1 /*
2  * Copyright (c) 1996, by Steve Passe
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. The name of the developer may NOT be used to endorse or promote products
11  *    derived from this software without specific prior written permission.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  *
25  * $FreeBSD: src/sys/i386/i386/mp_machdep.c,v 1.115.2.15 2003/03/14 21:22:35 jhb Exp $
26  */
27 
28 #include "opt_cpu.h"
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/sysctl.h>
34 #include <sys/malloc.h>
35 #include <sys/memrange.h>
36 #include <sys/cons.h>	/* cngetc() */
37 #include <sys/machintr.h>
38 #include <sys/cpu_topology.h>
39 
40 #include <sys/mplock2.h>
41 
42 #include <vm/vm.h>
43 #include <vm/vm_param.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_kern.h>
46 #include <vm/vm_extern.h>
47 #include <sys/lock.h>
48 #include <vm/vm_map.h>
49 #include <sys/user.h>
50 #ifdef GPROF
51 #include <sys/gmon.h>
52 #endif
53 
54 #include <machine/smp.h>
55 #include <machine_base/apic/apicreg.h>
56 #include <machine/atomic.h>
57 #include <machine/cpufunc.h>
58 #include <machine/cputypes.h>
59 #include <machine_base/apic/lapic.h>
60 #include <machine_base/apic/ioapic.h>
61 #include <machine_base/acpica/acpi_md_cpu.h>
62 #include <machine/psl.h>
63 #include <machine/segments.h>
64 #include <machine/tss.h>
65 #include <machine/specialreg.h>
66 #include <machine/globaldata.h>
67 #include <machine/pmap_inval.h>
68 #include <machine/clock.h>
69 
70 #include <machine/md_var.h>		/* setidt() */
71 #include <machine_base/icu/icu.h>	/* IPIs */
72 #include <machine_base/icu/icu_var.h>
73 #include <machine_base/apic/ioapic_abi.h>
74 #include <machine/intr_machdep.h>	/* IPIs */
75 
76 #define WARMBOOT_TARGET		0
77 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
78 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
79 
80 #define CMOS_REG		(0x70)
81 #define CMOS_DATA		(0x71)
82 #define BIOS_RESET		(0x0f)
83 #define BIOS_WARM		(0x0a)
84 
85 /*
86  * this code MUST be enabled here and in mpboot.s.
87  * it follows the very early stages of AP boot by placing values in CMOS ram.
88  * it NORMALLY will never be needed and thus the primitive method for enabling.
89  *
90  */
91 #if defined(CHECK_POINTS)
92 #define CHECK_READ(A)	 (outb(CMOS_REG, (A)), inb(CMOS_DATA))
93 #define CHECK_WRITE(A,D) (outb(CMOS_REG, (A)), outb(CMOS_DATA, (D)))
94 
95 #define CHECK_INIT(D);				\
96 	CHECK_WRITE(0x34, (D));			\
97 	CHECK_WRITE(0x35, (D));			\
98 	CHECK_WRITE(0x36, (D));			\
99 	CHECK_WRITE(0x37, (D));			\
100 	CHECK_WRITE(0x38, (D));			\
101 	CHECK_WRITE(0x39, (D));
102 
103 #define CHECK_PRINT(S);				\
104 	kprintf("%s: %d, %d, %d, %d, %d, %d\n",	\
105 	   (S),					\
106 	   CHECK_READ(0x34),			\
107 	   CHECK_READ(0x35),			\
108 	   CHECK_READ(0x36),			\
109 	   CHECK_READ(0x37),			\
110 	   CHECK_READ(0x38),			\
111 	   CHECK_READ(0x39));
112 
113 #else				/* CHECK_POINTS */
114 
115 #define CHECK_INIT(D)
116 #define CHECK_PRINT(S)
117 
118 #endif				/* CHECK_POINTS */
119 
120 /*
121  * Values to send to the POST hardware.
122  */
123 #define MP_BOOTADDRESS_POST	0x10
124 #define MP_PROBE_POST		0x11
125 #define MPTABLE_PASS1_POST	0x12
126 
127 #define MP_START_POST		0x13
128 #define MP_ENABLE_POST		0x14
129 #define MPTABLE_PASS2_POST	0x15
130 
131 #define START_ALL_APS_POST	0x16
132 #define INSTALL_AP_TRAMP_POST	0x17
133 #define START_AP_POST		0x18
134 
135 #define MP_ANNOUNCE_POST	0x19
136 
137 /** XXX FIXME: where does this really belong, isa.h/isa.c perhaps? */
138 int	current_postcode;
139 
140 /** XXX FIXME: what system files declare these??? */
141 
142 extern int naps;
143 
144 int64_t tsc0_offset;
145 extern int64_t tsc_offsets[];
146 
147 /* AP uses this during bootstrap.  Do not staticize.  */
148 char *bootSTK;
149 static int bootAP;
150 
151 struct pcb stoppcbs[MAXCPU];
152 
153 extern inthand_t IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
154 
155 /*
156  * Local data and functions.
157  */
158 
159 static u_int	boot_address;
160 static int	mp_finish;
161 static int	mp_finish_lapic;
162 
163 static int	start_all_aps(u_int boot_addr);
164 #if 0
165 static void	install_ap_tramp(u_int boot_addr);
166 #endif
167 static int	start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest);
168 static int	smitest(void);
169 static void	mp_bsp_simple_setup(void);
170 
171 /* which cpus have been started */
172 static cpumask_t smp_startup_mask = CPUMASK_INITIALIZER_ONLYONE;
173 /* which cpus have lapic been inited */
174 static cpumask_t smp_lapic_mask = CPUMASK_INITIALIZER_ONLYONE;
175 /* which cpus are ready for IPIs etc? */
176 cpumask_t smp_active_mask = CPUMASK_INITIALIZER_ONLYONE;
177 cpumask_t smp_finalize_mask = CPUMASK_INITIALIZER_ONLYONE;
178 
179 SYSCTL_OPAQUE(_machdep, OID_AUTO, smp_active, CTLFLAG_RD,
180 	      &smp_active_mask, sizeof(smp_active_mask), "LU", "");
181 static u_int	bootMP_size;
182 static u_int	report_invlpg_src;
183 SYSCTL_INT(_machdep, OID_AUTO, report_invlpg_src, CTLFLAG_RW,
184 	&report_invlpg_src, 0, "");
185 static u_int	report_invltlb_src;
186 SYSCTL_INT(_machdep, OID_AUTO, report_invltlb_src, CTLFLAG_RW,
187 	&report_invltlb_src, 0, "");
188 static int	optimized_invltlb;
189 SYSCTL_INT(_machdep, OID_AUTO, optimized_invltlb, CTLFLAG_RW,
190 	&optimized_invltlb, 0, "");
191 static int	all_but_self_ipi_enable = 1;
192 SYSCTL_INT(_machdep, OID_AUTO, all_but_self_ipi_enable, CTLFLAG_RW,
193 	&all_but_self_ipi_enable, 0, "");
194 
195 /* Local data for detecting CPU TOPOLOGY */
196 static int core_bits = 0;
197 static int logical_CPU_bits = 0;
198 
199 
200 /*
201  * Calculate usable address in base memory for AP trampoline code.
202  */
203 u_int
204 mp_bootaddress(u_int basemem)
205 {
206 	POSTCODE(MP_BOOTADDRESS_POST);
207 
208 	bootMP_size = mptramp_end - mptramp_start;
209 	boot_address = trunc_page(basemem * 1024); /* round down to 4k boundary */
210 	if (((basemem * 1024) - boot_address) < bootMP_size)
211 		boot_address -= PAGE_SIZE;	/* not enough, lower by 4k */
212 	/* 3 levels of page table pages */
213 	mptramp_pagetables = boot_address - (PAGE_SIZE * 3);
214 
215 	return mptramp_pagetables;
216 }
217 
218 /*
219  * Print various information about the SMP system hardware and setup.
220  */
221 void
222 mp_announce(void)
223 {
224 	int     x;
225 
226 	POSTCODE(MP_ANNOUNCE_POST);
227 
228 	kprintf("DragonFly/MP: Multiprocessor motherboard\n");
229 	kprintf(" cpu0 (BSP): apic id: %2d\n", CPUID_TO_APICID(0));
230 	for (x = 1; x <= naps; ++x)
231 		kprintf(" cpu%d (AP):  apic id: %2d\n", x, CPUID_TO_APICID(x));
232 
233 	if (!ioapic_enable)
234 		kprintf(" Warning: APIC I/O disabled\n");
235 }
236 
237 /*
238  * AP cpu's call this to sync up protected mode.
239  *
240  * WARNING! %gs is not set up on entry.  This routine sets up %gs.
241  */
242 void
243 init_secondary(void)
244 {
245 	int	gsel_tss;
246 	int	x, myid = bootAP;
247 	u_int64_t msr, cr0;
248 	struct mdglobaldata *md;
249 	struct privatespace *ps;
250 
251 	ps = CPU_prvspace[myid];
252 
253 	gdt_segs[GPROC0_SEL].ssd_base = (long)&ps->common_tss;
254 	ps->mdglobaldata.mi.gd_prvspace = ps;
255 
256 	/* We fill the 32-bit segment descriptors */
257 	for (x = 0; x < NGDT; x++) {
258 		if (x != GPROC0_SEL && x != (GPROC0_SEL + 1))
259 			ssdtosd(&gdt_segs[x], &gdt[myid * NGDT + x]);
260 	}
261 	/* And now a 64-bit one */
262 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
263 	    (struct system_segment_descriptor *)&gdt[myid * NGDT + GPROC0_SEL]);
264 
265 	r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
266 	r_gdt.rd_base = (long) &gdt[myid * NGDT];
267 	lgdt(&r_gdt);			/* does magic intra-segment return */
268 
269 	/* lgdt() destroys the GSBASE value, so we load GSBASE after lgdt() */
270 	wrmsr(MSR_FSBASE, 0);		/* User value */
271 	wrmsr(MSR_GSBASE, (u_int64_t)ps);
272 	wrmsr(MSR_KGSBASE, 0);		/* XXX User value while we're in the kernel */
273 
274 	lidt(&r_idt_arr[mdcpu->mi.gd_cpuid]);
275 
276 #if 0
277 	lldt(_default_ldt);
278 	mdcpu->gd_currentldt = _default_ldt;
279 #endif
280 
281 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
282 	gdt[myid * NGDT + GPROC0_SEL].sd_type = SDT_SYSTSS;
283 
284 	md = mdcpu;	/* loaded through %gs:0 (mdglobaldata.mi.gd_prvspace)*/
285 
286 	/*
287 	 * TSS entry point for interrupts, traps, and exceptions
288 	 * (sans NMI).  This will always go to near the top of the pcpu
289 	 * trampoline area.  Hardware-pushed data will be copied into
290 	 * the trap-frame on entry, and (if necessary) returned to the
291 	 * trampoline on exit.
292 	 *
293 	 * We store some pcb data for the trampoline code above the
294 	 * stack the cpu hw pushes into, and arrange things so the
295 	 * address of tr_pcb_rsp is the same as the desired top of
296 	 * stack.
297 	 */
298 	ps->common_tss.tss_rsp0 = (register_t)&ps->trampoline.tr_pcb_rsp;
299 	ps->trampoline.tr_pcb_rsp = ps->common_tss.tss_rsp0;
300 	ps->trampoline.tr_pcb_gs_kernel = (register_t)md;
301 	ps->trampoline.tr_pcb_cr3 = KPML4phys;	/* adj to user cr3 live */
302 	ps->dbltramp.tr_pcb_gs_kernel = (register_t)md;
303 	ps->dbltramp.tr_pcb_cr3 = KPML4phys;
304 	ps->dbgtramp.tr_pcb_gs_kernel = (register_t)md;
305 	ps->dbgtramp.tr_pcb_cr3 = KPML4phys;
306 
307 #if 0 /* JG XXX */
308 	ps->common_tss.tss_ioopt = (sizeof ps->common_tss) << 16;
309 #endif
310 	md->gd_tss_gdt = &gdt[myid * NGDT + GPROC0_SEL];
311 	md->gd_common_tssd = *md->gd_tss_gdt;
312 
313 	/* double fault stack */
314 	ps->common_tss.tss_ist1 = (register_t)&ps->dbltramp.tr_pcb_rsp;
315 	ps->common_tss.tss_ist2 = (register_t)&ps->dbgtramp.tr_pcb_rsp;
316 
317 	ltr(gsel_tss);
318 
319 	/*
320 	 * Set to a known state:
321 	 * Set by mpboot.s: CR0_PG, CR0_PE
322 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
323 	 */
324 	cr0 = rcr0();
325 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
326 	load_cr0(cr0);
327 
328 	/* Set up the fast syscall stuff */
329 	msr = rdmsr(MSR_EFER) | EFER_SCE;
330 	wrmsr(MSR_EFER, msr);
331 	wrmsr(MSR_LSTAR, (u_int64_t)IDTVEC(fast_syscall));
332 	wrmsr(MSR_CSTAR, (u_int64_t)IDTVEC(fast_syscall32));
333 	msr = ((u_int64_t)GSEL(GCODE_SEL, SEL_KPL) << 32) |
334 	      ((u_int64_t)GSEL(GUCODE32_SEL, SEL_UPL) << 48);
335 	wrmsr(MSR_STAR, msr);
336 	wrmsr(MSR_SF_MASK, PSL_NT|PSL_T|PSL_I|PSL_C|PSL_D|PSL_IOPL);
337 
338 	pmap_set_opt();		/* PSE/4MB pages, etc */
339 	pmap_init_pat();	/* Page Attribute Table */
340 
341 	/* set up CPU registers and state */
342 	cpu_setregs();
343 
344 	/* set up SSE/NX registers */
345 	initializecpu(myid);
346 
347 	/* set up FPU state on the AP */
348 	npxinit();
349 
350 	/* If BSP is in the X2APIC mode, put the AP into the X2APIC mode. */
351 	if (x2apic_enable)
352 		lapic_x2apic_enter(FALSE);
353 
354 	/* disable the APIC, just to be SURE */
355 	LAPIC_WRITE(svr, (LAPIC_READ(svr) & ~APIC_SVR_ENABLE));
356 }
357 
358 /*******************************************************************
359  * local functions and data
360  */
361 
362 /*
363  * Start the SMP system
364  */
365 static void
366 mp_start_aps(void *dummy __unused)
367 {
368 	if (lapic_enable) {
369 		/* start each Application Processor */
370 		start_all_aps(boot_address);
371 	} else {
372 		mp_bsp_simple_setup();
373 	}
374 }
375 SYSINIT(startaps, SI_BOOT2_START_APS, SI_ORDER_FIRST, mp_start_aps, NULL);
376 
377 /*
378  * start each AP in our list
379  */
380 static int
381 start_all_aps(u_int boot_addr)
382 {
383 	vm_offset_t va = boot_address + KERNBASE;
384 	u_int64_t *pt4, *pt3, *pt2;
385 	int	pssize;
386 	int     x, i;
387 	int	shift;
388 	int	smicount;
389 	int	smibest;
390 	int	smilast;
391 	u_char  mpbiosreason;
392 	u_long  mpbioswarmvec;
393 	struct mdglobaldata *gd;
394 	struct privatespace *ps;
395 	size_t ipiq_size;
396 
397 	POSTCODE(START_ALL_APS_POST);
398 
399 	/* install the AP 1st level boot code */
400 	pmap_kenter(va, boot_address);
401 	cpu_invlpg((void *)va);		/* JG XXX */
402 	bcopy(mptramp_start, (void *)va, bootMP_size);
403 
404 	/* Locate the page tables, they'll be below the trampoline */
405 	pt4 = (u_int64_t *)(uintptr_t)(mptramp_pagetables + KERNBASE);
406 	pt3 = pt4 + (PAGE_SIZE) / sizeof(u_int64_t);
407 	pt2 = pt3 + (PAGE_SIZE) / sizeof(u_int64_t);
408 
409 	/* Create the initial 1GB replicated page tables */
410 	for (i = 0; i < 512; i++) {
411 		/* Each slot of the level 4 pages points to the same level 3 page */
412 		pt4[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + PAGE_SIZE);
413 		pt4[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
414 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
415 		    kernel_pmap.pmap_bits[PG_U_IDX];
416 
417 		/* Each slot of the level 3 pages points to the same level 2 page */
418 		pt3[i] = (u_int64_t)(uintptr_t)(mptramp_pagetables + (2 * PAGE_SIZE));
419 		pt3[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
420 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
421 		    kernel_pmap.pmap_bits[PG_U_IDX];
422 
423 		/* The level 2 page slots are mapped with 2MB pages for 1GB. */
424 		pt2[i] = i * (2 * 1024 * 1024);
425 		pt2[i] |= kernel_pmap.pmap_bits[PG_V_IDX] |
426 		    kernel_pmap.pmap_bits[PG_RW_IDX] |
427 		    kernel_pmap.pmap_bits[PG_PS_IDX] |
428 		    kernel_pmap.pmap_bits[PG_U_IDX];
429 	}
430 
431 	/* save the current value of the warm-start vector */
432 	mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
433 	outb(CMOS_REG, BIOS_RESET);
434 	mpbiosreason = inb(CMOS_DATA);
435 
436 	/* setup a vector to our boot code */
437 	*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
438 	*((volatile u_short *) WARMBOOT_SEG) = (boot_address >> 4);
439 	outb(CMOS_REG, BIOS_RESET);
440 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
441 
442 	/*
443 	 * If we have a TSC we can figure out the SMI interrupt rate.
444 	 * The SMI does not necessarily use a constant rate.  Spend
445 	 * up to 250ms trying to figure it out.
446 	 */
447 	smibest = 0;
448 	if (cpu_feature & CPUID_TSC) {
449 		set_apic_timer(275000);
450 		smilast = read_apic_timer();
451 		for (x = 0; x < 20 && read_apic_timer(); ++x) {
452 			smicount = smitest();
453 			if (smibest == 0 || smilast - smicount < smibest)
454 				smibest = smilast - smicount;
455 			smilast = smicount;
456 		}
457 		if (smibest > 250000)
458 			smibest = 0;
459 	}
460 	if (smibest)
461 		kprintf("SMI Frequency (worst case): %d Hz (%d us)\n",
462 			1000000 / smibest, smibest);
463 
464 	/* start each AP */
465 	for (x = 1; x <= naps; ++x) {
466 		/* This is a bit verbose, it will go away soon.  */
467 
468 		pssize = sizeof(struct privatespace);
469 		ps = (void *)kmem_alloc3(&kernel_map, pssize, VM_SUBSYS_GD,
470 					 KM_CPU(x));
471 		CPU_prvspace[x] = ps;
472 #if 0
473 		kprintf("ps %d %p %d\n", x, ps, pssize);
474 #endif
475 		bzero(ps, pssize);
476 		gd = &ps->mdglobaldata;
477 		gd->mi.gd_prvspace = ps;
478 
479 		/* prime data page for it to use */
480 		mi_gdinit(&gd->mi, x);
481 		cpu_gdinit(gd, x);
482 		ipiq_size = sizeof(struct lwkt_ipiq) * (naps + 1);
483 		gd->mi.gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
484 						     VM_SUBSYS_IPIQ, KM_CPU(x));
485 		bzero(gd->mi.gd_ipiq, ipiq_size);
486 
487 		gd->gd_acpi_id = CPUID_TO_ACPIID(gd->mi.gd_cpuid);
488 
489 		/* initialize arc4random. */
490 		arc4_init_pcpu(x);
491 
492 		/* setup a vector to our boot code */
493 		*((volatile u_short *) WARMBOOT_OFF) = WARMBOOT_TARGET;
494 		*((volatile u_short *) WARMBOOT_SEG) = (boot_addr >> 4);
495 		outb(CMOS_REG, BIOS_RESET);
496 		outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
497 
498 		/*
499 		 * Setup the AP boot stack
500 		 */
501 		bootSTK = &ps->idlestack[UPAGES * PAGE_SIZE - PAGE_SIZE];
502 		bootAP = x;
503 
504 		/* attempt to start the Application Processor */
505 		CHECK_INIT(99);	/* setup checkpoints */
506 		if (!start_ap(gd, boot_addr, smibest)) {
507 			kprintf("\nAP #%d (PHY# %d) failed!\n",
508 				x, CPUID_TO_APICID(x));
509 			CHECK_PRINT("trace");	/* show checkpoints */
510 			/* better panic as the AP may be running loose */
511 			kprintf("panic y/n? [y] ");
512 			cnpoll(TRUE);
513 			if (cngetc() != 'n')
514 				panic("bye-bye");
515 			cnpoll(FALSE);
516 		}
517 		CHECK_PRINT("trace");		/* show checkpoints */
518 	}
519 
520 	/* set ncpus to 1 + highest logical cpu.  Not all may have come up */
521 	ncpus = x;
522 
523 	for (shift = 0; (1 << shift) <= ncpus; ++shift)
524 		;
525 	--shift;
526 
527 	/* ncpus_fit -- ncpus rounded up to the nearest power of 2 */
528 	if ((1 << shift) < ncpus)
529 		++shift;
530 	ncpus_fit = 1 << shift;
531 	ncpus_fit_mask = ncpus_fit - 1;
532 
533 	/* build our map of 'other' CPUs */
534 	mycpu->gd_other_cpus = smp_startup_mask;
535 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
536 
537 	gd = (struct mdglobaldata *)mycpu;
538 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
539 
540 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
541 	mycpu->gd_ipiq = (void *)kmem_alloc3(&kernel_map, ipiq_size,
542 					     VM_SUBSYS_IPIQ, KM_CPU(0));
543 	bzero(mycpu->gd_ipiq, ipiq_size);
544 
545 	/* initialize arc4random. */
546 	arc4_init_pcpu(0);
547 
548 	/* restore the warmstart vector */
549 	*(u_long *) WARMBOOT_OFF = mpbioswarmvec;
550 	outb(CMOS_REG, BIOS_RESET);
551 	outb(CMOS_DATA, mpbiosreason);
552 
553 	/*
554 	 * NOTE!  The idlestack for the BSP was setup by locore.  Finish
555 	 * up, clean out the P==V mapping we did earlier.
556 	 */
557 	pmap_set_opt();
558 
559 	/*
560 	 * Wait all APs to finish initializing LAPIC
561 	 */
562 	if (bootverbose)
563 		kprintf("SMP: Waiting APs LAPIC initialization\n");
564 	if (cpu_feature & CPUID_TSC)
565 		tsc0_offset = rdtsc();
566 	tsc_offsets[0] = 0;
567 	mp_finish_lapic = 1;
568 	rel_mplock();
569 
570 	while (CPUMASK_CMPMASKNEQ(smp_lapic_mask, smp_startup_mask)) {
571 		cpu_pause();
572 		cpu_lfence();
573 		if (cpu_feature & CPUID_TSC)
574 			tsc0_offset = rdtsc();
575 	}
576 	while (try_mplock() == 0) {
577 		cpu_pause();
578 		cpu_lfence();
579 	}
580 
581 	/* number of APs actually started */
582 	return ncpus - 1;
583 }
584 
585 
586 /*
587  * load the 1st level AP boot code into base memory.
588  */
589 
590 /* targets for relocation */
591 extern void bigJump(void);
592 extern void bootCodeSeg(void);
593 extern void bootDataSeg(void);
594 extern void MPentry(void);
595 extern u_int MP_GDT;
596 extern u_int mp_gdtbase;
597 
598 #if 0
599 
600 static void
601 install_ap_tramp(u_int boot_addr)
602 {
603 	int     x;
604 	int     size = *(int *) ((u_long) & bootMP_size);
605 	u_char *src = (u_char *) ((u_long) bootMP);
606 	u_char *dst = (u_char *) boot_addr + KERNBASE;
607 	u_int   boot_base = (u_int) bootMP;
608 	u_int8_t *dst8;
609 	u_int16_t *dst16;
610 	u_int32_t *dst32;
611 
612 	POSTCODE(INSTALL_AP_TRAMP_POST);
613 
614 	for (x = 0; x < size; ++x)
615 		*dst++ = *src++;
616 
617 	/*
618 	 * modify addresses in code we just moved to basemem. unfortunately we
619 	 * need fairly detailed info about mpboot.s for this to work.  changes
620 	 * to mpboot.s might require changes here.
621 	 */
622 
623 	/* boot code is located in KERNEL space */
624 	dst = (u_char *) boot_addr + KERNBASE;
625 
626 	/* modify the lgdt arg */
627 	dst32 = (u_int32_t *) (dst + ((u_int) & mp_gdtbase - boot_base));
628 	*dst32 = boot_addr + ((u_int) & MP_GDT - boot_base);
629 
630 	/* modify the ljmp target for MPentry() */
631 	dst32 = (u_int32_t *) (dst + ((u_int) bigJump - boot_base) + 1);
632 	*dst32 = ((u_int) MPentry - KERNBASE);
633 
634 	/* modify the target for boot code segment */
635 	dst16 = (u_int16_t *) (dst + ((u_int) bootCodeSeg - boot_base));
636 	dst8 = (u_int8_t *) (dst16 + 1);
637 	*dst16 = (u_int) boot_addr & 0xffff;
638 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
639 
640 	/* modify the target for boot data segment */
641 	dst16 = (u_int16_t *) (dst + ((u_int) bootDataSeg - boot_base));
642 	dst8 = (u_int8_t *) (dst16 + 1);
643 	*dst16 = (u_int) boot_addr & 0xffff;
644 	*dst8 = ((u_int) boot_addr >> 16) & 0xff;
645 }
646 
647 #endif
648 
649 /*
650  * This function starts the AP (application processor) identified
651  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
652  * to accomplish this.  This is necessary because of the nuances
653  * of the different hardware we might encounter.  It ain't pretty,
654  * but it seems to work.
655  *
656  * NOTE: eventually an AP gets to ap_init(), which is called just
657  * before the AP goes into the LWKT scheduler's idle loop.
658  */
659 static int
660 start_ap(struct mdglobaldata *gd, u_int boot_addr, int smibest)
661 {
662 	int     physical_cpu;
663 	int     vector;
664 
665 	POSTCODE(START_AP_POST);
666 
667 	/* get the PHYSICAL APIC ID# */
668 	physical_cpu = CPUID_TO_APICID(gd->mi.gd_cpuid);
669 
670 	/* calculate the vector */
671 	vector = (boot_addr >> 12) & 0xff;
672 
673 	/* We don't want anything interfering */
674 	cpu_disable_intr();
675 
676 	/* Make sure the target cpu sees everything */
677 	wbinvd();
678 
679 	/*
680 	 * Try to detect when a SMI has occurred, wait up to 200ms.
681 	 *
682 	 * If a SMI occurs during an AP reset but before we issue
683 	 * the STARTUP command, the AP may brick.  To work around
684 	 * this problem we hold off doing the AP startup until
685 	 * after we have detected the SMI.  Hopefully another SMI
686 	 * will not occur before we finish the AP startup.
687 	 *
688 	 * Retries don't seem to help.  SMIs have a window of opportunity
689 	 * and if USB->legacy keyboard emulation is enabled in the BIOS
690 	 * the interrupt rate can be quite high.
691 	 *
692 	 * NOTE: Don't worry about the L1 cache load, it might bloat
693 	 *	 ldelta a little but ndelta will be so huge when the SMI
694 	 *	 occurs the detection logic will still work fine.
695 	 */
696 	if (smibest) {
697 		set_apic_timer(200000);
698 		smitest();
699 	}
700 
701 	/*
702 	 * first we do an INIT/RESET IPI this INIT IPI might be run, reseting
703 	 * and running the target CPU. OR this INIT IPI might be latched (P5
704 	 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be
705 	 * ignored.
706 	 *
707 	 * see apic/apicreg.h for icr bit definitions.
708 	 *
709 	 * TIME CRITICAL CODE, DO NOT DO ANY KPRINTFS IN THE HOT PATH.
710 	 */
711 
712 	/*
713 	 * Do an INIT IPI: assert RESET
714 	 *
715 	 * Use edge triggered mode to assert INIT
716 	 */
717 	lapic_seticr_sync(physical_cpu,
718 	    APIC_DESTMODE_PHY |
719 	    APIC_DEST_DESTFLD |
720 	    APIC_TRIGMOD_EDGE |
721 	    APIC_LEVEL_ASSERT |
722 	    APIC_DELMODE_INIT);
723 
724 	/*
725 	 * The spec calls for a 10ms delay but we may have to use a
726 	 * MUCH lower delay to avoid bricking an AP due to a fast SMI
727 	 * interrupt.  We have other loops here too and dividing by 2
728 	 * doesn't seem to be enough even after subtracting 350us,
729 	 * so we divide by 4.
730 	 *
731 	 * Our minimum delay is 150uS, maximum is 10ms.  If no SMI
732 	 * interrupt was detected we use the full 10ms.
733 	 */
734 	if (smibest == 0)
735 		u_sleep(10000);
736 	else if (smibest < 150 * 4 + 350)
737 		u_sleep(150);
738 	else if ((smibest - 350) / 4 < 10000)
739 		u_sleep((smibest - 350) / 4);
740 	else
741 		u_sleep(10000);
742 
743 	/*
744 	 * Do an INIT IPI: deassert RESET
745 	 *
746 	 * Use level triggered mode to deassert.  It is unclear
747 	 * why we need to do this.
748 	 */
749 	lapic_seticr_sync(physical_cpu,
750 	    APIC_DESTMODE_PHY |
751 	    APIC_DEST_DESTFLD |
752 	    APIC_TRIGMOD_LEVEL |
753 	    APIC_LEVEL_DEASSERT |
754 	    APIC_DELMODE_INIT);
755 	u_sleep(150);				/* wait 150us */
756 
757 	/*
758 	 * Next we do a STARTUP IPI: the previous INIT IPI might still be
759 	 * latched, (P5 bug) this 1st STARTUP would then terminate
760 	 * immediately, and the previously started INIT IPI would continue. OR
761 	 * the previous INIT IPI has already run. and this STARTUP IPI will
762 	 * run. OR the previous INIT IPI was ignored. and this STARTUP IPI
763 	 * will run.
764 	 *
765 	 * XXX set APIC_LEVEL_ASSERT
766 	 */
767 	lapic_seticr_sync(physical_cpu,
768 	    APIC_DESTMODE_PHY |
769 	    APIC_DEST_DESTFLD |
770 	    APIC_DELMODE_STARTUP |
771 	    vector);
772 	u_sleep(200);		/* wait ~200uS */
773 
774 	/*
775 	 * Finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF
776 	 * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR
777 	 * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is
778 	 * recognized after hardware RESET or INIT IPI.
779 	 *
780 	 * XXX set APIC_LEVEL_ASSERT
781 	 */
782 	lapic_seticr_sync(physical_cpu,
783 	    APIC_DESTMODE_PHY |
784 	    APIC_DEST_DESTFLD |
785 	    APIC_DELMODE_STARTUP |
786 	    vector);
787 
788 	/* Resume normal operation */
789 	cpu_enable_intr();
790 
791 	/* wait for it to start, see ap_init() */
792 	set_apic_timer(5000000);/* == 5 seconds */
793 	while (read_apic_timer()) {
794 		if (CPUMASK_TESTBIT(smp_startup_mask, gd->mi.gd_cpuid))
795 			return 1;	/* return SUCCESS */
796 	}
797 
798 	return 0;		/* return FAILURE */
799 }
800 
801 static
802 int
803 smitest(void)
804 {
805 	int64_t	ltsc;
806 	int64_t	ntsc;
807 	int64_t	ldelta;
808 	int64_t	ndelta;
809 	int count;
810 
811 	ldelta = 0;
812 	ndelta = 0;
813 	while (read_apic_timer()) {
814 		ltsc = rdtsc();
815 		for (count = 0; count < 100; ++count)
816 			ntsc = rdtsc();	/* force loop to occur */
817 		if (ldelta) {
818 			ndelta = ntsc - ltsc;
819 			if (ldelta > ndelta)
820 				ldelta = ndelta;
821 			if (ndelta > ldelta * 2)
822 				break;
823 		} else {
824 			ldelta = ntsc - ltsc;
825 		}
826 	}
827 	return(read_apic_timer());
828 }
829 
830 /*
831  * Synchronously flush the TLB on all other CPU's.  The current cpu's
832  * TLB is not flushed.  If the caller wishes to flush the current cpu's
833  * TLB the caller must call cpu_invltlb() in addition to smp_invltlb().
834  *
835  * This routine may be called concurrently from multiple cpus.  When this
836  * happens, smp_invltlb() can wind up sticking around in the confirmation
837  * while() loop at the end as additional cpus are added to the global
838  * cpumask, until they are acknowledged by another IPI.
839  *
840  * NOTE: If for some reason we were unable to start all cpus we cannot
841  *	 safely use broadcast IPIs.
842  */
843 
844 cpumask_t smp_smurf_mask;
845 static cpumask_t smp_invltlb_mask;
846 #define LOOPRECOVER
847 #define LOOPMASK_IN
848 #ifdef LOOPMASK_IN
849 cpumask_t smp_in_mask;
850 #endif
851 cpumask_t smp_invmask;
852 extern cpumask_t smp_idleinvl_mask;
853 extern cpumask_t smp_idleinvl_reqs;
854 
855 /*
856  * Atomically OR bits in *mask to smp_smurf_mask.  Adjust *mask to remove
857  * bits that do not need to be IPId.  These bits are still part of the command,
858  * but the target cpus have already been signalled and do not need to be
859  * sigalled again.
860  */
861 #include <sys/spinlock.h>
862 #include <sys/spinlock2.h>
863 
864 static __noinline
865 void
866 smp_smurf_fetchset(cpumask_t *mask)
867 {
868 	cpumask_t omask;
869 	int i;
870 	__uint64_t obits;
871 	__uint64_t nbits;
872 
873 	i = 0;
874 	while (i < CPUMASK_ELEMENTS) {
875 		obits = smp_smurf_mask.ary[i];
876 		cpu_ccfence();
877 		nbits = obits | mask->ary[i];
878 		if (atomic_cmpset_long(&smp_smurf_mask.ary[i], obits, nbits)) {
879 			omask.ary[i] = obits;
880 			++i;
881 		}
882 	}
883 	CPUMASK_NANDMASK(*mask, omask);
884 }
885 
886 /*
887  * This is a mechanism which guarantees that cpu_invltlb() will be executed
888  * on idle cpus without having to signal or wake them up.  The invltlb will be
889  * executed when they wake up, prior to any scheduling or interrupt thread.
890  *
891  * (*mask) is modified to remove the cpus we successfully negotiate this
892  * function with.  This function may only be used with semi-synchronous
893  * commands (typically invltlb's or semi-synchronous invalidations which
894  * are usually associated only with kernel memory).
895  */
896 void
897 smp_smurf_idleinvlclr(cpumask_t *mask)
898 {
899 	if (optimized_invltlb) {
900 		ATOMIC_CPUMASK_ORMASK(smp_idleinvl_reqs, *mask);
901 		/* cpu_lfence() not needed */
902 		CPUMASK_NANDMASK(*mask, smp_idleinvl_mask);
903 	}
904 }
905 
906 /*
907  * Issue cpu_invltlb() across all cpus except the current cpu.
908  *
909  * This function will arrange to avoid idle cpus, but still gurantee that
910  * invltlb is run on them when they wake up prior to any scheduling or
911  * nominal interrupt.
912  */
913 void
914 smp_invltlb(void)
915 {
916 	struct mdglobaldata *md = mdcpu;
917 	cpumask_t mask;
918 	unsigned long rflags;
919 #ifdef LOOPRECOVER
920 	tsc_uclock_t tsc_base = rdtsc();
921 	int repeats = 0;
922 #endif
923 
924 	if (report_invltlb_src > 0) {
925 		if (--report_invltlb_src <= 0)
926 			print_backtrace(8);
927 	}
928 
929 	/*
930 	 * Disallow normal interrupts, set all active cpus except our own
931 	 * in the global smp_invltlb_mask.
932 	 */
933 	++md->mi.gd_cnt.v_smpinvltlb;
934 	crit_enter_gd(&md->mi);
935 
936 	/*
937 	 * Bits we want to set in smp_invltlb_mask.  We do not want to signal
938 	 * our own cpu.  Also try to remove bits associated with idle cpus
939 	 * that we can flag for auto-invltlb.
940 	 */
941 	mask = smp_active_mask;
942 	CPUMASK_NANDBIT(mask, md->mi.gd_cpuid);
943 	smp_smurf_idleinvlclr(&mask);
944 
945 	rflags = read_rflags();
946 	cpu_disable_intr();
947 	ATOMIC_CPUMASK_ORMASK(smp_invltlb_mask, mask);
948 
949 	/*
950 	 * IPI non-idle cpus represented by mask.  The omask calculation
951 	 * removes cpus from the mask which already have a Xinvltlb IPI
952 	 * pending (avoid double-queueing the IPI).
953 	 *
954 	 * We must disable real interrupts when setting the smurf flags or
955 	 * we might race a XINVLTLB before we manage to send the ipi's for
956 	 * the bits we set.
957 	 *
958 	 * NOTE: We are not signalling ourselves, mask already does NOT
959 	 * include our own cpu.
960 	 */
961 	smp_smurf_fetchset(&mask);
962 
963 	/*
964 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
965 	 * the critical section count on the target cpus.
966 	 */
967 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
968 	if (all_but_self_ipi_enable &&
969 	    (all_but_self_ipi_enable >= 2 ||
970 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
971 		all_but_self_ipi(XINVLTLB_OFFSET);
972 	} else {
973 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
974 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
975 	}
976 
977 	/*
978 	 * Wait for acknowledgement by all cpus.  smp_inval_intr() will
979 	 * temporarily enable interrupts to avoid deadlocking the lapic,
980 	 * and will also handle running cpu_invltlb() and remote invlpg
981 	 * command son our cpu if some other cpu requests it of us.
982 	 *
983 	 * WARNING! I originally tried to implement this as a hard loop
984 	 *	    checking only smp_invltlb_mask (and issuing a local
985 	 *	    cpu_invltlb() if requested), with interrupts enabled
986 	 *	    and without calling smp_inval_intr().  This DID NOT WORK.
987 	 *	    It resulted in weird races where smurf bits would get
988 	 *	    cleared without any action being taken.
989 	 */
990 	smp_inval_intr();
991 	CPUMASK_ASSZERO(mask);
992 	while (CPUMASK_CMPMASKNEQ(smp_invltlb_mask, mask)) {
993 		smp_inval_intr();
994 		cpu_pause();
995 #ifdef LOOPRECOVER
996 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
997 			/*
998 			 * cpuid 	- cpu doing the waiting
999 			 * invltlb_mask - IPI in progress
1000 			 */
1001 			kprintf("smp_invltlb %d: waited too long inv=%08jx "
1002 				"smurf=%08jx "
1003 #ifdef LOOPMASK_IN
1004 				"in=%08jx "
1005 #endif
1006 				"idle=%08jx/%08jx\n",
1007 				md->mi.gd_cpuid,
1008 				smp_invltlb_mask.ary[0],
1009 				smp_smurf_mask.ary[0],
1010 #ifdef LOOPMASK_IN
1011 				smp_in_mask.ary[0],
1012 #endif
1013 				smp_idleinvl_mask.ary[0],
1014 				smp_idleinvl_reqs.ary[0]);
1015 			mdcpu->gd_xinvaltlb = 0;
1016 			ATOMIC_CPUMASK_NANDMASK(smp_smurf_mask,
1017 						smp_invltlb_mask);
1018 			smp_invlpg(&smp_active_mask);
1019 			tsc_base = rdtsc();
1020 			if (++repeats > 10) {
1021 				kprintf("smp_invltlb: giving up\n");
1022 				CPUMASK_ASSZERO(smp_invltlb_mask);
1023 			}
1024 		}
1025 #endif
1026 	}
1027 	write_rflags(rflags);
1028 	crit_exit_gd(&md->mi);
1029 }
1030 
1031 /*
1032  * Called from a critical section with interrupts hard-disabled.
1033  * This function issues an XINVLTLB IPI and then executes any pending
1034  * command on the current cpu before returning.
1035  */
1036 void
1037 smp_invlpg(cpumask_t *cmdmask)
1038 {
1039 	struct mdglobaldata *md = mdcpu;
1040 	cpumask_t mask;
1041 
1042 	if (report_invlpg_src > 0) {
1043 		if (--report_invlpg_src <= 0)
1044 			print_backtrace(8);
1045 	}
1046 
1047 	/*
1048 	 * Disallow normal interrupts, set all active cpus in the pmap,
1049 	 * plus our own for completion processing (it might or might not
1050 	 * be part of the set).
1051 	 */
1052 	mask = smp_active_mask;
1053 	CPUMASK_ANDMASK(mask, *cmdmask);
1054 	CPUMASK_ORMASK(mask, md->mi.gd_cpumask);
1055 
1056 	/*
1057 	 * Avoid double-queuing IPIs, which can deadlock us.  We must disable
1058 	 * real interrupts when setting the smurf flags or we might race a
1059 	 * XINVLTLB before we manage to send the ipi's for the bits we set.
1060 	 *
1061 	 * NOTE: We might be including our own cpu in the smurf mask.
1062 	 */
1063 	smp_smurf_fetchset(&mask);
1064 
1065 	/*
1066 	 * Issue the IPI.  Note that the XINVLTLB IPI runs regardless of
1067 	 * the critical section count on the target cpus.
1068 	 *
1069 	 * We do not include our own cpu when issuing the IPI.
1070 	 */
1071 	if (all_but_self_ipi_enable &&
1072 	    (all_but_self_ipi_enable >= 2 ||
1073 	     CPUMASK_CMPMASKEQ(smp_startup_mask, mask))) {
1074 		all_but_self_ipi(XINVLTLB_OFFSET);
1075 	} else {
1076 		CPUMASK_NANDMASK(mask, md->mi.gd_cpumask);
1077 		selected_apic_ipi(mask, XINVLTLB_OFFSET, APIC_DELMODE_FIXED);
1078 	}
1079 
1080 	/*
1081 	 * This will synchronously wait for our command to complete,
1082 	 * as well as process commands from other cpus.  It also handles
1083 	 * reentrancy.
1084 	 *
1085 	 * (interrupts are disabled and we are in a critical section here)
1086 	 */
1087 	smp_inval_intr();
1088 }
1089 
1090 void
1091 smp_sniff(void)
1092 {
1093 	globaldata_t gd = mycpu;
1094 	int dummy;
1095 	register_t rflags;
1096 
1097 	/*
1098 	 * Ignore all_but_self_ipi_enable here and just use it.
1099 	 */
1100 	rflags = read_rflags();
1101 	cpu_disable_intr();
1102 	all_but_self_ipi(XSNIFF_OFFSET);
1103 	gd->gd_sample_pc = smp_sniff;
1104 	gd->gd_sample_sp = &dummy;
1105 	write_rflags(rflags);
1106 }
1107 
1108 void
1109 cpu_sniff(int dcpu)
1110 {
1111 	globaldata_t rgd = globaldata_find(dcpu);
1112 	register_t rflags;
1113 	int dummy;
1114 
1115 	/*
1116 	 * Ignore all_but_self_ipi_enable here and just use it.
1117 	 */
1118 	rflags = read_rflags();
1119 	cpu_disable_intr();
1120 	single_apic_ipi(dcpu, XSNIFF_OFFSET, APIC_DELMODE_FIXED);
1121 	rgd->gd_sample_pc = cpu_sniff;
1122 	rgd->gd_sample_sp = &dummy;
1123 	write_rflags(rflags);
1124 }
1125 
1126 /*
1127  * Called from Xinvltlb assembly with interrupts hard-disabled and in a
1128  * critical section.  gd_intr_nesting_level may or may not be bumped
1129  * depending on entry.
1130  *
1131  * THIS CODE IS INTENDED TO EXPLICITLY IGNORE THE CRITICAL SECTION COUNT.
1132  * THAT IS, THE INTERRUPT IS INTENDED TO FUNCTION EVEN WHEN MAINLINE CODE
1133  * IS IN A CRITICAL SECTION.
1134  */
1135 void
1136 smp_inval_intr(void)
1137 {
1138 	struct mdglobaldata *md = mdcpu;
1139 	cpumask_t cpumask;
1140 #ifdef LOOPRECOVER
1141 	tsc_uclock_t tsc_base = rdtsc();
1142 #endif
1143 
1144 #if 0
1145 	/*
1146 	 * The idle code is in a critical section, but that doesn't stop
1147 	 * Xinvltlb from executing, so deal with the race which can occur
1148 	 * in that situation.  Otherwise r-m-w operations by pmap_inval_intr()
1149 	 * may have problems.
1150 	 */
1151 	if (ATOMIC_CPUMASK_TESTANDCLR(smp_idleinvl_reqs, md->mi.gd_cpuid)) {
1152 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask, md->mi.gd_cpuid);
1153 		cpu_invltlb();
1154 		cpu_mfence();
1155 	}
1156 #endif
1157 
1158 	/*
1159 	 * This is a real mess.  I'd like to just leave interrupts disabled
1160 	 * but it can cause the lapic to deadlock if too many interrupts queue
1161 	 * to it, due to the idiotic design of the lapic.  So instead we have
1162 	 * to enter a critical section so normal interrupts are made pending
1163 	 * and track whether this one was reentered.
1164 	 */
1165 	if (md->gd_xinvaltlb) {		/* reentrant on cpu */
1166 		md->gd_xinvaltlb = 2;
1167 		return;
1168 	}
1169 	md->gd_xinvaltlb = 1;
1170 
1171 	/*
1172 	 * Check only those cpus with active Xinvl* commands pending.
1173 	 *
1174 	 * We are going to enable interrupts so make sure we are in a
1175 	 * critical section.  This is necessary to avoid deadlocking
1176 	 * the lapic and to ensure that we execute our commands prior to
1177 	 * any nominal interrupt or preemption.
1178 	 *
1179 	 * WARNING! It is very important that we only clear out but in
1180 	 *	    smp_smurf_mask once for each interrupt we take.  In
1181 	 *	    this case, we clear it on initial entry and only loop
1182 	 *	    on the reentrancy detect (caused by another interrupt).
1183 	 */
1184 	cpumask = smp_invmask;
1185 #ifdef LOOPMASK_IN
1186 	ATOMIC_CPUMASK_ORBIT(smp_in_mask, md->mi.gd_cpuid);
1187 #endif
1188 loop:
1189 	cpu_enable_intr();
1190 	ATOMIC_CPUMASK_NANDBIT(smp_smurf_mask, md->mi.gd_cpuid);
1191 
1192 	/*
1193 	 * Specific page request(s), and we can't return until all bits
1194 	 * are zero.
1195 	 */
1196 	for (;;) {
1197 		int toolong;
1198 
1199 		/*
1200 		 * Also execute any pending full invalidation request in
1201 		 * this loop.
1202 		 */
1203 		if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1204 			ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1205 					       md->mi.gd_cpuid);
1206 			cpu_invltlb();
1207 			cpu_mfence();
1208 		}
1209 
1210 #ifdef LOOPRECOVER
1211 		if (tsc_frequency && rdtsc() - tsc_base > tsc_frequency) {
1212 			/*
1213 			 * cpuid 	- cpu doing the waiting
1214 			 * invmask	- IPI in progress
1215 			 * invltlb_mask - which ones are TLB invalidations?
1216 			 */
1217 			kprintf("smp_inval_intr %d inv=%08jx tlbm=%08jx "
1218 				"smurf=%08jx "
1219 #ifdef LOOPMASK_IN
1220 				"in=%08jx "
1221 #endif
1222 				"idle=%08jx/%08jx\n",
1223 				md->mi.gd_cpuid,
1224 				smp_invmask.ary[0],
1225 				smp_invltlb_mask.ary[0],
1226 				smp_smurf_mask.ary[0],
1227 #ifdef LOOPMASK_IN
1228 				smp_in_mask.ary[0],
1229 #endif
1230 				smp_idleinvl_mask.ary[0],
1231 				smp_idleinvl_reqs.ary[0]);
1232 			tsc_base = rdtsc();
1233 			toolong = 1;
1234 		} else {
1235 			toolong = 0;
1236 		}
1237 #else
1238 		toolong = 0;
1239 #endif
1240 
1241 		/*
1242 		 * We can only add bits to the cpumask to test during the
1243 		 * loop because the smp_invmask bit is cleared once the
1244 		 * originator completes the command (the targets may still
1245 		 * be cycling their own completions in this loop, afterwords).
1246 		 *
1247 		 * lfence required prior to all tests as this Xinvltlb
1248 		 * interrupt could race the originator (already be in progress
1249 		 * wnen the originator decides to issue, due to an issue by
1250 		 * another cpu).
1251 		 */
1252 		cpu_lfence();
1253 		CPUMASK_ORMASK(cpumask, smp_invmask);
1254 		/*cpumask = smp_active_mask;*/	/* XXX */
1255 		cpu_lfence();
1256 
1257 		if (pmap_inval_intr(&cpumask, toolong) == 0) {
1258 			/*
1259 			 * Clear our smurf mask to allow new IPIs, but deal
1260 			 * with potential races.
1261 			 */
1262 			break;
1263 		}
1264 
1265 		/*
1266 		 * Test if someone sent us another invalidation IPI, break
1267 		 * out so we can take it to avoid deadlocking the lapic
1268 		 * interrupt queue (? stupid intel, amd).
1269 		 */
1270 		if (md->gd_xinvaltlb == 2)
1271 			break;
1272 		/*
1273 		if (CPUMASK_TESTBIT(smp_smurf_mask, md->mi.gd_cpuid))
1274 			break;
1275 		*/
1276 	}
1277 
1278 	/*
1279 	 * Full invalidation request
1280 	 */
1281 	if (CPUMASK_TESTBIT(smp_invltlb_mask, md->mi.gd_cpuid)) {
1282 		ATOMIC_CPUMASK_NANDBIT(smp_invltlb_mask,
1283 				       md->mi.gd_cpuid);
1284 		cpu_invltlb();
1285 		cpu_mfence();
1286 	}
1287 
1288 	/*
1289 	 * Check to see if another Xinvltlb interrupt occurred and loop up
1290 	 * if it did.
1291 	 */
1292 	cpu_disable_intr();
1293 	if (md->gd_xinvaltlb == 2) {
1294 		md->gd_xinvaltlb = 1;
1295 		goto loop;
1296 	}
1297 #ifdef LOOPMASK_IN
1298 	ATOMIC_CPUMASK_NANDBIT(smp_in_mask, md->mi.gd_cpuid);
1299 #endif
1300 	md->gd_xinvaltlb = 0;
1301 }
1302 
1303 void
1304 cpu_wbinvd_on_all_cpus_callback(void *arg)
1305 {
1306 	wbinvd();
1307 }
1308 
1309 /*
1310  * When called the executing CPU will send an IPI to all other CPUs
1311  * requesting that they halt execution.
1312  *
1313  * Usually (but not necessarily) called with 'other_cpus' as its arg.
1314  *
1315  *  - Signals all CPUs in map to stop.
1316  *  - Waits for each to stop.
1317  *
1318  * Returns:
1319  *  -1: error
1320  *   0: NA
1321  *   1: ok
1322  *
1323  * XXX FIXME: this is not MP-safe, needs a lock to prevent multiple CPUs
1324  *            from executing at same time.
1325  */
1326 int
1327 stop_cpus(cpumask_t map)
1328 {
1329 	cpumask_t mask;
1330 
1331 	CPUMASK_ANDMASK(map, smp_active_mask);
1332 
1333 	/* send the Xcpustop IPI to all CPUs in map */
1334 	selected_apic_ipi(map, XCPUSTOP_OFFSET, APIC_DELMODE_FIXED);
1335 
1336 	do {
1337 		mask = stopped_cpus;
1338 		CPUMASK_ANDMASK(mask, map);
1339 		/* spin */
1340 	} while (CPUMASK_CMPMASKNEQ(mask, map));
1341 
1342 	return 1;
1343 }
1344 
1345 
1346 /*
1347  * Called by a CPU to restart stopped CPUs.
1348  *
1349  * Usually (but not necessarily) called with 'stopped_cpus' as its arg.
1350  *
1351  *  - Signals all CPUs in map to restart.
1352  *  - Waits for each to restart.
1353  *
1354  * Returns:
1355  *  -1: error
1356  *   0: NA
1357  *   1: ok
1358  */
1359 int
1360 restart_cpus(cpumask_t map)
1361 {
1362 	cpumask_t mask;
1363 
1364 	/* signal other cpus to restart */
1365 	mask = map;
1366 	CPUMASK_ANDMASK(mask, smp_active_mask);
1367 	cpu_ccfence();
1368 	started_cpus = mask;
1369 	cpu_ccfence();
1370 
1371 	/* wait for each to clear its bit */
1372 	while (CPUMASK_CMPMASKNEQ(stopped_cpus, map))
1373 		cpu_pause();
1374 
1375 	return 1;
1376 }
1377 
1378 /*
1379  * This is called once the mpboot code has gotten us properly relocated
1380  * and the MMU turned on, etc.   ap_init() is actually the idle thread,
1381  * and when it returns the scheduler will call the real cpu_idle() main
1382  * loop for the idlethread.  Interrupts are disabled on entry and should
1383  * remain disabled at return.
1384  */
1385 void
1386 ap_init(void)
1387 {
1388 	int	cpu_id;
1389 
1390 	/*
1391 	 * Adjust smp_startup_mask to signal the BSP that we have started
1392 	 * up successfully.  Note that we do not yet hold the BGL.  The BSP
1393 	 * is waiting for our signal.
1394 	 *
1395 	 * We can't set our bit in smp_active_mask yet because we are holding
1396 	 * interrupts physically disabled and remote cpus could deadlock
1397 	 * trying to send us an IPI.
1398 	 */
1399 	ATOMIC_CPUMASK_ORBIT(smp_startup_mask, mycpu->gd_cpuid);
1400 	cpu_mfence();
1401 
1402 	/*
1403 	 * Interlock for LAPIC initialization.  Wait until mp_finish_lapic is
1404 	 * non-zero, then get the MP lock.
1405 	 *
1406 	 * Note: We are in a critical section.
1407 	 *
1408 	 * Note: we are the idle thread, we can only spin.
1409 	 *
1410 	 * Note: The load fence is memory volatile and prevents the compiler
1411 	 * from improperly caching mp_finish_lapic, and the cpu from improperly
1412 	 * caching it.
1413 	 */
1414 	while (mp_finish_lapic == 0) {
1415 		cpu_pause();
1416 		cpu_lfence();
1417 	}
1418 #if 0
1419 	while (try_mplock() == 0) {
1420 		cpu_pause();
1421 		cpu_lfence();
1422 	}
1423 #endif
1424 
1425 	if (cpu_feature & CPUID_TSC) {
1426 		/*
1427 		 * The BSP is constantly updating tsc0_offset, figure out
1428 		 * the relative difference to synchronize ktrdump.
1429 		 */
1430 		tsc_offsets[mycpu->gd_cpuid] = rdtsc() - tsc0_offset;
1431 	}
1432 
1433 	/* BSP may have changed PTD while we're waiting for the lock */
1434 	cpu_invltlb();
1435 
1436 	/* Build our map of 'other' CPUs. */
1437 	mycpu->gd_other_cpus = smp_startup_mask;
1438 	ATOMIC_CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1439 
1440 	/* A quick check from sanity claus */
1441 	cpu_id = APICID_TO_CPUID(LAPIC_READID);
1442 	if (mycpu->gd_cpuid != cpu_id) {
1443 		kprintf("SMP: assigned cpuid = %d\n", mycpu->gd_cpuid);
1444 		kprintf("SMP: actual cpuid = %d lapicid %d\n",
1445 			cpu_id, LAPIC_READID);
1446 #if 0 /* JGXXX */
1447 		kprintf("PTD[MPPTDI] = %p\n", (void *)PTD[MPPTDI]);
1448 #endif
1449 		panic("cpuid mismatch! boom!!");
1450 	}
1451 
1452 	/* Initialize AP's local APIC for irq's */
1453 	lapic_init(FALSE);
1454 
1455 	/* LAPIC initialization is done */
1456 	ATOMIC_CPUMASK_ORBIT(smp_lapic_mask, mycpu->gd_cpuid);
1457 	cpu_mfence();
1458 
1459 #if 0
1460 	/* Let BSP move onto the next initialization stage */
1461 	rel_mplock();
1462 #endif
1463 
1464 	/*
1465 	 * Interlock for finalization.  Wait until mp_finish is non-zero,
1466 	 * then get the MP lock.
1467 	 *
1468 	 * Note: We are in a critical section.
1469 	 *
1470 	 * Note: we are the idle thread, we can only spin.
1471 	 *
1472 	 * Note: The load fence is memory volatile and prevents the compiler
1473 	 * from improperly caching mp_finish, and the cpu from improperly
1474 	 * caching it.
1475 	 */
1476 	while (mp_finish == 0) {
1477 		cpu_pause();
1478 		cpu_lfence();
1479 	}
1480 
1481 	/* BSP may have changed PTD while we're waiting for the lock */
1482 	cpu_invltlb();
1483 
1484 	/* Set memory range attributes for this CPU to match the BSP */
1485 	mem_range_AP_init();
1486 
1487 	/*
1488 	 * Once we go active we must process any IPIQ messages that may
1489 	 * have been queued, because no actual IPI will occur until we
1490 	 * set our bit in the smp_active_mask.  If we don't the IPI
1491 	 * message interlock could be left set which would also prevent
1492 	 * further IPIs.
1493 	 *
1494 	 * The idle loop doesn't expect the BGL to be held and while
1495 	 * lwkt_switch() normally cleans things up this is a special case
1496 	 * because we returning almost directly into the idle loop.
1497 	 *
1498 	 * The idle thread is never placed on the runq, make sure
1499 	 * nothing we've done put it there.
1500 	 */
1501 
1502 	/*
1503 	 * Hold a critical section and allow real interrupts to occur.  Zero
1504 	 * any spurious interrupts which have accumulated, then set our
1505 	 * smp_active_mask indicating that we are fully operational.
1506 	 */
1507 	crit_enter();
1508 	__asm __volatile("sti; pause; pause"::);
1509 	bzero(mdcpu->gd_ipending, sizeof(mdcpu->gd_ipending));
1510 	ATOMIC_CPUMASK_ORBIT(smp_active_mask, mycpu->gd_cpuid);
1511 
1512 	/*
1513 	 * Wait until all cpus have set their smp_active_mask and have fully
1514 	 * operational interrupts before proceeding.
1515 	 *
1516 	 * We need a final cpu_invltlb() because we would not have received
1517 	 * any until we set our bit in smp_active_mask.
1518 	 */
1519 	while (mp_finish == 1) {
1520 		cpu_pause();
1521 		cpu_lfence();
1522 	}
1523 	cpu_invltlb();
1524 
1525 	/*
1526 	 * Initialize per-cpu clocks and do other per-cpu initialization.
1527 	 * At this point code is expected to be able to use the full kernel
1528 	 * API.
1529 	 */
1530 	initclocks_pcpu();	/* clock interrupts (via IPIs) */
1531 
1532 	/*
1533 	 * Since we may have cleaned up the interrupt triggers, manually
1534 	 * process any pending IPIs before exiting our critical section.
1535 	 * Once the critical section has exited, normal interrupt processing
1536 	 * may occur.
1537 	 */
1538 	atomic_swap_int(&mycpu->gd_npoll, 0);
1539 	lwkt_process_ipiq();
1540 	crit_exit();
1541 
1542 	/*
1543 	 * Final final, allow the waiting BSP to resume the boot process,
1544 	 * return 'into' the idle thread bootstrap.
1545 	 */
1546 	ATOMIC_CPUMASK_ORBIT(smp_finalize_mask, mycpu->gd_cpuid);
1547 	KKASSERT((curthread->td_flags & TDF_RUNQ) == 0);
1548 }
1549 
1550 /*
1551  * Get SMP fully working before we start initializing devices.
1552  */
1553 static
1554 void
1555 ap_finish(void)
1556 {
1557 	if (bootverbose)
1558 		kprintf("Finish MP startup\n");
1559 	rel_mplock();
1560 
1561 	/*
1562 	 * Wait for the active mask to complete, after which all cpus will
1563 	 * be accepting interrupts.
1564 	 */
1565 	mp_finish = 1;
1566 	while (CPUMASK_CMPMASKNEQ(smp_active_mask, smp_startup_mask)) {
1567 		cpu_pause();
1568 		cpu_lfence();
1569 	}
1570 
1571 	/*
1572 	 * Wait for the finalization mask to complete, after which all cpus
1573 	 * have completely finished initializing and are entering or are in
1574 	 * their idle thread.
1575 	 *
1576 	 * BSP should have received all required invltlbs but do another
1577 	 * one just in case.
1578 	 */
1579 	cpu_invltlb();
1580 	mp_finish = 2;
1581 	while (CPUMASK_CMPMASKNEQ(smp_finalize_mask, smp_startup_mask)) {
1582 		cpu_pause();
1583 		cpu_lfence();
1584 	}
1585 
1586 	while (try_mplock() == 0) {
1587 		cpu_pause();
1588 		cpu_lfence();
1589 	}
1590 
1591 	if (bootverbose) {
1592 		kprintf("Active CPU Mask: %016jx\n",
1593 			(uintmax_t)CPUMASK_LOWMASK(smp_active_mask));
1594 	}
1595 }
1596 
1597 SYSINIT(finishsmp, SI_BOOT2_FINISH_SMP, SI_ORDER_FIRST, ap_finish, NULL);
1598 
1599 /*
1600  * Interrupts must be hard-disabled by caller
1601  */
1602 void
1603 cpu_send_ipiq(int dcpu)
1604 {
1605 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu))
1606                 single_apic_ipi(dcpu, XIPIQ_OFFSET, APIC_DELMODE_FIXED);
1607 }
1608 
1609 #if 0	/* single_apic_ipi_passive() not working yet */
1610 /*
1611  * Returns 0 on failure, 1 on success
1612  */
1613 int
1614 cpu_send_ipiq_passive(int dcpu)
1615 {
1616         int r = 0;
1617 	if (CPUMASK_TESTBIT(smp_active_mask, dcpu)) {
1618                 r = single_apic_ipi_passive(dcpu, XIPIQ_OFFSET,
1619                                         APIC_DELMODE_FIXED);
1620         }
1621 	return(r);
1622 }
1623 #endif
1624 
1625 static void
1626 mp_bsp_simple_setup(void)
1627 {
1628 	struct mdglobaldata *gd;
1629 	size_t ipiq_size;
1630 
1631 	/* build our map of 'other' CPUs */
1632 	mycpu->gd_other_cpus = smp_startup_mask;
1633 	CPUMASK_NANDBIT(mycpu->gd_other_cpus, mycpu->gd_cpuid);
1634 
1635 	gd = (struct mdglobaldata *)mycpu;
1636 	gd->gd_acpi_id = CPUID_TO_ACPIID(mycpu->gd_cpuid);
1637 
1638 	ipiq_size = sizeof(struct lwkt_ipiq) * ncpus;
1639 	mycpu->gd_ipiq = (void *)kmem_alloc(&kernel_map, ipiq_size,
1640 					    VM_SUBSYS_IPIQ);
1641 	bzero(mycpu->gd_ipiq, ipiq_size);
1642 
1643 	/* initialize arc4random. */
1644 	arc4_init_pcpu(0);
1645 
1646 	pmap_set_opt();
1647 
1648 	if (cpu_feature & CPUID_TSC)
1649 		tsc0_offset = rdtsc();
1650 }
1651 
1652 
1653 /*
1654  * CPU TOPOLOGY DETECTION FUNCTIONS
1655  */
1656 
1657 /* Detect intel topology using CPUID
1658  * Ref: http://www.intel.com/Assets/PDF/appnote/241618.pdf, pg 41
1659  */
1660 static void
1661 detect_intel_topology(int count_htt_cores)
1662 {
1663 	int shift = 0;
1664 	int ecx_index = 0;
1665 	int core_plus_logical_bits = 0;
1666 	int cores_per_package;
1667 	int logical_per_package;
1668 	int logical_per_core;
1669 	unsigned int p[4];
1670 
1671 	if (cpu_high >= 0xb) {
1672 		goto FUNC_B;
1673 
1674 	} else if (cpu_high >= 0x4) {
1675 		goto FUNC_4;
1676 
1677 	} else {
1678 		core_bits = 0;
1679 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1680 			;
1681 		logical_CPU_bits = 1 << shift;
1682 		return;
1683 	}
1684 
1685 FUNC_B:
1686 	cpuid_count(0xb, FUNC_B_THREAD_LEVEL, p);
1687 
1688 	/* if 0xb not supported - fallback to 0x4 */
1689 	if (p[1] == 0 || (FUNC_B_TYPE(p[2]) != FUNC_B_THREAD_TYPE)) {
1690 		goto FUNC_4;
1691 	}
1692 
1693 	logical_CPU_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1694 
1695 	ecx_index = FUNC_B_THREAD_LEVEL + 1;
1696 	do {
1697 		cpuid_count(0xb, ecx_index, p);
1698 
1699 		/* Check for the Core type in the implemented sub leaves. */
1700 		if (FUNC_B_TYPE(p[2]) == FUNC_B_CORE_TYPE) {
1701 			core_plus_logical_bits = FUNC_B_BITS_SHIFT_NEXT_LEVEL(p[0]);
1702 			break;
1703 		}
1704 
1705 		ecx_index++;
1706 
1707 	} while (FUNC_B_TYPE(p[2]) != FUNC_B_INVALID_TYPE);
1708 
1709 	core_bits = core_plus_logical_bits - logical_CPU_bits;
1710 
1711 	return;
1712 
1713 FUNC_4:
1714 	cpuid_count(0x4, 0, p);
1715 	cores_per_package = FUNC_4_MAX_CORE_NO(p[0]) + 1;
1716 
1717 	logical_per_package = count_htt_cores;
1718 	logical_per_core = logical_per_package / cores_per_package;
1719 
1720 	for (shift = 0; (1 << shift) < logical_per_core; ++shift)
1721 		;
1722 	logical_CPU_bits = shift;
1723 
1724 	for (shift = 0; (1 << shift) < cores_per_package; ++shift)
1725 		;
1726 	core_bits = shift;
1727 
1728 	return;
1729 }
1730 
1731 /* Detect AMD topology using CPUID
1732  * Ref: http://support.amd.com/us/Embedded_TechDocs/25481.pdf, last page
1733  */
1734 static void
1735 detect_amd_topology(int count_htt_cores)
1736 {
1737 	int shift = 0;
1738 	if ((cpu_feature & CPUID_HTT) && (amd_feature2 & AMDID2_CMP)) {
1739 		if (cpu_procinfo2 & AMDID_COREID_SIZE) {
1740 			core_bits = (cpu_procinfo2 & AMDID_COREID_SIZE) >>
1741 				    AMDID_COREID_SIZE_SHIFT;
1742 		} else {
1743 			core_bits = (cpu_procinfo2 & AMDID_CMP_CORES) + 1;
1744 			for (shift = 0; (1 << shift) < core_bits; ++shift)
1745 				;
1746 			core_bits = shift;
1747 		}
1748 
1749 		if (amd_feature2 & AMDID2_TOPOEXT) {
1750 			u_int p[4];
1751 			int i;
1752 			int type;
1753 			int level;
1754 			int share_count;
1755 			for (i = 0; i < 256; ++i)  {
1756 				cpuid_count(0x8000001d, i, p);
1757 				type = p[0] & 0x1f;
1758 				level = (p[0] >> 5) & 0x7;
1759 				share_count = 1 + ((p[0] >> 14) & 0xfff);
1760 
1761 				if (type == 0)
1762 					break;
1763 				if (bootverbose)
1764 					kprintf("Topology probe i=%2d type=%d level=%d share_count=%d\n",
1765 						i, type, level, share_count);
1766 				if (type == 1 && share_count) {	/* CPUID_TYPE_SMT */
1767 					for (shift = 0; (1 << shift) < count_htt_cores / share_count; ++shift)
1768 						;
1769 					core_bits = shift;
1770 					break;
1771 				}
1772 			}
1773 		}
1774 
1775 		logical_CPU_bits = count_htt_cores >> core_bits;
1776 		for (shift = 0; (1 << shift) < logical_CPU_bits; ++shift)
1777 			;
1778 		logical_CPU_bits = shift;
1779 	} else {
1780 		for (shift = 0; (1 << shift) < count_htt_cores; ++shift)
1781 			;
1782 		core_bits = shift;
1783 		logical_CPU_bits = 0;
1784 	}
1785 }
1786 
1787 static void
1788 amd_get_compute_unit_id(void *arg)
1789 {
1790 	u_int regs[4];
1791 
1792 	do_cpuid(0x8000001e, regs);
1793 	cpu_node_t * mynode = get_cpu_node_by_cpuid(mycpuid);
1794 
1795 	/*
1796 	 * AMD - CPUID Specification September 2010
1797 	 * page 34 - //ComputeUnitID = ebx[0:7]//
1798 	 */
1799 	mynode->compute_unit_id = regs[1] & 0xff;
1800 }
1801 
1802 int
1803 fix_amd_topology(void)
1804 {
1805 	cpumask_t mask;
1806 
1807 	if (cpu_vendor_id != CPU_VENDOR_AMD)
1808 		return -1;
1809 	if ((amd_feature2 & AMDID2_TOPOEXT) == 0)
1810 		return -1;
1811 
1812 	CPUMASK_ASSALLONES(mask);
1813 	lwkt_cpusync_simple(mask, amd_get_compute_unit_id, NULL);
1814 
1815 	kprintf("Compute unit iDS:\n");
1816 	int i;
1817 	for (i = 0; i < ncpus; i++) {
1818 		kprintf("%d-%d; \n",
1819 			i, get_cpu_node_by_cpuid(i)->compute_unit_id);
1820 	}
1821 	return 0;
1822 }
1823 
1824 /*
1825  * Calculate
1826  * - logical_CPU_bits
1827  * - core_bits
1828  * With the values above (for AMD or INTEL) we are able to generally
1829  * detect the CPU topology (number of cores for each level):
1830  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1831  * Ref: http://www.multicoreinfo.com/research/papers/whitepapers/Intel-detect-topology.pdf
1832  */
1833 void
1834 detect_cpu_topology(void)
1835 {
1836 	static int topology_detected = 0;
1837 	int count = 0;
1838 
1839 	if (topology_detected)
1840 		goto OUT;
1841 	if ((cpu_feature & CPUID_HTT) == 0) {
1842 		core_bits = 0;
1843 		logical_CPU_bits = 0;
1844 		goto OUT;
1845 	}
1846 	count = (cpu_procinfo & CPUID_HTT_CORES) >> CPUID_HTT_CORE_SHIFT;
1847 
1848 	if (cpu_vendor_id == CPU_VENDOR_INTEL)
1849 		detect_intel_topology(count);
1850 	else if (cpu_vendor_id == CPU_VENDOR_AMD)
1851 		detect_amd_topology(count);
1852 	topology_detected = 1;
1853 
1854 OUT:
1855 	if (bootverbose) {
1856 		kprintf("Bits within APICID: logical_CPU_bits: %d; "
1857 			"core_bits: %d\n",
1858 			logical_CPU_bits, core_bits);
1859 	}
1860 }
1861 
1862 /*
1863  * Interface functions to calculate chip_ID,
1864  * core_number and logical_number
1865  * Ref: http://wiki.osdev.org/Detecting_CPU_Topology_(80x86)
1866  */
1867 int
1868 get_chip_ID(int cpuid)
1869 {
1870 	return get_apicid_from_cpuid(cpuid) >>
1871 	    (logical_CPU_bits + core_bits);
1872 }
1873 
1874 int
1875 get_chip_ID_from_APICID(int apicid)
1876 {
1877 	return apicid >> (logical_CPU_bits + core_bits);
1878 }
1879 
1880 int
1881 get_core_number_within_chip(int cpuid)
1882 {
1883 	return ((get_apicid_from_cpuid(cpuid) >> logical_CPU_bits) &
1884 		((1 << core_bits) - 1));
1885 }
1886 
1887 int
1888 get_logical_CPU_number_within_core(int cpuid)
1889 {
1890 	return (get_apicid_from_cpuid(cpuid) &
1891 		((1 << logical_CPU_bits) - 1));
1892 }
1893