
2152 		/* Check 4 2-bit fields for invalid patterns.
2153 		 * These fields are R/Wi, for i = 0..3
2154 		 */
2155 		/* Is 10 in LENi allowed when running in compatibility mode? */
2156 		/* Pattern 10 in R/Wi might be used to indicate
2157 		 * breakpoint on I/O. Further analysis should be
2158 		 * carried to decide if it is safe and useful to
2159 		 * provide access to that capability
2160 		 */
2161 		for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 4;
2162 		     i++, mask1 <<= 4, mask2 <<= 4)
2163 			if ((dbregs->dr[7] & mask1) == mask2)
2164 				return (EINVAL);
2165 
2166 		pcb = lp->lwp_thread->td_pcb;
2167 		ucred = lp->lwp_proc->p_ucred;
2168 
2169 		/*
2170 		 * Don't let a process set a breakpoint that is not within the
2171 		 * process's address space.  If a process could do this, it
2172 		 * could halt the system by setting a breakpoint in the kernel
2173 		 * (if ddb was enabled).  Thus, we need to check to make sure
2174 		 * that no breakpoints are being enabled for addresses outside
2175 		 * process's address space, unless, perhaps, we were called by
2176 		 * uid 0.
2177 		 *
2178 		 * XXX - what about when the watched area of the user's
2179 		 * address space is written into from within the kernel
2180 		 * ... wouldn't that still cause a breakpoint to be generated
2181 		 * from within kernel mode?
2182 		 */
2183 
2184 		if (priv_check_cred(ucred, PRIV_ROOT, 0) != 0) {
2185 			if (dbregs->dr[7] & 0x3) {
2186 				/* dr0 is enabled */
2187 				if (dbregs->dr[0] >= VM_MAX_USER_ADDRESS)
2188 					return (EINVAL);
2189 			}
2190 
2191 			if (dbregs->dr[7] & (0x3<<2)) {
2192 				/* dr1 is enabled */
2193 				if (dbregs->dr[1] >= VM_MAX_USER_ADDRESS)
2194 					return (EINVAL);
2195 			}
2196 
2197 			if (dbregs->dr[7] & (0x3<<4)) {
2198 				/* dr2 is enabled */
2199 				if (dbregs->dr[2] >= VM_MAX_USER_ADDRESS)
2200 					return (EINVAL);
2201 			}
2202 
2203 			if (dbregs->dr[7] & (0x3<<6)) {
2204 				/* dr3 is enabled */
2205 				if (dbregs->dr[3] >= VM_MAX_USER_ADDRESS)
2206 					return (EINVAL);
2207 			}
2208 		}
2209 
2210 		pcb->pcb_dr0 = dbregs->dr[0];
2211 		pcb->pcb_dr1 = dbregs->dr[1];
2212 		pcb->pcb_dr2 = dbregs->dr[2];
2213 		pcb->pcb_dr3 = dbregs->dr[3];
2214 		pcb->pcb_dr6 = dbregs->dr[6];
2215 		pcb->pcb_dr7 = dbregs->dr[7];
2216 
2217 		pcb->pcb_flags |= PCB_DBREGS;
2218 	}
2219 
2220 	return (0);
2221 }
2222 
2223 /*
2224  * Return > 0 if a hardware breakpoint has been hit, and the
2225  * breakpoint was in user space.  Return 0, otherwise.
2226  */
2227 int
2228 user_dbreg_trap(void)
2229 {
2230         u_int64_t dr7, dr6; /* debug registers dr6 and dr7 */
2231         u_int64_t bp;       /* breakpoint bits extracted from dr6 */
2232         int nbp;            /* number of breakpoints that triggered */
2233         caddr_t addr[4];    /* breakpoint addresses */
2234         int i;
2235 
2236         dr7 = rdr7();
2237         if ((dr7 & 0xff) == 0) {
2238                 /*
2239                  * all GE and LE bits in the dr7 register are zero,
2240                  * thus the trap couldn't have been caused by the
2241                  * hardware debug registers
2242                  */
2243                 return 0;
2244         }
2245 
2246         nbp = 0;
2247         dr6 = rdr6();
2248         bp = dr6 & 0xf;
2249 
2250         if (bp == 0) {
2251                 /*
2252                  * None of the breakpoint bits are set meaning this
2253                  * trap was not caused by any of the debug registers
2254                  */
2255                 return 0;
2256         }
2257 
2258         /*
2259          * at least one of the breakpoints were hit, check to see
2260          * which ones and if any of them are user space addresses
2261          */
2262 
2263         if (bp & 0x01) {
2264                 addr[nbp++] = (caddr_t)rdr0();
2265         }
2266         if (bp & 0x02) {
2267                 addr[nbp++] = (caddr_t)rdr1();
2268         }
2269         if (bp & 0x04) {
2270                 addr[nbp++] = (caddr_t)rdr2();
2271         }
2272         if (bp & 0x08) {
2273                 addr[nbp++] = (caddr_t)rdr3();
2274         }
2275 
2276         for (i=0; i<nbp; i++) {
2277                 if (addr[i] <
2278                     (caddr_t)VM_MAX_USER_ADDRESS) {
2279                         /*
2280                          * addr[i] is in user space
2281                          */
2282                         return nbp;
2283                 }
2284         }
2285 
2286         /*
2287          * None of the breakpoints are in user space.
2288          */
2289         return 0;
2290 }
2291 
2292 
2293 #ifndef DDB
2294 void
2295 Debugger(const char *msg)
2296 {
2297 	kprintf("Debugger(\"%s\") called.\n", msg);
2298 }
2299 #endif /* no DDB */
2300 
2301 #ifdef DDB
2302 
2303 /*
2304  * Provide inb() and outb() as functions.  They are normally only
2305  * available as macros calling inlined functions, thus cannot be
2306  * called inside DDB.
2307  *
2308  * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2309  */
2310 
2311 #undef inb
2312 #undef outb
2313 
2314 /* silence compiler warnings */
2315 u_char inb(u_int);
2316 void outb(u_int, u_char);
2317 
2318 u_char
2319 inb(u_int port)
2320 {
2321 	u_char	data;
2322 	/*
2323 	 * We use %%dx and not %1 here because i/o is done at %dx and not at
2324 	 * %edx, while gcc generates inferior code (movw instead of movl)
2325 	 * if we tell it to load (u_short) port.
2326 	 */
2327 	__asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2328 	return (data);
2329 }
2330 
2331 void
2332 outb(u_int port, u_char data)
2333 {
2334 	u_char	al;
2335 	/*
2336 	 * Use an unnecessary assignment to help gcc's register allocator.
2337 	 * This make a large difference for gcc-1.40 and a tiny difference
2338 	 * for gcc-2.6.0.  For gcc-1.40, al had to be ``asm("ax")'' for
2339 	 * best results.  gcc-2.6.0 can't handle this.
2340 	 */
2341 	al = data;
2342 	__asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2343 }
2344 
2345 #endif /* DDB */
2346 
2347 
2348 
2349 #include "opt_cpu.h"
2350 
2351 
2352 /*
2353  * initialize all the SMP locks
2354  */
2355 
2356 /* critical region when masking or unmasking interupts */
2357 struct spinlock_deprecated imen_spinlock;
2358 
2359 /* critical region for old style disable_intr/enable_intr */
2360 struct spinlock_deprecated mpintr_spinlock;
2361 
2362 /* critical region around INTR() routines */
2363 struct spinlock_deprecated intr_spinlock;
2364 
2365 /* lock region used by kernel profiling */
2366 struct spinlock_deprecated mcount_spinlock;
2367 
2368 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2369 struct spinlock_deprecated com_spinlock;
2370 
2371 /* lock regions around the clock hardware */
2372 struct spinlock_deprecated clock_spinlock;
2373 
2374 static void
2375 init_locks(void)
2376 {
2377 #ifdef SMP
2378 	/*
2379 	 * Get the initial mplock with a count of 1 for the BSP.
2380 	 * This uses a LOGICAL cpu ID, ie BSP == 0.
2381 	 */
2382 	cpu_get_initial_mplock();
2383 #endif
2384 	/* DEPRECATED */
2385 	spin_lock_init(&mcount_spinlock);
2386 	spin_lock_init(&intr_spinlock);
2387 	spin_lock_init(&mpintr_spinlock);
2388 	spin_lock_init(&imen_spinlock);
2389 	spin_lock_init(&com_spinlock);
2390 	spin_lock_init(&clock_spinlock);
2391 
2392 	/* our token pool needs to work early */
2393 	lwkt_token_pool_init();
2394 }
2395 
2396