xref: /dragonfly/sys/platform/pc64/x86_64/pmap.c (revision fcf53d9b)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  *	Manages physical address maps.
51  *
52  *	In addition to hardware address maps, this
53  *	module is called upon to provide software-use-only
54  *	maps which may or may not be stored in the same
55  *	form as hardware maps.  These pseudo-maps are
56  *	used to store intermediate results from copy
57  *	operations to and from address spaces.
58  *
59  *	Since the information managed by this module is
60  *	also stored by the logical address mapping module,
61  *	this module may throw away valid virtual-to-physical
62  *	mappings at almost any time.  However, invalidations
63  *	of virtual-to-physical mappings must be done as
64  *	requested.
65  *
66  *	In order to cope with hardware architectures which
67  *	make virtual-to-physical map invalidates expensive,
68  *	this module may delay invalidate or reduced protection
69  *	operations until such time as they are actually
70  *	necessary.  This module is given full information as
71  *	to which processors are currently using which maps,
72  *	and to when physical maps must be made correct.
73  */
74 
75 #if JG
76 #include "opt_disable_pse.h"
77 #include "opt_pmap.h"
78 #endif
79 #include "opt_msgbuf.h"
80 
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/kernel.h>
84 #include <sys/proc.h>
85 #include <sys/msgbuf.h>
86 #include <sys/vmmeter.h>
87 #include <sys/mman.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <sys/sysctl.h>
92 #include <sys/lock.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_pager.h>
100 #include <vm/vm_zone.h>
101 
102 #include <sys/user.h>
103 #include <sys/thread2.h>
104 #include <sys/sysref2.h>
105 
106 #include <machine/cputypes.h>
107 #include <machine/md_var.h>
108 #include <machine/specialreg.h>
109 #include <machine/smp.h>
110 #include <machine_base/apic/apicreg.h>
111 #include <machine/globaldata.h>
112 #include <machine/pmap.h>
113 #include <machine/pmap_inval.h>
114 
115 #include <ddb/ddb.h>
116 
117 #define PMAP_KEEP_PDIRS
118 #ifndef PMAP_SHPGPERPROC
119 #define PMAP_SHPGPERPROC 200
120 #endif
121 
122 #if defined(DIAGNOSTIC)
123 #define PMAP_DIAGNOSTIC
124 #endif
125 
126 #define MINPV 2048
127 
128 /*
129  * Get PDEs and PTEs for user/kernel address space
130  */
131 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
132 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
133 
134 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & PG_V) != 0)
135 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & PG_W) != 0)
136 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & PG_M) != 0)
137 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & PG_A) != 0)
138 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & PG_V) != 0)
139 
140 
141 /*
142  * Given a map and a machine independent protection code,
143  * convert to a vax protection code.
144  */
145 #define pte_prot(m, p)		\
146 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
147 static int protection_codes[8];
148 
149 struct pmap kernel_pmap;
150 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
151 
152 vm_paddr_t avail_start;		/* PA of first available physical page */
153 vm_paddr_t avail_end;		/* PA of last available physical page */
154 vm_offset_t virtual2_start;	/* cutout free area prior to kernel start */
155 vm_offset_t virtual2_end;
156 vm_offset_t virtual_start;	/* VA of first avail page (after kernel bss) */
157 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
158 vm_offset_t KvaStart;		/* VA start of KVA space */
159 vm_offset_t KvaEnd;		/* VA end of KVA space (non-inclusive) */
160 vm_offset_t KvaSize;		/* max size of kernel virtual address space */
161 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
162 static int pgeflag;		/* PG_G or-in */
163 static int pseflag;		/* PG_PS or-in */
164 
165 static vm_object_t kptobj;
166 
167 static int ndmpdp;
168 static vm_paddr_t dmaplimit;
169 static int nkpt;
170 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
171 
172 static uint64_t KPTbase;
173 static uint64_t KPTphys;
174 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
175 static uint64_t	KPDbase;	/* phys addr of kernel level 2 @ KERNBASE */
176 uint64_t KPDPphys;	/* phys addr of kernel level 3 */
177 uint64_t KPML4phys;	/* phys addr of kernel level 4 */
178 
179 static uint64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
180 static uint64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
181 
182 /*
183  * Data for the pv entry allocation mechanism
184  */
185 static vm_zone_t pvzone;
186 static struct vm_zone pvzone_store;
187 static struct vm_object pvzone_obj;
188 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
189 static int pmap_pagedaemon_waken = 0;
190 static struct pv_entry *pvinit;
191 
192 /*
193  * All those kernel PT submaps that BSD is so fond of
194  */
195 pt_entry_t *CMAP1 = 0, *ptmmap;
196 caddr_t CADDR1 = 0, ptvmmap = 0;
197 static pt_entry_t *msgbufmap;
198 struct msgbuf *msgbufp=0;
199 
200 /*
201  * Crashdump maps.
202  */
203 static pt_entry_t *pt_crashdumpmap;
204 static caddr_t crashdumpmap;
205 
206 #define DISABLE_PSE
207 
208 static pv_entry_t get_pv_entry (void);
209 static void i386_protection_init (void);
210 static void create_pagetables(vm_paddr_t *firstaddr);
211 static void pmap_remove_all (vm_page_t m);
212 static int  pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
213 				vm_offset_t sva, pmap_inval_info_t info);
214 static void pmap_remove_page (struct pmap *pmap,
215 				vm_offset_t va, pmap_inval_info_t info);
216 static int  pmap_remove_entry (struct pmap *pmap, vm_page_t m,
217 				vm_offset_t va, pmap_inval_info_t info);
218 static boolean_t pmap_testbit (vm_page_t m, int bit);
219 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
220 				vm_page_t mpte, vm_page_t m);
221 
222 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
223 
224 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
225 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
226 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
227 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
228 static int _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
229 				pmap_inval_info_t info);
230 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t, pmap_inval_info_t);
231 static vm_offset_t pmap_kmem_choose(vm_offset_t addr);
232 
233 static unsigned pdir4mb;
234 
235 /*
236  * Move the kernel virtual free pointer to the next
237  * 2MB.  This is used to help improve performance
238  * by using a large (2MB) page for much of the kernel
239  * (.text, .data, .bss)
240  */
241 static
242 vm_offset_t
243 pmap_kmem_choose(vm_offset_t addr)
244 {
245 	vm_offset_t newaddr = addr;
246 
247 	newaddr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
248 	return newaddr;
249 }
250 
251 /*
252  * pmap_pte_quick:
253  *
254  *	Super fast pmap_pte routine best used when scanning the pv lists.
255  *	This eliminates many course-grained invltlb calls.  Note that many of
256  *	the pv list scans are across different pmaps and it is very wasteful
257  *	to do an entire invltlb when checking a single mapping.
258  *
259  *	Should only be called while in a critical section.
260  */
261 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
262 
263 static
264 pt_entry_t *
265 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
266 {
267 	return pmap_pte(pmap, va);
268 }
269 
270 /* Return a non-clipped PD index for a given VA */
271 static __inline
272 vm_pindex_t
273 pmap_pde_pindex(vm_offset_t va)
274 {
275 	return va >> PDRSHIFT;
276 }
277 
278 /* Return various clipped indexes for a given VA */
279 static __inline
280 vm_pindex_t
281 pmap_pte_index(vm_offset_t va)
282 {
283 
284 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
285 }
286 
287 static __inline
288 vm_pindex_t
289 pmap_pde_index(vm_offset_t va)
290 {
291 
292 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
293 }
294 
295 static __inline
296 vm_pindex_t
297 pmap_pdpe_index(vm_offset_t va)
298 {
299 
300 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
301 }
302 
303 static __inline
304 vm_pindex_t
305 pmap_pml4e_index(vm_offset_t va)
306 {
307 
308 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
309 }
310 
311 /* Return a pointer to the PML4 slot that corresponds to a VA */
312 static __inline
313 pml4_entry_t *
314 pmap_pml4e(pmap_t pmap, vm_offset_t va)
315 {
316 
317 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
318 }
319 
320 /* Return a pointer to the PDP slot that corresponds to a VA */
321 static __inline
322 pdp_entry_t *
323 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
324 {
325 	pdp_entry_t *pdpe;
326 
327 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
328 	return (&pdpe[pmap_pdpe_index(va)]);
329 }
330 
331 /* Return a pointer to the PDP slot that corresponds to a VA */
332 static __inline
333 pdp_entry_t *
334 pmap_pdpe(pmap_t pmap, vm_offset_t va)
335 {
336 	pml4_entry_t *pml4e;
337 
338 	pml4e = pmap_pml4e(pmap, va);
339 	if ((*pml4e & PG_V) == 0)
340 		return NULL;
341 	return (pmap_pml4e_to_pdpe(pml4e, va));
342 }
343 
344 /* Return a pointer to the PD slot that corresponds to a VA */
345 static __inline
346 pd_entry_t *
347 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
348 {
349 	pd_entry_t *pde;
350 
351 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
352 	return (&pde[pmap_pde_index(va)]);
353 }
354 
355 /* Return a pointer to the PD slot that corresponds to a VA */
356 static __inline
357 pd_entry_t *
358 pmap_pde(pmap_t pmap, vm_offset_t va)
359 {
360 	pdp_entry_t *pdpe;
361 
362 	pdpe = pmap_pdpe(pmap, va);
363 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
364 		 return NULL;
365 	return (pmap_pdpe_to_pde(pdpe, va));
366 }
367 
368 /* Return a pointer to the PT slot that corresponds to a VA */
369 static __inline
370 pt_entry_t *
371 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
372 {
373 	pt_entry_t *pte;
374 
375 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
376 	return (&pte[pmap_pte_index(va)]);
377 }
378 
379 /* Return a pointer to the PT slot that corresponds to a VA */
380 static __inline
381 pt_entry_t *
382 pmap_pte(pmap_t pmap, vm_offset_t va)
383 {
384 	pd_entry_t *pde;
385 
386 	pde = pmap_pde(pmap, va);
387 	if (pde == NULL || (*pde & PG_V) == 0)
388 		return NULL;
389 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
390 		return ((pt_entry_t *)pde);
391 	return (pmap_pde_to_pte(pde, va));
392 }
393 
394 static __inline
395 pt_entry_t *
396 vtopte(vm_offset_t va)
397 {
398 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
399 
400 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
401 }
402 
403 static __inline
404 pd_entry_t *
405 vtopde(vm_offset_t va)
406 {
407 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
408 
409 	return (PDmap + ((va >> PDRSHIFT) & mask));
410 }
411 
412 static uint64_t
413 allocpages(vm_paddr_t *firstaddr, long n)
414 {
415 	uint64_t ret;
416 
417 	ret = *firstaddr;
418 	bzero((void *)ret, n * PAGE_SIZE);
419 	*firstaddr += n * PAGE_SIZE;
420 	return (ret);
421 }
422 
423 static
424 void
425 create_pagetables(vm_paddr_t *firstaddr)
426 {
427 	long i;		/* must be 64 bits */
428 	long nkpt_base;
429 	long nkpt_phys;
430 
431 	/*
432 	 * We are running (mostly) V=P at this point
433 	 *
434 	 * Calculate NKPT - number of kernel page tables.  We have to
435 	 * accomodoate prealloction of the vm_page_array, dump bitmap,
436 	 * MSGBUF_SIZE, and other stuff.  Be generous.
437 	 *
438 	 * Maxmem is in pages.
439 	 */
440 	ndmpdp = (ptoa(Maxmem) + NBPDP - 1) >> PDPSHIFT;
441 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
442 		ndmpdp = 4;
443 
444 	/*
445 	 * Starting at the beginning of kvm (not KERNBASE).
446 	 */
447 	nkpt_phys = (Maxmem * sizeof(struct vm_page) + NBPDR - 1) / NBPDR;
448 	nkpt_phys += (Maxmem * sizeof(struct pv_entry) + NBPDR - 1) / NBPDR;
449 	nkpt_phys += ((nkpt + nkpt + 1 + NKPML4E + NKPDPE + NDMPML4E + ndmpdp) +
450 		     511) / 512;
451 	nkpt_phys += 128;
452 
453 	/*
454 	 * Starting at KERNBASE - map 2G worth of page table pages.
455 	 * KERNBASE is offset -2G from the end of kvm.
456 	 */
457 	nkpt_base = (NPDPEPG - KPDPI) * NPTEPG;	/* typically 2 x 512 */
458 
459 	/*
460 	 * Allocate pages
461 	 */
462 	KPTbase = allocpages(firstaddr, nkpt_base);
463 	KPTphys = allocpages(firstaddr, nkpt_phys);
464 	KPML4phys = allocpages(firstaddr, 1);
465 	KPDPphys = allocpages(firstaddr, NKPML4E);
466 	KPDphys = allocpages(firstaddr, NKPDPE);
467 
468 	/*
469 	 * Calculate the page directory base for KERNBASE,
470 	 * that is where we start populating the page table pages.
471 	 * Basically this is the end - 2.
472 	 */
473 	KPDbase = KPDphys + ((NKPDPE - (NPDPEPG - KPDPI)) << PAGE_SHIFT);
474 
475 	DMPDPphys = allocpages(firstaddr, NDMPML4E);
476 	if ((amd_feature & AMDID_PAGE1GB) == 0)
477 		DMPDphys = allocpages(firstaddr, ndmpdp);
478 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
479 
480 	/*
481 	 * Fill in the underlying page table pages for the area around
482 	 * KERNBASE.  This remaps low physical memory to KERNBASE.
483 	 *
484 	 * Read-only from zero to physfree
485 	 * XXX not fully used, underneath 2M pages
486 	 */
487 	for (i = 0; (i << PAGE_SHIFT) < *firstaddr; i++) {
488 		((pt_entry_t *)KPTbase)[i] = i << PAGE_SHIFT;
489 		((pt_entry_t *)KPTbase)[i] |= PG_RW | PG_V | PG_G;
490 	}
491 
492 	/*
493 	 * Now map the initial kernel page tables.  One block of page
494 	 * tables is placed at the beginning of kernel virtual memory,
495 	 * and another block is placed at KERNBASE to map the kernel binary,
496 	 * data, bss, and initial pre-allocations.
497 	 */
498 	for (i = 0; i < nkpt_base; i++) {
499 		((pd_entry_t *)KPDbase)[i] = KPTbase + (i << PAGE_SHIFT);
500 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V;
501 	}
502 	for (i = 0; i < nkpt_phys; i++) {
503 		((pd_entry_t *)KPDphys)[i] = KPTphys + (i << PAGE_SHIFT);
504 		((pd_entry_t *)KPDphys)[i] |= PG_RW | PG_V;
505 	}
506 
507 	/*
508 	 * Map from zero to end of allocations using 2M pages as an
509 	 * optimization.  This will bypass some of the KPTBase pages
510 	 * above in the KERNBASE area.
511 	 */
512 	for (i = 0; (i << PDRSHIFT) < *firstaddr; i++) {
513 		((pd_entry_t *)KPDbase)[i] = i << PDRSHIFT;
514 		((pd_entry_t *)KPDbase)[i] |= PG_RW | PG_V | PG_PS | PG_G;
515 	}
516 
517 	/*
518 	 * And connect up the PD to the PDP.  The kernel pmap is expected
519 	 * to pre-populate all of its PDs.  See NKPDPE in vmparam.h.
520 	 */
521 	for (i = 0; i < NKPDPE; i++) {
522 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] =
523 				KPDphys + (i << PAGE_SHIFT);
524 		((pdp_entry_t *)KPDPphys)[NPDPEPG - NKPDPE + i] |=
525 				PG_RW | PG_V | PG_U;
526 	}
527 
528 	/* Now set up the direct map space using either 2MB or 1GB pages */
529 	/* Preset PG_M and PG_A because demotion expects it */
530 	if ((amd_feature & AMDID_PAGE1GB) == 0) {
531 		for (i = 0; i < NPDEPG * ndmpdp; i++) {
532 			((pd_entry_t *)DMPDphys)[i] = i << PDRSHIFT;
533 			((pd_entry_t *)DMPDphys)[i] |= PG_RW | PG_V | PG_PS |
534 			    PG_G | PG_M | PG_A;
535 		}
536 		/* And the direct map space's PDP */
537 		for (i = 0; i < ndmpdp; i++) {
538 			((pdp_entry_t *)DMPDPphys)[i] = DMPDphys +
539 			    (i << PAGE_SHIFT);
540 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_U;
541 		}
542 	} else {
543 		for (i = 0; i < ndmpdp; i++) {
544 			((pdp_entry_t *)DMPDPphys)[i] =
545 			    (vm_paddr_t)i << PDPSHIFT;
546 			((pdp_entry_t *)DMPDPphys)[i] |= PG_RW | PG_V | PG_PS |
547 			    PG_G | PG_M | PG_A;
548 		}
549 	}
550 
551 	/* And recursively map PML4 to itself in order to get PTmap */
552 	((pdp_entry_t *)KPML4phys)[PML4PML4I] = KPML4phys;
553 	((pdp_entry_t *)KPML4phys)[PML4PML4I] |= PG_RW | PG_V | PG_U;
554 
555 	/* Connect the Direct Map slot up to the PML4 */
556 	((pdp_entry_t *)KPML4phys)[DMPML4I] = DMPDPphys;
557 	((pdp_entry_t *)KPML4phys)[DMPML4I] |= PG_RW | PG_V | PG_U;
558 
559 	/* Connect the KVA slot up to the PML4 */
560 	((pdp_entry_t *)KPML4phys)[KPML4I] = KPDPphys;
561 	((pdp_entry_t *)KPML4phys)[KPML4I] |= PG_RW | PG_V | PG_U;
562 }
563 
564 /*
565  *	Bootstrap the system enough to run with virtual memory.
566  *
567  *	On the i386 this is called after mapping has already been enabled
568  *	and just syncs the pmap module with what has already been done.
569  *	[We can't call it easily with mapping off since the kernel is not
570  *	mapped with PA == VA, hence we would have to relocate every address
571  *	from the linked base (virtual) address "KERNBASE" to the actual
572  *	(physical) address starting relative to 0]
573  */
574 void
575 pmap_bootstrap(vm_paddr_t *firstaddr)
576 {
577 	vm_offset_t va;
578 	pt_entry_t *pte;
579 	struct mdglobaldata *gd;
580 	int pg;
581 
582 	KvaStart = VM_MIN_KERNEL_ADDRESS;
583 	KvaEnd = VM_MAX_KERNEL_ADDRESS;
584 	KvaSize = KvaEnd - KvaStart;
585 
586 	avail_start = *firstaddr;
587 
588 	/*
589 	 * Create an initial set of page tables to run the kernel in.
590 	 */
591 	create_pagetables(firstaddr);
592 
593 	virtual2_start = KvaStart;
594 	virtual2_end = PTOV_OFFSET;
595 
596 	virtual_start = (vm_offset_t) PTOV_OFFSET + *firstaddr;
597 	virtual_start = pmap_kmem_choose(virtual_start);
598 
599 	virtual_end = VM_MAX_KERNEL_ADDRESS;
600 
601 	/* XXX do %cr0 as well */
602 	load_cr4(rcr4() | CR4_PGE | CR4_PSE);
603 	load_cr3(KPML4phys);
604 
605 	/*
606 	 * Initialize protection array.
607 	 */
608 	i386_protection_init();
609 
610 	/*
611 	 * The kernel's pmap is statically allocated so we don't have to use
612 	 * pmap_create, which is unlikely to work correctly at this part of
613 	 * the boot sequence (XXX and which no longer exists).
614 	 */
615 	kernel_pmap.pm_pml4 = (pdp_entry_t *) (PTOV_OFFSET + KPML4phys);
616 	kernel_pmap.pm_count = 1;
617 	kernel_pmap.pm_active = (cpumask_t)-1 & ~CPUMASK_LOCK;
618 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
619 
620 	/*
621 	 * Reserve some special page table entries/VA space for temporary
622 	 * mapping of pages.
623 	 */
624 #define	SYSMAP(c, p, v, n)	\
625 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
626 
627 	va = virtual_start;
628 	pte = vtopte(va);
629 
630 	/*
631 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
632 	 */
633 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
634 
635 	/*
636 	 * Crashdump maps.
637 	 */
638 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
639 
640 	/*
641 	 * ptvmmap is used for reading arbitrary physical pages via
642 	 * /dev/mem.
643 	 */
644 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
645 
646 	/*
647 	 * msgbufp is used to map the system message buffer.
648 	 * XXX msgbufmap is not used.
649 	 */
650 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
651 	       atop(round_page(MSGBUF_SIZE)))
652 
653 	virtual_start = va;
654 
655 	*CMAP1 = 0;
656 
657 	/*
658 	 * PG_G is terribly broken on SMP because we IPI invltlb's in some
659 	 * cases rather then invl1pg.  Actually, I don't even know why it
660 	 * works under UP because self-referential page table mappings
661 	 */
662 #ifdef SMP
663 	pgeflag = 0;
664 #else
665 	if (cpu_feature & CPUID_PGE)
666 		pgeflag = PG_G;
667 #endif
668 
669 /*
670  * Initialize the 4MB page size flag
671  */
672 	pseflag = 0;
673 /*
674  * The 4MB page version of the initial
675  * kernel page mapping.
676  */
677 	pdir4mb = 0;
678 
679 #if !defined(DISABLE_PSE)
680 	if (cpu_feature & CPUID_PSE) {
681 		pt_entry_t ptditmp;
682 		/*
683 		 * Note that we have enabled PSE mode
684 		 */
685 		pseflag = PG_PS;
686 		ptditmp = *(PTmap + x86_64_btop(KERNBASE));
687 		ptditmp &= ~(NBPDR - 1);
688 		ptditmp |= PG_V | PG_RW | PG_PS | PG_U | pgeflag;
689 		pdir4mb = ptditmp;
690 
691 #ifndef SMP
692 		/*
693 		 * Enable the PSE mode.  If we are SMP we can't do this
694 		 * now because the APs will not be able to use it when
695 		 * they boot up.
696 		 */
697 		load_cr4(rcr4() | CR4_PSE);
698 
699 		/*
700 		 * We can do the mapping here for the single processor
701 		 * case.  We simply ignore the old page table page from
702 		 * now on.
703 		 */
704 		/*
705 		 * For SMP, we still need 4K pages to bootstrap APs,
706 		 * PSE will be enabled as soon as all APs are up.
707 		 */
708 		PTD[KPTDI] = (pd_entry_t)ptditmp;
709 		cpu_invltlb();
710 #endif
711 	}
712 #endif
713 
714 	/*
715 	 * We need to finish setting up the globaldata page for the BSP.
716 	 * locore has already populated the page table for the mdglobaldata
717 	 * portion.
718 	 */
719 	pg = MDGLOBALDATA_BASEALLOC_PAGES;
720 	gd = &CPU_prvspace[0].mdglobaldata;
721 
722 	cpu_invltlb();
723 }
724 
725 #ifdef SMP
726 /*
727  * Set 4mb pdir for mp startup
728  */
729 void
730 pmap_set_opt(void)
731 {
732 	if (pseflag && (cpu_feature & CPUID_PSE)) {
733 		load_cr4(rcr4() | CR4_PSE);
734 		if (pdir4mb && mycpu->gd_cpuid == 0) {	/* only on BSP */
735 			cpu_invltlb();
736 		}
737 	}
738 }
739 #endif
740 
741 /*
742  *	Initialize the pmap module.
743  *	Called by vm_init, to initialize any structures that the pmap
744  *	system needs to map virtual memory.
745  *	pmap_init has been enhanced to support in a fairly consistant
746  *	way, discontiguous physical memory.
747  */
748 void
749 pmap_init(void)
750 {
751 	int i;
752 	int initial_pvs;
753 
754 	/*
755 	 * object for kernel page table pages
756 	 */
757 	/* JG I think the number can be arbitrary */
758 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
759 
760 	/*
761 	 * Allocate memory for random pmap data structures.  Includes the
762 	 * pv_head_table.
763 	 */
764 
765 	for(i = 0; i < vm_page_array_size; i++) {
766 		vm_page_t m;
767 
768 		m = &vm_page_array[i];
769 		TAILQ_INIT(&m->md.pv_list);
770 		m->md.pv_list_count = 0;
771 	}
772 
773 	/*
774 	 * init the pv free list
775 	 */
776 	initial_pvs = vm_page_array_size;
777 	if (initial_pvs < MINPV)
778 		initial_pvs = MINPV;
779 	pvzone = &pvzone_store;
780 	pvinit = (void *)kmem_alloc(&kernel_map,
781 				    initial_pvs * sizeof (struct pv_entry));
782 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry),
783 		  pvinit, initial_pvs);
784 
785 	/*
786 	 * Now it is safe to enable pv_table recording.
787 	 */
788 	pmap_initialized = TRUE;
789 }
790 
791 /*
792  * Initialize the address space (zone) for the pv_entries.  Set a
793  * high water mark so that the system can recover from excessive
794  * numbers of pv entries.
795  */
796 void
797 pmap_init2(void)
798 {
799 	int shpgperproc = PMAP_SHPGPERPROC;
800 	int entry_max;
801 
802 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
803 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
804 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
805 	pv_entry_high_water = 9 * (pv_entry_max / 10);
806 
807 	/*
808 	 * Subtract out pages already installed in the zone (hack)
809 	 */
810 	entry_max = pv_entry_max - vm_page_array_size;
811 	if (entry_max <= 0)
812 		entry_max = 1;
813 
814 	zinitna(pvzone, &pvzone_obj, NULL, 0, entry_max, ZONE_INTERRUPT, 1);
815 }
816 
817 
818 /***************************************************
819  * Low level helper routines.....
820  ***************************************************/
821 
822 #if defined(PMAP_DIAGNOSTIC)
823 
824 /*
825  * This code checks for non-writeable/modified pages.
826  * This should be an invalid condition.
827  */
828 static
829 int
830 pmap_nw_modified(pt_entry_t pte)
831 {
832 	if ((pte & (PG_M|PG_RW)) == PG_M)
833 		return 1;
834 	else
835 		return 0;
836 }
837 #endif
838 
839 
840 /*
841  * this routine defines the region(s) of memory that should
842  * not be tested for the modified bit.
843  */
844 static __inline
845 int
846 pmap_track_modified(vm_offset_t va)
847 {
848 	if ((va < clean_sva) || (va >= clean_eva))
849 		return 1;
850 	else
851 		return 0;
852 }
853 
854 /*
855  * Extract the physical page address associated with the map/VA pair.
856  *
857  * The caller must hold vm_token if non-blocking operation is desired.
858  */
859 vm_paddr_t
860 pmap_extract(pmap_t pmap, vm_offset_t va)
861 {
862 	vm_paddr_t rtval;
863 	pt_entry_t *pte;
864 	pd_entry_t pde, *pdep;
865 
866 	lwkt_gettoken(&vm_token);
867 	rtval = 0;
868 	pdep = pmap_pde(pmap, va);
869 	if (pdep != NULL) {
870 		pde = *pdep;
871 		if (pde) {
872 			if ((pde & PG_PS) != 0) {
873 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
874 			} else {
875 				pte = pmap_pde_to_pte(pdep, va);
876 				rtval = (*pte & PG_FRAME) | (va & PAGE_MASK);
877 			}
878 		}
879 	}
880 	lwkt_reltoken(&vm_token);
881 	return rtval;
882 }
883 
884 /*
885  * Extract the physical page address associated kernel virtual address.
886  */
887 vm_paddr_t
888 pmap_kextract(vm_offset_t va)
889 {
890 	pd_entry_t pde;
891 	vm_paddr_t pa;
892 
893 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
894 		pa = DMAP_TO_PHYS(va);
895 	} else {
896 		pde = *vtopde(va);
897 		if (pde & PG_PS) {
898 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
899 		} else {
900 			/*
901 			 * Beware of a concurrent promotion that changes the
902 			 * PDE at this point!  For example, vtopte() must not
903 			 * be used to access the PTE because it would use the
904 			 * new PDE.  It is, however, safe to use the old PDE
905 			 * because the page table page is preserved by the
906 			 * promotion.
907 			 */
908 			pa = *pmap_pde_to_pte(&pde, va);
909 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
910 		}
911 	}
912 	return pa;
913 }
914 
915 /***************************************************
916  * Low level mapping routines.....
917  ***************************************************/
918 
919 /*
920  * Routine: pmap_kenter
921  * Function:
922  *  	Add a wired page to the KVA
923  *  	NOTE! note that in order for the mapping to take effect -- you
924  *  	should do an invltlb after doing the pmap_kenter().
925  */
926 void
927 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
928 {
929 	pt_entry_t *pte;
930 	pt_entry_t npte;
931 	pmap_inval_info info;
932 
933 	pmap_inval_init(&info);
934 	npte = pa | PG_RW | PG_V | pgeflag;
935 	pte = vtopte(va);
936 	pmap_inval_interlock(&info, &kernel_pmap, va);
937 	*pte = npte;
938 	pmap_inval_deinterlock(&info, &kernel_pmap);
939 	pmap_inval_done(&info);
940 }
941 
942 /*
943  * Routine: pmap_kenter_quick
944  * Function:
945  *  	Similar to pmap_kenter(), except we only invalidate the
946  *  	mapping on the current CPU.
947  */
948 void
949 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
950 {
951 	pt_entry_t *pte;
952 	pt_entry_t npte;
953 
954 	npte = pa | PG_RW | PG_V | pgeflag;
955 	pte = vtopte(va);
956 	*pte = npte;
957 	cpu_invlpg((void *)va);
958 }
959 
960 void
961 pmap_kenter_sync(vm_offset_t va)
962 {
963 	pmap_inval_info info;
964 
965 	pmap_inval_init(&info);
966 	pmap_inval_interlock(&info, &kernel_pmap, va);
967 	pmap_inval_deinterlock(&info, &kernel_pmap);
968 	pmap_inval_done(&info);
969 }
970 
971 void
972 pmap_kenter_sync_quick(vm_offset_t va)
973 {
974 	cpu_invlpg((void *)va);
975 }
976 
977 /*
978  * remove a page from the kernel pagetables
979  */
980 void
981 pmap_kremove(vm_offset_t va)
982 {
983 	pt_entry_t *pte;
984 	pmap_inval_info info;
985 
986 	pmap_inval_init(&info);
987 	pte = vtopte(va);
988 	pmap_inval_interlock(&info, &kernel_pmap, va);
989 	*pte = 0;
990 	pmap_inval_deinterlock(&info, &kernel_pmap);
991 	pmap_inval_done(&info);
992 }
993 
994 void
995 pmap_kremove_quick(vm_offset_t va)
996 {
997 	pt_entry_t *pte;
998 	pte = vtopte(va);
999 	*pte = 0;
1000 	cpu_invlpg((void *)va);
1001 }
1002 
1003 /*
1004  * XXX these need to be recoded.  They are not used in any critical path.
1005  */
1006 void
1007 pmap_kmodify_rw(vm_offset_t va)
1008 {
1009 	*vtopte(va) |= PG_RW;
1010 	cpu_invlpg((void *)va);
1011 }
1012 
1013 void
1014 pmap_kmodify_nc(vm_offset_t va)
1015 {
1016 	*vtopte(va) |= PG_N;
1017 	cpu_invlpg((void *)va);
1018 }
1019 
1020 /*
1021  * Used to map a range of physical addresses into kernel virtual
1022  * address space during the low level boot, typically to map the
1023  * dump bitmap, message buffer, and vm_page_array.
1024  *
1025  * These mappings are typically made at some pointer after the end of the
1026  * kernel text+data.
1027  *
1028  * We could return PHYS_TO_DMAP(start) here and not allocate any
1029  * via (*virtp), but then kmem from userland and kernel dumps won't
1030  * have access to the related pointers.
1031  */
1032 vm_offset_t
1033 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
1034 {
1035 	vm_offset_t va;
1036 	vm_offset_t va_start;
1037 
1038 	/*return PHYS_TO_DMAP(start);*/
1039 
1040 	va_start = *virtp;
1041 	va = va_start;
1042 
1043 	while (start < end) {
1044 		pmap_kenter_quick(va, start);
1045 		va += PAGE_SIZE;
1046 		start += PAGE_SIZE;
1047 	}
1048 	*virtp = va;
1049 	return va_start;
1050 }
1051 
1052 
1053 /*
1054  * Add a list of wired pages to the kva
1055  * this routine is only used for temporary
1056  * kernel mappings that do not need to have
1057  * page modification or references recorded.
1058  * Note that old mappings are simply written
1059  * over.  The page *must* be wired.
1060  */
1061 void
1062 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1063 {
1064 	vm_offset_t end_va;
1065 
1066 	end_va = va + count * PAGE_SIZE;
1067 
1068 	while (va < end_va) {
1069 		pt_entry_t *pte;
1070 
1071 		pte = vtopte(va);
1072 		*pte = VM_PAGE_TO_PHYS(*m) | PG_RW | PG_V | pgeflag;
1073 		cpu_invlpg((void *)va);
1074 		va += PAGE_SIZE;
1075 		m++;
1076 	}
1077 	smp_invltlb();
1078 }
1079 
1080 /*
1081  * This routine jerks page mappings from the
1082  * kernel -- it is meant only for temporary mappings.
1083  *
1084  * MPSAFE, INTERRUPT SAFE (cluster callback)
1085  */
1086 void
1087 pmap_qremove(vm_offset_t va, int count)
1088 {
1089 	vm_offset_t end_va;
1090 
1091 	end_va = va + count * PAGE_SIZE;
1092 
1093 	while (va < end_va) {
1094 		pt_entry_t *pte;
1095 
1096 		pte = vtopte(va);
1097 		*pte = 0;
1098 		cpu_invlpg((void *)va);
1099 		va += PAGE_SIZE;
1100 	}
1101 	smp_invltlb();
1102 }
1103 
1104 /*
1105  * This routine works like vm_page_lookup() but also blocks as long as the
1106  * page is busy.  This routine does not busy the page it returns.
1107  *
1108  * Unless the caller is managing objects whos pages are in a known state,
1109  * the call should be made with a critical section held so the page's object
1110  * association remains valid on return.
1111  */
1112 static
1113 vm_page_t
1114 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
1115 {
1116 	vm_page_t m;
1117 
1118 	do {
1119 		m = vm_page_lookup(object, pindex);
1120 	} while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
1121 
1122 	return(m);
1123 }
1124 
1125 /*
1126  * Create a new thread and optionally associate it with a (new) process.
1127  * NOTE! the new thread's cpu may not equal the current cpu.
1128  */
1129 void
1130 pmap_init_thread(thread_t td)
1131 {
1132 	/* enforce pcb placement & alignment */
1133 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
1134 	td->td_pcb = (struct pcb *)((intptr_t)td->td_pcb & ~(intptr_t)0xF);
1135 	td->td_savefpu = &td->td_pcb->pcb_save;
1136 	td->td_sp = (char *)td->td_pcb;	/* no -16 */
1137 }
1138 
1139 /*
1140  * This routine directly affects the fork perf for a process.
1141  */
1142 void
1143 pmap_init_proc(struct proc *p)
1144 {
1145 }
1146 
1147 /*
1148  * Dispose the UPAGES for a process that has exited.
1149  * This routine directly impacts the exit perf of a process.
1150  */
1151 void
1152 pmap_dispose_proc(struct proc *p)
1153 {
1154 	KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
1155 }
1156 
1157 /***************************************************
1158  * Page table page management routines.....
1159  ***************************************************/
1160 
1161 /*
1162  * This routine unholds page table pages, and if the hold count
1163  * drops to zero, then it decrements the wire count.
1164  */
1165 static __inline
1166 int
1167 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1168 		     pmap_inval_info_t info)
1169 {
1170 	KKASSERT(m->hold_count > 0);
1171 	if (m->hold_count > 1) {
1172 		vm_page_unhold(m);
1173 		return 0;
1174 	} else {
1175 		return _pmap_unwire_pte_hold(pmap, va, m, info);
1176 	}
1177 }
1178 
1179 static
1180 int
1181 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m,
1182 		      pmap_inval_info_t info)
1183 {
1184 	/*
1185 	 * Wait until we can busy the page ourselves.  We cannot have
1186 	 * any active flushes if we block.  We own one hold count on the
1187 	 * page so it cannot be freed out from under us.
1188 	 */
1189 	if (m->flags & PG_BUSY) {
1190 		while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
1191 			;
1192 	}
1193 	KASSERT(m->queue == PQ_NONE,
1194 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
1195 
1196 	/*
1197 	 * This case can occur if new references were acquired while
1198 	 * we were blocked.
1199 	 */
1200 	if (m->hold_count > 1) {
1201 		KKASSERT(m->hold_count > 1);
1202 		vm_page_unhold(m);
1203 		return 0;
1204 	}
1205 
1206 	/*
1207 	 * Unmap the page table page
1208 	 */
1209 	KKASSERT(m->hold_count == 1);
1210 	vm_page_busy(m);
1211 	pmap_inval_interlock(info, pmap, -1);
1212 
1213 	if (m->pindex >= (NUPDE + NUPDPE)) {
1214 		/* PDP page */
1215 		pml4_entry_t *pml4;
1216 		pml4 = pmap_pml4e(pmap, va);
1217 		*pml4 = 0;
1218 	} else if (m->pindex >= NUPDE) {
1219 		/* PD page */
1220 		pdp_entry_t *pdp;
1221 		pdp = pmap_pdpe(pmap, va);
1222 		*pdp = 0;
1223 	} else {
1224 		/* PT page */
1225 		pd_entry_t *pd;
1226 		pd = pmap_pde(pmap, va);
1227 		*pd = 0;
1228 	}
1229 
1230 	KKASSERT(pmap->pm_stats.resident_count > 0);
1231 	--pmap->pm_stats.resident_count;
1232 
1233 	if (pmap->pm_ptphint == m)
1234 		pmap->pm_ptphint = NULL;
1235 	pmap_inval_deinterlock(info, pmap);
1236 
1237 	if (m->pindex < NUPDE) {
1238 		/* We just released a PT, unhold the matching PD */
1239 		vm_page_t pdpg;
1240 
1241 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
1242 		pmap_unwire_pte_hold(pmap, va, pdpg, info);
1243 	}
1244 	if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
1245 		/* We just released a PD, unhold the matching PDP */
1246 		vm_page_t pdppg;
1247 
1248 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
1249 		pmap_unwire_pte_hold(pmap, va, pdppg, info);
1250 	}
1251 
1252 	/*
1253 	 * This was our last hold, the page had better be unwired
1254 	 * after we decrement wire_count.
1255 	 *
1256 	 * FUTURE NOTE: shared page directory page could result in
1257 	 * multiple wire counts.
1258 	 */
1259 	vm_page_unhold(m);
1260 	--m->wire_count;
1261 	KKASSERT(m->wire_count == 0);
1262 	--vmstats.v_wire_count;
1263 	vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1264 	vm_page_flash(m);
1265 	vm_page_free_zero(m);
1266 
1267 	return 1;
1268 }
1269 
1270 /*
1271  * After removing a page table entry, this routine is used to
1272  * conditionally free the page, and manage the hold/wire counts.
1273  */
1274 static
1275 int
1276 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte,
1277 		pmap_inval_info_t info)
1278 {
1279 	vm_pindex_t ptepindex;
1280 
1281 	if (va >= VM_MAX_USER_ADDRESS)
1282 		return 0;
1283 
1284 	if (mpte == NULL) {
1285 		ptepindex = pmap_pde_pindex(va);
1286 #if JGHINT
1287 		if (pmap->pm_ptphint &&
1288 			(pmap->pm_ptphint->pindex == ptepindex)) {
1289 			mpte = pmap->pm_ptphint;
1290 		} else {
1291 #endif
1292 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1293 			pmap->pm_ptphint = mpte;
1294 #if JGHINT
1295 		}
1296 #endif
1297 	}
1298 	return pmap_unwire_pte_hold(pmap, va, mpte, info);
1299 }
1300 
1301 /*
1302  * Initialize pmap0/vmspace0.  This pmap is not added to pmap_list because
1303  * it, and IdlePTD, represents the template used to update all other pmaps.
1304  *
1305  * On architectures where the kernel pmap is not integrated into the user
1306  * process pmap, this pmap represents the process pmap, not the kernel pmap.
1307  * kernel_pmap should be used to directly access the kernel_pmap.
1308  */
1309 void
1310 pmap_pinit0(struct pmap *pmap)
1311 {
1312 	pmap->pm_pml4 = (pml4_entry_t *)(PTOV_OFFSET + KPML4phys);
1313 	pmap->pm_count = 1;
1314 	pmap->pm_active = 0;
1315 	pmap->pm_ptphint = NULL;
1316 	TAILQ_INIT(&pmap->pm_pvlist);
1317 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1318 }
1319 
1320 /*
1321  * Initialize a preallocated and zeroed pmap structure,
1322  * such as one in a vmspace structure.
1323  */
1324 void
1325 pmap_pinit(struct pmap *pmap)
1326 {
1327 	vm_page_t ptdpg;
1328 
1329 	/*
1330 	 * No need to allocate page table space yet but we do need a valid
1331 	 * page directory table.
1332 	 */
1333 	if (pmap->pm_pml4 == NULL) {
1334 		pmap->pm_pml4 =
1335 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1336 	}
1337 
1338 	/*
1339 	 * Allocate an object for the ptes
1340 	 */
1341 	if (pmap->pm_pteobj == NULL)
1342 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1343 
1344 	/*
1345 	 * Allocate the page directory page, unless we already have
1346 	 * one cached.  If we used the cached page the wire_count will
1347 	 * already be set appropriately.
1348 	 */
1349 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1350 		ptdpg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I,
1351 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1352 		pmap->pm_pdirm = ptdpg;
1353 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1354 		ptdpg->valid = VM_PAGE_BITS_ALL;
1355 		if (ptdpg->wire_count == 0)
1356 			++vmstats.v_wire_count;
1357 		ptdpg->wire_count = 1;
1358 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1359 	}
1360 	if ((ptdpg->flags & PG_ZERO) == 0)
1361 		bzero(pmap->pm_pml4, PAGE_SIZE);
1362 #ifdef PMAP_DEBUG
1363 	else
1364 		pmap_page_assertzero(VM_PAGE_TO_PHYS(ptdpg));
1365 #endif
1366 
1367 	pmap->pm_pml4[KPML4I] = KPDPphys | PG_RW | PG_V | PG_U;
1368 	pmap->pm_pml4[DMPML4I] = DMPDPphys | PG_RW | PG_V | PG_U;
1369 
1370 	/* install self-referential address mapping entry */
1371 	pmap->pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(ptdpg) | PG_V | PG_RW | PG_A | PG_M;
1372 
1373 	pmap->pm_count = 1;
1374 	pmap->pm_active = 0;
1375 	pmap->pm_ptphint = NULL;
1376 	TAILQ_INIT(&pmap->pm_pvlist);
1377 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1378 	pmap->pm_stats.resident_count = 1;
1379 }
1380 
1381 /*
1382  * Clean up a pmap structure so it can be physically freed.  This routine
1383  * is called by the vmspace dtor function.  A great deal of pmap data is
1384  * left passively mapped to improve vmspace management so we have a bit
1385  * of cleanup work to do here.
1386  */
1387 void
1388 pmap_puninit(pmap_t pmap)
1389 {
1390 	vm_page_t p;
1391 
1392 	KKASSERT(pmap->pm_active == 0);
1393 	lwkt_gettoken(&vm_token);
1394 	if ((p = pmap->pm_pdirm) != NULL) {
1395 		KKASSERT(pmap->pm_pml4 != NULL);
1396 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1397 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1398 		p->wire_count--;
1399 		vmstats.v_wire_count--;
1400 		KKASSERT((p->flags & PG_BUSY) == 0);
1401 		vm_page_busy(p);
1402 		vm_page_free_zero(p);
1403 		pmap->pm_pdirm = NULL;
1404 	}
1405 	if (pmap->pm_pml4) {
1406 		KKASSERT(pmap->pm_pml4 != (void *)(PTOV_OFFSET + KPML4phys));
1407 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1408 		pmap->pm_pml4 = NULL;
1409 	}
1410 	if (pmap->pm_pteobj) {
1411 		vm_object_deallocate(pmap->pm_pteobj);
1412 		pmap->pm_pteobj = NULL;
1413 	}
1414 	lwkt_reltoken(&vm_token);
1415 }
1416 
1417 /*
1418  * Wire in kernel global address entries.  To avoid a race condition
1419  * between pmap initialization and pmap_growkernel, this procedure
1420  * adds the pmap to the master list (which growkernel scans to update),
1421  * then copies the template.
1422  */
1423 void
1424 pmap_pinit2(struct pmap *pmap)
1425 {
1426 	crit_enter();
1427 	lwkt_gettoken(&vm_token);
1428 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1429 	/* XXX copies current process, does not fill in MPPTDI */
1430 	lwkt_reltoken(&vm_token);
1431 	crit_exit();
1432 }
1433 
1434 /*
1435  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1436  * 0 on failure (if the procedure had to sleep).
1437  *
1438  * When asked to remove the page directory page itself, we actually just
1439  * leave it cached so we do not have to incur the SMP inval overhead of
1440  * removing the kernel mapping.  pmap_puninit() will take care of it.
1441  */
1442 static
1443 int
1444 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1445 {
1446 	/*
1447 	 * This code optimizes the case of freeing non-busy
1448 	 * page-table pages.  Those pages are zero now, and
1449 	 * might as well be placed directly into the zero queue.
1450 	 */
1451 	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1452 		return 0;
1453 
1454 	vm_page_busy(p);
1455 
1456 	/*
1457 	 * Remove the page table page from the processes address space.
1458 	 */
1459 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1460 		/*
1461 		 * We are the pml4 table itself.
1462 		 */
1463 		/* XXX anything to do here? */
1464 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1465 		/*
1466 		 * Remove a PDP page from the PML4.  We do not maintain
1467 		 * hold counts on the PML4 page.
1468 		 */
1469 		pml4_entry_t *pml4;
1470 		vm_page_t m4;
1471 		int idx;
1472 
1473 		m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1474 		KKASSERT(m4 != NULL);
1475 		pml4 = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1476 		idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1477 		KKASSERT(pml4[idx] != 0);
1478 		pml4[idx] = 0;
1479 	} else if (p->pindex >= NUPDE) {
1480 		/*
1481 		 * Remove a PD page from the PDP and drop the hold count
1482 		 * on the PDP.  The PDP is left cached in the pmap if
1483 		 * the hold count drops to 0 so the wire count remains
1484 		 * intact.
1485 		 */
1486 		vm_page_t m3;
1487 		pdp_entry_t *pdp;
1488 		int idx;
1489 
1490 		m3 = vm_page_lookup(pmap->pm_pteobj,
1491 				NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1492 		KKASSERT(m3 != NULL);
1493 		pdp = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1494 		idx = (p->pindex - NUPDE) % NPDPEPG;
1495 		KKASSERT(pdp[idx] != 0);
1496 		pdp[idx] = 0;
1497 		m3->hold_count--;
1498 	} else {
1499 		/*
1500 		 * Remove a PT page from the PD and drop the hold count
1501 		 * on the PD.  The PD is left cached in the pmap if
1502 		 * the hold count drops to 0 so the wire count remains
1503 		 * intact.
1504 		 */
1505 		vm_page_t m2;
1506 		pd_entry_t *pd;
1507 		int idx;
1508 
1509 		m2 = vm_page_lookup(pmap->pm_pteobj,
1510 				    NUPDE + p->pindex / NPDEPG);
1511 		KKASSERT(m2 != NULL);
1512 		pd = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1513 		idx = p->pindex % NPDEPG;
1514 		pd[idx] = 0;
1515 		m2->hold_count--;
1516 	}
1517 
1518 	/*
1519 	 * One fewer mappings in the pmap.  p's hold count had better
1520 	 * be zero.
1521 	 */
1522 	KKASSERT(pmap->pm_stats.resident_count > 0);
1523 	--pmap->pm_stats.resident_count;
1524 	if (p->hold_count)
1525 		panic("pmap_release: freeing held page table page");
1526 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1527 		pmap->pm_ptphint = NULL;
1528 
1529 	/*
1530 	 * We leave the top-level page table page cached, wired, and mapped in
1531 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1532 	 * However, still clean it up so we can set PG_ZERO.
1533 	 */
1534 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1535 		bzero(pmap->pm_pml4, PAGE_SIZE);
1536 		vm_page_flag_set(p, PG_ZERO);
1537 		vm_page_wakeup(p);
1538 	} else {
1539 		p->wire_count--;
1540 		KKASSERT(p->wire_count == 0);
1541 		vmstats.v_wire_count--;
1542 		/* JG eventually revert to using vm_page_free_zero() */
1543 		vm_page_free(p);
1544 	}
1545 	return 1;
1546 }
1547 
1548 /*
1549  * This routine is called when various levels in the page table need to
1550  * be populated.  This routine cannot fail.
1551  */
1552 static
1553 vm_page_t
1554 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1555 {
1556 	vm_page_t m;
1557 
1558 	/*
1559 	 * Find or fabricate a new pagetable page.  This will busy the page.
1560 	 */
1561 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1562 			 VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1563 	if ((m->flags & PG_ZERO) == 0) {
1564 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1565 	}
1566 #ifdef PMAP_DEBUG
1567 	else {
1568 		pmap_page_assertzero(VM_PAGE_TO_PHYS(m));
1569 	}
1570 #endif
1571 
1572 	KASSERT(m->queue == PQ_NONE,
1573 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1574 
1575 	/*
1576 	 * Increment the hold count for the page we will be returning to
1577 	 * the caller.
1578 	 */
1579 	m->hold_count++;
1580 	if (m->wire_count++ == 0)
1581 		vmstats.v_wire_count++;
1582 	m->valid = VM_PAGE_BITS_ALL;
1583 	vm_page_flag_clear(m, PG_ZERO);
1584 
1585 	/*
1586 	 * Map the pagetable page into the process address space, if
1587 	 * it isn't already there.
1588 	 *
1589 	 * It is possible that someone else got in and mapped the page
1590 	 * directory page while we were blocked, if so just unbusy and
1591 	 * return the held page.
1592 	 */
1593 	if (ptepindex >= (NUPDE + NUPDPE)) {
1594 		/*
1595 		 * Wire up a new PDP page in the PML4
1596 		 */
1597 		vm_pindex_t pml4index;
1598 		pml4_entry_t *pml4;
1599 
1600 		pml4index = ptepindex - (NUPDE + NUPDPE);
1601 		pml4 = &pmap->pm_pml4[pml4index];
1602 		if (*pml4 & PG_V) {
1603 			if (--m->wire_count == 0)
1604 				--vmstats.v_wire_count;
1605 			vm_page_wakeup(m);
1606 			return(m);
1607 		}
1608 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1609 	} else if (ptepindex >= NUPDE) {
1610 		/*
1611 		 * Wire up a new PD page in the PDP
1612 		 */
1613 		vm_pindex_t pml4index;
1614 		vm_pindex_t pdpindex;
1615 		vm_page_t pdppg;
1616 		pml4_entry_t *pml4;
1617 		pdp_entry_t *pdp;
1618 
1619 		pdpindex = ptepindex - NUPDE;
1620 		pml4index = pdpindex >> NPML4EPGSHIFT;
1621 
1622 		pml4 = &pmap->pm_pml4[pml4index];
1623 		if ((*pml4 & PG_V) == 0) {
1624 			/*
1625 			 * Have to allocate a new PDP page, recurse.
1626 			 * This always succeeds.  Returned page will
1627 			 * be held.
1628 			 */
1629 			pdppg = _pmap_allocpte(pmap,
1630 					       NUPDE + NUPDPE + pml4index);
1631 		} else {
1632 			/*
1633 			 * Add a held reference to the PDP page.
1634 			 */
1635 			pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
1636 			pdppg->hold_count++;
1637 		}
1638 
1639 		/*
1640 		 * Now find the pdp_entry and map the PDP.  If the PDP
1641 		 * has already been mapped unwind and return the
1642 		 * already-mapped PDP held.
1643 		 *
1644 		 * pdppg is left held (hold_count is incremented for
1645 		 * each PD in the PDP).
1646 		 */
1647 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1648 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1649 		if (*pdp & PG_V) {
1650 			vm_page_unhold(pdppg);
1651 			if (--m->wire_count == 0)
1652 				--vmstats.v_wire_count;
1653 			vm_page_wakeup(m);
1654 			return(m);
1655 		}
1656 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1657 	} else {
1658 		/*
1659 		 * Wire up the new PT page in the PD
1660 		 */
1661 		vm_pindex_t pml4index;
1662 		vm_pindex_t pdpindex;
1663 		pml4_entry_t *pml4;
1664 		pdp_entry_t *pdp;
1665 		pd_entry_t *pd;
1666 		vm_page_t pdpg;
1667 
1668 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1669 		pml4index = pdpindex >> NPML4EPGSHIFT;
1670 
1671 		/*
1672 		 * Locate the PDP page in the PML4, then the PD page in
1673 		 * the PDP.  If either does not exist we simply recurse
1674 		 * to allocate them.
1675 		 *
1676 		 * We can just recurse on the PD page as it will recurse
1677 		 * on the PDP if necessary.
1678 		 */
1679 		pml4 = &pmap->pm_pml4[pml4index];
1680 		if ((*pml4 & PG_V) == 0) {
1681 			pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1682 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1683 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1684 		} else {
1685 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
1686 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1687 			if ((*pdp & PG_V) == 0) {
1688 				pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex);
1689 			} else {
1690 				pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
1691 				pdpg->hold_count++;
1692 			}
1693 		}
1694 
1695 		/*
1696 		 * Now fill in the pte in the PD.  If the pte already exists
1697 		 * (again, if we raced the grab), unhold pdpg and unwire
1698 		 * m, returning a held m.
1699 		 *
1700 		 * pdpg is left held (hold_count is incremented for
1701 		 * each PT in the PD).
1702 		 */
1703 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
1704 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1705 		if (*pd != 0) {
1706 			vm_page_unhold(pdpg);
1707 			if (--m->wire_count == 0)
1708 				--vmstats.v_wire_count;
1709 			vm_page_wakeup(m);
1710 			return(m);
1711 		}
1712 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
1713 	}
1714 
1715 	/*
1716 	 * We successfully loaded a PDP, PD, or PTE.  Set the page table hint,
1717 	 * valid bits, mapped flag, unbusy, and we're done.
1718 	 */
1719 	pmap->pm_ptphint = m;
1720 	++pmap->pm_stats.resident_count;
1721 
1722 #if 0
1723 	m->valid = VM_PAGE_BITS_ALL;
1724 	vm_page_flag_clear(m, PG_ZERO);
1725 #endif
1726 	vm_page_flag_set(m, PG_MAPPED);
1727 	vm_page_wakeup(m);
1728 
1729 	return (m);
1730 }
1731 
1732 static
1733 vm_page_t
1734 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1735 {
1736 	vm_pindex_t ptepindex;
1737 	pd_entry_t *pd;
1738 	vm_page_t m;
1739 
1740 	/*
1741 	 * Calculate pagetable page index
1742 	 */
1743 	ptepindex = pmap_pde_pindex(va);
1744 
1745 	/*
1746 	 * Get the page directory entry
1747 	 */
1748 	pd = pmap_pde(pmap, va);
1749 
1750 	/*
1751 	 * This supports switching from a 2MB page to a
1752 	 * normal 4K page.
1753 	 */
1754 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
1755 		panic("no promotion/demotion yet");
1756 		*pd = 0;
1757 		pd = NULL;
1758 		cpu_invltlb();
1759 		smp_invltlb();
1760 	}
1761 
1762 	/*
1763 	 * If the page table page is mapped, we just increment the
1764 	 * hold count, and activate it.
1765 	 */
1766 	if (pd != NULL && (*pd & PG_V) != 0) {
1767 		/* YYY hint is used here on i386 */
1768 		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1769 		pmap->pm_ptphint = m;
1770 		m->hold_count++;
1771 		return m;
1772 	}
1773 	/*
1774 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1775 	 */
1776 	return _pmap_allocpte(pmap, ptepindex);
1777 }
1778 
1779 
1780 /***************************************************
1781  * Pmap allocation/deallocation routines.
1782  ***************************************************/
1783 
1784 /*
1785  * Release any resources held by the given physical map.
1786  * Called when a pmap initialized by pmap_pinit is being released.
1787  * Should only be called if the map contains no valid mappings.
1788  */
1789 static int pmap_release_callback(struct vm_page *p, void *data);
1790 
1791 void
1792 pmap_release(struct pmap *pmap)
1793 {
1794 	vm_object_t object = pmap->pm_pteobj;
1795 	struct rb_vm_page_scan_info info;
1796 
1797 	KASSERT(pmap->pm_active == 0,
1798 		("pmap still active! %016jx", (uintmax_t)pmap->pm_active));
1799 #if defined(DIAGNOSTIC)
1800 	if (object->ref_count != 1)
1801 		panic("pmap_release: pteobj reference count != 1");
1802 #endif
1803 
1804 	info.pmap = pmap;
1805 	info.object = object;
1806 	crit_enter();
1807 	lwkt_gettoken(&vm_token);
1808 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1809 	crit_exit();
1810 
1811 	do {
1812 		crit_enter();
1813 		info.error = 0;
1814 		info.mpte = NULL;
1815 		info.limit = object->generation;
1816 
1817 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1818 				        pmap_release_callback, &info);
1819 		if (info.error == 0 && info.mpte) {
1820 			if (!pmap_release_free_page(pmap, info.mpte))
1821 				info.error = 1;
1822 		}
1823 		crit_exit();
1824 	} while (info.error);
1825 	lwkt_reltoken(&vm_token);
1826 }
1827 
1828 static
1829 int
1830 pmap_release_callback(struct vm_page *p, void *data)
1831 {
1832 	struct rb_vm_page_scan_info *info = data;
1833 
1834 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1835 		info->mpte = p;
1836 		return(0);
1837 	}
1838 	if (!pmap_release_free_page(info->pmap, p)) {
1839 		info->error = 1;
1840 		return(-1);
1841 	}
1842 	if (info->object->generation != info->limit) {
1843 		info->error = 1;
1844 		return(-1);
1845 	}
1846 	return(0);
1847 }
1848 
1849 /*
1850  * Grow the number of kernel page table entries, if needed.
1851  *
1852  * This routine is always called to validate any address space
1853  * beyond KERNBASE (for kldloads).  kernel_vm_end only governs the address
1854  * space below KERNBASE.
1855  */
1856 void
1857 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1858 {
1859 	vm_paddr_t paddr;
1860 	vm_offset_t ptppaddr;
1861 	vm_page_t nkpg;
1862 	pd_entry_t *pde, newpdir;
1863 	pdp_entry_t newpdp;
1864 	int update_kernel_vm_end;
1865 
1866 	crit_enter();
1867 	lwkt_gettoken(&vm_token);
1868 
1869 	/*
1870 	 * bootstrap kernel_vm_end on first real VM use
1871 	 */
1872 	if (kernel_vm_end == 0) {
1873 		kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
1874 		nkpt = 0;
1875 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & PG_V) != 0) {
1876 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1877 					~(PAGE_SIZE * NPTEPG - 1);
1878 			nkpt++;
1879 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1880 				kernel_vm_end = kernel_map.max_offset;
1881 				break;
1882 			}
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * Fill in the gaps.  kernel_vm_end is only adjusted for ranges
1888 	 * below KERNBASE.  Ranges above KERNBASE are kldloaded and we
1889 	 * do not want to force-fill 128G worth of page tables.
1890 	 */
1891 	if (kstart < KERNBASE) {
1892 		if (kstart > kernel_vm_end)
1893 			kstart = kernel_vm_end;
1894 		KKASSERT(kend <= KERNBASE);
1895 		update_kernel_vm_end = 1;
1896 	} else {
1897 		update_kernel_vm_end = 0;
1898 	}
1899 
1900 	kstart = rounddown2(kstart, PAGE_SIZE * NPTEPG);
1901 	kend = roundup2(kend, PAGE_SIZE * NPTEPG);
1902 
1903 	if (kend - 1 >= kernel_map.max_offset)
1904 		kend = kernel_map.max_offset;
1905 
1906 	while (kstart < kend) {
1907 		pde = pmap_pde(&kernel_pmap, kstart);
1908 		if (pde == NULL) {
1909 			/* We need a new PDP entry */
1910 			nkpg = vm_page_alloc(kptobj, nkpt,
1911 			                     VM_ALLOC_NORMAL |
1912 					     VM_ALLOC_SYSTEM |
1913 					     VM_ALLOC_INTERRUPT);
1914 			if (nkpg == NULL) {
1915 				panic("pmap_growkernel: no memory to grow "
1916 				      "kernel");
1917 			}
1918 			paddr = VM_PAGE_TO_PHYS(nkpg);
1919 			if ((nkpg->flags & PG_ZERO) == 0)
1920 				pmap_zero_page(paddr);
1921 			vm_page_flag_clear(nkpg, PG_ZERO);
1922 			newpdp = (pdp_entry_t)
1923 				(paddr | PG_V | PG_RW | PG_A | PG_M);
1924 			*pmap_pdpe(&kernel_pmap, kstart) = newpdp;
1925 			nkpt++;
1926 			continue; /* try again */
1927 		}
1928 		if ((*pde & PG_V) != 0) {
1929 			kstart = (kstart + PAGE_SIZE * NPTEPG) &
1930 				 ~(PAGE_SIZE * NPTEPG - 1);
1931 			if (kstart - 1 >= kernel_map.max_offset) {
1932 				kstart = kernel_map.max_offset;
1933 				break;
1934 			}
1935 			continue;
1936 		}
1937 
1938 		/*
1939 		 * This index is bogus, but out of the way
1940 		 */
1941 		nkpg = vm_page_alloc(kptobj, nkpt,
1942 				     VM_ALLOC_NORMAL |
1943 				     VM_ALLOC_SYSTEM |
1944 				     VM_ALLOC_INTERRUPT);
1945 		if (nkpg == NULL)
1946 			panic("pmap_growkernel: no memory to grow kernel");
1947 
1948 		vm_page_wire(nkpg);
1949 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1950 		pmap_zero_page(ptppaddr);
1951 		vm_page_flag_clear(nkpg, PG_ZERO);
1952 		newpdir = (pd_entry_t) (ptppaddr | PG_V | PG_RW | PG_A | PG_M);
1953 		*pmap_pde(&kernel_pmap, kstart) = newpdir;
1954 		nkpt++;
1955 
1956 		kstart = (kstart + PAGE_SIZE * NPTEPG) &
1957 			  ~(PAGE_SIZE * NPTEPG - 1);
1958 
1959 		if (kstart - 1 >= kernel_map.max_offset) {
1960 			kstart = kernel_map.max_offset;
1961 			break;
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * Only update kernel_vm_end for areas below KERNBASE.
1967 	 */
1968 	if (update_kernel_vm_end && kernel_vm_end < kstart)
1969 		kernel_vm_end = kstart;
1970 
1971 	lwkt_reltoken(&vm_token);
1972 	crit_exit();
1973 }
1974 
1975 /*
1976  *	Retire the given physical map from service.
1977  *	Should only be called if the map contains
1978  *	no valid mappings.
1979  */
1980 void
1981 pmap_destroy(pmap_t pmap)
1982 {
1983 	int count;
1984 
1985 	if (pmap == NULL)
1986 		return;
1987 
1988 	lwkt_gettoken(&vm_token);
1989 	count = --pmap->pm_count;
1990 	if (count == 0) {
1991 		pmap_release(pmap);
1992 		panic("destroying a pmap is not yet implemented");
1993 	}
1994 	lwkt_reltoken(&vm_token);
1995 }
1996 
1997 /*
1998  *	Add a reference to the specified pmap.
1999  */
2000 void
2001 pmap_reference(pmap_t pmap)
2002 {
2003 	if (pmap != NULL) {
2004 		lwkt_gettoken(&vm_token);
2005 		pmap->pm_count++;
2006 		lwkt_reltoken(&vm_token);
2007 	}
2008 }
2009 
2010 /***************************************************
2011 * page management routines.
2012  ***************************************************/
2013 
2014 /*
2015  * free the pv_entry back to the free list.  This function may be
2016  * called from an interrupt.
2017  */
2018 static __inline
2019 void
2020 free_pv_entry(pv_entry_t pv)
2021 {
2022 	pv_entry_count--;
2023 	KKASSERT(pv_entry_count >= 0);
2024 	zfree(pvzone, pv);
2025 }
2026 
2027 /*
2028  * get a new pv_entry, allocating a block from the system
2029  * when needed.  This function may be called from an interrupt.
2030  */
2031 static
2032 pv_entry_t
2033 get_pv_entry(void)
2034 {
2035 	pv_entry_count++;
2036 	if (pv_entry_high_water &&
2037 		(pv_entry_count > pv_entry_high_water) &&
2038 		(pmap_pagedaemon_waken == 0)) {
2039 		pmap_pagedaemon_waken = 1;
2040 		wakeup(&vm_pages_needed);
2041 	}
2042 	return zalloc(pvzone);
2043 }
2044 
2045 /*
2046  * This routine is very drastic, but can save the system
2047  * in a pinch.
2048  */
2049 void
2050 pmap_collect(void)
2051 {
2052 	int i;
2053 	vm_page_t m;
2054 	static int warningdone=0;
2055 
2056 	if (pmap_pagedaemon_waken == 0)
2057 		return;
2058 	lwkt_gettoken(&vm_token);
2059 	if (warningdone < 5) {
2060 		kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
2061 		warningdone++;
2062 	}
2063 
2064 	for(i = 0; i < vm_page_array_size; i++) {
2065 		m = &vm_page_array[i];
2066 		if (m->wire_count || m->hold_count || m->busy ||
2067 		    (m->flags & PG_BUSY))
2068 			continue;
2069 		pmap_remove_all(m);
2070 	}
2071 	pmap_pagedaemon_waken = 0;
2072 	lwkt_reltoken(&vm_token);
2073 }
2074 
2075 
2076 /*
2077  * If it is the first entry on the list, it is actually
2078  * in the header and we must copy the following entry up
2079  * to the header.  Otherwise we must search the list for
2080  * the entry.  In either case we free the now unused entry.
2081  */
2082 static
2083 int
2084 pmap_remove_entry(struct pmap *pmap, vm_page_t m,
2085 			vm_offset_t va, pmap_inval_info_t info)
2086 {
2087 	pv_entry_t pv;
2088 	int rtval;
2089 
2090 	crit_enter();
2091 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
2092 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2093 			if (pmap == pv->pv_pmap && va == pv->pv_va)
2094 				break;
2095 		}
2096 	} else {
2097 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
2098 			if (va == pv->pv_va)
2099 				break;
2100 		}
2101 	}
2102 
2103 	rtval = 0;
2104 	KKASSERT(pv);
2105 
2106 	TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2107 	m->md.pv_list_count--;
2108 	m->object->agg_pv_list_count--;
2109 	KKASSERT(m->md.pv_list_count >= 0);
2110 	if (TAILQ_EMPTY(&m->md.pv_list))
2111 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2112 	TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2113 	++pmap->pm_generation;
2114 	rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem, info);
2115 	free_pv_entry(pv);
2116 
2117 	crit_exit();
2118 	return rtval;
2119 }
2120 
2121 /*
2122  * Create a pv entry for page at pa for
2123  * (pmap, va).
2124  */
2125 static
2126 void
2127 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
2128 {
2129 	pv_entry_t pv;
2130 
2131 	crit_enter();
2132 	pv = get_pv_entry();
2133 	pv->pv_va = va;
2134 	pv->pv_pmap = pmap;
2135 	pv->pv_ptem = mpte;
2136 
2137 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
2138 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
2139 	++pmap->pm_generation;
2140 	m->md.pv_list_count++;
2141 	m->object->agg_pv_list_count++;
2142 
2143 	crit_exit();
2144 }
2145 
2146 /*
2147  * pmap_remove_pte: do the things to unmap a page in a process
2148  */
2149 static
2150 int
2151 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va,
2152 	pmap_inval_info_t info)
2153 {
2154 	pt_entry_t oldpte;
2155 	vm_page_t m;
2156 
2157 	pmap_inval_interlock(info, pmap, va);
2158 	oldpte = pte_load_clear(ptq);
2159 	pmap_inval_deinterlock(info, pmap);
2160 	if (oldpte & PG_W)
2161 		pmap->pm_stats.wired_count -= 1;
2162 	/*
2163 	 * Machines that don't support invlpg, also don't support
2164 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
2165 	 * the SMP case.
2166 	 */
2167 	if (oldpte & PG_G)
2168 		cpu_invlpg((void *)va);
2169 	KKASSERT(pmap->pm_stats.resident_count > 0);
2170 	--pmap->pm_stats.resident_count;
2171 	if (oldpte & PG_MANAGED) {
2172 		m = PHYS_TO_VM_PAGE(oldpte);
2173 		if (oldpte & PG_M) {
2174 #if defined(PMAP_DIAGNOSTIC)
2175 			if (pmap_nw_modified((pt_entry_t) oldpte)) {
2176 				kprintf(
2177 	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2178 				    va, oldpte);
2179 			}
2180 #endif
2181 			if (pmap_track_modified(va))
2182 				vm_page_dirty(m);
2183 		}
2184 		if (oldpte & PG_A)
2185 			vm_page_flag_set(m, PG_REFERENCED);
2186 		return pmap_remove_entry(pmap, m, va, info);
2187 	} else {
2188 		return pmap_unuse_pt(pmap, va, NULL, info);
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 /*
2195  * pmap_remove_page:
2196  *
2197  *	Remove a single page from a process address space.
2198  *
2199  *	This function may not be called from an interrupt if the pmap is
2200  *	not kernel_pmap.
2201  */
2202 static
2203 void
2204 pmap_remove_page(struct pmap *pmap, vm_offset_t va, pmap_inval_info_t info)
2205 {
2206 	pt_entry_t *pte;
2207 
2208 	pte = pmap_pte(pmap, va);
2209 	if (pte == NULL)
2210 		return;
2211 	if ((*pte & PG_V) == 0)
2212 		return;
2213 	pmap_remove_pte(pmap, pte, va, info);
2214 }
2215 
2216 /*
2217  * pmap_remove:
2218  *
2219  *	Remove the given range of addresses from the specified map.
2220  *
2221  *	It is assumed that the start and end are properly
2222  *	rounded to the page size.
2223  *
2224  *	This function may not be called from an interrupt if the pmap is
2225  *	not kernel_pmap.
2226  */
2227 void
2228 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
2229 {
2230 	vm_offset_t va_next;
2231 	pml4_entry_t *pml4e;
2232 	pdp_entry_t *pdpe;
2233 	pd_entry_t ptpaddr, *pde;
2234 	pt_entry_t *pte;
2235 	struct pmap_inval_info info;
2236 
2237 	if (pmap == NULL)
2238 		return;
2239 
2240 	lwkt_gettoken(&vm_token);
2241 	if (pmap->pm_stats.resident_count == 0) {
2242 		lwkt_reltoken(&vm_token);
2243 		return;
2244 	}
2245 
2246 	pmap_inval_init(&info);
2247 
2248 	/*
2249 	 * special handling of removing one page.  a very
2250 	 * common operation and easy to short circuit some
2251 	 * code.
2252 	 */
2253 	if (sva + PAGE_SIZE == eva) {
2254 		pde = pmap_pde(pmap, sva);
2255 		if (pde && (*pde & PG_PS) == 0) {
2256 			pmap_remove_page(pmap, sva, &info);
2257 			pmap_inval_done(&info);
2258 			lwkt_reltoken(&vm_token);
2259 			return;
2260 		}
2261 	}
2262 
2263 	for (; sva < eva; sva = va_next) {
2264 		pml4e = pmap_pml4e(pmap, sva);
2265 		if ((*pml4e & PG_V) == 0) {
2266 			va_next = (sva + NBPML4) & ~PML4MASK;
2267 			if (va_next < sva)
2268 				va_next = eva;
2269 			continue;
2270 		}
2271 
2272 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2273 		if ((*pdpe & PG_V) == 0) {
2274 			va_next = (sva + NBPDP) & ~PDPMASK;
2275 			if (va_next < sva)
2276 				va_next = eva;
2277 			continue;
2278 		}
2279 
2280 		/*
2281 		 * Calculate index for next page table.
2282 		 */
2283 		va_next = (sva + NBPDR) & ~PDRMASK;
2284 		if (va_next < sva)
2285 			va_next = eva;
2286 
2287 		pde = pmap_pdpe_to_pde(pdpe, sva);
2288 		ptpaddr = *pde;
2289 
2290 		/*
2291 		 * Weed out invalid mappings.
2292 		 */
2293 		if (ptpaddr == 0)
2294 			continue;
2295 
2296 		/*
2297 		 * Check for large page.
2298 		 */
2299 		if ((ptpaddr & PG_PS) != 0) {
2300 			/* JG FreeBSD has more complex treatment here */
2301 			pmap_inval_interlock(&info, pmap, -1);
2302 			*pde = 0;
2303 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2304 			pmap_inval_deinterlock(&info, pmap);
2305 			continue;
2306 		}
2307 
2308 		/*
2309 		 * Limit our scan to either the end of the va represented
2310 		 * by the current page table page, or to the end of the
2311 		 * range being removed.
2312 		 */
2313 		if (va_next > eva)
2314 			va_next = eva;
2315 
2316 		/*
2317 		 * NOTE: pmap_remove_pte() can block.
2318 		 */
2319 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2320 		    sva += PAGE_SIZE) {
2321 			if (*pte == 0)
2322 				continue;
2323 			if (pmap_remove_pte(pmap, pte, sva, &info))
2324 				break;
2325 		}
2326 	}
2327 	pmap_inval_done(&info);
2328 	lwkt_reltoken(&vm_token);
2329 }
2330 
2331 /*
2332  * pmap_remove_all:
2333  *
2334  *	Removes this physical page from all physical maps in which it resides.
2335  *	Reflects back modify bits to the pager.
2336  *
2337  *	This routine may not be called from an interrupt.
2338  */
2339 
2340 static
2341 void
2342 pmap_remove_all(vm_page_t m)
2343 {
2344 	struct pmap_inval_info info;
2345 	pt_entry_t *pte, tpte;
2346 	pv_entry_t pv;
2347 
2348 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2349 		return;
2350 
2351 	lwkt_gettoken(&vm_token);
2352 	pmap_inval_init(&info);
2353 	crit_enter();
2354 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2355 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2356 		--pv->pv_pmap->pm_stats.resident_count;
2357 
2358 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
2359 		pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
2360 		tpte = pte_load_clear(pte);
2361 		if (tpte & PG_W)
2362 			pv->pv_pmap->pm_stats.wired_count--;
2363 		pmap_inval_deinterlock(&info, pv->pv_pmap);
2364 		if (tpte & PG_A)
2365 			vm_page_flag_set(m, PG_REFERENCED);
2366 
2367 		/*
2368 		 * Update the vm_page_t clean and reference bits.
2369 		 */
2370 		if (tpte & PG_M) {
2371 #if defined(PMAP_DIAGNOSTIC)
2372 			if (pmap_nw_modified(tpte)) {
2373 				kprintf(
2374 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2375 				    pv->pv_va, tpte);
2376 			}
2377 #endif
2378 			if (pmap_track_modified(pv->pv_va))
2379 				vm_page_dirty(m);
2380 		}
2381 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2382 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2383 		++pv->pv_pmap->pm_generation;
2384 		m->md.pv_list_count--;
2385 		m->object->agg_pv_list_count--;
2386 		KKASSERT(m->md.pv_list_count >= 0);
2387 		if (TAILQ_EMPTY(&m->md.pv_list))
2388 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2389 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem, &info);
2390 		free_pv_entry(pv);
2391 	}
2392 	crit_exit();
2393 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2394 	pmap_inval_done(&info);
2395 	lwkt_reltoken(&vm_token);
2396 }
2397 
2398 /*
2399  * pmap_protect:
2400  *
2401  *	Set the physical protection on the specified range of this map
2402  *	as requested.
2403  *
2404  *	This function may not be called from an interrupt if the map is
2405  *	not the kernel_pmap.
2406  */
2407 void
2408 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2409 {
2410 	vm_offset_t va_next;
2411 	pml4_entry_t *pml4e;
2412 	pdp_entry_t *pdpe;
2413 	pd_entry_t ptpaddr, *pde;
2414 	pt_entry_t *pte;
2415 	pmap_inval_info info;
2416 
2417 	/* JG review for NX */
2418 
2419 	if (pmap == NULL)
2420 		return;
2421 
2422 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2423 		pmap_remove(pmap, sva, eva);
2424 		return;
2425 	}
2426 
2427 	if (prot & VM_PROT_WRITE)
2428 		return;
2429 
2430 	lwkt_gettoken(&vm_token);
2431 	pmap_inval_init(&info);
2432 
2433 	for (; sva < eva; sva = va_next) {
2434 
2435 		pml4e = pmap_pml4e(pmap, sva);
2436 		if ((*pml4e & PG_V) == 0) {
2437 			va_next = (sva + NBPML4) & ~PML4MASK;
2438 			if (va_next < sva)
2439 				va_next = eva;
2440 			continue;
2441 		}
2442 
2443 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2444 		if ((*pdpe & PG_V) == 0) {
2445 			va_next = (sva + NBPDP) & ~PDPMASK;
2446 			if (va_next < sva)
2447 				va_next = eva;
2448 			continue;
2449 		}
2450 
2451 		va_next = (sva + NBPDR) & ~PDRMASK;
2452 		if (va_next < sva)
2453 			va_next = eva;
2454 
2455 		pde = pmap_pdpe_to_pde(pdpe, sva);
2456 		ptpaddr = *pde;
2457 
2458 		/*
2459 		 * Check for large page.
2460 		 */
2461 		if ((ptpaddr & PG_PS) != 0) {
2462 			pmap_inval_interlock(&info, pmap, -1);
2463 			*pde &= ~(PG_M|PG_RW);
2464 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2465 			pmap_inval_deinterlock(&info, pmap);
2466 			continue;
2467 		}
2468 
2469 		/*
2470 		 * Weed out invalid mappings. Note: we assume that the page
2471 		 * directory table is always allocated, and in kernel virtual.
2472 		 */
2473 		if (ptpaddr == 0)
2474 			continue;
2475 
2476 		if (va_next > eva)
2477 			va_next = eva;
2478 
2479 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2480 		     sva += PAGE_SIZE) {
2481 			pt_entry_t pbits;
2482 			pt_entry_t cbits;
2483 			vm_page_t m;
2484 
2485 			/*
2486 			 * XXX non-optimal.
2487 			 */
2488 			pmap_inval_interlock(&info, pmap, sva);
2489 again:
2490 			pbits = *pte;
2491 			cbits = pbits;
2492 			if ((pbits & PG_V) == 0) {
2493 				pmap_inval_deinterlock(&info, pmap);
2494 				continue;
2495 			}
2496 			if (pbits & PG_MANAGED) {
2497 				m = NULL;
2498 				if (pbits & PG_A) {
2499 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2500 					vm_page_flag_set(m, PG_REFERENCED);
2501 					cbits &= ~PG_A;
2502 				}
2503 				if (pbits & PG_M) {
2504 					if (pmap_track_modified(sva)) {
2505 						if (m == NULL)
2506 							m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
2507 						vm_page_dirty(m);
2508 						cbits &= ~PG_M;
2509 					}
2510 				}
2511 			}
2512 			cbits &= ~PG_RW;
2513 			if (pbits != cbits &&
2514 			    !atomic_cmpset_long(pte, pbits, cbits)) {
2515 				goto again;
2516 			}
2517 			pmap_inval_deinterlock(&info, pmap);
2518 		}
2519 	}
2520 	pmap_inval_done(&info);
2521 	lwkt_reltoken(&vm_token);
2522 }
2523 
2524 /*
2525  *	Insert the given physical page (p) at
2526  *	the specified virtual address (v) in the
2527  *	target physical map with the protection requested.
2528  *
2529  *	If specified, the page will be wired down, meaning
2530  *	that the related pte can not be reclaimed.
2531  *
2532  *	NB:  This is the only routine which MAY NOT lazy-evaluate
2533  *	or lose information.  That is, this routine must actually
2534  *	insert this page into the given map NOW.
2535  */
2536 void
2537 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2538 	   boolean_t wired)
2539 {
2540 	vm_paddr_t pa;
2541 	pd_entry_t *pde;
2542 	pt_entry_t *pte;
2543 	vm_paddr_t opa;
2544 	pt_entry_t origpte, newpte;
2545 	vm_page_t mpte;
2546 	pmap_inval_info info;
2547 
2548 	if (pmap == NULL)
2549 		return;
2550 
2551 	va = trunc_page(va);
2552 #ifdef PMAP_DIAGNOSTIC
2553 	if (va >= KvaEnd)
2554 		panic("pmap_enter: toobig");
2555 	if ((va >= UPT_MIN_ADDRESS) && (va < UPT_MAX_ADDRESS))
2556 		panic("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)", va);
2557 #endif
2558 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2559 		kprintf("Warning: pmap_enter called on UVA with kernel_pmap\n");
2560 #ifdef DDB
2561 		db_print_backtrace();
2562 #endif
2563 	}
2564 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2565 		kprintf("Warning: pmap_enter called on KVA without kernel_pmap\n");
2566 #ifdef DDB
2567 		db_print_backtrace();
2568 #endif
2569 	}
2570 
2571 	lwkt_gettoken(&vm_token);
2572 
2573 	/*
2574 	 * In the case that a page table page is not
2575 	 * resident, we are creating it here.
2576 	 */
2577 	if (va < VM_MAX_USER_ADDRESS)
2578 		mpte = pmap_allocpte(pmap, va);
2579 	else
2580 		mpte = NULL;
2581 
2582 	pmap_inval_init(&info);
2583 	pde = pmap_pde(pmap, va);
2584 	if (pde != NULL && (*pde & PG_V) != 0) {
2585 		if ((*pde & PG_PS) != 0)
2586 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2587 		pte = pmap_pde_to_pte(pde, va);
2588 	} else
2589 		panic("pmap_enter: invalid page directory va=%#lx", va);
2590 
2591 	KKASSERT(pte != NULL);
2592 	pa = VM_PAGE_TO_PHYS(m);
2593 	origpte = *pte;
2594 	opa = origpte & PG_FRAME;
2595 
2596 	/*
2597 	 * Mapping has not changed, must be protection or wiring change.
2598 	 */
2599 	if (origpte && (opa == pa)) {
2600 		/*
2601 		 * Wiring change, just update stats. We don't worry about
2602 		 * wiring PT pages as they remain resident as long as there
2603 		 * are valid mappings in them. Hence, if a user page is wired,
2604 		 * the PT page will be also.
2605 		 */
2606 		if (wired && ((origpte & PG_W) == 0))
2607 			pmap->pm_stats.wired_count++;
2608 		else if (!wired && (origpte & PG_W))
2609 			pmap->pm_stats.wired_count--;
2610 
2611 #if defined(PMAP_DIAGNOSTIC)
2612 		if (pmap_nw_modified(origpte)) {
2613 			kprintf(
2614 	"pmap_enter: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2615 			    va, origpte);
2616 		}
2617 #endif
2618 
2619 		/*
2620 		 * Remove the extra pte reference.  Note that we cannot
2621 		 * optimize the RO->RW case because we have adjusted the
2622 		 * wiring count above and may need to adjust the wiring
2623 		 * bits below.
2624 		 */
2625 		if (mpte)
2626 			mpte->hold_count--;
2627 
2628 		/*
2629 		 * We might be turning off write access to the page,
2630 		 * so we go ahead and sense modify status.
2631 		 */
2632 		if (origpte & PG_MANAGED) {
2633 			if ((origpte & PG_M) && pmap_track_modified(va)) {
2634 				vm_page_t om;
2635 				om = PHYS_TO_VM_PAGE(opa);
2636 				vm_page_dirty(om);
2637 			}
2638 			pa |= PG_MANAGED;
2639 			KKASSERT(m->flags & PG_MAPPED);
2640 		}
2641 		goto validate;
2642 	}
2643 	/*
2644 	 * Mapping has changed, invalidate old range and fall through to
2645 	 * handle validating new mapping.
2646 	 */
2647 	while (opa) {
2648 		int err;
2649 		err = pmap_remove_pte(pmap, pte, va, &info);
2650 		if (err)
2651 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2652 		origpte = *pte;
2653 		opa = origpte & PG_FRAME;
2654 		if (opa) {
2655 			kprintf("pmap_enter: Warning, raced pmap %p va %p\n",
2656 				pmap, (void *)va);
2657 		}
2658 	}
2659 
2660 	/*
2661 	 * Enter on the PV list if part of our managed memory. Note that we
2662 	 * raise IPL while manipulating pv_table since pmap_enter can be
2663 	 * called at interrupt time.
2664 	 */
2665 	if (pmap_initialized &&
2666 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2667 		pmap_insert_entry(pmap, va, mpte, m);
2668 		pa |= PG_MANAGED;
2669 		vm_page_flag_set(m, PG_MAPPED);
2670 	}
2671 
2672 	/*
2673 	 * Increment counters
2674 	 */
2675 	++pmap->pm_stats.resident_count;
2676 	if (wired)
2677 		pmap->pm_stats.wired_count++;
2678 
2679 validate:
2680 	/*
2681 	 * Now validate mapping with desired protection/wiring.
2682 	 */
2683 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | PG_V);
2684 
2685 	if (wired)
2686 		newpte |= PG_W;
2687 	if (va < VM_MAX_USER_ADDRESS)
2688 		newpte |= PG_U;
2689 	if (pmap == &kernel_pmap)
2690 		newpte |= pgeflag;
2691 
2692 	/*
2693 	 * if the mapping or permission bits are different, we need
2694 	 * to update the pte.
2695 	 */
2696 	if ((origpte & ~(PG_M|PG_A)) != newpte) {
2697 		pmap_inval_interlock(&info, pmap, va);
2698 		*pte = newpte | PG_A;
2699 		pmap_inval_deinterlock(&info, pmap);
2700 		if (newpte & PG_RW)
2701 			vm_page_flag_set(m, PG_WRITEABLE);
2702 	}
2703 	KKASSERT((newpte & PG_MANAGED) == 0 || (m->flags & PG_MAPPED));
2704 	pmap_inval_done(&info);
2705 	lwkt_reltoken(&vm_token);
2706 }
2707 
2708 /*
2709  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2710  * This code also assumes that the pmap has no pre-existing entry for this
2711  * VA.
2712  *
2713  * This code currently may only be used on user pmaps, not kernel_pmap.
2714  */
2715 void
2716 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2717 {
2718 	pt_entry_t *pte;
2719 	vm_paddr_t pa;
2720 	vm_page_t mpte;
2721 	vm_pindex_t ptepindex;
2722 	pd_entry_t *ptepa;
2723 	pmap_inval_info info;
2724 
2725 	lwkt_gettoken(&vm_token);
2726 	pmap_inval_init(&info);
2727 
2728 	if (va < UPT_MAX_ADDRESS && pmap == &kernel_pmap) {
2729 		kprintf("Warning: pmap_enter_quick called on UVA with kernel_pmap\n");
2730 #ifdef DDB
2731 		db_print_backtrace();
2732 #endif
2733 	}
2734 	if (va >= UPT_MAX_ADDRESS && pmap != &kernel_pmap) {
2735 		kprintf("Warning: pmap_enter_quick called on KVA without kernel_pmap\n");
2736 #ifdef DDB
2737 		db_print_backtrace();
2738 #endif
2739 	}
2740 
2741 	KKASSERT(va < UPT_MIN_ADDRESS);	/* assert used on user pmaps only */
2742 
2743 	/*
2744 	 * Calculate the page table page (mpte), allocating it if necessary.
2745 	 *
2746 	 * A held page table page (mpte), or NULL, is passed onto the
2747 	 * section following.
2748 	 */
2749 	if (va < VM_MAX_USER_ADDRESS) {
2750 		/*
2751 		 * Calculate pagetable page index
2752 		 */
2753 		ptepindex = pmap_pde_pindex(va);
2754 
2755 		do {
2756 			/*
2757 			 * Get the page directory entry
2758 			 */
2759 			ptepa = pmap_pde(pmap, va);
2760 
2761 			/*
2762 			 * If the page table page is mapped, we just increment
2763 			 * the hold count, and activate it.
2764 			 */
2765 			if (ptepa && (*ptepa & PG_V) != 0) {
2766 				if (*ptepa & PG_PS)
2767 					panic("pmap_enter_quick: unexpected mapping into 2MB page");
2768 //				if (pmap->pm_ptphint &&
2769 //				    (pmap->pm_ptphint->pindex == ptepindex)) {
2770 //					mpte = pmap->pm_ptphint;
2771 //				} else {
2772 					mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2773 					pmap->pm_ptphint = mpte;
2774 //				}
2775 				if (mpte)
2776 					mpte->hold_count++;
2777 			} else {
2778 				mpte = _pmap_allocpte(pmap, ptepindex);
2779 			}
2780 		} while (mpte == NULL);
2781 	} else {
2782 		mpte = NULL;
2783 		/* this code path is not yet used */
2784 	}
2785 
2786 	/*
2787 	 * With a valid (and held) page directory page, we can just use
2788 	 * vtopte() to get to the pte.  If the pte is already present
2789 	 * we do not disturb it.
2790 	 */
2791 	pte = vtopte(va);
2792 	if (*pte & PG_V) {
2793 		if (mpte)
2794 			pmap_unwire_pte_hold(pmap, va, mpte, &info);
2795 		pa = VM_PAGE_TO_PHYS(m);
2796 		KKASSERT(((*pte ^ pa) & PG_FRAME) == 0);
2797 		pmap_inval_done(&info);
2798 		lwkt_reltoken(&vm_token);
2799 		return;
2800 	}
2801 
2802 	/*
2803 	 * Enter on the PV list if part of our managed memory
2804 	 */
2805 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2806 		pmap_insert_entry(pmap, va, mpte, m);
2807 		vm_page_flag_set(m, PG_MAPPED);
2808 	}
2809 
2810 	/*
2811 	 * Increment counters
2812 	 */
2813 	++pmap->pm_stats.resident_count;
2814 
2815 	pa = VM_PAGE_TO_PHYS(m);
2816 
2817 	/*
2818 	 * Now validate mapping with RO protection
2819 	 */
2820 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2821 		*pte = pa | PG_V | PG_U;
2822 	else
2823 		*pte = pa | PG_V | PG_U | PG_MANAGED;
2824 /*	pmap_inval_add(&info, pmap, va); shouldn't be needed inval->valid */
2825 	pmap_inval_done(&info);
2826 	lwkt_reltoken(&vm_token);
2827 }
2828 
2829 /*
2830  * Make a temporary mapping for a physical address.  This is only intended
2831  * to be used for panic dumps.
2832  *
2833  * The caller is responsible for calling smp_invltlb().
2834  */
2835 void *
2836 pmap_kenter_temporary(vm_paddr_t pa, long i)
2837 {
2838 	pmap_kenter_quick((vm_offset_t)crashdumpmap + (i * PAGE_SIZE), pa);
2839 	return ((void *)crashdumpmap);
2840 }
2841 
2842 #define MAX_INIT_PT (96)
2843 
2844 /*
2845  * This routine preloads the ptes for a given object into the specified pmap.
2846  * This eliminates the blast of soft faults on process startup and
2847  * immediately after an mmap.
2848  */
2849 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2850 
2851 void
2852 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2853 		    vm_object_t object, vm_pindex_t pindex,
2854 		    vm_size_t size, int limit)
2855 {
2856 	struct rb_vm_page_scan_info info;
2857 	struct lwp *lp;
2858 	vm_size_t psize;
2859 
2860 	/*
2861 	 * We can't preinit if read access isn't set or there is no pmap
2862 	 * or object.
2863 	 */
2864 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2865 		return;
2866 
2867 	/*
2868 	 * We can't preinit if the pmap is not the current pmap
2869 	 */
2870 	lp = curthread->td_lwp;
2871 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2872 		return;
2873 
2874 	psize = x86_64_btop(size);
2875 
2876 	if ((object->type != OBJT_VNODE) ||
2877 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2878 			(object->resident_page_count > MAX_INIT_PT))) {
2879 		return;
2880 	}
2881 
2882 	if (psize + pindex > object->size) {
2883 		if (object->size < pindex)
2884 			return;
2885 		psize = object->size - pindex;
2886 	}
2887 
2888 	if (psize == 0)
2889 		return;
2890 
2891 	/*
2892 	 * Use a red-black scan to traverse the requested range and load
2893 	 * any valid pages found into the pmap.
2894 	 *
2895 	 * We cannot safely scan the object's memq unless we are in a
2896 	 * critical section since interrupts can remove pages from objects.
2897 	 */
2898 	info.start_pindex = pindex;
2899 	info.end_pindex = pindex + psize - 1;
2900 	info.limit = limit;
2901 	info.mpte = NULL;
2902 	info.addr = addr;
2903 	info.pmap = pmap;
2904 
2905 	crit_enter();
2906 	lwkt_gettoken(&vm_token);
2907 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2908 				pmap_object_init_pt_callback, &info);
2909 	lwkt_reltoken(&vm_token);
2910 	crit_exit();
2911 }
2912 
2913 static
2914 int
2915 pmap_object_init_pt_callback(vm_page_t p, void *data)
2916 {
2917 	struct rb_vm_page_scan_info *info = data;
2918 	vm_pindex_t rel_index;
2919 	/*
2920 	 * don't allow an madvise to blow away our really
2921 	 * free pages allocating pv entries.
2922 	 */
2923 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2924 		vmstats.v_free_count < vmstats.v_free_reserved) {
2925 		    return(-1);
2926 	}
2927 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2928 	    (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2929 		vm_page_busy(p);
2930 		if ((p->queue - p->pc) == PQ_CACHE)
2931 			vm_page_deactivate(p);
2932 		rel_index = p->pindex - info->start_pindex;
2933 		pmap_enter_quick(info->pmap,
2934 				 info->addr + x86_64_ptob(rel_index), p);
2935 		vm_page_wakeup(p);
2936 	}
2937 	return(0);
2938 }
2939 
2940 /*
2941  * Return TRUE if the pmap is in shape to trivially
2942  * pre-fault the specified address.
2943  *
2944  * Returns FALSE if it would be non-trivial or if a
2945  * pte is already loaded into the slot.
2946  */
2947 int
2948 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2949 {
2950 	pt_entry_t *pte;
2951 	pd_entry_t *pde;
2952 	int ret;
2953 
2954 	lwkt_gettoken(&vm_token);
2955 	pde = pmap_pde(pmap, addr);
2956 	if (pde == NULL || *pde == 0) {
2957 		ret = 0;
2958 	} else {
2959 		pte = vtopte(addr);
2960 		ret = (*pte) ? 0 : 1;
2961 	}
2962 	lwkt_reltoken(&vm_token);
2963 	return(ret);
2964 }
2965 
2966 /*
2967  *	Routine:	pmap_change_wiring
2968  *	Function:	Change the wiring attribute for a map/virtual-address
2969  *			pair.
2970  *	In/out conditions:
2971  *			The mapping must already exist in the pmap.
2972  */
2973 void
2974 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2975 {
2976 	pt_entry_t *pte;
2977 
2978 	if (pmap == NULL)
2979 		return;
2980 
2981 	lwkt_gettoken(&vm_token);
2982 	pte = pmap_pte(pmap, va);
2983 
2984 	if (wired && !pmap_pte_w(pte))
2985 		pmap->pm_stats.wired_count++;
2986 	else if (!wired && pmap_pte_w(pte))
2987 		pmap->pm_stats.wired_count--;
2988 
2989 	/*
2990 	 * Wiring is not a hardware characteristic so there is no need to
2991 	 * invalidate TLB.  However, in an SMP environment we must use
2992 	 * a locked bus cycle to update the pte (if we are not using
2993 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2994 	 * wiring changes.
2995 	 */
2996 #ifdef SMP
2997 	if (wired)
2998 		atomic_set_long(pte, PG_W);
2999 	else
3000 		atomic_clear_long(pte, PG_W);
3001 #else
3002 	if (wired)
3003 		atomic_set_long_nonlocked(pte, PG_W);
3004 	else
3005 		atomic_clear_long_nonlocked(pte, PG_W);
3006 #endif
3007 	lwkt_reltoken(&vm_token);
3008 }
3009 
3010 
3011 
3012 /*
3013  *	Copy the range specified by src_addr/len
3014  *	from the source map to the range dst_addr/len
3015  *	in the destination map.
3016  *
3017  *	This routine is only advisory and need not do anything.
3018  */
3019 void
3020 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
3021 	  vm_size_t len, vm_offset_t src_addr)
3022 {
3023 	return;
3024 #if 0
3025 	pmap_inval_info info;
3026 	vm_offset_t addr;
3027 	vm_offset_t end_addr = src_addr + len;
3028 	vm_offset_t pdnxt;
3029 	pd_entry_t src_frame, dst_frame;
3030 	vm_page_t m;
3031 
3032 	if (dst_addr != src_addr)
3033 		return;
3034 #if JGPMAP32
3035 	src_frame = src_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
3036 	if (src_frame != (PTDpde & PG_FRAME)) {
3037 		return;
3038 	}
3039 
3040 	dst_frame = dst_pmap->pm_pdir[PTDPTDI] & PG_FRAME;
3041 	if (dst_frame != (APTDpde & PG_FRAME)) {
3042 		APTDpde = (pd_entry_t) (dst_frame | PG_RW | PG_V);
3043 		/* The page directory is not shared between CPUs */
3044 		cpu_invltlb();
3045 	}
3046 #endif
3047 	pmap_inval_init(&info);
3048 	pmap_inval_add(&info, dst_pmap, -1);
3049 	pmap_inval_add(&info, src_pmap, -1);
3050 
3051 	/*
3052 	 * critical section protection is required to maintain the page/object
3053 	 * association, interrupts can free pages and remove them from
3054 	 * their objects.
3055 	 */
3056 	crit_enter();
3057 	for (addr = src_addr; addr < end_addr; addr = pdnxt) {
3058 		pt_entry_t *src_pte, *dst_pte;
3059 		vm_page_t dstmpte, srcmpte;
3060 		vm_offset_t srcptepaddr;
3061 		vm_pindex_t ptepindex;
3062 
3063 		if (addr >= UPT_MIN_ADDRESS)
3064 			panic("pmap_copy: invalid to pmap_copy page tables\n");
3065 
3066 		/*
3067 		 * Don't let optional prefaulting of pages make us go
3068 		 * way below the low water mark of free pages or way
3069 		 * above high water mark of used pv entries.
3070 		 */
3071 		if (vmstats.v_free_count < vmstats.v_free_reserved ||
3072 		    pv_entry_count > pv_entry_high_water)
3073 			break;
3074 
3075 		pdnxt = ((addr + PAGE_SIZE*NPTEPG) & ~(PAGE_SIZE*NPTEPG - 1));
3076 		ptepindex = addr >> PDRSHIFT;
3077 
3078 #if JGPMAP32
3079 		srcptepaddr = (vm_offset_t) src_pmap->pm_pdir[ptepindex];
3080 #endif
3081 		if (srcptepaddr == 0)
3082 			continue;
3083 
3084 		if (srcptepaddr & PG_PS) {
3085 #if JGPMAP32
3086 			if (dst_pmap->pm_pdir[ptepindex] == 0) {
3087 				dst_pmap->pm_pdir[ptepindex] = (pd_entry_t) srcptepaddr;
3088 				dst_pmap->pm_stats.resident_count += NBPDR / PAGE_SIZE;
3089 			}
3090 #endif
3091 			continue;
3092 		}
3093 
3094 		srcmpte = vm_page_lookup(src_pmap->pm_pteobj, ptepindex);
3095 		if ((srcmpte == NULL) || (srcmpte->hold_count == 0) ||
3096 		    (srcmpte->flags & PG_BUSY)) {
3097 			continue;
3098 		}
3099 
3100 		if (pdnxt > end_addr)
3101 			pdnxt = end_addr;
3102 
3103 		src_pte = vtopte(addr);
3104 #if JGPMAP32
3105 		dst_pte = avtopte(addr);
3106 #endif
3107 		while (addr < pdnxt) {
3108 			pt_entry_t ptetemp;
3109 
3110 			ptetemp = *src_pte;
3111 			/*
3112 			 * we only virtual copy managed pages
3113 			 */
3114 			if ((ptetemp & PG_MANAGED) != 0) {
3115 				/*
3116 				 * We have to check after allocpte for the
3117 				 * pte still being around...  allocpte can
3118 				 * block.
3119 				 *
3120 				 * pmap_allocpte() can block.  If we lose
3121 				 * our page directory mappings we stop.
3122 				 */
3123 				dstmpte = pmap_allocpte(dst_pmap, addr);
3124 
3125 #if JGPMAP32
3126 				if (src_frame != (PTDpde & PG_FRAME) ||
3127 				    dst_frame != (APTDpde & PG_FRAME)
3128 				) {
3129 					kprintf("WARNING: pmap_copy: detected and corrected race\n");
3130 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3131 					goto failed;
3132 				} else if ((*dst_pte == 0) &&
3133 					   (ptetemp = *src_pte) != 0 &&
3134 					   (ptetemp & PG_MANAGED)) {
3135 					/*
3136 					 * Clear the modified and
3137 					 * accessed (referenced) bits
3138 					 * during the copy.
3139 					 */
3140 					m = PHYS_TO_VM_PAGE(ptetemp);
3141 					*dst_pte = ptetemp & ~(PG_M | PG_A);
3142 					++dst_pmap->pm_stats.resident_count;
3143 					pmap_insert_entry(dst_pmap, addr,
3144 						dstmpte, m);
3145 					KKASSERT(m->flags & PG_MAPPED);
3146 	 			} else {
3147 					kprintf("WARNING: pmap_copy: dst_pte race detected and corrected\n");
3148 					pmap_unwire_pte_hold(dst_pmap, dstmpte, &info);
3149 					goto failed;
3150 				}
3151 #endif
3152 				if (dstmpte->hold_count >= srcmpte->hold_count)
3153 					break;
3154 			}
3155 			addr += PAGE_SIZE;
3156 			src_pte++;
3157 			dst_pte++;
3158 		}
3159 	}
3160 failed:
3161 	crit_exit();
3162 	pmap_inval_done(&info);
3163 #endif
3164 }
3165 
3166 /*
3167  * pmap_zero_page:
3168  *
3169  *	Zero the specified physical page.
3170  *
3171  *	This function may be called from an interrupt and no locking is
3172  *	required.
3173  */
3174 void
3175 pmap_zero_page(vm_paddr_t phys)
3176 {
3177 	vm_offset_t va = PHYS_TO_DMAP(phys);
3178 
3179 	pagezero((void *)va);
3180 }
3181 
3182 /*
3183  * pmap_page_assertzero:
3184  *
3185  *	Assert that a page is empty, panic if it isn't.
3186  */
3187 void
3188 pmap_page_assertzero(vm_paddr_t phys)
3189 {
3190 	vm_offset_t va = PHYS_TO_DMAP(phys);
3191 	size_t i;
3192 
3193 	for (i = 0; i < PAGE_SIZE; i += sizeof(long)) {
3194 		if (*(long *)((char *)va + i) != 0) {
3195 			panic("pmap_page_assertzero() @ %p not zero!\n",
3196 			      (void *)(intptr_t)va);
3197 		}
3198 	}
3199 }
3200 
3201 /*
3202  * pmap_zero_page:
3203  *
3204  *	Zero part of a physical page by mapping it into memory and clearing
3205  *	its contents with bzero.
3206  *
3207  *	off and size may not cover an area beyond a single hardware page.
3208  */
3209 void
3210 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
3211 {
3212 	vm_offset_t virt = PHYS_TO_DMAP(phys);
3213 
3214 	bzero((char *)virt + off, size);
3215 }
3216 
3217 /*
3218  * pmap_copy_page:
3219  *
3220  *	Copy the physical page from the source PA to the target PA.
3221  *	This function may be called from an interrupt.  No locking
3222  *	is required.
3223  */
3224 void
3225 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
3226 {
3227 	vm_offset_t src_virt, dst_virt;
3228 
3229 	src_virt = PHYS_TO_DMAP(src);
3230 	dst_virt = PHYS_TO_DMAP(dst);
3231 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
3232 }
3233 
3234 /*
3235  * pmap_copy_page_frag:
3236  *
3237  *	Copy the physical page from the source PA to the target PA.
3238  *	This function may be called from an interrupt.  No locking
3239  *	is required.
3240  */
3241 void
3242 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
3243 {
3244 	vm_offset_t src_virt, dst_virt;
3245 
3246 	src_virt = PHYS_TO_DMAP(src);
3247 	dst_virt = PHYS_TO_DMAP(dst);
3248 
3249 	bcopy((char *)src_virt + (src & PAGE_MASK),
3250 	      (char *)dst_virt + (dst & PAGE_MASK),
3251 	      bytes);
3252 }
3253 
3254 /*
3255  * Returns true if the pmap's pv is one of the first
3256  * 16 pvs linked to from this page.  This count may
3257  * be changed upwards or downwards in the future; it
3258  * is only necessary that true be returned for a small
3259  * subset of pmaps for proper page aging.
3260  */
3261 boolean_t
3262 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
3263 {
3264 	pv_entry_t pv;
3265 	int loops = 0;
3266 
3267 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3268 		return FALSE;
3269 
3270 	crit_enter();
3271 	lwkt_gettoken(&vm_token);
3272 
3273 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3274 		if (pv->pv_pmap == pmap) {
3275 			lwkt_reltoken(&vm_token);
3276 			crit_exit();
3277 			return TRUE;
3278 		}
3279 		loops++;
3280 		if (loops >= 16)
3281 			break;
3282 	}
3283 	lwkt_reltoken(&vm_token);
3284 	crit_exit();
3285 	return (FALSE);
3286 }
3287 
3288 /*
3289  * Remove all pages from specified address space
3290  * this aids process exit speeds.  Also, this code
3291  * is special cased for current process only, but
3292  * can have the more generic (and slightly slower)
3293  * mode enabled.  This is much faster than pmap_remove
3294  * in the case of running down an entire address space.
3295  */
3296 void
3297 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
3298 {
3299 	struct lwp *lp;
3300 	pt_entry_t *pte, tpte;
3301 	pv_entry_t pv, npv;
3302 	vm_page_t m;
3303 	pmap_inval_info info;
3304 	int iscurrentpmap;
3305 	int save_generation;
3306 
3307 	lp = curthread->td_lwp;
3308 	if (lp && pmap == vmspace_pmap(lp->lwp_vmspace))
3309 		iscurrentpmap = 1;
3310 	else
3311 		iscurrentpmap = 0;
3312 
3313 	lwkt_gettoken(&vm_token);
3314 	pmap_inval_init(&info);
3315 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
3316 		if (pv->pv_va >= eva || pv->pv_va < sva) {
3317 			npv = TAILQ_NEXT(pv, pv_plist);
3318 			continue;
3319 		}
3320 
3321 		KKASSERT(pmap == pv->pv_pmap);
3322 
3323 		if (iscurrentpmap)
3324 			pte = vtopte(pv->pv_va);
3325 		else
3326 			pte = pmap_pte_quick(pmap, pv->pv_va);
3327 		pmap_inval_interlock(&info, pmap, pv->pv_va);
3328 
3329 		/*
3330 		 * We cannot remove wired pages from a process' mapping
3331 		 * at this time
3332 		 */
3333 		if (*pte & PG_W) {
3334 			pmap_inval_deinterlock(&info, pmap);
3335 			npv = TAILQ_NEXT(pv, pv_plist);
3336 			continue;
3337 		}
3338 		tpte = pte_load_clear(pte);
3339 
3340 		m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
3341 
3342 		KASSERT(m < &vm_page_array[vm_page_array_size],
3343 			("pmap_remove_pages: bad tpte %lx", tpte));
3344 
3345 		KKASSERT(pmap->pm_stats.resident_count > 0);
3346 		--pmap->pm_stats.resident_count;
3347 		pmap_inval_deinterlock(&info, pmap);
3348 
3349 		/*
3350 		 * Update the vm_page_t clean and reference bits.
3351 		 */
3352 		if (tpte & PG_M) {
3353 			vm_page_dirty(m);
3354 		}
3355 
3356 		npv = TAILQ_NEXT(pv, pv_plist);
3357 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
3358 		save_generation = ++pmap->pm_generation;
3359 
3360 		m->md.pv_list_count--;
3361 		m->object->agg_pv_list_count--;
3362 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3363 		if (TAILQ_EMPTY(&m->md.pv_list))
3364 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
3365 
3366 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem, &info);
3367 		free_pv_entry(pv);
3368 
3369 		/*
3370 		 * Restart the scan if we blocked during the unuse or free
3371 		 * calls and other removals were made.
3372 		 */
3373 		if (save_generation != pmap->pm_generation) {
3374 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
3375 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
3376 		}
3377 	}
3378 	pmap_inval_done(&info);
3379 	lwkt_reltoken(&vm_token);
3380 }
3381 
3382 /*
3383  * pmap_testbit tests bits in pte's
3384  * note that the testbit/clearbit routines are inline,
3385  * and a lot of things compile-time evaluate.
3386  */
3387 static
3388 boolean_t
3389 pmap_testbit(vm_page_t m, int bit)
3390 {
3391 	pv_entry_t pv;
3392 	pt_entry_t *pte;
3393 
3394 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3395 		return FALSE;
3396 
3397 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
3398 		return FALSE;
3399 
3400 	crit_enter();
3401 
3402 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3403 		/*
3404 		 * if the bit being tested is the modified bit, then
3405 		 * mark clean_map and ptes as never
3406 		 * modified.
3407 		 */
3408 		if (bit & (PG_A|PG_M)) {
3409 			if (!pmap_track_modified(pv->pv_va))
3410 				continue;
3411 		}
3412 
3413 #if defined(PMAP_DIAGNOSTIC)
3414 		if (pv->pv_pmap == NULL) {
3415 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
3416 			continue;
3417 		}
3418 #endif
3419 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3420 		if (*pte & bit) {
3421 			crit_exit();
3422 			return TRUE;
3423 		}
3424 	}
3425 	crit_exit();
3426 	return (FALSE);
3427 }
3428 
3429 /*
3430  * this routine is used to modify bits in ptes
3431  */
3432 static __inline
3433 void
3434 pmap_clearbit(vm_page_t m, int bit)
3435 {
3436 	struct pmap_inval_info info;
3437 	pv_entry_t pv;
3438 	pt_entry_t *pte;
3439 	pt_entry_t pbits;
3440 
3441 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3442 		return;
3443 
3444 	pmap_inval_init(&info);
3445 
3446 	/*
3447 	 * Loop over all current mappings setting/clearing as appropos If
3448 	 * setting RO do we need to clear the VAC?
3449 	 */
3450 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
3451 		/*
3452 		 * don't write protect pager mappings
3453 		 */
3454 		if (bit == PG_RW) {
3455 			if (!pmap_track_modified(pv->pv_va))
3456 				continue;
3457 		}
3458 
3459 #if defined(PMAP_DIAGNOSTIC)
3460 		if (pv->pv_pmap == NULL) {
3461 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
3462 			continue;
3463 		}
3464 #endif
3465 
3466 		/*
3467 		 * Careful here.  We can use a locked bus instruction to
3468 		 * clear PG_A or PG_M safely but we need to synchronize
3469 		 * with the target cpus when we mess with PG_RW.
3470 		 *
3471 		 * We do not have to force synchronization when clearing
3472 		 * PG_M even for PTEs generated via virtual memory maps,
3473 		 * because the virtual kernel will invalidate the pmap
3474 		 * entry when/if it needs to resynchronize the Modify bit.
3475 		 */
3476 		if (bit & PG_RW)
3477 			pmap_inval_interlock(&info, pv->pv_pmap, pv->pv_va);
3478 		pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3479 again:
3480 		pbits = *pte;
3481 		if (pbits & bit) {
3482 			if (bit == PG_RW) {
3483 				if (pbits & PG_M) {
3484 					vm_page_dirty(m);
3485 					atomic_clear_long(pte, PG_M|PG_RW);
3486 				} else {
3487 					/*
3488 					 * The cpu may be trying to set PG_M
3489 					 * simultaniously with our clearing
3490 					 * of PG_RW.
3491 					 */
3492 					if (!atomic_cmpset_long(pte, pbits,
3493 							       pbits & ~PG_RW))
3494 						goto again;
3495 				}
3496 			} else if (bit == PG_M) {
3497 				/*
3498 				 * We could also clear PG_RW here to force
3499 				 * a fault on write to redetect PG_M for
3500 				 * virtual kernels, but it isn't necessary
3501 				 * since virtual kernels invalidate the pte
3502 				 * when they clear the VPTE_M bit in their
3503 				 * virtual page tables.
3504 				 */
3505 				atomic_clear_long(pte, PG_M);
3506 			} else {
3507 				atomic_clear_long(pte, bit);
3508 			}
3509 		}
3510 		if (bit & PG_RW)
3511 			pmap_inval_deinterlock(&info, pv->pv_pmap);
3512 	}
3513 	pmap_inval_done(&info);
3514 }
3515 
3516 /*
3517  *      pmap_page_protect:
3518  *
3519  *      Lower the permission for all mappings to a given page.
3520  */
3521 void
3522 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3523 {
3524 	/* JG NX support? */
3525 	if ((prot & VM_PROT_WRITE) == 0) {
3526 		lwkt_gettoken(&vm_token);
3527 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3528 			pmap_clearbit(m, PG_RW);
3529 			vm_page_flag_clear(m, PG_WRITEABLE);
3530 		} else {
3531 			pmap_remove_all(m);
3532 		}
3533 		lwkt_reltoken(&vm_token);
3534 	}
3535 }
3536 
3537 vm_paddr_t
3538 pmap_phys_address(vm_pindex_t ppn)
3539 {
3540 	return (x86_64_ptob(ppn));
3541 }
3542 
3543 /*
3544  *	pmap_ts_referenced:
3545  *
3546  *	Return a count of reference bits for a page, clearing those bits.
3547  *	It is not necessary for every reference bit to be cleared, but it
3548  *	is necessary that 0 only be returned when there are truly no
3549  *	reference bits set.
3550  *
3551  *	XXX: The exact number of bits to check and clear is a matter that
3552  *	should be tested and standardized at some point in the future for
3553  *	optimal aging of shared pages.
3554  */
3555 int
3556 pmap_ts_referenced(vm_page_t m)
3557 {
3558 	pv_entry_t pv, pvf, pvn;
3559 	pt_entry_t *pte;
3560 	int rtval = 0;
3561 
3562 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3563 		return (rtval);
3564 
3565 	crit_enter();
3566 	lwkt_gettoken(&vm_token);
3567 
3568 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3569 
3570 		pvf = pv;
3571 
3572 		do {
3573 			pvn = TAILQ_NEXT(pv, pv_list);
3574 
3575 			crit_enter();
3576 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3577 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3578 			crit_exit();
3579 
3580 			if (!pmap_track_modified(pv->pv_va))
3581 				continue;
3582 
3583 			pte = pmap_pte_quick(pv->pv_pmap, pv->pv_va);
3584 
3585 			if (pte && (*pte & PG_A)) {
3586 #ifdef SMP
3587 				atomic_clear_long(pte, PG_A);
3588 #else
3589 				atomic_clear_long_nonlocked(pte, PG_A);
3590 #endif
3591 				rtval++;
3592 				if (rtval > 4) {
3593 					break;
3594 				}
3595 			}
3596 		} while ((pv = pvn) != NULL && pv != pvf);
3597 	}
3598 	lwkt_reltoken(&vm_token);
3599 	crit_exit();
3600 
3601 	return (rtval);
3602 }
3603 
3604 /*
3605  *	pmap_is_modified:
3606  *
3607  *	Return whether or not the specified physical page was modified
3608  *	in any physical maps.
3609  */
3610 boolean_t
3611 pmap_is_modified(vm_page_t m)
3612 {
3613 	boolean_t res;
3614 
3615 	lwkt_gettoken(&vm_token);
3616 	res = pmap_testbit(m, PG_M);
3617 	lwkt_reltoken(&vm_token);
3618 	return (res);
3619 }
3620 
3621 /*
3622  *	Clear the modify bits on the specified physical page.
3623  */
3624 void
3625 pmap_clear_modify(vm_page_t m)
3626 {
3627 	lwkt_gettoken(&vm_token);
3628 	pmap_clearbit(m, PG_M);
3629 	lwkt_reltoken(&vm_token);
3630 }
3631 
3632 /*
3633  *	pmap_clear_reference:
3634  *
3635  *	Clear the reference bit on the specified physical page.
3636  */
3637 void
3638 pmap_clear_reference(vm_page_t m)
3639 {
3640 	lwkt_gettoken(&vm_token);
3641 	pmap_clearbit(m, PG_A);
3642 	lwkt_reltoken(&vm_token);
3643 }
3644 
3645 /*
3646  * Miscellaneous support routines follow
3647  */
3648 
3649 static
3650 void
3651 i386_protection_init(void)
3652 {
3653 	int *kp, prot;
3654 
3655 	/* JG NX support may go here; No VM_PROT_EXECUTE ==> set NX bit  */
3656 	kp = protection_codes;
3657 	for (prot = 0; prot < 8; prot++) {
3658 		switch (prot) {
3659 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_NONE:
3660 			/*
3661 			 * Read access is also 0. There isn't any execute bit,
3662 			 * so just make it readable.
3663 			 */
3664 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_NONE:
3665 		case VM_PROT_READ | VM_PROT_NONE | VM_PROT_EXECUTE:
3666 		case VM_PROT_NONE | VM_PROT_NONE | VM_PROT_EXECUTE:
3667 			*kp++ = 0;
3668 			break;
3669 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_NONE:
3670 		case VM_PROT_NONE | VM_PROT_WRITE | VM_PROT_EXECUTE:
3671 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_NONE:
3672 		case VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE:
3673 			*kp++ = PG_RW;
3674 			break;
3675 		}
3676 	}
3677 }
3678 
3679 /*
3680  * Map a set of physical memory pages into the kernel virtual
3681  * address space. Return a pointer to where it is mapped. This
3682  * routine is intended to be used for mapping device memory,
3683  * NOT real memory.
3684  *
3685  * NOTE: we can't use pgeflag unless we invalidate the pages one at
3686  * a time.
3687  */
3688 void *
3689 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
3690 {
3691 	vm_offset_t va, tmpva, offset;
3692 	pt_entry_t *pte;
3693 
3694 	offset = pa & PAGE_MASK;
3695 	size = roundup(offset + size, PAGE_SIZE);
3696 
3697 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3698 	if (va == 0)
3699 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3700 
3701 	pa = pa & ~PAGE_MASK;
3702 	for (tmpva = va; size > 0;) {
3703 		pte = vtopte(tmpva);
3704 		*pte = pa | PG_RW | PG_V; /* | pgeflag; */
3705 		size -= PAGE_SIZE;
3706 		tmpva += PAGE_SIZE;
3707 		pa += PAGE_SIZE;
3708 	}
3709 	cpu_invltlb();
3710 	smp_invltlb();
3711 
3712 	return ((void *)(va + offset));
3713 }
3714 
3715 void *
3716 pmap_mapdev_uncacheable(vm_paddr_t pa, vm_size_t size)
3717 {
3718 	vm_offset_t va, tmpva, offset;
3719 	pt_entry_t *pte;
3720 
3721 	offset = pa & PAGE_MASK;
3722 	size = roundup(offset + size, PAGE_SIZE);
3723 
3724 	va = kmem_alloc_nofault(&kernel_map, size, PAGE_SIZE);
3725 	if (va == 0)
3726 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
3727 
3728 	pa = pa & ~PAGE_MASK;
3729 	for (tmpva = va; size > 0;) {
3730 		pte = vtopte(tmpva);
3731 		*pte = pa | PG_RW | PG_V | PG_N; /* | pgeflag; */
3732 		size -= PAGE_SIZE;
3733 		tmpva += PAGE_SIZE;
3734 		pa += PAGE_SIZE;
3735 	}
3736 	cpu_invltlb();
3737 	smp_invltlb();
3738 
3739 	return ((void *)(va + offset));
3740 }
3741 
3742 void
3743 pmap_unmapdev(vm_offset_t va, vm_size_t size)
3744 {
3745 	vm_offset_t base, offset;
3746 
3747 	base = va & ~PAGE_MASK;
3748 	offset = va & PAGE_MASK;
3749 	size = roundup(offset + size, PAGE_SIZE);
3750 	pmap_qremove(va, size >> PAGE_SHIFT);
3751 	kmem_free(&kernel_map, base, size);
3752 }
3753 
3754 /*
3755  * perform the pmap work for mincore
3756  */
3757 int
3758 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3759 {
3760 	pt_entry_t *ptep, pte;
3761 	vm_page_t m;
3762 	int val = 0;
3763 
3764 	lwkt_gettoken(&vm_token);
3765 	ptep = pmap_pte(pmap, addr);
3766 
3767 	if (ptep && (pte = *ptep) != 0) {
3768 		vm_offset_t pa;
3769 
3770 		val = MINCORE_INCORE;
3771 		if ((pte & PG_MANAGED) == 0)
3772 			goto done;
3773 
3774 		pa = pte & PG_FRAME;
3775 
3776 		m = PHYS_TO_VM_PAGE(pa);
3777 
3778 		/*
3779 		 * Modified by us
3780 		 */
3781 		if (pte & PG_M)
3782 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3783 		/*
3784 		 * Modified by someone
3785 		 */
3786 		else if (m->dirty || pmap_is_modified(m))
3787 			val |= MINCORE_MODIFIED_OTHER;
3788 		/*
3789 		 * Referenced by us
3790 		 */
3791 		if (pte & PG_A)
3792 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3793 
3794 		/*
3795 		 * Referenced by someone
3796 		 */
3797 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3798 			val |= MINCORE_REFERENCED_OTHER;
3799 			vm_page_flag_set(m, PG_REFERENCED);
3800 		}
3801 	}
3802 done:
3803 	lwkt_reltoken(&vm_token);
3804 	return val;
3805 }
3806 
3807 /*
3808  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3809  * vmspace will be ref'd and the old one will be deref'd.
3810  *
3811  * The vmspace for all lwps associated with the process will be adjusted
3812  * and cr3 will be reloaded if any lwp is the current lwp.
3813  */
3814 void
3815 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3816 {
3817 	struct vmspace *oldvm;
3818 	struct lwp *lp;
3819 
3820 	crit_enter();
3821 	oldvm = p->p_vmspace;
3822 	if (oldvm != newvm) {
3823 		p->p_vmspace = newvm;
3824 		KKASSERT(p->p_nthreads == 1);
3825 		lp = RB_ROOT(&p->p_lwp_tree);
3826 		pmap_setlwpvm(lp, newvm);
3827 		if (adjrefs) {
3828 			sysref_get(&newvm->vm_sysref);
3829 			sysref_put(&oldvm->vm_sysref);
3830 		}
3831 	}
3832 	crit_exit();
3833 }
3834 
3835 /*
3836  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3837  * same as the process vmspace, but virtual kernels need to swap out contexts
3838  * on a per-lwp basis.
3839  */
3840 void
3841 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3842 {
3843 	struct vmspace *oldvm;
3844 	struct pmap *pmap;
3845 
3846 	crit_enter();
3847 	oldvm = lp->lwp_vmspace;
3848 
3849 	if (oldvm != newvm) {
3850 		lp->lwp_vmspace = newvm;
3851 		if (curthread->td_lwp == lp) {
3852 			pmap = vmspace_pmap(newvm);
3853 #if defined(SMP)
3854 			atomic_set_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
3855 			if (pmap->pm_active & CPUMASK_LOCK)
3856 				pmap_interlock_wait(newvm);
3857 #else
3858 			pmap->pm_active |= 1;
3859 #endif
3860 #if defined(SWTCH_OPTIM_STATS)
3861 			tlb_flush_count++;
3862 #endif
3863 			curthread->td_pcb->pcb_cr3 = vtophys(pmap->pm_pml4);
3864 			curthread->td_pcb->pcb_cr3 |= PG_RW | PG_U | PG_V;
3865 			load_cr3(curthread->td_pcb->pcb_cr3);
3866 			pmap = vmspace_pmap(oldvm);
3867 #if defined(SMP)
3868 			atomic_clear_cpumask(&pmap->pm_active, mycpu->gd_cpumask);
3869 #else
3870 			pmap->pm_active &= ~(cpumask_t)1;
3871 #endif
3872 		}
3873 	}
3874 	crit_exit();
3875 }
3876 
3877 #ifdef SMP
3878 
3879 /*
3880  * Called when switching to a locked pmap
3881  */
3882 void
3883 pmap_interlock_wait(struct vmspace *vm)
3884 {
3885 	struct pmap *pmap = &vm->vm_pmap;
3886 
3887 	if (pmap->pm_active & CPUMASK_LOCK) {
3888 		DEBUG_PUSH_INFO("pmap_interlock_wait");
3889 		while (pmap->pm_active & CPUMASK_LOCK) {
3890 			cpu_pause();
3891 			cpu_ccfence();
3892 			lwkt_process_ipiq();
3893 		}
3894 		DEBUG_POP_INFO();
3895 	}
3896 }
3897 
3898 #endif
3899 
3900 vm_offset_t
3901 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3902 {
3903 
3904 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3905 		return addr;
3906 	}
3907 
3908 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3909 	return addr;
3910 }
3911 
3912 /*
3913  * Used by kmalloc/kfree, page already exists at va
3914  */
3915 vm_page_t
3916 pmap_kvtom(vm_offset_t va)
3917 {
3918 	return(PHYS_TO_VM_PAGE(*vtopte(va) & PG_FRAME));
3919 }
3920