1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine_base/acpica/acpi_md_cpu.h>
62 #include <machine/psl.h>
63 #include <machine/segments.h>
64 #include <machine/tss.h>
65 #include <machine/specialreg.h>
66 #include <machine/globaldata.h>
67 #include <machine/pmap_inval.h>
68 #include <machine/clock.h>
69 
70 #include <machine/md_var.h>		/* setidt() */
71 #include <machine_base/icu/icu.h>	/* IPIs */
72 #include <machine_base/icu/icu_var.h>
73 #include <machine_base/apic/ioapic_abi.h>
74 #include <machine/intr_machdep.h>	/* IPIs */
75 
76 #define WARMBOOT_TARGET		0
77 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
78 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
79 
80 #define CMOS_REG		(0x70)
81 #define CMOS_DATA		(0x71)
82 #define BIOS_RESET		(0x0f)
83 #define BIOS_WARM		(0x0a)
84 
85 /*
86  * this code MUST be enabled here and in mpboot.s.
87  * it follows the very early stages of AP boot by placing values in CMOS ram.
88  * it NORMALLY will never be needed and thus the primitive method for enabling.
89  *
90  */
91 #if defined(CHECK_POINTS)
92 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
93 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
94 
95 #define CHECK_INIT(D);				\
96 	CHECK_WRITE(0x34, (D));			\
97 	CHECK_WRITE(0x35, (D));			\
98 	CHECK_WRITE(0x36, (D));			\
99 	CHECK_WRITE(0x37, (D));			\
100 	CHECK_WRITE(0x38, (D));			\
101 	CHECK_WRITE(0x39, (D));
102 
103 #define CHECK_PRINT(S);				\
104 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
105 	   (S),					\
106 	   CHECK_READ(0x34),			\
107 	   CHECK_READ(0x35),			\
108 	   CHECK_READ(0x36),			\
109 	   CHECK_READ(0x37),			\
110 	   CHECK_READ(0x38),			\
111 	   CHECK_READ(0x39));
112 
113 #else				/* CHECK_POINTS */
114 
115 #define CHECK_INIT(D)
116 #define CHECK_PRINT(S)
117 
118 #endif				/* CHECK_POINTS */
119 
120 /*
121  * Values to send to the POST hardware.
122  */
123 #define MP_BOOTADDRESS_POST	0x10
124 #define MP_PROBE_POST		0x11
125 #define MPTABLE_PASS1_POST	0x12
126 
127 #define MP_START_POST		0x13
128 #define MP_ENABLE_POST		0x14
129 #define MPTABLE_PASS2_POST	0x15
130 
131 #define START_ALL_APS_POST	0x16
132 #define INSTALL_AP_TRAMP_POST	0x17
133 #define START_AP_POST		0x18
134 
135 #define MP_ANNOUNCE_POST	0x19
136 
137 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
138 int	current_postcode;
139 
140 /** XXX FIXME: what system files declare these??? */
141 extern struct region_descriptor r_gdt;
142 
143 extern int nkpt;
144 extern int naps;
145 
146 int64_t tsc0_offset;
147 extern int64_t tsc_offsets[];
148 
149 /* AP uses this during bootstrap.  Do not staticize.  */
150 char *bootSTK;
151 static int bootAP;
152 
153 struct pcb stoppcbs[MAXCPU];
154 
155 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
156 
157 /*
158  * Local data and functions.
159  */
160 
161 static u_int	boot_address;
162 static int	mp_finish;
163 static int	mp_finish_lapic;
164 
165 static int	start_all_aps(u_int boot_addr);
166 #if 0
167 static void	install_ap_tramp(u_int boot_addr);
168 #endif
169 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
170 static int	smitest(void);
171 static void	mp_bsp_simple_setup(void);
172 
173 /* which cpus have been started */
174 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
175 /* which cpus have lapic been inited */
176 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
177 /* which cpus are ready for IPIs etc? */
178 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
179 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
180 
181 SYSCTL_OPAQUE(_machdep, OID_AUTO, smp_active, CTLFLAG_RD,
182 	      &smp_active_mask, sizeof(smp_active_mask), "LU", "");
183 static u_int	bootMP_size;
184 static u_int	report_invlpg_src;
185 SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
186 	&report_invlpg_src, 0, "");
187 static u_int	report_invltlb_src;
188 SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
189 	&report_invltlb_src, 0, "");
190 static int	optimized_invltlb;
191 SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
192 	&optimized_invltlb, 0, "");
193 static int	all_but_self_ipi_enable = 1;
194 SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
195 	&all_but_self_ipi_enable, 0, "");
196 
197 /* Local data for detecting CPU TOPOLOGY */
198 static int core_bits = 0;
199 static int logical_CPU_bits = 0;
200 
201 
202 /*
203  * Calculate usable address in base memory for AP trampoline code.
204  */
205 u_int
206 mp_bootaddress(u_int basemem)
207 {
208 	POSTCODE(MP_BOOTADDRESS_POST);
209 
210 	bootMP_size = mptramp_end - mptramp_start;
211 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
212 	if (((basemem * 1024) - boot_address) < bootMP_size)
213 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
214 	/* 3 levels of page table pages */
215 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
216 
217 	return mptramp_pagetables;
218 }
219 
220 /*
221  * Print various information about the SMP system hardware and setup.
222  */
223 void
224 mp_announce(void)
225 {
226 	int     x;
227 
228 	POSTCODE(MP_ANNOUNCE_POST);
229 
230 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
231 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
232 	for (x = 1; x <= naps; ++x)
233 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
234 
235 	if (!ioapic_enable)
236 		kprintf(" Warning: APIC I/O disabled\n");
237 }
238 
239 /*
240  * AP cpu's call this to sync up protected mode.
241  *
242  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
243  */
244 void
245 init_secondary(void)
246 {
247 	int	gsel_tss;
248 	int	x, myid = bootAP;
249 	u_int64_t msr, cr0;
250 	struct mdglobaldata *md;
251 	struct privatespace *ps;
252 
253 	ps = CPU_prvspace[myid];
254 
255 	gdt_segs[GPROC0_SEL].ssd_base =
256 		(long) &ps->mdglobaldata.gd_common_tss;
257 	ps->mdglobaldata.mi.gd_prvspace = ps;
258 
259 	/* We fill the 32-bit segment descriptors */
260 	for (x = 0; x < NGDT; x++) {
261 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
262 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
263 	}
264 	/* And now a 64-bit one */
265 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
266 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
267 
268 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
269 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
270 	lgdt(&r_gdt);			/* does magic intra-segment return */
271 
272 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
273 	wrmsr(MSR_FSBASE, 0);		/* User value */
274 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
275 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
276 
277 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
278 
279 #if 0
280 	lldt(_default_ldt);
281 	mdcpu->gd_currentldt = _default_ldt;
282 #endif
283 
284 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
285 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
286 
287 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
288 
289 	md->gd_common_tss.tss_rsp0 = 0;	/* not used until after switch */
290 #if 0 /* JG XXX */
291 	md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
292 #endif
293 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
294 	md->gd_common_tssd = *md->gd_tss_gdt;
295 
296 	/* double fault stack */
297 	md->gd_common_tss.tss_ist1 =
298 		(long)&md->mi.gd_prvspace->idlestack[
299 			sizeof(md->mi.gd_prvspace->idlestack)];
300 
301 	ltr(gsel_tss);
302 
303 	/*
304 	 * Set to a known state:
305 	 * Set by mpboot.s: CR0_PG, CR0_PE
306 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
307 	 */
308 	cr0 = rcr0();
309 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
310 	load_cr0(cr0);
311 
312 	/* Set up the fast syscall stuff */
313 	msr = rdmsr(MSR_EFER) | EFER_SCE;
314 	wrmsr(MSR_EFER, msr);
315 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
316 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
317 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
318 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
319 	wrmsr(MSR_STAR, msr);
320 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
321 
322 	pmap_set_opt();		/* PSE/4MB pages, etc */
323 	pmap_init_pat();	/* Page Attribute Table */
324 
325 	/* set up CPU registers and state */
326 	cpu_setregs();
327 
328 	/* set up SSE/NX registers */
329 	initializecpu(myid);
330 
331 	/* set up FPU state on the AP */
332 	npxinit();
333 
334 	/* disable the APIC, just to be SURE */
335 	lapic->svr &= ~APIC_SVR_ENABLE;
336 }
337 
338 /*******************************************************************
339  * local functions and data
340  */
341 
342 /*
343  * Start the SMP system
344  */
345 static void
346 mp_start_aps(void *dummy __unused)
347 {
348 	if (lapic_enable) {
349 		/* start each Application Processor */
350 		start_all_aps(boot_address);
351 	} else {
352 		mp_bsp_simple_setup();
353 	}
354 }
355 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
356 
357 /*
358  * start each AP in our list
359  */
360 static int
361 start_all_aps(u_int boot_addr)
362 {
363 	vm_offset_t va = boot_address + KERNBASE;
364 	u_int64_t *pt4, *pt3, *pt2;
365 	int	pssize;
366 	int     x, i;
367 	int	shift;
368 	int	smicount;
369 	int	smibest;
370 	int	smilast;
371 	u_char  mpbiosreason;
372 	u_long  mpbioswarmvec;
373 	struct mdglobaldata *gd;
374 	struct privatespace *ps;
375 	size_t ipiq_size;
376 
377 	POSTCODE(START_ALL_APS_POST);
378 
379 	/* install the AP 1st level boot code */
380 	pmap_kenter(va, boot_address);
381 	cpu_invlpg((void *)va);		/* JG XXX */
382 	bcopy(mptramp_start, (void *)va, bootMP_size);
383 
384 	/* Locate the page tables, they'll be below the trampoline */
385 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
386 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
387 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
388 
389 	/* Create the initial 1GB replicated page tables */
390 	for (i = 0; i < 512; i++) {
391 		/* Each slot of the level 4 pages points to the same level 3 page */
392 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
393 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
394 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
395 		    kernel_pmap.pmap_bits[PG_U_IDX];
396 
397 		/* Each slot of the level 3 pages points to the same level 2 page */
398 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
399 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
400 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
401 		    kernel_pmap.pmap_bits[PG_U_IDX];
402 
403 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
404 		pt2[i] = i * (2 * 1024 * 1024);
405 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
406 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
407 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
408 		    kernel_pmap.pmap_bits[PG_U_IDX];
409 	}
410 
411 	/* save the current value of the warm-start vector */
412 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
413 	outb(CMOS_REG, BIOS_RESET);
414 	mpbiosreason = inb(CMOS_DATA);
415 
416 	/* setup a vector to our boot code */
417 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
418 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
419 	outb(CMOS_REG, BIOS_RESET);
420 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
421 
422 	/*
423 	 * If we have a TSC we can figure out the SMI interrupt rate.
424 	 * The SMI does not necessarily use a constant rate.  Spend
425 	 * up to 250ms trying to figure it out.
426 	 */
427 	smibest = 0;
428 	if (cpu_feature & CPUID_TSC) {
429 		set_apic_timer(275000);
430 		smilast = read_apic_timer();
431 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
432 			smicount = smitest();
433 			if (smibest == 0 || smilast - smicount < smibest)
434 				smibest = smilast - smicount;
435 			smilast = smicount;
436 		}
437 		if (smibest > 250000)
438 			smibest = 0;
439 	}
440 	if (smibest)
441 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
442 			1000000 / smibest, smibest);
443 
444 	/* start each AP */
445 	for (x = 1; x <= naps; ++x) {
446 		/* This is a bit verbose, it will go away soon.  */
447 
448 		pssize = sizeof(struct privatespace);
449 		ps = (void *)kmem_alloc3(&kernel_map, pssize, VM_SUBSYS_GD,
450 					 KM_CPU(x));
451 		CPU_prvspace[x] = ps;
452 #if 0
453 		kprintf("ps %d %p %d\n", x, ps, pssize);
454 #endif
455 		bzero(ps, pssize);
456 		gd = &ps->mdglobaldata;
457 		gd->mi.gd_prvspace = ps;
458 
459 		/* prime data page for it to use */
460 		mi_gdinit(&gd->mi, x);
461 		cpu_gdinit(gd, x);
462 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
463 		gd->mi.gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
464 						     VM_SUBSYS_IPIQ, KM_CPU(x));
465 		bzero(gd->mi.gd_ipiq, ipiq_size);
466 
467 		gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
468 
469 		/* initialize arc4random. */
470 		arc4_init_pcpu(x);
471 
472 		/* setup a vector to our boot code */
473 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
474 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
475 		outb(CMOS_REG, BIOS_RESET);
476 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
477 
478 		/*
479 		 * Setup the AP boot stack
480 		 */
481 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
482 		bootAP = x;
483 
484 		/* attempt to start the Application Processor */
485 		CHECK_INIT(99);	/* setup checkpoints */
486 		if (!start_ap(gd, boot_addr, smibest)) {
487 			kprintf("\nAP #%d (PHY# %d) failed!\n",
488 				x, CPUID_TO_APICID(x));
489 			CHECK_PRINT("trace");	/* show checkpoints */
490 			/* better panic as the AP may be running loose */
491 			kprintf("panic y/n? [y] ");
492 			cnpoll(TRUE);
493 			if (cngetc() != 'n')
494 				panic("bye-bye");
495 			cnpoll(FALSE);
496 		}
497 		CHECK_PRINT("trace");		/* show checkpoints */
498 	}
499 
500 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
501 	ncpus = x;
502 
503 	/* ncpus2 -- ncpus rounded down to the nearest power of 2 */
504 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
505 		;
506 	--shift;
507 	ncpus2_shift = shift;
508 	ncpus2 = 1 << shift;
509 	ncpus2_mask = ncpus2 - 1;
510 
511 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
512 	if ((1 << shift) < ncpus)
513 		++shift;
514 	ncpus_fit = 1 << shift;
515 	ncpus_fit_mask = ncpus_fit - 1;
516 
517 	/* build our map of 'other' CPUs */
518 	mycpu->gd_other_cpus = smp_startup_mask;
519 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
520 
521 	gd = (struct mdglobaldata *)mycpu;
522 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
523 
524 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
525 	mycpu->gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
526 					     VM_SUBSYS_IPIQ, KM_CPU(0));
527 	bzero(mycpu->gd_ipiq, ipiq_size);
528 
529 	/* initialize arc4random. */
530 	arc4_init_pcpu(0);
531 
532 	/* restore the warmstart vector */
533 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
534 	outb(CMOS_REG, BIOS_RESET);
535 	outb(CMOS_DATA, mpbiosreason);
536 
537 	/*
538 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
539 	 * up, clean out the P==V mapping we did earlier.
540 	 */
541 	pmap_set_opt();
542 
543 	/*
544 	 * Wait all APs to finish initializing LAPIC
545 	 */
546 	if (bootverbose)
547 		kprintf("SMP: Waiting APs LAPIC initialization\n");
548 	if (cpu_feature & CPUID_TSC)
549 		tsc0_offset = rdtsc();
550 	tsc_offsets[0] = 0;
551 	mp_finish_lapic = 1;
552 	rel_mplock();
553 
554 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
555 		cpu_pause();
556 		cpu_lfence();
557 		if (cpu_feature & CPUID_TSC)
558 			tsc0_offset = rdtsc();
559 	}
560 	while (try_mplock() == 0) {
561 		cpu_pause();
562 		cpu_lfence();
563 	}
564 
565 	/* number of APs actually started */
566 	return ncpus - 1;
567 }
568 
569 
570 /*
571  * load the 1st level AP boot code into base memory.
572  */
573 
574 /* targets for relocation */
575 extern void bigJump(void);
576 extern void bootCodeSeg(void);
577 extern void bootDataSeg(void);
578 extern void MPentry(void);
579 extern u_int MP_GDT;
580 extern u_int mp_gdtbase;
581 
582 #if 0
583 
584 static void
585 install_ap_tramp(u_int boot_addr)
586 {
587 	int     x;
588 	int     size = *(int *) ((u_long) & bootMP_size);
589 	u_char *src = (u_char *) ((u_long) bootMP);
590 	u_char *dst = (u_char *) boot_addr + KERNBASE;
591 	u_int   boot_base = (u_int) bootMP;
592 	u_int8_t *dst8;
593 	u_int16_t *dst16;
594 	u_int32_t *dst32;
595 
596 	POSTCODE(INSTALL_AP_TRAMP_POST);
597 
598 	for (x = 0; x < size; ++x)
599 		*dst++ = *src++;
600 
601 	/*
602 	 * modify addresses in code we just moved to basemem. unfortunately we
603 	 * need fairly detailed info about mpboot.s for this to work.  changes
604 	 * to mpboot.s might require changes here.
605 	 */
606 
607 	/* boot code is located in KERNEL space */
608 	dst = (u_char *) boot_addr + KERNBASE;
609 
610 	/* modify the lgdt arg */
611 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
612 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
613 
614 	/* modify the ljmp target for MPentry() */
615 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
616 	*dst32 = ((u_int) MPentry - KERNBASE);
617 
618 	/* modify the target for boot code segment */
619 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
620 	dst8 = (u_int8_t *) (dst16 + 1);
621 	*dst16 = (u_int) boot_addr & 0xffff;
622 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
623 
624 	/* modify the target for boot data segment */
625 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
626 	dst8 = (u_int8_t *) (dst16 + 1);
627 	*dst16 = (u_int) boot_addr & 0xffff;
628 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
629 }
630 
631 #endif
632 
633 /*
634  * This function starts the AP (application processor) identified
635  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
636  * to accomplish this.  This is necessary because of the nuances
637  * of the different hardware we might encounter.  It ain't pretty,
638  * but it seems to work.
639  *
640  * NOTE: eventually an AP gets to ap_init(), which is called just
641  * before the AP goes into the LWKT scheduler's idle loop.
642  */
643 static int
644 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
645 {
646 	int     physical_cpu;
647 	int     vector;
648 	u_long  icr_lo, icr_hi;
649 
650 	POSTCODE(START_AP_POST);
651 
652 	/* get the PHYSICAL APIC ID# */
653 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
654 
655 	/* calculate the vector */
656 	vector = (boot_addr >> 12) & 0xff;
657 
658 	/* We don't want anything interfering */
659 	cpu_disable_intr();
660 
661 	/* Make sure the target cpu sees everything */
662 	wbinvd();
663 
664 	/*
665 	 * Try to detect when a SMI has occurred, wait up to 200ms.
666 	 *
667 	 * If a SMI occurs during an AP reset but before we issue
668 	 * the STARTUP command, the AP may brick.  To work around
669 	 * this problem we hold off doing the AP startup until
670 	 * after we have detected the SMI.  Hopefully another SMI
671 	 * will not occur before we finish the AP startup.
672 	 *
673 	 * Retries don't seem to help.  SMIs have a window of opportunity
674 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
675 	 * the interrupt rate can be quite high.
676 	 *
677 	 * NOTE: Don't worry about the L1 cache load, it might bloat
678 	 *	 ldelta a little but ndelta will be so huge when the SMI
679 	 *	 occurs the detection logic will still work fine.
680 	 */
681 	if (smibest) {
682 		set_apic_timer(200000);
683 		smitest();
684 	}
685 
686 	/*
687 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
688 	 * and running the target CPU. OR this INIT IPI might be latched (P5
689 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
690 	 * ignored.
691 	 *
692 	 * see apic/apicreg.h for icr bit definitions.
693 	 *
694 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
695 	 */
696 
697 	/*
698 	 * Setup the address for the target AP.  We can setup
699 	 * icr_hi once and then just trigger operations with
700 	 * icr_lo.
701 	 */
702 	icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
703 	icr_hi |= (physical_cpu << 24);
704 	icr_lo = lapic->icr_lo & 0xfff00000;
705 	lapic->icr_hi = icr_hi;
706 
707 	/*
708 	 * Do an INIT IPI: assert RESET
709 	 *
710 	 * Use edge triggered mode to assert INIT
711 	 */
712 	lapic->icr_lo = icr_lo | 0x00004500;
713 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
714 		 /* spin */ ;
715 
716 	/*
717 	 * The spec calls for a 10ms delay but we may have to use a
718 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
719 	 * interrupt.  We have other loops here too and dividing by 2
720 	 * doesn't seem to be enough even after subtracting 350us,
721 	 * so we divide by 4.
722 	 *
723 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
724 	 * interrupt was detected we use the full 10ms.
725 	 */
726 	if (smibest == 0)
727 		u_sleep(10000);
728 	else if (smibest < 150 * 4 + 350)
729 		u_sleep(150);
730 	else if ((smibest - 350) / 4 < 10000)
731 		u_sleep((smibest - 350) / 4);
732 	else
733 		u_sleep(10000);
734 
735 	/*
736 	 * Do an INIT IPI: deassert RESET
737 	 *
738 	 * Use level triggered mode to deassert.  It is unclear
739 	 * why we need to do this.
740 	 */
741 	lapic->icr_lo = icr_lo | 0x00008500;
742 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
743 		 /* spin */ ;
744 	u_sleep(150);				/* wait 150us */
745 
746 	/*
747 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
748 	 * latched, (P5 bug) this 1st STARTUP would then terminate
749 	 * immediately, and the previously started INIT IPI would continue. OR
750 	 * the previous INIT IPI has already run. and this STARTUP IPI will
751 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
752 	 * will run.
753 	 */
754 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
755 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
756 		 /* spin */ ;
757 	u_sleep(200);		/* wait ~200uS */
758 
759 	/*
760 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
761 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
762 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
763 	 * recognized after hardware RESET or INIT IPI.
764 	 */
765 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
766 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
767 		 /* spin */ ;
768 
769 	/* Resume normal operation */
770 	cpu_enable_intr();
771 
772 	/* wait for it to start, see ap_init() */
773 	set_apic_timer(5000000);/* == 5 seconds */
774 	while (read_apic_timer()) {
775 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
776 			return 1;	/* return SUCCESS */
777 	}
778 
779 	return 0;		/* return FAILURE */
780 }
781 
782 static
783 int
784 smitest(void)
785 {
786 	int64_t	ltsc;
787 	int64_t	ntsc;
788 	int64_t	ldelta;
789 	int64_t	ndelta;
790 	int count;
791 
792 	ldelta = 0;
793 	ndelta = 0;
794 	while (read_apic_timer()) {
795 		ltsc = rdtsc();
796 		for (count = 0; count < 100; ++count)
797 			ntsc = rdtsc();	/* force loop to occur */
798 		if (ldelta) {
799 			ndelta = ntsc - ltsc;
800 			if (ldelta > ndelta)
801 				ldelta = ndelta;
802 			if (ndelta > ldelta * 2)
803 				break;
804 		} else {
805 			ldelta = ntsc - ltsc;
806 		}
807 	}
808 	return(read_apic_timer());
809 }
810 
811 /*
812  * Synchronously flush the TLB on all other CPU's.  The current cpu's
813  * TLB is not flushed.  If the caller wishes to flush the current cpu's
814  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
815  *
816  * This routine may be called concurrently from multiple cpus.  When this
817  * happens, smp_invltlb() can wind up sticking around in the confirmation
818  * while() loop at the end as additional cpus are added to the global
819  * cpumask, until they are acknowledged by another IPI.
820  *
821  * NOTE: If for some reason we were unable to start all cpus we cannot
822  *	 safely use broadcast IPIs.
823  */
824 
825 cpumask_t smp_smurf_mask;
826 static cpumask_t smp_invltlb_mask;
827 #define LOOPRECOVER
828 #define LOOPMASK_IN
829 #ifdef LOOPMASK_IN
830 cpumask_t smp_in_mask;
831 #endif
832 cpumask_t smp_invmask;
833 extern cpumask_t smp_idleinvl_mask;
834 extern cpumask_t smp_idleinvl_reqs;
835 
836 /*
837  * Atomically OR bits in *mask to smp_smurf_mask.  Adjust *mask to remove
838  * bits that do not need to be IPId.  These bits are still part of the command,
839  * but the target cpus have already been signalled and do not need to be
840  * sigalled again.
841  */
842 #include <sys/spinlock.h>
843 #include <sys/spinlock2.h>
844 
845 static __noinline
846 void
847 smp_smurf_fetchset(cpumask_t *mask)
848 {
849 	cpumask_t omask;
850 	int i;
851 	__uint64_t obits;
852 	__uint64_t nbits;
853 
854 	i = 0;
855 	while (i < CPUMASK_ELEMENTS) {
856 		obits = smp_smurf_mask.ary[i];
857 		cpu_ccfence();
858 		nbits = obits | mask->ary[i];
859 		if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
860 			omask.ary[i] = obits;
861 			++i;
862 		}
863 	}
864 	CPUMASK_NANDMASK(*mask, omask);
865 }
866 
867 /*
868  * This is a mechanism which guarantees that cpu_invltlb() will be executed
869  * on idle cpus without having to signal or wake them up.  The invltlb will be
870  * executed when they wake up, prior to any scheduling or interrupt thread.
871  *
872  * (*mask) is modified to remove the cpus we successfully negotiate this
873  * function with.  This function may only be used with semi-synchronous
874  * commands (typically invltlb's or semi-synchronous invalidations which
875  * are usually associated only with kernel memory).
876  */
877 void
878 smp_smurf_idleinvlclr(cpumask_t *mask)
879 {
880 	if (optimized_invltlb) {
881 		ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
882 		/* cpu_lfence() not needed */
883 		CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
884 	}
885 }
886 
887 /*
888  * Issue cpu_invltlb() across all cpus except the current cpu.
889  *
890  * This function will arrange to avoid idle cpus, but still gurantee that
891  * invltlb is run on them when they wake up prior to any scheduling or
892  * nominal interrupt.
893  */
894 void
895 smp_invltlb(void)
896 {
897 	struct mdglobaldata *md = mdcpu;
898 	cpumask_t mask;
899 	unsigned long rflags;
900 #ifdef LOOPRECOVER
901 	uint64_t tsc_base = rdtsc();
902 	int repeats = 0;
903 #endif
904 
905 	if (report_invltlb_src > 0) {
906 		if (--report_invltlb_src <= 0)
907 			print_backtrace(8);
908 	}
909 
910 	/*
911 	 * Disallow normal interrupts, set all active cpus except our own
912 	 * in the global smp_invltlb_mask.
913 	 */
914 	++md->mi.gd_cnt.v_smpinvltlb;
915 	crit_enter_gd(&md->mi);
916 
917 	/*
918 	 * Bits we want to set in smp_invltlb_mask.  We do not want to signal
919 	 * our own cpu.  Also try to remove bits associated with idle cpus
920 	 * that we can flag for auto-invltlb.
921 	 */
922 	mask = smp_active_mask;
923 	CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
924 	smp_smurf_idleinvlclr(&mask);
925 
926 	rflags = read_rflags();
927 	cpu_disable_intr();
928 	ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
929 
930 	/*
931 	 * IPI non-idle cpus represented by mask.  The omask calculation
932 	 * removes cpus from the mask which already have a Xinvltlb IPI
933 	 * pending (avoid double-queueing the IPI).
934 	 *
935 	 * We must disable real interrupts when setting the smurf flags or
936 	 * we might race a XINVLTLB before we manage to send the ipi's for
937 	 * the bits we set.
938 	 *
939 	 * NOTE: We are not signalling ourselves, mask already does NOT
940 	 * include our own cpu.
941 	 */
942 	smp_smurf_fetchset(&mask);
943 
944 	/*
945 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
946 	 * the critical section count on the target cpus.
947 	 */
948 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
949 	if (all_but_self_ipi_enable &&
950 	    (all_but_self_ipi_enable >= 2 ||
951 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
952 		all_but_self_ipi(XINVLTLB_OFFSET);
953 	} else {
954 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
955 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
956 	}
957 
958 	/*
959 	 * Wait for acknowledgement by all cpus.  smp_inval_intr() will
960 	 * temporarily enable interrupts to avoid deadlocking the lapic,
961 	 * and will also handle running cpu_invltlb() and remote invlpg
962 	 * command son our cpu if some other cpu requests it of us.
963 	 *
964 	 * WARNING! I originally tried to implement this as a hard loop
965 	 *	    checking only smp_invltlb_mask (and issuing a local
966 	 *	    cpu_invltlb() if requested), with interrupts enabled
967 	 *	    and without calling smp_inval_intr().  This DID NOT WORK.
968 	 *	    It resulted in weird races where smurf bits would get
969 	 *	    cleared without any action being taken.
970 	 */
971 	smp_inval_intr();
972 	CPUMASK_ASSZERO(mask);
973 	while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
974 		smp_inval_intr();
975 		cpu_pause();
976 #ifdef LOOPRECOVER
977 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
978 			/*
979 			 * cpuid 	- cpu doing the waiting
980 			 * invltlb_mask - IPI in progress
981 			 */
982 			kprintf("smp_invltlb %d: waited too long inv=%08jx "
983 				"smurf=%08jx "
984 #ifdef LOOPMASK_IN
985 				"in=%08jx "
986 #endif
987 				"idle=%08jx/%08jx\n",
988 				md->mi.gd_cpuid,
989 				smp_invltlb_mask.ary[0],
990 				smp_smurf_mask.ary[0],
991 #ifdef LOOPMASK_IN
992 				smp_in_mask.ary[0],
993 #endif
994 				smp_idleinvl_mask.ary[0],
995 				smp_idleinvl_reqs.ary[0]);
996 			mdcpu->gd_xinvaltlb = 0;
997 			ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
998 						smp_invltlb_mask);
999 			smp_invlpg(&smp_active_mask);
1000 			tsc_base = rdtsc();
1001 			if (++repeats > 10) {
1002 				kprintf("smp_invltlb: giving up\n");
1003 				CPUMASK_ASSZERO(smp_invltlb_mask);
1004 			}
1005 		}
1006 #endif
1007 	}
1008 	write_rflags(rflags);
1009 	crit_exit_gd(&md->mi);
1010 }
1011 
1012 /*
1013  * Called from a critical section with interrupts hard-disabled.
1014  * This function issues an XINVLTLB IPI and then executes any pending
1015  * command on the current cpu before returning.
1016  */
1017 void
1018 smp_invlpg(cpumask_t *cmdmask)
1019 {
1020 	struct mdglobaldata *md = mdcpu;
1021 	cpumask_t mask;
1022 
1023 	if (report_invlpg_src > 0) {
1024 		if (--report_invlpg_src <= 0)
1025 			print_backtrace(8);
1026 	}
1027 
1028 	/*
1029 	 * Disallow normal interrupts, set all active cpus in the pmap,
1030 	 * plus our own for completion processing (it might or might not
1031 	 * be part of the set).
1032 	 */
1033 	mask = smp_active_mask;
1034 	CPUMASK_ANDMASK(mask, *cmdmask);
1035 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1036 
1037 	/*
1038 	 * Avoid double-queuing IPIs, which can deadlock us.  We must disable
1039 	 * real interrupts when setting the smurf flags or we might race a
1040 	 * XINVLTLB before we manage to send the ipi's for the bits we set.
1041 	 *
1042 	 * NOTE: We might be including our own cpu in the smurf mask.
1043 	 */
1044 	smp_smurf_fetchset(&mask);
1045 
1046 	/*
1047 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
1048 	 * the critical section count on the target cpus.
1049 	 *
1050 	 * We do not include our own cpu when issuing the IPI.
1051 	 */
1052 	if (all_but_self_ipi_enable &&
1053 	    (all_but_self_ipi_enable >= 2 ||
1054 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
1055 		all_but_self_ipi(XINVLTLB_OFFSET);
1056 	} else {
1057 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1058 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
1059 	}
1060 
1061 	/*
1062 	 * This will synchronously wait for our command to complete,
1063 	 * as well as process commands from other cpus.  It also handles
1064 	 * reentrancy.
1065 	 *
1066 	 * (interrupts are disabled and we are in a critical section here)
1067 	 */
1068 	smp_inval_intr();
1069 }
1070 
1071 void
1072 smp_sniff(void)
1073 {
1074 	globaldata_t gd = mycpu;
1075 	int dummy;
1076 	register_t rflags;
1077 
1078 	/*
1079 	 * Ignore all_but_self_ipi_enable here and just use it.
1080 	 */
1081 	rflags = read_rflags();
1082 	cpu_disable_intr();
1083 	all_but_self_ipi(XSNIFF_OFFSET);
1084 	gd->gd_sample_pc = smp_sniff;
1085 	gd->gd_sample_sp = &dummy;
1086 	write_rflags(rflags);
1087 }
1088 
1089 void
1090 cpu_sniff(int dcpu)
1091 {
1092 	globaldata_t rgd = globaldata_find(dcpu);
1093 	register_t rflags;
1094 	int dummy;
1095 
1096 	/*
1097 	 * Ignore all_but_self_ipi_enable here and just use it.
1098 	 */
1099 	rflags = read_rflags();
1100 	cpu_disable_intr();
1101 	single_apic_ipi(dcpu, XSNIFF_OFFSET, APIC_DELMODE_FIXED);
1102 	rgd->gd_sample_pc = cpu_sniff;
1103 	rgd->gd_sample_sp = &dummy;
1104 	write_rflags(rflags);
1105 }
1106 
1107 /*
1108  * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1109  * critical section.  gd_intr_nesting_level may or may not be bumped
1110  * depending on entry.
1111  *
1112  * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1113  * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1114  * IS IN A CRITICAL SECTION.
1115  */
1116 void
1117 smp_inval_intr(void)
1118 {
1119 	struct mdglobaldata *md = mdcpu;
1120 	cpumask_t cpumask;
1121 #ifdef LOOPRECOVER
1122 	uint64_t tsc_base = rdtsc();
1123 #endif
1124 
1125 #if 0
1126 	/*
1127 	 * The idle code is in a critical section, but that doesn't stop
1128 	 * Xinvltlb from executing, so deal with the race which can occur
1129 	 * in that situation.  Otherwise r-m-w operations by pmap_inval_intr()
1130 	 * may have problems.
1131 	 */
1132 	if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1133 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1134 		cpu_invltlb();
1135 		cpu_mfence();
1136 	}
1137 #endif
1138 
1139 	/*
1140 	 * This is a real mess.  I'd like to just leave interrupts disabled
1141 	 * but it can cause the lapic to deadlock if too many interrupts queue
1142 	 * to it, due to the idiotic design of the lapic.  So instead we have
1143 	 * to enter a critical section so normal interrupts are made pending
1144 	 * and track whether this one was reentered.
1145 	 */
1146 	if (md->gd_xinvaltlb) {		/* reentrant on cpu */
1147 		md->gd_xinvaltlb = 2;
1148 		return;
1149 	}
1150 	md->gd_xinvaltlb = 1;
1151 
1152 	/*
1153 	 * Check only those cpus with active Xinvl* commands pending.
1154 	 *
1155 	 * We are going to enable interrupts so make sure we are in a
1156 	 * critical section.  This is necessary to avoid deadlocking
1157 	 * the lapic and to ensure that we execute our commands prior to
1158 	 * any nominal interrupt or preemption.
1159 	 *
1160 	 * WARNING! It is very important that we only clear out but in
1161 	 *	    smp_smurf_mask once for each interrupt we take.  In
1162 	 *	    this case, we clear it on initial entry and only loop
1163 	 *	    on the reentrancy detect (caused by another interrupt).
1164 	 */
1165 	cpumask = smp_invmask;
1166 #ifdef LOOPMASK_IN
1167 	ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1168 #endif
1169 loop:
1170 	cpu_enable_intr();
1171 	ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1172 
1173 	/*
1174 	 * Specific page request(s), and we can't return until all bits
1175 	 * are zero.
1176 	 */
1177 	for (;;) {
1178 		int toolong;
1179 
1180 		/*
1181 		 * Also execute any pending full invalidation request in
1182 		 * this loop.
1183 		 */
1184 		if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1185 			ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1186 					       md->mi.gd_cpuid);
1187 			cpu_invltlb();
1188 			cpu_mfence();
1189 		}
1190 
1191 #ifdef LOOPRECOVER
1192 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1193 			/*
1194 			 * cpuid 	- cpu doing the waiting
1195 			 * invmask	- IPI in progress
1196 			 * invltlb_mask - which ones are TLB invalidations?
1197 			 */
1198 			kprintf("smp_inval_intr %d inv=%08jx tlbm=%08jx "
1199 				"smurf=%08jx "
1200 #ifdef LOOPMASK_IN
1201 				"in=%08jx "
1202 #endif
1203 				"idle=%08jx/%08jx\n",
1204 				md->mi.gd_cpuid,
1205 				smp_invmask.ary[0],
1206 				smp_invltlb_mask.ary[0],
1207 				smp_smurf_mask.ary[0],
1208 #ifdef LOOPMASK_IN
1209 				smp_in_mask.ary[0],
1210 #endif
1211 				smp_idleinvl_mask.ary[0],
1212 				smp_idleinvl_reqs.ary[0]);
1213 			tsc_base = rdtsc();
1214 			toolong = 1;
1215 		} else {
1216 			toolong = 0;
1217 		}
1218 #else
1219 		toolong = 0;
1220 #endif
1221 
1222 		/*
1223 		 * We can only add bits to the cpumask to test during the
1224 		 * loop because the smp_invmask bit is cleared once the
1225 		 * originator completes the command (the targets may still
1226 		 * be cycling their own completions in this loop, afterwords).
1227 		 *
1228 		 * lfence required prior to all tests as this Xinvltlb
1229 		 * interrupt could race the originator (already be in progress
1230 		 * wnen the originator decides to issue, due to an issue by
1231 		 * another cpu).
1232 		 */
1233 		cpu_lfence();
1234 		CPUMASK_ORMASK(cpumask, smp_invmask);
1235 		/*cpumask = smp_active_mask;*/	/* XXX */
1236 		cpu_lfence();
1237 
1238 		if (pmap_inval_intr(&cpumask, toolong) == 0) {
1239 			/*
1240 			 * Clear our smurf mask to allow new IPIs, but deal
1241 			 * with potential races.
1242 			 */
1243 			break;
1244 		}
1245 
1246 		/*
1247 		 * Test if someone sent us another invalidation IPI, break
1248 		 * out so we can take it to avoid deadlocking the lapic
1249 		 * interrupt queue (? stupid intel, amd).
1250 		 */
1251 		if (md->gd_xinvaltlb == 2)
1252 			break;
1253 		/*
1254 		if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1255 			break;
1256 		*/
1257 	}
1258 
1259 	/*
1260 	 * Full invalidation request
1261 	 */
1262 	if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1263 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1264 				       md->mi.gd_cpuid);
1265 		cpu_invltlb();
1266 		cpu_mfence();
1267 	}
1268 
1269 	/*
1270 	 * Check to see if another Xinvltlb interrupt occurred and loop up
1271 	 * if it did.
1272 	 */
1273 	cpu_disable_intr();
1274 	if (md->gd_xinvaltlb == 2) {
1275 		md->gd_xinvaltlb = 1;
1276 		goto loop;
1277 	}
1278 #ifdef LOOPMASK_IN
1279 	ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1280 #endif
1281 	md->gd_xinvaltlb = 0;
1282 }
1283 
1284 void
1285 cpu_wbinvd_on_all_cpus_callback(void *arg)
1286 {
1287 	wbinvd();
1288 }
1289 
1290 /*
1291  * When called the executing CPU will send an IPI to all other CPUs
1292  * requesting that they halt execution.
1293  *
1294  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1295  *
1296  *  - Signals all CPUs in map to stop.
1297  *  - Waits for each to stop.
1298  *
1299  * Returns:
1300  *  -1: error
1301  *   0: NA
1302  *   1: ok
1303  *
1304  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1305  *            from executing at same time.
1306  */
1307 int
1308 stop_cpus(cpumask_t map)
1309 {
1310 	cpumask_t mask;
1311 
1312 	CPUMASK_ANDMASK(map, smp_active_mask);
1313 
1314 	/* send the Xcpustop IPI to all CPUs in map */
1315 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1316 
1317 	do {
1318 		mask = stopped_cpus;
1319 		CPUMASK_ANDMASK(mask, map);
1320 		/* spin */
1321 	} while (CPUMASK_CMPMASKNEQ(mask, map));
1322 
1323 	return 1;
1324 }
1325 
1326 
1327 /*
1328  * Called by a CPU to restart stopped CPUs.
1329  *
1330  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1331  *
1332  *  - Signals all CPUs in map to restart.
1333  *  - Waits for each to restart.
1334  *
1335  * Returns:
1336  *  -1: error
1337  *   0: NA
1338  *   1: ok
1339  */
1340 int
1341 restart_cpus(cpumask_t map)
1342 {
1343 	cpumask_t mask;
1344 
1345 	/* signal other cpus to restart */
1346 	mask = map;
1347 	CPUMASK_ANDMASK(mask, smp_active_mask);
1348 	cpu_ccfence();
1349 	started_cpus = mask;
1350 	cpu_ccfence();
1351 
1352 	/* wait for each to clear its bit */
1353 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1354 		cpu_pause();
1355 
1356 	return 1;
1357 }
1358 
1359 /*
1360  * This is called once the mpboot code has gotten us properly relocated
1361  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
1362  * and when it returns the scheduler will call the real cpu_idle() main
1363  * loop for the idlethread.  Interrupts are disabled on entry and should
1364  * remain disabled at return.
1365  */
1366 void
1367 ap_init(void)
1368 {
1369 	int	cpu_id;
1370 
1371 	/*
1372 	 * Adjust smp_startup_mask to signal the BSP that we have started
1373 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1374 	 * is waiting for our signal.
1375 	 *
1376 	 * We can't set our bit in smp_active_mask yet because we are holding
1377 	 * interrupts physically disabled and remote cpus could deadlock
1378 	 * trying to send us an IPI.
1379 	 */
1380 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1381 	cpu_mfence();
1382 
1383 	/*
1384 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1385 	 * non-zero, then get the MP lock.
1386 	 *
1387 	 * Note: We are in a critical section.
1388 	 *
1389 	 * Note: we are the idle thread, we can only spin.
1390 	 *
1391 	 * Note: The load fence is memory volatile and prevents the compiler
1392 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1393 	 * caching it.
1394 	 */
1395 	while (mp_finish_lapic == 0) {
1396 		cpu_pause();
1397 		cpu_lfence();
1398 	}
1399 #if 0
1400 	while (try_mplock() == 0) {
1401 		cpu_pause();
1402 		cpu_lfence();
1403 	}
1404 #endif
1405 
1406 	if (cpu_feature & CPUID_TSC) {
1407 		/*
1408 		 * The BSP is constantly updating tsc0_offset, figure out
1409 		 * the relative difference to synchronize ktrdump.
1410 		 */
1411 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1412 	}
1413 
1414 	/* BSP may have changed PTD while we're waiting for the lock */
1415 	cpu_invltlb();
1416 
1417 	/* Build our map of 'other' CPUs. */
1418 	mycpu->gd_other_cpus = smp_startup_mask;
1419 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1420 
1421 	/* A quick check from sanity claus */
1422 	cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1423 	if (mycpu->gd_cpuid != cpu_id) {
1424 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1425 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1426 			cpu_id, (lapic->id & 0xff000000) >> 24);
1427 #if 0 /* JGXXX */
1428 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1429 #endif
1430 		panic("cpuid mismatch! boom!!");
1431 	}
1432 
1433 	/* Initialize AP's local APIC for irq's */
1434 	lapic_init(FALSE);
1435 
1436 	/* LAPIC initialization is done */
1437 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1438 	cpu_mfence();
1439 
1440 #if 0
1441 	/* Let BSP move onto the next initialization stage */
1442 	rel_mplock();
1443 #endif
1444 
1445 	/*
1446 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1447 	 * then get the MP lock.
1448 	 *
1449 	 * Note: We are in a critical section.
1450 	 *
1451 	 * Note: we are the idle thread, we can only spin.
1452 	 *
1453 	 * Note: The load fence is memory volatile and prevents the compiler
1454 	 * from improperly caching mp_finish, and the cpu from improperly
1455 	 * caching it.
1456 	 */
1457 	while (mp_finish == 0) {
1458 		cpu_pause();
1459 		cpu_lfence();
1460 	}
1461 
1462 	/* BSP may have changed PTD while we're waiting for the lock */
1463 	cpu_invltlb();
1464 
1465 	/* Set memory range attributes for this CPU to match the BSP */
1466 	mem_range_AP_init();
1467 
1468 	/*
1469 	 * Once we go active we must process any IPIQ messages that may
1470 	 * have been queued, because no actual IPI will occur until we
1471 	 * set our bit in the smp_active_mask.  If we don't the IPI
1472 	 * message interlock could be left set which would also prevent
1473 	 * further IPIs.
1474 	 *
1475 	 * The idle loop doesn't expect the BGL to be held and while
1476 	 * lwkt_switch() normally cleans things up this is a special case
1477 	 * because we returning almost directly into the idle loop.
1478 	 *
1479 	 * The idle thread is never placed on the runq, make sure
1480 	 * nothing we've done put it there.
1481 	 */
1482 
1483 	/*
1484 	 * Hold a critical section and allow real interrupts to occur.  Zero
1485 	 * any spurious interrupts which have accumulated, then set our
1486 	 * smp_active_mask indicating that we are fully operational.
1487 	 */
1488 	crit_enter();
1489 	__asm __volatile("sti; pause; pause"::);
1490 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1491 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1492 
1493 	/*
1494 	 * Wait until all cpus have set their smp_active_mask and have fully
1495 	 * operational interrupts before proceeding.
1496 	 *
1497 	 * We need a final cpu_invltlb() because we would not have received
1498 	 * any until we set our bit in smp_active_mask.
1499 	 */
1500 	while (mp_finish == 1) {
1501 		cpu_pause();
1502 		cpu_lfence();
1503 	}
1504 	cpu_invltlb();
1505 
1506 	/*
1507 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1508 	 * At this point code is expected to be able to use the full kernel
1509 	 * API.
1510 	 */
1511 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1512 
1513 	/*
1514 	 * Since we may have cleaned up the interrupt triggers, manually
1515 	 * process any pending IPIs before exiting our critical section.
1516 	 * Once the critical section has exited, normal interrupt processing
1517 	 * may occur.
1518 	 */
1519 	atomic_swap_int(&mycpu->gd_npoll, 0);
1520 	lwkt_process_ipiq();
1521 	crit_exit();
1522 
1523 	/*
1524 	 * Final final, allow the waiting BSP to resume the boot process,
1525 	 * return 'into' the idle thread bootstrap.
1526 	 */
1527 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1528 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1529 }
1530 
1531 /*
1532  * Get SMP fully working before we start initializing devices.
1533  */
1534 static
1535 void
1536 ap_finish(void)
1537 {
1538 	if (bootverbose)
1539 		kprintf("Finish MP startup\n");
1540 	rel_mplock();
1541 
1542 	/*
1543 	 * Wait for the active mask to complete, after which all cpus will
1544 	 * be accepting interrupts.
1545 	 */
1546 	mp_finish = 1;
1547 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1548 		cpu_pause();
1549 		cpu_lfence();
1550 	}
1551 
1552 	/*
1553 	 * Wait for the finalization mask to complete, after which all cpus
1554 	 * have completely finished initializing and are entering or are in
1555 	 * their idle thread.
1556 	 *
1557 	 * BSP should have received all required invltlbs but do another
1558 	 * one just in case.
1559 	 */
1560 	cpu_invltlb();
1561 	mp_finish = 2;
1562 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1563 		cpu_pause();
1564 		cpu_lfence();
1565 	}
1566 
1567 	while (try_mplock() == 0) {
1568 		cpu_pause();
1569 		cpu_lfence();
1570 	}
1571 
1572 	if (bootverbose) {
1573 		kprintf("Active CPU Mask: %016jx\n",
1574 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1575 	}
1576 }
1577 
1578 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1579 
1580 /*
1581  * Interrupts must be hard-disabled by caller
1582  */
1583 void
1584 cpu_send_ipiq(int dcpu)
1585 {
1586 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1587                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1588 }
1589 
1590 #if 0	/* single_apic_ipi_passive() not working yet */
1591 /*
1592  * Returns 0 on failure, 1 on success
1593  */
1594 int
1595 cpu_send_ipiq_passive(int dcpu)
1596 {
1597         int r = 0;
1598 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1599                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1600                                         APIC_DELMODE_FIXED);
1601         }
1602 	return(r);
1603 }
1604 #endif
1605 
1606 static void
1607 mp_bsp_simple_setup(void)
1608 {
1609 	struct mdglobaldata *gd;
1610 	size_t ipiq_size;
1611 
1612 	/* build our map of 'other' CPUs */
1613 	mycpu->gd_other_cpus = smp_startup_mask;
1614 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1615 
1616 	gd = (struct mdglobaldata *)mycpu;
1617 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1618 
1619 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1620 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
1621 					    VM_SUBSYS_IPIQ);
1622 	bzero(mycpu->gd_ipiq, ipiq_size);
1623 
1624 	/* initialize arc4random. */
1625 	arc4_init_pcpu(0);
1626 
1627 	pmap_set_opt();
1628 
1629 	if (cpu_feature & CPUID_TSC)
1630 		tsc0_offset = rdtsc();
1631 }
1632 
1633 
1634 /*
1635  * CPU TOPOLOGY DETECTION FUNCTIONS
1636  */
1637 
1638 /* Detect intel topology using CPUID
1639  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1640  */
1641 static void
1642 detect_intel_topology(int count_htt_cores)
1643 {
1644 	int shift = 0;
1645 	int ecx_index = 0;
1646 	int core_plus_logical_bits = 0;
1647 	int cores_per_package;
1648 	int logical_per_package;
1649 	int logical_per_core;
1650 	unsigned int p[4];
1651 
1652 	if (cpu_high >= 0xb) {
1653 		goto FUNC_B;
1654 
1655 	} else if (cpu_high >= 0x4) {
1656 		goto FUNC_4;
1657 
1658 	} else {
1659 		core_bits = 0;
1660 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1661 			;
1662 		logical_CPU_bits = 1 << shift;
1663 		return;
1664 	}
1665 
1666 FUNC_B:
1667 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1668 
1669 	/* if 0xb not supported - fallback to 0x4 */
1670 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1671 		goto FUNC_4;
1672 	}
1673 
1674 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1675 
1676 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1677 	do {
1678 		cpuid_count(0xb, ecx_index, p);
1679 
1680 		/* Check for the Core type in the implemented sub leaves. */
1681 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1682 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1683 			break;
1684 		}
1685 
1686 		ecx_index++;
1687 
1688 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1689 
1690 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1691 
1692 	return;
1693 
1694 FUNC_4:
1695 	cpuid_count(0x4, 0, p);
1696 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1697 
1698 	logical_per_package = count_htt_cores;
1699 	logical_per_core = logical_per_package / cores_per_package;
1700 
1701 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1702 		;
1703 	logical_CPU_bits = shift;
1704 
1705 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1706 		;
1707 	core_bits = shift;
1708 
1709 	return;
1710 }
1711 
1712 /* Detect AMD topology using CPUID
1713  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1714  */
1715 static void
1716 detect_amd_topology(int count_htt_cores)
1717 {
1718 	int shift = 0;
1719 	if ((cpu_feature & CPUID_HTT) && (amd_feature2 & AMDID2_CMP)) {
1720 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1721 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
1722 				    AMDID_COREID_SIZE_SHIFT;
1723 		} else {
1724 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1725 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1726 				;
1727 			core_bits = shift;
1728 		}
1729 
1730 		if (amd_feature2 & AMDID2_TOPOEXT) {
1731 			u_int p[4];
1732 			int i;
1733 			int type;
1734 			int level;
1735 			int share_count;
1736 			for (i = 0; i < 256; ++i)  {
1737 				cpuid_count(0x8000001d, i, p);
1738 				type = p[0] & 0x1f;
1739 				level = (p[0] >> 5) & 0x7;
1740 				share_count = 1 + ((p[0] >> 14) & 0xfff);
1741 
1742 				if (type == 0)
1743 					break;
1744 				if (bootverbose)
1745 					kprintf("Topology probe i=%2d type=%d level=%d share_count=%d\n",
1746 						i, type, level, share_count);
1747 				if (type == 1 && share_count) {	/* CPUID_TYPE_SMT */
1748 					for (shift = 0; (1 << shift) < count_htt_cores / share_count; ++shift)
1749 						;
1750 					core_bits = shift;
1751 					break;
1752 				}
1753 			}
1754 		}
1755 
1756 		logical_CPU_bits = count_htt_cores >> core_bits;
1757 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1758 			;
1759 		logical_CPU_bits = shift;
1760 	} else {
1761 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1762 			;
1763 		core_bits = shift;
1764 		logical_CPU_bits = 0;
1765 	}
1766 }
1767 
1768 static void
1769 amd_get_compute_unit_id(void *arg)
1770 {
1771 	u_int regs[4];
1772 
1773 	do_cpuid(0x8000001e, regs);
1774 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1775 
1776 	/*
1777 	 * AMD - CPUID Specification September 2010
1778 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1779 	 */
1780 	mynode->compute_unit_id = regs[1] & 0xff;
1781 }
1782 
1783 int
1784 fix_amd_topology(void)
1785 {
1786 	cpumask_t mask;
1787 
1788 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1789 		return -1;
1790 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1791 		return -1;
1792 
1793 	CPUMASK_ASSALLONES(mask);
1794 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1795 
1796 	kprintf("Compute unit iDS:\n");
1797 	int i;
1798 	for (i = 0; i < ncpus; i++) {
1799 		kprintf("%d-%d; \n",
1800 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1801 	}
1802 	return 0;
1803 }
1804 
1805 /*
1806  * Calculate
1807  * - logical_CPU_bits
1808  * - core_bits
1809  * With the values above (for AMD or INTEL) we are able to generally
1810  * detect the CPU topology (number of cores for each level):
1811  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1812  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1813  */
1814 void
1815 detect_cpu_topology(void)
1816 {
1817 	static int topology_detected = 0;
1818 	int count = 0;
1819 
1820 	if (topology_detected)
1821 		goto OUT;
1822 	if ((cpu_feature & CPUID_HTT) == 0) {
1823 		core_bits = 0;
1824 		logical_CPU_bits = 0;
1825 		goto OUT;
1826 	}
1827 	count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
1828 
1829 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1830 		detect_intel_topology(count);
1831 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
1832 		detect_amd_topology(count);
1833 	topology_detected = 1;
1834 
1835 OUT:
1836 	if (bootverbose) {
1837 		kprintf("Bits within APICID: logical_CPU_bits: %d; "
1838 			"core_bits: %d\n",
1839 			logical_CPU_bits, core_bits);
1840 	}
1841 }
1842 
1843 /*
1844  * Interface functions to calculate chip_ID,
1845  * core_number and logical_number
1846  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1847  */
1848 int
1849 get_chip_ID(int cpuid)
1850 {
1851 	return get_apicid_from_cpuid(cpuid) >>
1852 	    (logical_CPU_bits + core_bits);
1853 }
1854 
1855 int
1856 get_chip_ID_from_APICID(int apicid)
1857 {
1858 	return apicid >> (logical_CPU_bits + core_bits);
1859 }
1860 
1861 int
1862 get_core_number_within_chip(int cpuid)
1863 {
1864 	return ((get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1865 		((1 << core_bits) - 1));
1866 }
1867 
1868 int
1869 get_logical_CPU_number_within_core(int cpuid)
1870 {
1871 	return (get_apicid_from_cpuid(cpuid) &
1872 		((1 << logical_CPU_bits) - 1));
1873 }
1874