1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine_base/acpica/acpi_md_cpu.h>
62 #include <machine/psl.h>
63 #include <machine/segments.h>
64 #include <machine/tss.h>
65 #include <machine/specialreg.h>
66 #include <machine/globaldata.h>
67 #include <machine/pmap_inval.h>
68 #include <machine/clock.h>
69 
70 #include <machine/md_var.h>		/* setidt() */
71 #include <machine_base/icu/icu.h>	/* IPIs */
72 #include <machine_base/icu/icu_var.h>
73 #include <machine_base/apic/ioapic_abi.h>
74 #include <machine/intr_machdep.h>	/* IPIs */
75 
76 #define WARMBOOT_TARGET		0
77 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
78 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
79 
80 #define CMOS_REG		(0x70)
81 #define CMOS_DATA		(0x71)
82 #define BIOS_RESET		(0x0f)
83 #define BIOS_WARM		(0x0a)
84 
85 /*
86  * this code MUST be enabled here and in mpboot.s.
87  * it follows the very early stages of AP boot by placing values in CMOS ram.
88  * it NORMALLY will never be needed and thus the primitive method for enabling.
89  *
90  */
91 #if defined(CHECK_POINTS)
92 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
93 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
94 
95 #define CHECK_INIT(D);				\
96 	CHECK_WRITE(0x34, (D));			\
97 	CHECK_WRITE(0x35, (D));			\
98 	CHECK_WRITE(0x36, (D));			\
99 	CHECK_WRITE(0x37, (D));			\
100 	CHECK_WRITE(0x38, (D));			\
101 	CHECK_WRITE(0x39, (D));
102 
103 #define CHECK_PRINT(S);				\
104 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
105 	   (S),					\
106 	   CHECK_READ(0x34),			\
107 	   CHECK_READ(0x35),			\
108 	   CHECK_READ(0x36),			\
109 	   CHECK_READ(0x37),			\
110 	   CHECK_READ(0x38),			\
111 	   CHECK_READ(0x39));
112 
113 #else				/* CHECK_POINTS */
114 
115 #define CHECK_INIT(D)
116 #define CHECK_PRINT(S)
117 
118 #endif				/* CHECK_POINTS */
119 
120 /*
121  * Values to send to the POST hardware.
122  */
123 #define MP_BOOTADDRESS_POST	0x10
124 #define MP_PROBE_POST		0x11
125 #define MPTABLE_PASS1_POST	0x12
126 
127 #define MP_START_POST		0x13
128 #define MP_ENABLE_POST		0x14
129 #define MPTABLE_PASS2_POST	0x15
130 
131 #define START_ALL_APS_POST	0x16
132 #define INSTALL_AP_TRAMP_POST	0x17
133 #define START_AP_POST		0x18
134 
135 #define MP_ANNOUNCE_POST	0x19
136 
137 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
138 int	current_postcode;
139 
140 /** XXX FIXME: what system files declare these??? */
141 extern struct region_descriptor r_gdt;
142 
143 extern int nkpt;
144 extern int naps;
145 
146 int64_t tsc0_offset;
147 extern int64_t tsc_offsets[];
148 
149 /* AP uses this during bootstrap.  Do not staticize.  */
150 char *bootSTK;
151 static int bootAP;
152 
153 struct pcb stoppcbs[MAXCPU];
154 
155 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
156 
157 /*
158  * Local data and functions.
159  */
160 
161 static u_int	boot_address;
162 static int	mp_finish;
163 static int	mp_finish_lapic;
164 
165 static int	start_all_aps(u_int boot_addr);
166 #if 0
167 static void	install_ap_tramp(u_int boot_addr);
168 #endif
169 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
170 static int	smitest(void);
171 static void	mp_bsp_simple_setup(void);
172 
173 /* which cpus have been started */
174 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
175 /* which cpus have lapic been inited */
176 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
177 /* which cpus are ready for IPIs etc? */
178 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
179 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
180 
181 SYSCTL_INT(_machdep, OID_AUTO, smp_active, CTLFLAG_RD, &smp_active_mask, 0, "");
182 static u_int	bootMP_size;
183 static u_int	report_invlpg_src;
184 SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
185 	&report_invlpg_src, 0, "");
186 static u_int	report_invltlb_src;
187 SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
188 	&report_invltlb_src, 0, "");
189 static int	optimized_invltlb;
190 SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
191 	&optimized_invltlb, 0, "");
192 static int	all_but_self_ipi_enable = 1;
193 SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
194 	&all_but_self_ipi_enable, 0, "");
195 
196 /* Local data for detecting CPU TOPOLOGY */
197 static int core_bits = 0;
198 static int logical_CPU_bits = 0;
199 
200 
201 /*
202  * Calculate usable address in base memory for AP trampoline code.
203  */
204 u_int
205 mp_bootaddress(u_int basemem)
206 {
207 	POSTCODE(MP_BOOTADDRESS_POST);
208 
209 	bootMP_size = mptramp_end - mptramp_start;
210 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
211 	if (((basemem * 1024) - boot_address) < bootMP_size)
212 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
213 	/* 3 levels of page table pages */
214 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
215 
216 	return mptramp_pagetables;
217 }
218 
219 /*
220  * Print various information about the SMP system hardware and setup.
221  */
222 void
223 mp_announce(void)
224 {
225 	int     x;
226 
227 	POSTCODE(MP_ANNOUNCE_POST);
228 
229 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
230 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
231 	for (x = 1; x <= naps; ++x)
232 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
233 
234 	if (!ioapic_enable)
235 		kprintf(" Warning: APIC I/O disabled\n");
236 }
237 
238 /*
239  * AP cpu's call this to sync up protected mode.
240  *
241  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
242  */
243 void
244 init_secondary(void)
245 {
246 	int	gsel_tss;
247 	int	x, myid = bootAP;
248 	u_int64_t msr, cr0;
249 	struct mdglobaldata *md;
250 	struct privatespace *ps;
251 
252 	ps = CPU_prvspace[myid];
253 
254 	gdt_segs[GPROC0_SEL].ssd_base =
255 		(long) &ps->mdglobaldata.gd_common_tss;
256 	ps->mdglobaldata.mi.gd_prvspace = ps;
257 
258 	/* We fill the 32-bit segment descriptors */
259 	for (x = 0; x < NGDT; x++) {
260 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
261 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
262 	}
263 	/* And now a 64-bit one */
264 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
265 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
266 
267 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
268 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
269 	lgdt(&r_gdt);			/* does magic intra-segment return */
270 
271 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
272 	wrmsr(MSR_FSBASE, 0);		/* User value */
273 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
274 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
275 
276 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
277 
278 #if 0
279 	lldt(_default_ldt);
280 	mdcpu->gd_currentldt = _default_ldt;
281 #endif
282 
283 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
284 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
285 
286 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
287 
288 	md->gd_common_tss.tss_rsp0 = 0;	/* not used until after switch */
289 #if 0 /* JG XXX */
290 	md->gd_common_tss.tss_ioopt = (sizeof md->gd_common_tss) << 16;
291 #endif
292 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
293 	md->gd_common_tssd = *md->gd_tss_gdt;
294 
295 	/* double fault stack */
296 	md->gd_common_tss.tss_ist1 =
297 		(long)&md->mi.gd_prvspace->idlestack[
298 			sizeof(md->mi.gd_prvspace->idlestack)];
299 
300 	ltr(gsel_tss);
301 
302 	/*
303 	 * Set to a known state:
304 	 * Set by mpboot.s: CR0_PG, CR0_PE
305 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
306 	 */
307 	cr0 = rcr0();
308 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
309 	load_cr0(cr0);
310 
311 	/* Set up the fast syscall stuff */
312 	msr = rdmsr(MSR_EFER) | EFER_SCE;
313 	wrmsr(MSR_EFER, msr);
314 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
315 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
316 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
317 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
318 	wrmsr(MSR_STAR, msr);
319 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
320 
321 	pmap_set_opt();		/* PSE/4MB pages, etc */
322 	pmap_init_pat();	/* Page Attribute Table */
323 
324 	/* set up CPU registers and state */
325 	cpu_setregs();
326 
327 	/* set up SSE/NX registers */
328 	initializecpu(myid);
329 
330 	/* set up FPU state on the AP */
331 	npxinit();
332 
333 	/* disable the APIC, just to be SURE */
334 	lapic->svr &= ~APIC_SVR_ENABLE;
335 }
336 
337 /*******************************************************************
338  * local functions and data
339  */
340 
341 /*
342  * Start the SMP system
343  */
344 static void
345 mp_start_aps(void *dummy __unused)
346 {
347 	if (lapic_enable) {
348 		/* start each Application Processor */
349 		start_all_aps(boot_address);
350 	} else {
351 		mp_bsp_simple_setup();
352 	}
353 }
354 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
355 
356 /*
357  * start each AP in our list
358  */
359 static int
360 start_all_aps(u_int boot_addr)
361 {
362 	vm_offset_t va = boot_address + KERNBASE;
363 	u_int64_t *pt4, *pt3, *pt2;
364 	int	pssize;
365 	int     x, i;
366 	int	shift;
367 	int	smicount;
368 	int	smibest;
369 	int	smilast;
370 	u_char  mpbiosreason;
371 	u_long  mpbioswarmvec;
372 	struct mdglobaldata *gd;
373 	struct privatespace *ps;
374 	size_t ipiq_size;
375 
376 	POSTCODE(START_ALL_APS_POST);
377 
378 	/* install the AP 1st level boot code */
379 	pmap_kenter(va, boot_address);
380 	cpu_invlpg((void *)va);		/* JG XXX */
381 	bcopy(mptramp_start, (void *)va, bootMP_size);
382 
383 	/* Locate the page tables, they'll be below the trampoline */
384 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
385 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
386 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
387 
388 	/* Create the initial 1GB replicated page tables */
389 	for (i = 0; i < 512; i++) {
390 		/* Each slot of the level 4 pages points to the same level 3 page */
391 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
392 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
393 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
394 		    kernel_pmap.pmap_bits[PG_U_IDX];
395 
396 		/* Each slot of the level 3 pages points to the same level 2 page */
397 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
398 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
399 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
400 		    kernel_pmap.pmap_bits[PG_U_IDX];
401 
402 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
403 		pt2[i] = i * (2 * 1024 * 1024);
404 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
405 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
406 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
407 		    kernel_pmap.pmap_bits[PG_U_IDX];
408 	}
409 
410 	/* save the current value of the warm-start vector */
411 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
412 	outb(CMOS_REG, BIOS_RESET);
413 	mpbiosreason = inb(CMOS_DATA);
414 
415 	/* setup a vector to our boot code */
416 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
417 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
418 	outb(CMOS_REG, BIOS_RESET);
419 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
420 
421 	/*
422 	 * If we have a TSC we can figure out the SMI interrupt rate.
423 	 * The SMI does not necessarily use a constant rate.  Spend
424 	 * up to 250ms trying to figure it out.
425 	 */
426 	smibest = 0;
427 	if (cpu_feature & CPUID_TSC) {
428 		set_apic_timer(275000);
429 		smilast = read_apic_timer();
430 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
431 			smicount = smitest();
432 			if (smibest == 0 || smilast - smicount < smibest)
433 				smibest = smilast - smicount;
434 			smilast = smicount;
435 		}
436 		if (smibest > 250000)
437 			smibest = 0;
438 		if (smibest) {
439 			smibest = smibest * (int64_t)1000000 /
440 				  get_apic_timer_frequency();
441 		}
442 	}
443 	if (smibest)
444 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
445 			1000000 / smibest, smibest);
446 
447 	/* start each AP */
448 	for (x = 1; x <= naps; ++x) {
449 		/* This is a bit verbose, it will go away soon.  */
450 
451 		pssize = sizeof(struct privatespace);
452 		ps = (void *)kmem_alloc(&kernel_map, pssize);
453 		CPU_prvspace[x] = ps;
454 #if 0
455 		kprintf("ps %d %p %d\n", x, ps, pssize);
456 #endif
457 		bzero(ps, pssize);
458 		gd = &ps->mdglobaldata;
459 		gd->mi.gd_prvspace = ps;
460 
461 		/* prime data page for it to use */
462 		mi_gdinit(&gd->mi, x);
463 		cpu_gdinit(gd, x);
464 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
465 		gd->mi.gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
466 		bzero(gd->mi.gd_ipiq, ipiq_size);
467 
468 		gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
469 
470 		/* setup a vector to our boot code */
471 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
472 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
473 		outb(CMOS_REG, BIOS_RESET);
474 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
475 
476 		/*
477 		 * Setup the AP boot stack
478 		 */
479 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
480 		bootAP = x;
481 
482 		/* attempt to start the Application Processor */
483 		CHECK_INIT(99);	/* setup checkpoints */
484 		if (!start_ap(gd, boot_addr, smibest)) {
485 			kprintf("\nAP #%d (PHY# %d) failed!\n",
486 				x, CPUID_TO_APICID(x));
487 			CHECK_PRINT("trace");	/* show checkpoints */
488 			/* better panic as the AP may be running loose */
489 			kprintf("panic y/n? [y] ");
490 			cnpoll(TRUE);
491 			if (cngetc() != 'n')
492 				panic("bye-bye");
493 			cnpoll(FALSE);
494 		}
495 		CHECK_PRINT("trace");		/* show checkpoints */
496 	}
497 
498 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
499 	ncpus = x;
500 
501 	/* ncpus2 -- ncpus rounded down to the nearest power of 2 */
502 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
503 		;
504 	--shift;
505 	ncpus2_shift = shift;
506 	ncpus2 = 1 << shift;
507 	ncpus2_mask = ncpus2 - 1;
508 
509 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
510 	if ((1 << shift) < ncpus)
511 		++shift;
512 	ncpus_fit = 1 << shift;
513 	ncpus_fit_mask = ncpus_fit - 1;
514 
515 	/* build our map of 'other' CPUs */
516 	mycpu->gd_other_cpus = smp_startup_mask;
517 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
518 
519 	gd = (struct mdglobaldata *)mycpu;
520 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
521 
522 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
523 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
524 	bzero(mycpu->gd_ipiq, ipiq_size);
525 
526 	/* restore the warmstart vector */
527 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
528 	outb(CMOS_REG, BIOS_RESET);
529 	outb(CMOS_DATA, mpbiosreason);
530 
531 	/*
532 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
533 	 * up, clean out the P==V mapping we did earlier.
534 	 */
535 	pmap_set_opt();
536 
537 	/*
538 	 * Wait all APs to finish initializing LAPIC
539 	 */
540 	if (bootverbose)
541 		kprintf("SMP: Waiting APs LAPIC initialization\n");
542 	if (cpu_feature & CPUID_TSC)
543 		tsc0_offset = rdtsc();
544 	tsc_offsets[0] = 0;
545 	mp_finish_lapic = 1;
546 	rel_mplock();
547 
548 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
549 		cpu_pause();
550 		cpu_lfence();
551 		if (cpu_feature & CPUID_TSC)
552 			tsc0_offset = rdtsc();
553 	}
554 	while (try_mplock() == 0) {
555 		cpu_pause();
556 		cpu_lfence();
557 	}
558 
559 	/* number of APs actually started */
560 	return ncpus - 1;
561 }
562 
563 
564 /*
565  * load the 1st level AP boot code into base memory.
566  */
567 
568 /* targets for relocation */
569 extern void bigJump(void);
570 extern void bootCodeSeg(void);
571 extern void bootDataSeg(void);
572 extern void MPentry(void);
573 extern u_int MP_GDT;
574 extern u_int mp_gdtbase;
575 
576 #if 0
577 
578 static void
579 install_ap_tramp(u_int boot_addr)
580 {
581 	int     x;
582 	int     size = *(int *) ((u_long) & bootMP_size);
583 	u_char *src = (u_char *) ((u_long) bootMP);
584 	u_char *dst = (u_char *) boot_addr + KERNBASE;
585 	u_int   boot_base = (u_int) bootMP;
586 	u_int8_t *dst8;
587 	u_int16_t *dst16;
588 	u_int32_t *dst32;
589 
590 	POSTCODE(INSTALL_AP_TRAMP_POST);
591 
592 	for (x = 0; x < size; ++x)
593 		*dst++ = *src++;
594 
595 	/*
596 	 * modify addresses in code we just moved to basemem. unfortunately we
597 	 * need fairly detailed info about mpboot.s for this to work.  changes
598 	 * to mpboot.s might require changes here.
599 	 */
600 
601 	/* boot code is located in KERNEL space */
602 	dst = (u_char *) boot_addr + KERNBASE;
603 
604 	/* modify the lgdt arg */
605 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
606 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
607 
608 	/* modify the ljmp target for MPentry() */
609 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
610 	*dst32 = ((u_int) MPentry - KERNBASE);
611 
612 	/* modify the target for boot code segment */
613 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
614 	dst8 = (u_int8_t *) (dst16 + 1);
615 	*dst16 = (u_int) boot_addr & 0xffff;
616 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
617 
618 	/* modify the target for boot data segment */
619 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
620 	dst8 = (u_int8_t *) (dst16 + 1);
621 	*dst16 = (u_int) boot_addr & 0xffff;
622 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
623 }
624 
625 #endif
626 
627 /*
628  * This function starts the AP (application processor) identified
629  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
630  * to accomplish this.  This is necessary because of the nuances
631  * of the different hardware we might encounter.  It ain't pretty,
632  * but it seems to work.
633  *
634  * NOTE: eventually an AP gets to ap_init(), which is called just
635  * before the AP goes into the LWKT scheduler's idle loop.
636  */
637 static int
638 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
639 {
640 	int     physical_cpu;
641 	int     vector;
642 	u_long  icr_lo, icr_hi;
643 
644 	POSTCODE(START_AP_POST);
645 
646 	/* get the PHYSICAL APIC ID# */
647 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
648 
649 	/* calculate the vector */
650 	vector = (boot_addr >> 12) & 0xff;
651 
652 	/* We don't want anything interfering */
653 	cpu_disable_intr();
654 
655 	/* Make sure the target cpu sees everything */
656 	wbinvd();
657 
658 	/*
659 	 * Try to detect when a SMI has occurred, wait up to 200ms.
660 	 *
661 	 * If a SMI occurs during an AP reset but before we issue
662 	 * the STARTUP command, the AP may brick.  To work around
663 	 * this problem we hold off doing the AP startup until
664 	 * after we have detected the SMI.  Hopefully another SMI
665 	 * will not occur before we finish the AP startup.
666 	 *
667 	 * Retries don't seem to help.  SMIs have a window of opportunity
668 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
669 	 * the interrupt rate can be quite high.
670 	 *
671 	 * NOTE: Don't worry about the L1 cache load, it might bloat
672 	 *	 ldelta a little but ndelta will be so huge when the SMI
673 	 *	 occurs the detection logic will still work fine.
674 	 */
675 	if (smibest) {
676 		set_apic_timer(200000);
677 		smitest();
678 	}
679 
680 	/*
681 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
682 	 * and running the target CPU. OR this INIT IPI might be latched (P5
683 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
684 	 * ignored.
685 	 *
686 	 * see apic/apicreg.h for icr bit definitions.
687 	 *
688 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
689 	 */
690 
691 	/*
692 	 * Setup the address for the target AP.  We can setup
693 	 * icr_hi once and then just trigger operations with
694 	 * icr_lo.
695 	 */
696 	icr_hi = lapic->icr_hi & ~APIC_ID_MASK;
697 	icr_hi |= (physical_cpu << 24);
698 	icr_lo = lapic->icr_lo & 0xfff00000;
699 	lapic->icr_hi = icr_hi;
700 
701 	/*
702 	 * Do an INIT IPI: assert RESET
703 	 *
704 	 * Use edge triggered mode to assert INIT
705 	 */
706 	lapic->icr_lo = icr_lo | 0x00004500;
707 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
708 		 /* spin */ ;
709 
710 	/*
711 	 * The spec calls for a 10ms delay but we may have to use a
712 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
713 	 * interrupt.  We have other loops here too and dividing by 2
714 	 * doesn't seem to be enough even after subtracting 350us,
715 	 * so we divide by 4.
716 	 *
717 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
718 	 * interrupt was detected we use the full 10ms.
719 	 */
720 	if (smibest == 0)
721 		u_sleep(10000);
722 	else if (smibest < 150 * 4 + 350)
723 		u_sleep(150);
724 	else if ((smibest - 350) / 4 < 10000)
725 		u_sleep((smibest - 350) / 4);
726 	else
727 		u_sleep(10000);
728 
729 	/*
730 	 * Do an INIT IPI: deassert RESET
731 	 *
732 	 * Use level triggered mode to deassert.  It is unclear
733 	 * why we need to do this.
734 	 */
735 	lapic->icr_lo = icr_lo | 0x00008500;
736 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
737 		 /* spin */ ;
738 	u_sleep(150);				/* wait 150us */
739 
740 	/*
741 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
742 	 * latched, (P5 bug) this 1st STARTUP would then terminate
743 	 * immediately, and the previously started INIT IPI would continue. OR
744 	 * the previous INIT IPI has already run. and this STARTUP IPI will
745 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
746 	 * will run.
747 	 */
748 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
749 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
750 		 /* spin */ ;
751 	u_sleep(200);		/* wait ~200uS */
752 
753 	/*
754 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
755 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
756 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
757 	 * recognized after hardware RESET or INIT IPI.
758 	 */
759 	lapic->icr_lo = icr_lo | 0x00000600 | vector;
760 	while (lapic->icr_lo & APIC_DELSTAT_MASK)
761 		 /* spin */ ;
762 
763 	/* Resume normal operation */
764 	cpu_enable_intr();
765 
766 	/* wait for it to start, see ap_init() */
767 	set_apic_timer(5000000);/* == 5 seconds */
768 	while (read_apic_timer()) {
769 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
770 			return 1;	/* return SUCCESS */
771 	}
772 
773 	return 0;		/* return FAILURE */
774 }
775 
776 static
777 int
778 smitest(void)
779 {
780 	int64_t	ltsc;
781 	int64_t	ntsc;
782 	int64_t	ldelta;
783 	int64_t	ndelta;
784 	int count;
785 
786 	ldelta = 0;
787 	ndelta = 0;
788 	while (read_apic_timer()) {
789 		ltsc = rdtsc();
790 		for (count = 0; count < 100; ++count)
791 			ntsc = rdtsc();	/* force loop to occur */
792 		if (ldelta) {
793 			ndelta = ntsc - ltsc;
794 			if (ldelta > ndelta)
795 				ldelta = ndelta;
796 			if (ndelta > ldelta * 2)
797 				break;
798 		} else {
799 			ldelta = ntsc - ltsc;
800 		}
801 	}
802 	return(read_apic_timer());
803 }
804 
805 /*
806  * Synchronously flush the TLB on all other CPU's.  The current cpu's
807  * TLB is not flushed.  If the caller wishes to flush the current cpu's
808  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
809  *
810  * This routine may be called concurrently from multiple cpus.  When this
811  * happens, smp_invltlb() can wind up sticking around in the confirmation
812  * while() loop at the end as additional cpus are added to the global
813  * cpumask, until they are acknowledged by another IPI.
814  *
815  * NOTE: If for some reason we were unable to start all cpus we cannot
816  *	 safely use broadcast IPIs.
817  */
818 
819 cpumask_t smp_smurf_mask;
820 static cpumask_t smp_invltlb_mask;
821 #define LOOPRECOVER
822 #ifdef LOOPMASK_IN
823 cpumask_t smp_in_mask;
824 #endif
825 cpumask_t smp_invmask;
826 extern cpumask_t smp_idleinvl_mask;
827 extern cpumask_t smp_idleinvl_reqs;
828 
829 /*
830  * Atomically OR bits in *mask to smp_smurf_mask.  Adjust *mask to remove
831  * bits that do not need to be IPId.  These bits are still part of the command,
832  * but the target cpus have already been signalled and do not need to be
833  * sigalled again.
834  */
835 #include <sys/spinlock.h>
836 #include <sys/spinlock2.h>
837 
838 static __noinline
839 void
840 smp_smurf_fetchset(cpumask_t *mask)
841 {
842 	cpumask_t omask;
843 	int i;
844 	__uint64_t obits;
845 	__uint64_t nbits;
846 
847 	i = 0;
848 	while (i < CPUMASK_ELEMENTS) {
849 		obits = smp_smurf_mask.ary[i];
850 		cpu_ccfence();
851 		nbits = obits | mask->ary[i];
852 		if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
853 			omask.ary[i] = obits;
854 			++i;
855 		}
856 	}
857 	CPUMASK_NANDMASK(*mask, omask);
858 }
859 
860 /*
861  * This is a mechanism which guarantees that cpu_invltlb() will be executed
862  * on idle cpus without having to signal or wake them up.  The invltlb will be
863  * executed when they wake up, prior to any scheduling or interrupt thread.
864  *
865  * (*mask) is modified to remove the cpus we successfully negotiate this
866  * function with.  This function may only be used with semi-synchronous
867  * commands (typically invltlb's or semi-synchronous invalidations which
868  * are usually associated only with kernel memory).
869  */
870 void
871 smp_smurf_idleinvlclr(cpumask_t *mask)
872 {
873 	if (optimized_invltlb) {
874 		ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
875 		/* cpu_lfence() not needed */
876 		CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
877 	}
878 }
879 
880 /*
881  * Issue cpu_invltlb() across all cpus except the current cpu.
882  *
883  * This function will arrange to avoid idle cpus, but still gurantee that
884  * invltlb is run on them when they wake up prior to any scheduling or
885  * nominal interrupt.
886  */
887 void
888 smp_invltlb(void)
889 {
890 	struct mdglobaldata *md = mdcpu;
891 	cpumask_t mask;
892 	unsigned long rflags;
893 #ifdef LOOPRECOVER
894 	uint64_t tsc_base = rdtsc();
895 	int repeats = 0;
896 #endif
897 
898 	if (report_invltlb_src > 0) {
899 		if (--report_invltlb_src <= 0)
900 			print_backtrace(8);
901 	}
902 
903 	/*
904 	 * Disallow normal interrupts, set all active cpus except our own
905 	 * in the global smp_invltlb_mask.
906 	 */
907 	++md->mi.gd_cnt.v_smpinvltlb;
908 	crit_enter_gd(&md->mi);
909 
910 	/*
911 	 * Bits we want to set in smp_invltlb_mask.  We do not want to signal
912 	 * our own cpu.  Also try to remove bits associated with idle cpus
913 	 * that we can flag for auto-invltlb.
914 	 */
915 	mask = smp_active_mask;
916 	CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
917 	smp_smurf_idleinvlclr(&mask);
918 
919 	rflags = read_rflags();
920 	cpu_disable_intr();
921 	ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
922 
923 	/*
924 	 * IPI non-idle cpus represented by mask.  The omask calculation
925 	 * removes cpus from the mask which already have a Xinvltlb IPI
926 	 * pending (avoid double-queueing the IPI).
927 	 *
928 	 * We must disable real interrupts when setting the smurf flags or
929 	 * we might race a XINVLTLB before we manage to send the ipi's for
930 	 * the bits we set.
931 	 *
932 	 * NOTE: We are not signalling ourselves, mask already does NOT
933 	 * include our own cpu.
934 	 */
935 	smp_smurf_fetchset(&mask);
936 
937 	/*
938 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
939 	 * the critical section count on the target cpus.
940 	 */
941 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
942 	if (all_but_self_ipi_enable &&
943 	    CPUMASK_CMPMASKEQ(smp_startup_mask, mask)) {
944 		all_but_self_ipi(XINVLTLB_OFFSET);
945 	} else {
946 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
947 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
948 	}
949 
950 	/*
951 	 * Wait for acknowledgement by all cpus.  smp_inval_intr() will
952 	 * temporarily enable interrupts to avoid deadlocking the lapic,
953 	 * and will also handle running cpu_invltlb() and remote invlpg
954 	 * command son our cpu if some other cpu requests it of us.
955 	 *
956 	 * WARNING! I originally tried to implement this as a hard loop
957 	 *	    checking only smp_invltlb_mask (and issuing a local
958 	 *	    cpu_invltlb() if requested), with interrupts enabled
959 	 *	    and without calling smp_inval_intr().  This DID NOT WORK.
960 	 *	    It resulted in weird races where smurf bits would get
961 	 *	    cleared without any action being taken.
962 	 */
963 	smp_inval_intr();
964 	CPUMASK_ASSZERO(mask);
965 	while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
966 		smp_inval_intr();
967 		cpu_pause();
968 #ifdef LOOPRECOVER
969 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
970 			kprintf("smp_invltlb %d: waited too long %08jx "
971 				"dbg=%08jx %08jx\n",
972 				md->mi.gd_cpuid,
973 				smp_invltlb_mask.ary[0],
974 				smp_idleinvl_mask.ary[0],
975 				smp_idleinvl_reqs.ary[0]);
976 			mdcpu->gd_xinvaltlb = 0;
977 			ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
978 						smp_invltlb_mask);
979 			smp_invlpg(&smp_active_mask);
980 			tsc_base = rdtsc();
981 			if (++repeats > 10) {
982 				kprintf("smp_invltlb: giving up\n");
983 				CPUMASK_ASSZERO(smp_invltlb_mask);
984 			}
985 		}
986 #endif
987 	}
988 	write_rflags(rflags);
989 	crit_exit_gd(&md->mi);
990 }
991 
992 /*
993  * Called from a critical section with interrupts hard-disabled.
994  * This function issues an XINVLTLB IPI and then executes any pending
995  * command on the current cpu before returning.
996  */
997 void
998 smp_invlpg(cpumask_t *cmdmask)
999 {
1000 	struct mdglobaldata *md = mdcpu;
1001 	cpumask_t mask;
1002 
1003 	if (report_invlpg_src > 0) {
1004 		if (--report_invlpg_src <= 0)
1005 			print_backtrace(8);
1006 	}
1007 
1008 	/*
1009 	 * Disallow normal interrupts, set all active cpus in the pmap,
1010 	 * plus our own for completion processing (it might or might not
1011 	 * be part of the set).
1012 	 */
1013 	mask = smp_active_mask;
1014 	CPUMASK_ANDMASK(mask, *cmdmask);
1015 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1016 
1017 	/*
1018 	 * Avoid double-queuing IPIs, which can deadlock us.  We must disable
1019 	 * real interrupts when setting the smurf flags or we might race a
1020 	 * XINVLTLB before we manage to send the ipi's for the bits we set.
1021 	 *
1022 	 * NOTE: We might be including our own cpu in the smurf mask.
1023 	 */
1024 	smp_smurf_fetchset(&mask);
1025 
1026 	/*
1027 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
1028 	 * the critical section count on the target cpus.
1029 	 *
1030 	 * We do not include our own cpu when issuing the IPI.
1031 	 */
1032 	if (all_but_self_ipi_enable &&
1033 	    CPUMASK_CMPMASKEQ(smp_startup_mask, mask)) {
1034 		all_but_self_ipi(XINVLTLB_OFFSET);
1035 	} else {
1036 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1037 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
1038 	}
1039 
1040 	/*
1041 	 * This will synchronously wait for our command to complete,
1042 	 * as well as process commands from other cpus.  It also handles
1043 	 * reentrancy.
1044 	 *
1045 	 * (interrupts are disabled and we are in a critical section here)
1046 	 */
1047 	smp_inval_intr();
1048 }
1049 
1050 void
1051 smp_sniff(void)
1052 {
1053 	globaldata_t gd = mycpu;
1054 	int dummy;
1055 
1056 	/*
1057 	 * Ignore all_but_self_ipi_enable here and just use it.
1058 	 */
1059 	all_but_self_ipi(XSNIFF_OFFSET);
1060 	gd->gd_sample_pc = smp_sniff;
1061 	gd->gd_sample_sp = &dummy;
1062 }
1063 
1064 /*
1065  * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1066  * critical section.  gd_intr_nesting_level may or may not be bumped
1067  * depending on entry.
1068  *
1069  * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1070  * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1071  * IS IN A CRITICAL SECTION.
1072  */
1073 void
1074 smp_inval_intr(void)
1075 {
1076 	struct mdglobaldata *md = mdcpu;
1077 	cpumask_t cpumask;
1078 #ifdef LOOPRECOVER
1079 	uint64_t tsc_base = rdtsc();
1080 #endif
1081 
1082 #if 0
1083 	/*
1084 	 * The idle code is in a critical section, but that doesn't stop
1085 	 * Xinvltlb from executing, so deal with the race which can occur
1086 	 * in that situation.  Otherwise r-m-w operations by pmap_inval_intr()
1087 	 * may have problems.
1088 	 */
1089 	if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1090 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1091 		cpu_invltlb();
1092 		cpu_mfence();
1093 	}
1094 #endif
1095 
1096 	/*
1097 	 * This is a real mess.  I'd like to just leave interrupts disabled
1098 	 * but it can cause the lapic to deadlock if too many interrupts queue
1099 	 * to it, due to the idiotic design of the lapic.  So instead we have
1100 	 * to enter a critical section so normal interrupts are made pending
1101 	 * and track whether this one was reentered.
1102 	 */
1103 	if (md->gd_xinvaltlb) {		/* reentrant on cpu */
1104 		md->gd_xinvaltlb = 2;
1105 		return;
1106 	}
1107 	md->gd_xinvaltlb = 1;
1108 
1109 	/*
1110 	 * Check only those cpus with active Xinvl* commands pending.
1111 	 *
1112 	 * We are going to enable interrupts so make sure we are in a
1113 	 * critical section.  This is necessary to avoid deadlocking
1114 	 * the lapic and to ensure that we execute our commands prior to
1115 	 * any nominal interrupt or preemption.
1116 	 *
1117 	 * WARNING! It is very important that we only clear out but in
1118 	 *	    smp_smurf_mask once for each interrupt we take.  In
1119 	 *	    this case, we clear it on initial entry and only loop
1120 	 *	    on the reentrancy detect (caused by another interrupt).
1121 	 */
1122 	cpumask = smp_invmask;
1123 loop:
1124 	cpu_enable_intr();
1125 #ifdef LOOPMASK_IN
1126 	ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1127 #endif
1128 	ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1129 
1130 	/*
1131 	 * Specific page request(s), and we can't return until all bits
1132 	 * are zero.
1133 	 */
1134 	for (;;) {
1135 		int toolong;
1136 
1137 		/*
1138 		 * Also execute any pending full invalidation request in
1139 		 * this loop.
1140 		 */
1141 		if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1142 			ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1143 					       md->mi.gd_cpuid);
1144 			cpu_invltlb();
1145 			cpu_mfence();
1146 		}
1147 
1148 #ifdef LOOPRECOVER
1149 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1150 			kprintf("smp_inval_intr %d inv=%08jx tlbm=%08jx "
1151 				"idle=%08jx/%08jx\n",
1152 				md->mi.gd_cpuid,
1153 				smp_invmask.ary[0],
1154 				smp_invltlb_mask.ary[0],
1155 				smp_idleinvl_mask.ary[0],
1156 				smp_idleinvl_reqs.ary[0]);
1157 			tsc_base = rdtsc();
1158 			toolong = 1;
1159 		} else {
1160 			toolong = 0;
1161 		}
1162 #else
1163 		toolong = 0;
1164 #endif
1165 
1166 		/*
1167 		 * We can only add bits to the cpumask to test during the
1168 		 * loop because the smp_invmask bit is cleared once the
1169 		 * originator completes the command (the targets may still
1170 		 * be cycling their own completions in this loop, afterwords).
1171 		 *
1172 		 * lfence required prior to all tests as this Xinvltlb
1173 		 * interrupt could race the originator (already be in progress
1174 		 * wnen the originator decides to issue, due to an issue by
1175 		 * another cpu).
1176 		 */
1177 		cpu_lfence();
1178 		CPUMASK_ORMASK(cpumask, smp_invmask);
1179 		/*cpumask = smp_active_mask;*/	/* XXX */
1180 
1181 		if (pmap_inval_intr(&cpumask, toolong) == 0) {
1182 			/*
1183 			 * Clear our smurf mask to allow new IPIs, but deal
1184 			 * with potential races.
1185 			 */
1186 			break;
1187 		}
1188 
1189 		/*
1190 		 * Test if someone sent us another invalidation IPI, break
1191 		 * out so we can take it to avoid deadlocking the lapic
1192 		 * interrupt queue (? stupid intel, amd).
1193 		 */
1194 		if (md->gd_xinvaltlb == 2)
1195 			break;
1196 		/*
1197 		if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1198 			break;
1199 		*/
1200 	}
1201 
1202 	/*
1203 	 * Full invalidation request
1204 	 */
1205 	if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1206 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1207 				       md->mi.gd_cpuid);
1208 		cpu_invltlb();
1209 		cpu_mfence();
1210 	}
1211 
1212 #ifdef LOOPMASK_IN
1213 	ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1214 #endif
1215 	/*
1216 	 * Check to see if another Xinvltlb interrupt occurred and loop up
1217 	 * if it did.
1218 	 */
1219 	cpu_disable_intr();
1220 	if (md->gd_xinvaltlb == 2) {
1221 		md->gd_xinvaltlb = 1;
1222 		goto loop;
1223 	}
1224 	md->gd_xinvaltlb = 0;
1225 }
1226 
1227 void
1228 cpu_wbinvd_on_all_cpus_callback(void *arg)
1229 {
1230 	wbinvd();
1231 }
1232 
1233 /*
1234  * When called the executing CPU will send an IPI to all other CPUs
1235  *  requesting that they halt execution.
1236  *
1237  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1238  *
1239  *  - Signals all CPUs in map to stop.
1240  *  - Waits for each to stop.
1241  *
1242  * Returns:
1243  *  -1: error
1244  *   0: NA
1245  *   1: ok
1246  *
1247  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1248  *            from executing at same time.
1249  */
1250 int
1251 stop_cpus(cpumask_t map)
1252 {
1253 	cpumask_t mask;
1254 
1255 	CPUMASK_ANDMASK(map, smp_active_mask);
1256 
1257 	/* send the Xcpustop IPI to all CPUs in map */
1258 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1259 
1260 	do {
1261 		mask = stopped_cpus;
1262 		CPUMASK_ANDMASK(mask, map);
1263 		/* spin */
1264 	} while (CPUMASK_CMPMASKNEQ(mask, map));
1265 
1266 	return 1;
1267 }
1268 
1269 
1270 /*
1271  * Called by a CPU to restart stopped CPUs.
1272  *
1273  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1274  *
1275  *  - Signals all CPUs in map to restart.
1276  *  - Waits for each to restart.
1277  *
1278  * Returns:
1279  *  -1: error
1280  *   0: NA
1281  *   1: ok
1282  */
1283 int
1284 restart_cpus(cpumask_t map)
1285 {
1286 	cpumask_t mask;
1287 
1288 	/* signal other cpus to restart */
1289 	mask = map;
1290 	CPUMASK_ANDMASK(mask, smp_active_mask);
1291 	cpu_ccfence();
1292 	started_cpus = mask;
1293 	cpu_ccfence();
1294 
1295 	/* wait for each to clear its bit */
1296 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1297 		cpu_pause();
1298 
1299 	return 1;
1300 }
1301 
1302 /*
1303  * This is called once the mpboot code has gotten us properly relocated
1304  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
1305  * and when it returns the scheduler will call the real cpu_idle() main
1306  * loop for the idlethread.  Interrupts are disabled on entry and should
1307  * remain disabled at return.
1308  */
1309 void
1310 ap_init(void)
1311 {
1312 	int	cpu_id;
1313 
1314 	/*
1315 	 * Adjust smp_startup_mask to signal the BSP that we have started
1316 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1317 	 * is waiting for our signal.
1318 	 *
1319 	 * We can't set our bit in smp_active_mask yet because we are holding
1320 	 * interrupts physically disabled and remote cpus could deadlock
1321 	 * trying to send us an IPI.
1322 	 */
1323 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1324 	cpu_mfence();
1325 
1326 	/*
1327 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1328 	 * non-zero, then get the MP lock.
1329 	 *
1330 	 * Note: We are in a critical section.
1331 	 *
1332 	 * Note: we are the idle thread, we can only spin.
1333 	 *
1334 	 * Note: The load fence is memory volatile and prevents the compiler
1335 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1336 	 * caching it.
1337 	 */
1338 	while (mp_finish_lapic == 0) {
1339 		cpu_pause();
1340 		cpu_lfence();
1341 	}
1342 #if 0
1343 	while (try_mplock() == 0) {
1344 		cpu_pause();
1345 		cpu_lfence();
1346 	}
1347 #endif
1348 
1349 	if (cpu_feature & CPUID_TSC) {
1350 		/*
1351 		 * The BSP is constantly updating tsc0_offset, figure out
1352 		 * the relative difference to synchronize ktrdump.
1353 		 */
1354 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1355 	}
1356 
1357 	/* BSP may have changed PTD while we're waiting for the lock */
1358 	cpu_invltlb();
1359 
1360 	/* Build our map of 'other' CPUs. */
1361 	mycpu->gd_other_cpus = smp_startup_mask;
1362 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1363 
1364 	/* A quick check from sanity claus */
1365 	cpu_id = APICID_TO_CPUID((lapic->id & 0xff000000) >> 24);
1366 	if (mycpu->gd_cpuid != cpu_id) {
1367 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1368 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1369 			cpu_id, (lapic->id & 0xff000000) >> 24);
1370 #if 0 /* JGXXX */
1371 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1372 #endif
1373 		panic("cpuid mismatch! boom!!");
1374 	}
1375 
1376 	/* Initialize AP's local APIC for irq's */
1377 	lapic_init(FALSE);
1378 
1379 	/* LAPIC initialization is done */
1380 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1381 	cpu_mfence();
1382 
1383 #if 0
1384 	/* Let BSP move onto the next initialization stage */
1385 	rel_mplock();
1386 #endif
1387 
1388 	/*
1389 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1390 	 * then get the MP lock.
1391 	 *
1392 	 * Note: We are in a critical section.
1393 	 *
1394 	 * Note: we are the idle thread, we can only spin.
1395 	 *
1396 	 * Note: The load fence is memory volatile and prevents the compiler
1397 	 * from improperly caching mp_finish, and the cpu from improperly
1398 	 * caching it.
1399 	 */
1400 	while (mp_finish == 0) {
1401 		cpu_pause();
1402 		cpu_lfence();
1403 	}
1404 
1405 	/* BSP may have changed PTD while we're waiting for the lock */
1406 	cpu_invltlb();
1407 
1408 	/* Set memory range attributes for this CPU to match the BSP */
1409 	mem_range_AP_init();
1410 
1411 	/*
1412 	 * Once we go active we must process any IPIQ messages that may
1413 	 * have been queued, because no actual IPI will occur until we
1414 	 * set our bit in the smp_active_mask.  If we don't the IPI
1415 	 * message interlock could be left set which would also prevent
1416 	 * further IPIs.
1417 	 *
1418 	 * The idle loop doesn't expect the BGL to be held and while
1419 	 * lwkt_switch() normally cleans things up this is a special case
1420 	 * because we returning almost directly into the idle loop.
1421 	 *
1422 	 * The idle thread is never placed on the runq, make sure
1423 	 * nothing we've done put it there.
1424 	 */
1425 
1426 	/*
1427 	 * Hold a critical section and allow real interrupts to occur.  Zero
1428 	 * any spurious interrupts which have accumulated, then set our
1429 	 * smp_active_mask indicating that we are fully operational.
1430 	 */
1431 	crit_enter();
1432 	__asm __volatile("sti; pause; pause"::);
1433 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1434 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1435 
1436 	/*
1437 	 * Wait until all cpus have set their smp_active_mask and have fully
1438 	 * operational interrupts before proceeding.
1439 	 *
1440 	 * We need a final cpu_invltlb() because we would not have received
1441 	 * any until we set our bit in smp_active_mask.
1442 	 */
1443 	while (mp_finish == 1) {
1444 		cpu_pause();
1445 		cpu_lfence();
1446 	}
1447 	cpu_invltlb();
1448 
1449 	/*
1450 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1451 	 * At this point code is expected to be able to use the full kernel
1452 	 * API.
1453 	 */
1454 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1455 
1456 	/*
1457 	 * Since we may have cleaned up the interrupt triggers, manually
1458 	 * process any pending IPIs before exiting our critical section.
1459 	 * Once the critical section has exited, normal interrupt processing
1460 	 * may occur.
1461 	 */
1462 	atomic_swap_int(&mycpu->gd_npoll, 0);
1463 	lwkt_process_ipiq();
1464 	crit_exit();
1465 
1466 	/*
1467 	 * Final final, allow the waiting BSP to resume the boot process,
1468 	 * return 'into' the idle thread bootstrap.
1469 	 */
1470 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1471 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1472 }
1473 
1474 /*
1475  * Get SMP fully working before we start initializing devices.
1476  */
1477 static
1478 void
1479 ap_finish(void)
1480 {
1481 	if (bootverbose)
1482 		kprintf("Finish MP startup\n");
1483 	rel_mplock();
1484 
1485 	/*
1486 	 * Wait for the active mask to complete, after which all cpus will
1487 	 * be accepting interrupts.
1488 	 */
1489 	mp_finish = 1;
1490 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1491 		cpu_pause();
1492 		cpu_lfence();
1493 	}
1494 
1495 	/*
1496 	 * Wait for the finalization mask to complete, after which all cpus
1497 	 * have completely finished initializing and are entering or are in
1498 	 * their idle thread.
1499 	 *
1500 	 * BSP should have received all required invltlbs but do another
1501 	 * one just in case.
1502 	 */
1503 	cpu_invltlb();
1504 	mp_finish = 2;
1505 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1506 		cpu_pause();
1507 		cpu_lfence();
1508 	}
1509 
1510 	while (try_mplock() == 0) {
1511 		cpu_pause();
1512 		cpu_lfence();
1513 	}
1514 
1515 	if (bootverbose) {
1516 		kprintf("Active CPU Mask: %016jx\n",
1517 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1518 	}
1519 }
1520 
1521 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1522 
1523 void
1524 cpu_send_ipiq(int dcpu)
1525 {
1526 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1527                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1528 }
1529 
1530 #if 0	/* single_apic_ipi_passive() not working yet */
1531 /*
1532  * Returns 0 on failure, 1 on success
1533  */
1534 int
1535 cpu_send_ipiq_passive(int dcpu)
1536 {
1537         int r = 0;
1538 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1539                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1540                                         APIC_DELMODE_FIXED);
1541         }
1542 	return(r);
1543 }
1544 #endif
1545 
1546 static void
1547 mp_bsp_simple_setup(void)
1548 {
1549 	struct mdglobaldata *gd;
1550 	size_t ipiq_size;
1551 
1552 	/* build our map of 'other' CPUs */
1553 	mycpu->gd_other_cpus = smp_startup_mask;
1554 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1555 
1556 	gd = (struct mdglobaldata *)mycpu;
1557 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1558 
1559 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1560 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size);
1561 	bzero(mycpu->gd_ipiq, ipiq_size);
1562 
1563 	pmap_set_opt();
1564 
1565 	if (cpu_feature & CPUID_TSC)
1566 		tsc0_offset = rdtsc();
1567 }
1568 
1569 
1570 /*
1571  * CPU TOPOLOGY DETECTION FUNCTIONS
1572  */
1573 
1574 /* Detect intel topology using CPUID
1575  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1576  */
1577 static void
1578 detect_intel_topology(int count_htt_cores)
1579 {
1580 	int shift = 0;
1581 	int ecx_index = 0;
1582 	int core_plus_logical_bits = 0;
1583 	int cores_per_package;
1584 	int logical_per_package;
1585 	int logical_per_core;
1586 	unsigned int p[4];
1587 
1588 	if (cpu_high >= 0xb) {
1589 		goto FUNC_B;
1590 
1591 	} else if (cpu_high >= 0x4) {
1592 		goto FUNC_4;
1593 
1594 	} else {
1595 		core_bits = 0;
1596 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1597 			;
1598 		logical_CPU_bits = 1 << shift;
1599 		return;
1600 	}
1601 
1602 FUNC_B:
1603 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1604 
1605 	/* if 0xb not supported - fallback to 0x4 */
1606 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1607 		goto FUNC_4;
1608 	}
1609 
1610 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1611 
1612 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1613 	do {
1614 		cpuid_count(0xb, ecx_index, p);
1615 
1616 		/* Check for the Core type in the implemented sub leaves. */
1617 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1618 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1619 			break;
1620 		}
1621 
1622 		ecx_index++;
1623 
1624 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1625 
1626 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1627 
1628 	return;
1629 
1630 FUNC_4:
1631 	cpuid_count(0x4, 0, p);
1632 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1633 
1634 	logical_per_package = count_htt_cores;
1635 	logical_per_core = logical_per_package / cores_per_package;
1636 
1637 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1638 		;
1639 	logical_CPU_bits = shift;
1640 
1641 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1642 		;
1643 	core_bits = shift;
1644 
1645 	return;
1646 }
1647 
1648 /* Detect AMD topology using CPUID
1649  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1650  */
1651 static void
1652 detect_amd_topology(int count_htt_cores)
1653 {
1654 	int shift = 0;
1655 	if ((cpu_feature & CPUID_HTT)
1656 			&& (amd_feature2 & AMDID2_CMP)) {
1657 
1658 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1659 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE)
1660 			    >> AMDID_COREID_SIZE_SHIFT;
1661 		} else {
1662 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1663 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1664 				;
1665 			core_bits = shift;
1666 		}
1667 
1668 		logical_CPU_bits = count_htt_cores >> core_bits;
1669 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1670 			;
1671 		logical_CPU_bits = shift;
1672 	} else {
1673 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1674 			;
1675 		core_bits = shift;
1676 		logical_CPU_bits = 0;
1677 	}
1678 }
1679 
1680 static void
1681 amd_get_compute_unit_id(void *arg)
1682 {
1683 	u_int regs[4];
1684 
1685 	do_cpuid(0x8000001e, regs);
1686 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1687 	/*
1688 	 * AMD - CPUID Specification September 2010
1689 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1690 	 */
1691 	mynode->compute_unit_id = regs[1] & 0xff;
1692 }
1693 
1694 int
1695 fix_amd_topology(void)
1696 {
1697 	cpumask_t mask;
1698 
1699 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1700 		return -1;
1701 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1702 		return -1;
1703 
1704 	CPUMASK_ASSALLONES(mask);
1705 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1706 
1707 	kprintf("Compute unit iDS:\n");
1708 	int i;
1709 	for (i = 0; i < ncpus; i++) {
1710 		kprintf("%d-%d; \n",
1711 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 /* Calculate
1718  * - logical_CPU_bits
1719  * - core_bits
1720  * With the values above (for AMD or INTEL) we are able to generally
1721  * detect the CPU topology (number of cores for each level):
1722  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1723  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1724  */
1725 void
1726 detect_cpu_topology(void)
1727 {
1728 	static int topology_detected = 0;
1729 	int count = 0;
1730 
1731 	if (topology_detected)
1732 		goto OUT;
1733 	if ((cpu_feature & CPUID_HTT) == 0) {
1734 		core_bits = 0;
1735 		logical_CPU_bits = 0;
1736 		goto OUT;
1737 	}
1738 	count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
1739 
1740 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1741 		detect_intel_topology(count);
1742 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
1743 		detect_amd_topology(count);
1744 	topology_detected = 1;
1745 
1746 OUT:
1747 	if (bootverbose)
1748 		kprintf("Bits within APICID: logical_CPU_bits: %d; core_bits: %d\n",
1749 		    logical_CPU_bits, core_bits);
1750 }
1751 
1752 /* Interface functions to calculate chip_ID,
1753  * core_number and logical_number
1754  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1755  */
1756 int
1757 get_chip_ID(int cpuid)
1758 {
1759 	return get_apicid_from_cpuid(cpuid) >>
1760 	    (logical_CPU_bits + core_bits);
1761 }
1762 
1763 int
1764 get_core_number_within_chip(int cpuid)
1765 {
1766 	return (get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1767 	    ( (1 << core_bits) -1);
1768 }
1769 
1770 int
1771 get_logical_CPU_number_within_core(int cpuid)
1772 {
1773 	return get_apicid_from_cpuid(cpuid) &
1774 	    ( (1 << logical_CPU_bits) -1);
1775 }
1776