xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision 207ba670)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008-2018 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #ifdef KTRACE
65 #include <sys/ktrace.h>
66 #endif
67 #include <sys/ktr.h>
68 #include <sys/sysmsg.h>
69 #include <sys/sysproto.h>
70 #include <sys/sysunion.h>
71 
72 #include <vm/pmap.h>
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_param.h>
77 #include <machine/cpu.h>
78 #include <machine/pcb.h>
79 #include <machine/smp.h>
80 #include <machine/thread.h>
81 #include <machine/clock.h>
82 #include <machine/vmparam.h>
83 #include <machine/md_var.h>
84 #include <machine_base/isa/isa_intr.h>
85 #include <machine_base/apic/lapic.h>
86 
87 #include <ddb/ddb.h>
88 
89 #include <sys/thread2.h>
90 #include <sys/spinlock2.h>
91 
92 /*
93  * These %rip's are used to detect a historical CPU artifact on syscall or
94  * int $3 entry, if not shortcutted in exception.S via
95  * DIRECT_DISALLOW_SS_CPUBUG.
96  */
97 extern void Xbpt(void);
98 extern void Xfast_syscall(void);
99 #define IDTVEC(vec)	X##vec
100 
101 extern void trap(struct trapframe *frame);
102 
103 static int trap_pfault(struct trapframe *, int);
104 static void trap_fatal(struct trapframe *, vm_offset_t);
105 void dblfault_handler(struct trapframe *frame);
106 
107 #define MAX_TRAP_MSG		30
108 static char *trap_msg[] = {
109 	"",					/*  0 unused */
110 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
111 	"",					/*  2 unused */
112 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
113 	"",					/*  4 unused */
114 	"",					/*  5 unused */
115 	"arithmetic trap",			/*  6 T_ARITHTRAP */
116 	"system forced exception",		/*  7 T_ASTFLT */
117 	"",					/*  8 unused */
118 	"general protection fault",		/*  9 T_PROTFLT */
119 	"trace trap",				/* 10 T_TRCTRAP */
120 	"",					/* 11 unused */
121 	"page fault",				/* 12 T_PAGEFLT */
122 	"",					/* 13 unused */
123 	"alignment fault",			/* 14 T_ALIGNFLT */
124 	"",					/* 15 unused */
125 	"",					/* 16 unused */
126 	"",					/* 17 unused */
127 	"integer divide fault",			/* 18 T_DIVIDE */
128 	"non-maskable interrupt trap",		/* 19 T_NMI */
129 	"overflow trap",			/* 20 T_OFLOW */
130 	"FPU bounds check fault",		/* 21 T_BOUND */
131 	"FPU device not available",		/* 22 T_DNA */
132 	"double fault",				/* 23 T_DOUBLEFLT */
133 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
134 	"invalid TSS fault",			/* 25 T_TSSFLT */
135 	"segment not present fault",		/* 26 T_SEGNPFLT */
136 	"stack fault",				/* 27 T_STKFLT */
137 	"machine check trap",			/* 28 T_MCHK */
138 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
139 	"reserved (unknown) fault",		/* 30 T_RESERVED */
140 };
141 
142 #ifdef DDB
143 static int ddb_on_nmi = 1;
144 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
145 	&ddb_on_nmi, 0, "Go to DDB on NMI");
146 static int ddb_on_seg_fault = 0;
147 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
148 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
149 static int freeze_on_seg_fault = 0;
150 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
151 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
152 #endif
153 static int panic_on_nmi = 1;
154 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
155 	&panic_on_nmi, 0, "Panic on NMI");
156 static int fast_release;
157 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
158 	&fast_release, 0, "Passive Release was optimal");
159 static int slow_release;
160 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
161 	&slow_release, 0, "Passive Release was nonoptimal");
162 
163 /*
164  * System call debugging records the worst-case system call
165  * overhead (inclusive of blocking), but may be inaccurate.
166  */
167 /*#define SYSCALL_DEBUG*/
168 #ifdef SYSCALL_DEBUG
169 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
170 #endif
171 
172 /*
173  * Passively intercepts the thread switch function to increase
174  * the thread priority from a user priority to a kernel priority, reducing
175  * syscall and trap overhead for the case where no switch occurs.
176  *
177  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
178  * signal handling, faults, AST traps, and anything else that enters the
179  * kernel from userland and provides the kernel with a stable read-only
180  * copy of the process ucred.
181  *
182  * To avoid races with another thread updating p_ucred we obtain p_spin.
183  * The other thread doing the update will obtain both p_token and p_spin.
184  * In the case where the cached cred pointer matches, we will already have
185  * the ref and we don't have to do one blessed thing.
186  */
187 static __inline void
188 userenter(struct thread *curtd, struct proc *curp)
189 {
190 	struct ucred *ocred;
191 	struct ucred *ncred;
192 
193 	curtd->td_release = lwkt_passive_release;
194 
195 	if (curtd->td_ucred != curp->p_ucred) {
196 		spin_lock(&curp->p_spin);
197 		ncred = crhold(curp->p_ucred);
198 		spin_unlock(&curp->p_spin);
199 		ocred = curtd->td_ucred;
200 		curtd->td_ucred = ncred;
201 		if (ocred)
202 			crfree(ocred);
203 	}
204 
205 #ifdef DDB
206 	/*
207 	 * Debugging, remove top two user stack pages to catch kernel faults
208 	 */
209 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
210 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
211 			    0x00007FFFFFFFD000LU,
212 			    0x0000800000000000LU);
213 	}
214 #endif
215 }
216 
217 /*
218  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
219  * must be completed before we can return to or try to return to userland.
220  *
221  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
222  * arithmatic on the delta calculation so the absolute tick values are
223  * truncated to an integer.
224  */
225 static void
226 userret(struct lwp *lp, struct trapframe *frame, int sticks)
227 {
228 	struct proc *p = lp->lwp_proc;
229 	int sig;
230 	int ptok;
231 
232 	/*
233 	 * Charge system time if profiling.  Note: times are in microseconds.
234 	 * This may do a copyout and block, so do it first even though it
235 	 * means some system time will be charged as user time.
236 	 */
237 	if (p->p_flags & P_PROFIL) {
238 		addupc_task(p, frame->tf_rip,
239 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
240 	}
241 
242 recheck:
243 	/*
244 	 * Specific on-return-to-usermode checks (LWP_MP_WEXIT,
245 	 * LWP_MP_VNLRU, etc).
246 	 */
247 	if (lp->lwp_mpflags & LWP_MP_URETMASK)
248 		lwpuserret(lp);
249 
250 	/*
251 	 * Block here if we are in a stopped state.
252 	 */
253 	if (STOPLWP(p, lp)) {
254 		lwkt_gettoken(&p->p_token);
255 		tstop();
256 		lwkt_reltoken(&p->p_token);
257 		goto recheck;
258 	}
259 	while (dump_stop_usertds) {
260 		tsleep(&dump_stop_usertds, 0, "dumpstp", 0);
261 	}
262 
263 	/*
264 	 * Post any pending upcalls.  If running a virtual kernel be sure
265 	 * to restore the virtual kernel's vmspace before posting the upcall.
266 	 */
267 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF)) {
268 		lwkt_gettoken(&p->p_token);
269 		if (p->p_flags & P_SIGVTALRM) {
270 			p->p_flags &= ~P_SIGVTALRM;
271 			ksignal(p, SIGVTALRM);
272 		}
273 		if (p->p_flags & P_SIGPROF) {
274 			p->p_flags &= ~P_SIGPROF;
275 			ksignal(p, SIGPROF);
276 		}
277 		lwkt_reltoken(&p->p_token);
278 		goto recheck;
279 	}
280 
281 	/*
282 	 * Post any pending signals.  If running a virtual kernel be sure
283 	 * to restore the virtual kernel's vmspace before posting the signal.
284 	 *
285 	 * WARNING!  postsig() can exit and not return.
286 	 */
287 	if ((sig = CURSIG_LCK_TRACE(lp, &ptok)) != 0) {
288 		postsig(sig, ptok);
289 		goto recheck;
290 	}
291 
292 	/*
293 	 * block here if we are swapped out, but still process signals
294 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
295 	 * aware of our situation, we do not have to wake it up.
296 	 */
297 	if (p->p_flags & P_SWAPPEDOUT) {
298 		lwkt_gettoken(&p->p_token);
299 		p->p_flags |= P_SWAPWAIT;
300 		swapin_request();
301 		if (p->p_flags & P_SWAPWAIT)
302 			tsleep(p, PCATCH, "SWOUT", 0);
303 		p->p_flags &= ~P_SWAPWAIT;
304 		lwkt_reltoken(&p->p_token);
305 		goto recheck;
306 	}
307 
308 	/*
309 	 * In a multi-threaded program it is possible for a thread to change
310 	 * signal state during a system call which temporarily changes the
311 	 * signal mask.  In this case postsig() might not be run and we
312 	 * have to restore the mask ourselves.
313 	 */
314 	if (lp->lwp_flags & LWP_OLDMASK) {
315 		lp->lwp_flags &= ~LWP_OLDMASK;
316 		lp->lwp_sigmask = lp->lwp_oldsigmask;
317 		goto recheck;
318 	}
319 }
320 
321 /*
322  * Cleanup from userenter and any passive release that might have occured.
323  * We must reclaim the current-process designation before we can return
324  * to usermode.  We also handle both LWKT and USER reschedule requests.
325  */
326 static __inline void
327 userexit(struct lwp *lp)
328 {
329 	struct thread *td = lp->lwp_thread;
330 	/* globaldata_t gd = td->td_gd; */
331 
332 	/*
333 	 * Handle stop requests at kernel priority.  Any requests queued
334 	 * after this loop will generate another AST.
335 	 */
336 	while (STOPLWP(lp->lwp_proc, lp)) {
337 		lwkt_gettoken(&lp->lwp_proc->p_token);
338 		tstop();
339 		lwkt_reltoken(&lp->lwp_proc->p_token);
340 	}
341 
342 	/*
343 	 * Reduce our priority in preparation for a return to userland.  If
344 	 * our passive release function was still in place, our priority was
345 	 * never raised and does not need to be reduced.
346 	 */
347 	lwkt_passive_recover(td);
348 
349 	/* WARNING: we may have migrated cpu's */
350 	/* gd = td->td_gd; */
351 
352 	/*
353 	 * Become the current user scheduled process if we aren't already,
354 	 * and deal with reschedule requests and other factors.
355 	 */
356 	lp->lwp_proc->p_usched->acquire_curproc(lp);
357 }
358 
359 /*
360  * A page fault on a userspace address is classified as SMAP-induced
361  * if:
362  *	- SMAP is supported
363  *	- kernel mode accessed present data page
364  *	- rflags.AC was cleared
365  */
366 static int
367 trap_is_smap(struct trapframe *frame)
368 {
369         if ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 &&
370             (frame->tf_err & (PGEX_P | PGEX_U | PGEX_I | PGEX_RSV)) == PGEX_P &&
371 	    (frame->tf_rflags & PSL_AC) == 0) {
372 		return 1;
373 	} else {
374 		return 0;
375 	}
376 }
377 
378 #if !defined(KTR_KERNENTRY)
379 #define	KTR_KERNENTRY	KTR_ALL
380 #endif
381 KTR_INFO_MASTER(kernentry);
382 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
383 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
384 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
385 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
386 	 pid_t pid, lwpid_t tid);
387 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
388 	 pid_t pid, lwpid_t tid,  register_t trapno);
389 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
390 	 pid_t pid, lwpid_t tid,  int err);
391 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
392 	 pid_t pid, lwpid_t tid);
393 
394 /*
395  * Exception, fault, and trap interface to the kernel.
396  * This common code is called from assembly language IDT gate entry
397  * routines that prepare a suitable stack frame, and restore this
398  * frame after the exception has been processed.
399  *
400  * This function is also called from doreti in an interlock to handle ASTs.
401  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
402  *
403  * NOTE!  We have to retrieve the fault address prior to potentially
404  *	  blocking, including blocking on any token.
405  *
406  * NOTE!  NMI and kernel DBG traps remain on their respective pcpu IST
407  *	  stacks if taken from a kernel RPL. trap() cannot block in this
408  *	  situation.  DDB entry or a direct report-and-return is ok.
409  *
410  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
411  * if an attempt is made to switch from a fast interrupt or IPI.
412  */
413 void
414 trap(struct trapframe *frame)
415 {
416 	static struct krate sscpubugrate = { 1 };
417 	struct globaldata *gd = mycpu;
418 	struct thread *td = gd->gd_curthread;
419 	struct lwp *lp = td->td_lwp;
420 	struct proc *p;
421 	int sticks = 0;
422 	int i = 0, ucode = 0, type, code;
423 #ifdef INVARIANTS
424 	int crit_count = td->td_critcount;
425 	lwkt_tokref_t curstop = td->td_toks_stop;
426 #endif
427 	vm_offset_t eva;
428 
429 	p = td->td_proc;
430 	clear_quickret();
431 
432 #ifdef DDB
433         /*
434 	 * We need to allow T_DNA faults when the debugger is active since
435 	 * some dumping paths do large bcopy() which use the floating
436 	 * point registers for faster copying.
437 	 */
438 	if (db_active && frame->tf_trapno != T_DNA) {
439 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
440 		++gd->gd_trap_nesting_level;
441 		trap_fatal(frame, eva);
442 		--gd->gd_trap_nesting_level;
443 		goto out2;
444 	}
445 #endif
446 
447 	eva = 0;
448 
449 	if ((frame->tf_rflags & PSL_I) == 0) {
450 		/*
451 		 * Buggy application or kernel code has disabled interrupts
452 		 * and then trapped.  Enabling interrupts now is wrong, but
453 		 * it is better than running with interrupts disabled until
454 		 * they are accidentally enabled later.
455 		 */
456 
457 		type = frame->tf_trapno;
458 		if (ISPL(frame->tf_cs) == SEL_UPL) {
459 			/* JG curproc can be NULL */
460 			kprintf(
461 			    "pid %ld (%s): trap %d with interrupts disabled\n",
462 			    (long)curproc->p_pid, curproc->p_comm, type);
463 		} else if ((type == T_STKFLT || type == T_PROTFLT ||
464 			    type == T_SEGNPFLT) &&
465 			   frame->tf_rip == (long)doreti_iret) {
466 			/*
467 			 * iretq fault from kernel mode during return to
468 			 * userland.
469 			 *
470 			 * This situation is expected, don't complain.
471 			 */
472 		} else if (type != T_NMI && type != T_BPTFLT &&
473 			   type != T_TRCTRAP) {
474 			/*
475 			 * XXX not quite right, since this may be for a
476 			 * multiple fault in user mode.
477 			 */
478 			kprintf("kernel trap %d (%s @ 0x%016jx) with "
479 				"interrupts disabled\n",
480 				type,
481 				td->td_comm,
482 				frame->tf_rip);
483 		}
484 		cpu_enable_intr();
485 	}
486 
487 	type = frame->tf_trapno;
488 	code = frame->tf_err;
489 
490 	if (ISPL(frame->tf_cs) == SEL_UPL) {
491 		/* user trap */
492 
493 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
494 			frame->tf_trapno, eva);
495 
496 		userenter(td, p);
497 
498 		sticks = (int)td->td_sticks;
499 		KASSERT(lp->lwp_md.md_regs == frame,
500 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
501 
502 		switch (type) {
503 		case T_PRIVINFLT:	/* privileged instruction fault */
504 			i = SIGILL;
505 			ucode = ILL_PRVOPC;
506 			break;
507 
508 		case T_BPTFLT:		/* bpt instruction fault */
509 		case T_TRCTRAP:		/* trace trap */
510 			frame->tf_rflags &= ~PSL_T;
511 			i = SIGTRAP;
512 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
513 			break;
514 
515 		case T_ARITHTRAP:	/* arithmetic trap */
516 			ucode = code;
517 			i = SIGFPE;
518 			break;
519 
520 		case T_ASTFLT:		/* Allow process switch */
521 			mycpu->gd_cnt.v_soft++;
522 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
523 				atomic_clear_int(&mycpu->gd_reqflags,
524 						 RQF_AST_OWEUPC);
525 				addupc_task(p, p->p_prof.pr_addr,
526 					    p->p_prof.pr_ticks);
527 			}
528 			goto out;
529 
530 		case T_PROTFLT:		/* general protection fault */
531 			i = SIGBUS;
532 			ucode = BUS_OBJERR;
533 			break;
534 		case T_STKFLT:		/* stack fault */
535 		case T_SEGNPFLT:	/* segment not present fault */
536 			i = SIGBUS;
537 			ucode = BUS_ADRERR;
538 			break;
539 		case T_TSSFLT:		/* invalid TSS fault */
540 		case T_DOUBLEFLT:	/* double fault */
541 		default:
542 			i = SIGBUS;
543 			ucode = BUS_OBJERR;
544 			break;
545 
546 		case T_PAGEFLT:		/* page fault */
547 			i = trap_pfault(frame, TRUE);
548 #ifdef DDB
549 			if (frame->tf_rip == 0) {
550 				/* used for kernel debugging only */
551 				while (freeze_on_seg_fault)
552 					tsleep(p, 0, "freeze", hz * 20);
553 			}
554 #endif
555 			if (i == -1 || i == 0)
556 				goto out;
557 			if (i == SIGSEGV) {
558 				ucode = SEGV_MAPERR;
559 			} else {
560 				i = SIGSEGV;
561 				ucode = SEGV_ACCERR;
562 			}
563 			break;
564 
565 		case T_DIVIDE:		/* integer divide fault */
566 			ucode = FPE_INTDIV;
567 			i = SIGFPE;
568 			break;
569 
570 #if NISA > 0
571 		case T_NMI:
572 			/* machine/parity/power fail/"kitchen sink" faults */
573 			if (isa_nmi(code) == 0) {
574 #ifdef DDB
575 				/*
576 				 * NMI can be hooked up to a pushbutton
577 				 * for debugging.
578 				 */
579 				if (ddb_on_nmi) {
580 					kprintf ("NMI ... going to debugger\n");
581 					kdb_trap(type, 0, frame);
582 				}
583 #endif /* DDB */
584 				goto out2;
585 			} else if (panic_on_nmi)
586 				panic("NMI indicates hardware failure");
587 			break;
588 #endif /* NISA > 0 */
589 
590 		case T_OFLOW:		/* integer overflow fault */
591 			ucode = FPE_INTOVF;
592 			i = SIGFPE;
593 			break;
594 
595 		case T_BOUND:		/* bounds check fault */
596 			ucode = FPE_FLTSUB;
597 			i = SIGFPE;
598 			break;
599 
600 		case T_DNA:
601 			/*
602 			 * Virtual kernel intercept - pass the DNA exception
603 			 * to the virtual kernel if it asked to handle it.
604 			 * This occurs when the virtual kernel is holding
605 			 * onto the FP context for a different emulated
606 			 * process then the one currently running.
607 			 *
608 			 * We must still call npxdna() since we may have
609 			 * saved FP state that the virtual kernel needs
610 			 * to hand over to a different emulated process.
611 			 */
612 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
613 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
614 			) {
615 				npxdna();
616 				break;
617 			}
618 
619 			/*
620 			 * The kernel may have switched out the FP unit's
621 			 * state, causing the user process to take a fault
622 			 * when it tries to use the FP unit.  Restore the
623 			 * state here
624 			 */
625 			if (npxdna()) {
626 				gd->gd_cnt.v_trap++;
627 				goto out;
628 			}
629 			i = SIGFPE;
630 			ucode = FPE_FPU_NP_TRAP;
631 			break;
632 
633 		case T_FPOPFLT:		/* FPU operand fetch fault */
634 			ucode = ILL_COPROC;
635 			i = SIGILL;
636 			break;
637 
638 		case T_XMMFLT:		/* SIMD floating-point exception */
639 			ucode = 0; /* XXX */
640 			i = SIGFPE;
641 			break;
642 		}
643 	} else {
644 		/* kernel trap */
645 
646 		switch (type) {
647 		case T_PAGEFLT:			/* page fault */
648 			trap_pfault(frame, FALSE);
649 			goto out2;
650 
651 		case T_DNA:
652 			/*
653 			 * The kernel is apparently using fpu for copying.
654 			 * XXX this should be fatal unless the kernel has
655 			 * registered such use.
656 			 */
657 			if (npxdna()) {
658 				gd->gd_cnt.v_trap++;
659 				goto out2;
660 			}
661 			break;
662 
663 		case T_STKFLT:		/* stack fault */
664 		case T_PROTFLT:		/* general protection fault */
665 		case T_SEGNPFLT:	/* segment not present fault */
666 			/*
667 			 * Invalid segment selectors and out of bounds
668 			 * %rip's and %rsp's can be set up in user mode.
669 			 * This causes a fault in kernel mode when the
670 			 * kernel tries to return to user mode.  We want
671 			 * to get this fault so that we can fix the
672 			 * problem here and not have to check all the
673 			 * selectors and pointers when the user changes
674 			 * them.
675 			 */
676 			if (mycpu->gd_intr_nesting_level == 0) {
677 				/*
678 				 * NOTE: in 64-bit mode traps push rsp/ss
679 				 *	 even if no ring change occurs.
680 				 */
681 				if (td->td_pcb->pcb_onfault &&
682 				    td->td_pcb->pcb_onfault_sp ==
683 				    frame->tf_rsp) {
684 					frame->tf_rip = (register_t)
685 						td->td_pcb->pcb_onfault;
686 					goto out2;
687 				}
688 
689 				/*
690 				 * If the iretq in doreti faults during
691 				 * return to user, it will be special-cased
692 				 * in IDTVEC(prot) to get here.  We want
693 				 * to 'return' to doreti_iret_fault in
694 				 * ipl.s in approximately the same state we
695 				 * were in at the iretq.
696 				 */
697 				if (frame->tf_rip == (long)doreti_iret) {
698 					frame->tf_rip = (long)doreti_iret_fault;
699 					goto out2;
700 				}
701 			}
702 			break;
703 
704 		case T_TSSFLT:
705 			/*
706 			 * PSL_NT can be set in user mode and isn't cleared
707 			 * automatically when the kernel is entered.  This
708 			 * causes a TSS fault when the kernel attempts to
709 			 * `iret' because the TSS link is uninitialized.  We
710 			 * want to get this fault so that we can fix the
711 			 * problem here and not every time the kernel is
712 			 * entered.
713 			 */
714 			if (frame->tf_rflags & PSL_NT) {
715 				frame->tf_rflags &= ~PSL_NT;
716 #if 0
717 				/* do we need this? */
718 				if (frame->tf_rip == (long)doreti_iret)
719 					frame->tf_rip = (long)doreti_iret_fault;
720 #endif
721 				goto out2;
722 			}
723 			break;
724 
725 		case T_TRCTRAP:	 /* trace trap */
726 			/*
727 			 * Detect historical CPU artifact on syscall or int $3
728 			 * entry (if not shortcutted in exception.s via
729 			 * DIRECT_DISALLOW_SS_CPUBUG).
730 			 */
731 			gd->gd_cnt.v_trap++;
732 			if (frame->tf_rip == (register_t)IDTVEC(fast_syscall)) {
733 				krateprintf(&sscpubugrate,
734 					"Caught #DB at syscall cpu artifact\n");
735 				goto out2;
736 			}
737 			if (frame->tf_rip == (register_t)IDTVEC(bpt)) {
738 				krateprintf(&sscpubugrate,
739 					"Caught #DB at int $N cpu artifact\n");
740 				goto out2;
741 			}
742 
743 			/*
744 			 * Ignore debug register trace traps due to
745 			 * accesses in the user's address space, which
746 			 * can happen under several conditions such as
747 			 * if a user sets a watchpoint on a buffer and
748 			 * then passes that buffer to a system call.
749 			 * We still want to get TRCTRAPS for addresses
750 			 * in kernel space because that is useful when
751 			 * debugging the kernel.
752 			 */
753 			if (user_dbreg_trap()) {
754 				/*
755 				 * Reset breakpoint bits because the
756 				 * processor doesn't
757 				 */
758 				load_dr6(rdr6() & ~0xf);
759 				goto out2;
760 			}
761 			/*
762 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
763 			 */
764 		case T_BPTFLT:
765 			/*
766 			 * If DDB is enabled, let it handle the debugger trap.
767 			 * Otherwise, debugger traps "can't happen".
768 			 */
769 			ucode = TRAP_BRKPT;
770 #ifdef DDB
771 			if (kdb_trap(type, 0, frame))
772 				goto out2;
773 #endif
774 			break;
775 
776 #if NISA > 0
777 		case T_NMI:
778 			/* machine/parity/power fail/"kitchen sink" faults */
779 			if (isa_nmi(code) == 0) {
780 #ifdef DDB
781 				/*
782 				 * NMI can be hooked up to a pushbutton
783 				 * for debugging.
784 				 */
785 				if (ddb_on_nmi) {
786 					kprintf ("NMI ... going to debugger\n");
787 					kdb_trap(type, 0, frame);
788 				}
789 #endif /* DDB */
790 				goto out2;
791 			} else if (panic_on_nmi == 0)
792 				goto out2;
793 			/* FALL THROUGH */
794 #endif /* NISA > 0 */
795 		}
796 		trap_fatal(frame, 0);
797 		goto out2;
798 	}
799 
800 	/*
801 	 * Fault from user mode, virtual kernel interecept.
802 	 *
803 	 * If the fault is directly related to a VM context managed by a
804 	 * virtual kernel then let the virtual kernel handle it.
805 	 */
806 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
807 		vkernel_trap(lp, frame);
808 		goto out;
809 	}
810 
811 	/* Translate fault for emulators (e.g. Linux) */
812 	if (*p->p_sysent->sv_transtrap)
813 		i = (*p->p_sysent->sv_transtrap)(i, type);
814 
815 	gd->gd_cnt.v_trap++;
816 	trapsignal(lp, i, ucode);
817 
818 #ifdef DEBUG
819 	if (type <= MAX_TRAP_MSG) {
820 		uprintf("fatal process exception: %s",
821 			trap_msg[type]);
822 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
823 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
824 		uprintf("\n");
825 	}
826 #endif
827 
828 out:
829 	userret(lp, frame, sticks);
830 	userexit(lp);
831 out2:	;
832 	if (p != NULL && lp != NULL)
833 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
834 #ifdef INVARIANTS
835 	KASSERT(crit_count == td->td_critcount,
836 		("trap: critical section count mismatch! %d/%d",
837 		crit_count, td->td_pri));
838 	KASSERT(curstop == td->td_toks_stop,
839 		("trap: extra tokens held after trap! %ld/%ld (%s)",
840 		curstop - &td->td_toks_base,
841 		td->td_toks_stop - &td->td_toks_base,
842 		td->td_toks_stop[-1].tr_tok->t_desc));
843 #endif
844 }
845 
846 void
847 trap_handle_userenter(struct thread *td)
848 {
849 	userenter(td, td->td_proc);
850 }
851 
852 void
853 trap_handle_userexit(struct trapframe *frame, int sticks)
854 {
855 	struct lwp *lp = curthread->td_lwp;
856 
857 	if (lp) {
858 		userret(lp, frame, sticks);
859 		userexit(lp);
860 	}
861 }
862 
863 static int
864 trap_pfault(struct trapframe *frame, int usermode)
865 {
866 	vm_offset_t va;
867 	struct vmspace *vm = NULL;
868 	vm_map_t map;
869 	int rv = 0;
870 	int fault_flags;
871 	vm_prot_t ftype;
872 	thread_t td = curthread;
873 	struct lwp *lp = td->td_lwp;
874 	struct proc *p;
875 
876 	va = trunc_page(frame->tf_addr);
877 	if (va >= VM_MIN_KERNEL_ADDRESS) {
878 		/*
879 		 * Don't allow user-mode faults in kernel address space.
880 		 */
881 		if (usermode) {
882 			fault_flags = -1;
883 			ftype = -1;
884 			goto nogo;
885 		}
886 
887 		map = &kernel_map;
888 	} else {
889 		/*
890 		 * This is a fault on non-kernel virtual memory.
891 		 * vm is initialized above to NULL. If curproc is NULL
892 		 * or curproc->p_vmspace is NULL the fault is fatal.
893 		 */
894 		if (lp != NULL)
895 			vm = lp->lwp_vmspace;
896 
897 		if (vm == NULL) {
898 			fault_flags = -1;
899 			ftype = -1;
900 			goto nogo;
901 		}
902 
903 		if (usermode == 0) {
904 #ifdef DDB
905 			/*
906 			 * Debugging, catch kernel faults on the user address
907 			 * space when not inside on onfault (e.g. copyin/
908 			 * copyout) routine.
909 			 */
910 			if (td->td_pcb == NULL ||
911 			    td->td_pcb->pcb_onfault == NULL) {
912 				if (freeze_on_seg_fault) {
913 					kprintf("trap_pfault: user address "
914 						"fault from kernel mode "
915 						"%016lx\n",
916 						(long)frame->tf_addr);
917 					while (freeze_on_seg_fault) {
918 						    tsleep(&freeze_on_seg_fault,
919 							   0,
920 							   "frzseg",
921 							   hz * 20);
922 					}
923 				}
924 			}
925 #endif
926 			if (td->td_gd->gd_intr_nesting_level ||
927 			    trap_is_smap(frame) ||
928 			    td->td_pcb == NULL ||
929 			    td->td_pcb->pcb_onfault == NULL) {
930 				kprintf("Fatal user address access "
931 					"from kernel mode from %s at %016jx\n",
932 					td->td_comm, frame->tf_rip);
933 				trap_fatal(frame, frame->tf_addr);
934 				return (-1);
935 			}
936 		}
937 		map = &vm->vm_map;
938 	}
939 
940 	/*
941 	 * PGEX_I is defined only if the execute disable bit capability is
942 	 * supported and enabled.
943 	 */
944 	if (frame->tf_err & PGEX_W)
945 		ftype = VM_PROT_WRITE;
946 	else if (frame->tf_err & PGEX_I)
947 		ftype = VM_PROT_EXECUTE;
948 	else
949 		ftype = VM_PROT_READ;
950 
951 	lwkt_tokref_t stop = td->td_toks_stop;
952 
953 	if (map != &kernel_map) {
954 		/*
955 		 * Keep swapout from messing with us during this
956 		 *	critical time.
957 		 */
958 		PHOLD(lp->lwp_proc);
959 
960 		/*
961 		 * Issue fault
962 		 */
963 		fault_flags = 0;
964 		if (usermode)
965 			fault_flags |= VM_FAULT_BURST | VM_FAULT_USERMODE;
966 		if (ftype & VM_PROT_WRITE)
967 			fault_flags |= VM_FAULT_DIRTY;
968 		else
969 			fault_flags |= VM_FAULT_NORMAL;
970 		rv = vm_fault(map, va, ftype, fault_flags);
971 		if (td->td_toks_stop != stop) {
972 			stop = td->td_toks_stop - 1;
973 			kprintf("A-HELD TOKENS DURING PFAULT td=%p(%s) map=%p va=%p ftype=%d fault_flags=%d\n", td, td->td_comm, map, (void *)va, ftype, fault_flags);
974 			panic("held tokens");
975 		}
976 
977 		PRELE(lp->lwp_proc);
978 	} else {
979 		/*
980 		 * Don't have to worry about process locking or stacks in the
981 		 * kernel.
982 		 */
983 		fault_flags = VM_FAULT_NORMAL;
984 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
985 		if (td->td_toks_stop != stop) {
986 			stop = td->td_toks_stop - 1;
987 			kprintf("B-HELD TOKENS DURING PFAULT td=%p(%s) map=%p va=%p ftype=%d fault_flags=%d\n", td, td->td_comm, map, (void *)va, ftype, VM_FAULT_NORMAL);
988 			panic("held tokens");
989 		}
990 	}
991 	if (rv == KERN_SUCCESS)
992 		return (0);
993 nogo:
994 	if (!usermode) {
995 		/*
996 		 * NOTE: in 64-bit mode traps push rsp/ss
997 		 *	 even if no ring change occurs.
998 		 */
999 		if (td->td_pcb->pcb_onfault &&
1000 		    td->td_pcb->pcb_onfault_sp == frame->tf_rsp &&
1001 		    td->td_gd->gd_intr_nesting_level == 0) {
1002 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
1003 			return (0);
1004 		}
1005 		trap_fatal(frame, frame->tf_addr);
1006 		return (-1);
1007 	}
1008 
1009 	/*
1010 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
1011 	 * kludge is needed to pass the fault address to signal handlers.
1012 	 */
1013 	p = td->td_proc;
1014 #ifdef DDB
1015 	if (td->td_lwp->lwp_vkernel == NULL) {
1016 		while (freeze_on_seg_fault) {
1017 			tsleep(p, 0, "freeze", hz * 20);
1018 		}
1019 		if (ddb_on_seg_fault)
1020 			Debugger("ddb_on_seg_fault");
1021 	}
1022 #endif
1023 
1024 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
1025 }
1026 
1027 static void
1028 trap_fatal(struct trapframe *frame, vm_offset_t eva)
1029 {
1030 	int code, ss;
1031 	u_int type;
1032 	long rsp;
1033 	struct soft_segment_descriptor softseg;
1034 	char *msg;
1035 
1036 	code = frame->tf_err;
1037 	type = frame->tf_trapno;
1038 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
1039 
1040 	if (type <= MAX_TRAP_MSG)
1041 		msg = trap_msg[type];
1042 	else
1043 		msg = "UNKNOWN";
1044 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
1045 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
1046 	/* three separate prints in case of a trap on an unmapped page */
1047 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1048 	if (lapic_usable)
1049 		kprintf("lapic id = %u\n", LAPIC_READID);
1050 	if (type == T_PAGEFLT) {
1051 		kprintf("fault virtual address	= 0x%lx\n", eva);
1052 		kprintf("fault code		= %s %s %s, %s\n",
1053 			code & PGEX_U ? "user" : "supervisor",
1054 			code & PGEX_W ? "write" : "read",
1055 			code & PGEX_I ? "instruction" : "data",
1056 			code & PGEX_P ? "protection violation" : "page not present");
1057 	}
1058 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
1059 	       frame->tf_cs & 0xffff, frame->tf_rip);
1060         if (ISPL(frame->tf_cs) == SEL_UPL) {
1061 		ss = frame->tf_ss & 0xffff;
1062 		rsp = frame->tf_rsp;
1063 	} else {
1064 		/*
1065 		 * NOTE: in 64-bit mode traps push rsp/ss even if no ring
1066 		 *	 change occurs.
1067 		 */
1068 		ss = GSEL(GDATA_SEL, SEL_KPL);
1069 		rsp = frame->tf_rsp;
1070 	}
1071 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
1072 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
1073 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
1074 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
1075 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
1076 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
1077 	       softseg.ssd_gran);
1078 	kprintf("processor eflags	= ");
1079 	if (frame->tf_rflags & PSL_T)
1080 		kprintf("trace trap, ");
1081 	if (frame->tf_rflags & PSL_I)
1082 		kprintf("interrupt enabled, ");
1083 	if (frame->tf_rflags & PSL_NT)
1084 		kprintf("nested task, ");
1085 	if (frame->tf_rflags & PSL_RF)
1086 		kprintf("resume, ");
1087 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1088 	kprintf("current process		= ");
1089 	if (curproc) {
1090 		kprintf("%lu\n",
1091 		    (u_long)curproc->p_pid);
1092 	} else {
1093 		kprintf("Idle\n");
1094 	}
1095 	kprintf("current thread          = pri %d ", curthread->td_pri);
1096 	if (curthread->td_critcount)
1097 		kprintf("(CRIT)");
1098 	kprintf("\n");
1099 
1100 #ifdef DDB
1101 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1102 		return;
1103 #endif
1104 	kprintf("trap number		= %d\n", type);
1105 	if (type <= MAX_TRAP_MSG)
1106 		panic("%s", trap_msg[type]);
1107 	else
1108 		panic("unknown/reserved trap");
1109 }
1110 
1111 /*
1112  * Double fault handler. Called when a fault occurs while writing
1113  * a frame for a trap/exception onto the stack. This usually occurs
1114  * when the stack overflows (such is the case with infinite recursion,
1115  * for example).
1116  */
1117 static __inline
1118 int
1119 in_kstack_guard(register_t rptr)
1120 {
1121 	thread_t td = curthread;
1122 
1123 	if ((char *)rptr >= td->td_kstack &&
1124 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1125 		return 1;
1126 	}
1127 	return 0;
1128 }
1129 
1130 void
1131 dblfault_handler(struct trapframe *frame)
1132 {
1133 	thread_t td = curthread;
1134 
1135 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1136 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1137 		if (in_kstack_guard(frame->tf_rsp))
1138 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1139 		if (in_kstack_guard(frame->tf_rbp))
1140 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1141 	} else {
1142 		kprintf("DOUBLE FAULT\n");
1143 	}
1144 	kprintf("\nFatal double fault\n");
1145 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1146 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1147 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1148 	/* three separate prints in case of a trap on an unmapped page */
1149 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1150 	if (lapic_usable)
1151 		kprintf("lapic id = %u\n", LAPIC_READID);
1152 	panic("double fault");
1153 }
1154 
1155 /*
1156  * syscall2 -	MP aware system call request C handler
1157  *
1158  * A system call is essentially treated as a trap except that the
1159  * MP lock is not held on entry or return.  We are responsible for
1160  * obtaining the MP lock if necessary and for handling ASTs
1161  * (e.g. a task switch) prior to return.
1162  *
1163  * MPSAFE
1164  */
1165 void
1166 syscall2(struct trapframe *frame)
1167 {
1168 	struct thread *td = curthread;
1169 	struct proc *p = td->td_proc;
1170 	struct lwp *lp = td->td_lwp;
1171 	struct sysent *callp;
1172 	register_t orig_tf_rflags;
1173 	int sticks;
1174 	int error;
1175 	int narg;
1176 #ifdef INVARIANTS
1177 	int crit_count = td->td_critcount;
1178 #endif
1179 	register_t *argp;
1180 	u_int code;
1181 	int regcnt, optimized_regcnt;
1182 	union sysunion args;
1183 	register_t *argsdst;
1184 
1185 	mycpu->gd_cnt.v_syscall++;
1186 
1187 #ifdef DIAGNOSTIC
1188 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1189 		panic("syscall");
1190 		/* NOT REACHED */
1191 	}
1192 #endif
1193 
1194 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1195 		frame->tf_rax);
1196 
1197 	userenter(td, p);	/* lazy raise our priority */
1198 
1199 	regcnt = 6;
1200 	optimized_regcnt = 6;
1201 
1202 	/*
1203 	 * Misc
1204 	 */
1205 	sticks = (int)td->td_sticks;
1206 	orig_tf_rflags = frame->tf_rflags;
1207 
1208 	/*
1209 	 * Virtual kernel intercept - if a VM context managed by a virtual
1210 	 * kernel issues a system call the virtual kernel handles it, not us.
1211 	 * Restore the virtual kernel context and return from its system
1212 	 * call.  The current frame is copied out to the virtual kernel.
1213 	 */
1214 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1215 		vkernel_trap(lp, frame);
1216 		error = EJUSTRETURN;
1217 		callp = NULL;
1218 		code = 0;
1219 		goto out;
1220 	}
1221 
1222 	/*
1223 	 * Get the system call parameters and account for time
1224 	 */
1225 	KASSERT(lp->lwp_md.md_regs == frame,
1226 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1227 	code = (u_int)frame->tf_rax;
1228 
1229 	if (code == SYS_syscall || code == SYS___syscall) {
1230 		code = frame->tf_rdi;
1231 		regcnt--;
1232 		argp = &frame->tf_rdi + 1;
1233 	} else {
1234 		argp = &frame->tf_rdi;
1235 	}
1236 
1237 	if (code >= p->p_sysent->sv_size)
1238 		callp = &p->p_sysent->sv_table[0];
1239 	else
1240 		callp = &p->p_sysent->sv_table[code];
1241 
1242 	narg = callp->sy_narg & SYF_ARGMASK;
1243 
1244 	/*
1245 	 * On x86_64 we get up to six arguments in registers. The rest are
1246 	 * on the stack. The first six members of 'struct trapframe' happen
1247 	 * to be the registers used to pass arguments, in exactly the right
1248 	 * order.
1249 	 */
1250 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1251 
1252 	/*
1253 	 * Its easier to copy up to the highest number of syscall arguments
1254 	 * passed in registers, which is 6, than to conditionalize it.
1255 	 */
1256 	bcopy(argp, argsdst, sizeof(register_t) * optimized_regcnt);
1257 
1258 	/*
1259 	 * Any arguments beyond available argument-passing registers must
1260 	 * be copyin()'d from the user stack.
1261 	 */
1262 	if (narg > regcnt) {
1263 		caddr_t params;
1264 
1265 		params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1266 		error = copyin(params, &argsdst[regcnt],
1267 			       (narg - regcnt) * sizeof(register_t));
1268 		if (error) {
1269 #ifdef KTRACE
1270 			if (KTRPOINT(td, KTR_SYSCALL)) {
1271 				ktrsyscall(lp, code, narg,
1272 					(void *)(&args.nosys.sysmsg + 1));
1273 			}
1274 #endif
1275 			goto bad;
1276 		}
1277 	}
1278 
1279 #ifdef KTRACE
1280 	if (KTRPOINT(td, KTR_SYSCALL)) {
1281 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1282 	}
1283 #endif
1284 
1285 	/*
1286 	 * Default return value is 0 (will be copied to %rax).  Double-value
1287 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1288 	 * calls which return only one result.
1289 	 */
1290 	args.sysmsg_fds[0] = 0;
1291 	args.sysmsg_fds[1] = frame->tf_rdx;
1292 
1293 	/*
1294 	 * The syscall might manipulate the trap frame. If it does it
1295 	 * will probably return EJUSTRETURN.
1296 	 */
1297 	args.sysmsg_frame = frame;
1298 
1299 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1300 
1301 	/*
1302 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1303 	 *	 is responsible for getting the MP lock.
1304 	 */
1305 #ifdef SYSCALL_DEBUG
1306 	tsc_uclock_t tscval = rdtsc();
1307 #endif
1308 	error = (*callp->sy_call)(&args);
1309 #ifdef SYSCALL_DEBUG
1310 	tscval = rdtsc() - tscval;
1311 	tscval = tscval * 1000000 / tsc_frequency;
1312 	if (SysCallsWorstCase[code] < tscval)
1313 		SysCallsWorstCase[code] = tscval;
1314 #endif
1315 
1316 out:
1317 	/*
1318 	 * MP SAFE (we may or may not have the MP lock at this point)
1319 	 */
1320 	//kprintf("SYSMSG %d ", error);
1321 	switch (error) {
1322 	case 0:
1323 		/*
1324 		 * Reinitialize proc pointer `p' as it may be different
1325 		 * if this is a child returning from fork syscall.
1326 		 */
1327 		p = curproc;
1328 		lp = curthread->td_lwp;
1329 		frame->tf_rax = args.sysmsg_fds[0];
1330 		frame->tf_rdx = args.sysmsg_fds[1];
1331 		frame->tf_rflags &= ~PSL_C;
1332 		break;
1333 	case ERESTART:
1334 		/*
1335 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1336 		 * We have to do a full context restore so that %r10
1337 		 * (which was holding the value of %rcx) is restored for
1338 		 * the next iteration.
1339 		 */
1340 		if (frame->tf_err != 0 && frame->tf_err != 2)
1341 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1342 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1343 		frame->tf_rip -= frame->tf_err;
1344 		frame->tf_r10 = frame->tf_rcx;
1345 		break;
1346 	case EJUSTRETURN:
1347 		break;
1348 	case EASYNC:
1349 		panic("Unexpected EASYNC return value (for now)");
1350 	default:
1351 bad:
1352 		if (p->p_sysent->sv_errsize) {
1353 			if (error >= p->p_sysent->sv_errsize)
1354 				error = -1;	/* XXX */
1355 			else
1356 				error = p->p_sysent->sv_errtbl[error];
1357 		}
1358 		frame->tf_rax = error;
1359 		frame->tf_rflags |= PSL_C;
1360 		break;
1361 	}
1362 
1363 	/*
1364 	 * Traced syscall.  trapsignal() should now be MP aware
1365 	 */
1366 	if (orig_tf_rflags & PSL_T) {
1367 		frame->tf_rflags &= ~PSL_T;
1368 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1369 	}
1370 
1371 	/*
1372 	 * Handle reschedule and other end-of-syscall issues
1373 	 */
1374 	userret(lp, frame, sticks);
1375 
1376 #ifdef KTRACE
1377 	if (KTRPOINT(td, KTR_SYSRET)) {
1378 		ktrsysret(lp, code, error, args.sysmsg_result);
1379 	}
1380 #endif
1381 
1382 	/*
1383 	 * This works because errno is findable through the
1384 	 * register set.  If we ever support an emulation where this
1385 	 * is not the case, this code will need to be revisited.
1386 	 */
1387 	STOPEVENT(p, S_SCX, code);
1388 
1389 	userexit(lp);
1390 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1391 #ifdef INVARIANTS
1392 	KASSERT(crit_count == td->td_critcount,
1393 		("syscall: critical section count mismatch! %d/%d",
1394 		crit_count, td->td_pri));
1395 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1396 		("syscall: %ld extra tokens held after trap! syscall %p",
1397 		td->td_toks_stop - &td->td_toks_base,
1398 		callp->sy_call));
1399 #endif
1400 }
1401 
1402 void
1403 fork_return(struct lwp *lp, struct trapframe *frame)
1404 {
1405 	frame->tf_rax = 0;		/* Child returns zero */
1406 	frame->tf_rflags &= ~PSL_C;	/* success */
1407 	frame->tf_rdx = 1;
1408 
1409 	generic_lwp_return(lp, frame);
1410 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1411 }
1412 
1413 /*
1414  * Simplified back end of syscall(), used when returning from fork()
1415  * directly into user mode.
1416  *
1417  * This code will return back into the fork trampoline code which then
1418  * runs doreti.
1419  */
1420 void
1421 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1422 {
1423 	struct proc *p = lp->lwp_proc;
1424 
1425 	/*
1426 	 * Check for exit-race.  If one lwp exits the process concurrent with
1427 	 * another lwp creating a new thread, the two operations may cross
1428 	 * each other resulting in the newly-created lwp not receiving a
1429 	 * KILL signal.
1430 	 */
1431 	if (p->p_flags & P_WEXIT) {
1432 		lwpsignal(p, lp, SIGKILL);
1433 	}
1434 
1435 	/*
1436 	 * Newly forked processes are given a kernel priority.  We have to
1437 	 * adjust the priority to a normal user priority and fake entry
1438 	 * into the kernel (call userenter()) to install a passive release
1439 	 * function just in case userret() decides to stop the process.  This
1440 	 * can occur when ^Z races a fork.  If we do not install the passive
1441 	 * release function the current process designation will not be
1442 	 * released when the thread goes to sleep.
1443 	 */
1444 	lwkt_setpri_self(TDPRI_USER_NORM);
1445 	userenter(lp->lwp_thread, p);
1446 	userret(lp, frame, 0);
1447 #ifdef KTRACE
1448 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1449 		ktrsysret(lp, SYS_fork, 0, 0);
1450 #endif
1451 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1452 	userexit(lp);
1453 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1454 }
1455 
1456 /*
1457  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1458  * fault (which is then passed back to the virtual kernel) if an attempt is
1459  * made to use the FP unit.
1460  *
1461  * XXX this is a fairly big hack.
1462  */
1463 void
1464 set_vkernel_fp(struct trapframe *frame)
1465 {
1466 	struct thread *td = curthread;
1467 
1468 	if (frame->tf_xflags & PGEX_FPFAULT) {
1469 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1470 		if (mdcpu->gd_npxthread == td)
1471 			npxexit();
1472 	} else {
1473 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1474 	}
1475 }
1476 
1477 /*
1478  * Called from vkernel_trap() to fixup the vkernel's syscall
1479  * frame for vmspace_ctl() return.
1480  */
1481 void
1482 cpu_vkernel_trap(struct trapframe *frame, int error)
1483 {
1484 	frame->tf_rax = error;
1485 	if (error)
1486 		frame->tf_rflags |= PSL_C;
1487 	else
1488 		frame->tf_rflags &= ~PSL_C;
1489 }
1490