xref: /dragonfly/sys/platform/pc64/x86_64/trap.c (revision 38c2ea22)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * Copyright (C) 1994, David Greenman
5  * Copyright (c) 2008 The DragonFly Project.
6  * Copyright (c) 2008 Jordan Gordeev.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the University of Utah, and William Jolitz.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  * from: @(#)trap.c	7.4 (Berkeley) 5/13/91
40  * $FreeBSD: src/sys/i386/i386/trap.c,v 1.147.2.11 2003/02/27 19:09:59 luoqi Exp $
41  */
42 
43 /*
44  * x86_64 Trap and System call handling
45  */
46 
47 #include "use_isa.h"
48 
49 #include "opt_ddb.h"
50 #include "opt_ktrace.h"
51 
52 #include <machine/frame.h>
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/kerneldump.h>
57 #include <sys/proc.h>
58 #include <sys/pioctl.h>
59 #include <sys/types.h>
60 #include <sys/signal2.h>
61 #include <sys/syscall.h>
62 #include <sys/sysctl.h>
63 #include <sys/sysent.h>
64 #include <sys/systm.h>
65 #ifdef KTRACE
66 #include <sys/ktrace.h>
67 #endif
68 #include <sys/ktr.h>
69 #include <sys/sysmsg.h>
70 #include <sys/sysproto.h>
71 #include <sys/sysunion.h>
72 
73 #include <vm/pmap.h>
74 #include <vm/vm.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_param.h>
78 #include <machine/cpu.h>
79 #include <machine/pcb.h>
80 #include <machine/smp.h>
81 #include <machine/thread.h>
82 #include <machine/clock.h>
83 #include <machine/vmparam.h>
84 #include <machine/md_var.h>
85 #include <machine_base/isa/isa_intr.h>
86 #include <machine_base/apic/lapic.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <sys/thread2.h>
91 #include <sys/mplock2.h>
92 
93 #ifdef SMP
94 
95 #define MAKEMPSAFE(have_mplock)			\
96 	if (have_mplock == 0) {			\
97 		get_mplock();			\
98 		have_mplock = 1;		\
99 	}
100 
101 #else
102 
103 #define MAKEMPSAFE(have_mplock)
104 
105 #endif
106 
107 extern void trap(struct trapframe *frame);
108 
109 static int trap_pfault(struct trapframe *, int);
110 static void trap_fatal(struct trapframe *, vm_offset_t);
111 void dblfault_handler(struct trapframe *frame);
112 
113 #define MAX_TRAP_MSG		30
114 static char *trap_msg[] = {
115 	"",					/*  0 unused */
116 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
117 	"",					/*  2 unused */
118 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
119 	"",					/*  4 unused */
120 	"",					/*  5 unused */
121 	"arithmetic trap",			/*  6 T_ARITHTRAP */
122 	"system forced exception",		/*  7 T_ASTFLT */
123 	"",					/*  8 unused */
124 	"general protection fault",		/*  9 T_PROTFLT */
125 	"trace trap",				/* 10 T_TRCTRAP */
126 	"",					/* 11 unused */
127 	"page fault",				/* 12 T_PAGEFLT */
128 	"",					/* 13 unused */
129 	"alignment fault",			/* 14 T_ALIGNFLT */
130 	"",					/* 15 unused */
131 	"",					/* 16 unused */
132 	"",					/* 17 unused */
133 	"integer divide fault",			/* 18 T_DIVIDE */
134 	"non-maskable interrupt trap",		/* 19 T_NMI */
135 	"overflow trap",			/* 20 T_OFLOW */
136 	"FPU bounds check fault",		/* 21 T_BOUND */
137 	"FPU device not available",		/* 22 T_DNA */
138 	"double fault",				/* 23 T_DOUBLEFLT */
139 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
140 	"invalid TSS fault",			/* 25 T_TSSFLT */
141 	"segment not present fault",		/* 26 T_SEGNPFLT */
142 	"stack fault",				/* 27 T_STKFLT */
143 	"machine check trap",			/* 28 T_MCHK */
144 	"SIMD floating-point exception",	/* 29 T_XMMFLT */
145 	"reserved (unknown) fault",		/* 30 T_RESERVED */
146 };
147 
148 #ifdef DDB
149 static int ddb_on_nmi = 1;
150 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
151 	&ddb_on_nmi, 0, "Go to DDB on NMI");
152 static int ddb_on_seg_fault = 0;
153 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_seg_fault, CTLFLAG_RW,
154 	&ddb_on_seg_fault, 0, "Go to DDB on user seg-fault");
155 static int freeze_on_seg_fault = 0;
156 SYSCTL_INT(_machdep, OID_AUTO, freeze_on_seg_fault, CTLFLAG_RW,
157 	&freeze_on_seg_fault, 0, "Go to DDB on user seg-fault");
158 #endif
159 static int panic_on_nmi = 1;
160 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
161 	&panic_on_nmi, 0, "Panic on NMI");
162 static int fast_release;
163 SYSCTL_INT(_machdep, OID_AUTO, fast_release, CTLFLAG_RW,
164 	&fast_release, 0, "Passive Release was optimal");
165 static int slow_release;
166 SYSCTL_INT(_machdep, OID_AUTO, slow_release, CTLFLAG_RW,
167 	&slow_release, 0, "Passive Release was nonoptimal");
168 
169 /*
170  * System call debugging records the worst-case system call
171  * overhead (inclusive of blocking), but may be inaccurate.
172  */
173 /*#define SYSCALL_DEBUG*/
174 #ifdef SYSCALL_DEBUG
175 uint64_t SysCallsWorstCase[SYS_MAXSYSCALL];
176 #endif
177 
178 /*
179  * Passively intercepts the thread switch function to increase
180  * the thread priority from a user priority to a kernel priority, reducing
181  * syscall and trap overhead for the case where no switch occurs.
182  *
183  * Synchronizes td_ucred with p_ucred.  This is used by system calls,
184  * signal handling, faults, AST traps, and anything else that enters the
185  * kernel from userland and provides the kernel with a stable read-only
186  * copy of the process ucred.
187  */
188 static __inline void
189 userenter(struct thread *curtd, struct proc *curp)
190 {
191 	struct ucred *ocred;
192 	struct ucred *ncred;
193 
194 	curtd->td_release = lwkt_passive_release;
195 
196 	if (curtd->td_ucred != curp->p_ucred) {
197 		ncred = crhold(curp->p_ucred);
198 		ocred = curtd->td_ucred;
199 		curtd->td_ucred = ncred;
200 		if (ocred)
201 			crfree(ocred);
202 	}
203 
204 	/*
205 	 * Debugging, remove top two user stack pages to catch kernel faults
206 	 */
207 	if (freeze_on_seg_fault > 1 && curtd->td_lwp) {
208 		pmap_remove(vmspace_pmap(curtd->td_lwp->lwp_vmspace),
209 			    0x00007FFFFFFFD000LU,
210 			    0x0000800000000000LU);
211 	}
212 }
213 
214 /*
215  * Handle signals, upcalls, profiling, and other AST's and/or tasks that
216  * must be completed before we can return to or try to return to userland.
217  *
218  * Note that td_sticks is a 64 bit quantity, but there's no point doing 64
219  * arithmatic on the delta calculation so the absolute tick values are
220  * truncated to an integer.
221  */
222 static void
223 userret(struct lwp *lp, struct trapframe *frame, int sticks)
224 {
225 	struct proc *p = lp->lwp_proc;
226 	int sig;
227 
228 	/*
229 	 * Charge system time if profiling.  Note: times are in microseconds.
230 	 * This may do a copyout and block, so do it first even though it
231 	 * means some system time will be charged as user time.
232 	 */
233 	if (p->p_flags & P_PROFIL) {
234 		addupc_task(p, frame->tf_rip,
235 			(u_int)((int)lp->lwp_thread->td_sticks - sticks));
236 	}
237 
238 recheck:
239 	/*
240 	 * If the jungle wants us dead, so be it.
241 	 */
242 	if (lp->lwp_mpflags & LWP_MP_WEXIT) {
243 		lwkt_gettoken(&p->p_token);
244 		lwp_exit(0);
245 		lwkt_reltoken(&p->p_token);	/* NOT REACHED */
246 	}
247 
248 	/*
249 	 * Block here if we are in a stopped state.
250 	 */
251 	if (p->p_stat == SSTOP || dump_stop_usertds) {
252 		lwkt_gettoken(&p->p_token);
253 		tstop();
254 		lwkt_reltoken(&p->p_token);
255 		goto recheck;
256 	}
257 
258 	/*
259 	 * Post any pending upcalls.  If running a virtual kernel be sure
260 	 * to restore the virtual kernel's vmspace before posting the upcall.
261 	 */
262 	if (p->p_flags & (P_SIGVTALRM | P_SIGPROF | P_UPCALLPEND)) {
263 		lwkt_gettoken(&p->p_token);
264 		if (p->p_flags & P_SIGVTALRM) {
265 			p->p_flags &= ~P_SIGVTALRM;
266 			ksignal(p, SIGVTALRM);
267 		}
268 		if (p->p_flags & P_SIGPROF) {
269 			p->p_flags &= ~P_SIGPROF;
270 			ksignal(p, SIGPROF);
271 		}
272 		if (p->p_flags & P_UPCALLPEND) {
273 			p->p_flags &= ~P_UPCALLPEND;
274 			postupcall(lp);
275 		}
276 		lwkt_reltoken(&p->p_token);
277 		goto recheck;
278 	}
279 
280 	/*
281 	 * Post any pending signals.  If running a virtual kernel be sure
282 	 * to restore the virtual kernel's vmspace before posting the signal.
283 	 *
284 	 * WARNING!  postsig() can exit and not return.
285 	 */
286 	if ((sig = CURSIG_TRACE(lp)) != 0) {
287 		lwkt_gettoken(&p->p_token);
288 		postsig(sig);
289 		lwkt_reltoken(&p->p_token);
290 		goto recheck;
291 	}
292 
293 	/*
294 	 * block here if we are swapped out, but still process signals
295 	 * (such as SIGKILL).  proc0 (the swapin scheduler) is already
296 	 * aware of our situation, we do not have to wake it up.
297 	 */
298 	if (p->p_flags & P_SWAPPEDOUT) {
299 		lwkt_gettoken(&p->p_token);
300 		get_mplock();
301 		p->p_flags |= P_SWAPWAIT;
302 		swapin_request();
303 		if (p->p_flags & P_SWAPWAIT)
304 			tsleep(p, PCATCH, "SWOUT", 0);
305 		p->p_flags &= ~P_SWAPWAIT;
306 		rel_mplock();
307 		lwkt_reltoken(&p->p_token);
308 		goto recheck;
309 	}
310 
311 	/*
312 	 * In a multi-threaded program it is possible for a thread to change
313 	 * signal state during a system call which temporarily changes the
314 	 * signal mask.  In this case postsig() might not be run and we
315 	 * have to restore the mask ourselves.
316 	 */
317 	if (lp->lwp_flags & LWP_OLDMASK) {
318 		lp->lwp_flags &= ~LWP_OLDMASK;
319 		lp->lwp_sigmask = lp->lwp_oldsigmask;
320 		goto recheck;
321 	}
322 }
323 
324 /*
325  * Cleanup from userenter and any passive release that might have occured.
326  * We must reclaim the current-process designation before we can return
327  * to usermode.  We also handle both LWKT and USER reschedule requests.
328  */
329 static __inline void
330 userexit(struct lwp *lp)
331 {
332 	struct thread *td = lp->lwp_thread;
333 	/* globaldata_t gd = td->td_gd; */
334 
335 	/*
336 	 * Handle stop requests at kernel priority.  Any requests queued
337 	 * after this loop will generate another AST.
338 	 */
339 	while (lp->lwp_proc->p_stat == SSTOP) {
340 		lwkt_gettoken(&lp->lwp_proc->p_token);
341 		tstop();
342 		lwkt_reltoken(&lp->lwp_proc->p_token);
343 	}
344 
345 	/*
346 	 * Reduce our priority in preparation for a return to userland.  If
347 	 * our passive release function was still in place, our priority was
348 	 * never raised and does not need to be reduced.
349 	 */
350 	lwkt_passive_recover(td);
351 
352 	/*
353 	 * Become the current user scheduled process if we aren't already,
354 	 * and deal with reschedule requests and other factors.
355 	 */
356 	lp->lwp_proc->p_usched->acquire_curproc(lp);
357 	/* WARNING: we may have migrated cpu's */
358 	/* gd = td->td_gd; */
359 }
360 
361 #if !defined(KTR_KERNENTRY)
362 #define	KTR_KERNENTRY	KTR_ALL
363 #endif
364 KTR_INFO_MASTER(kernentry);
365 KTR_INFO(KTR_KERNENTRY, kernentry, trap, 0,
366 	 "TRAP(pid %d, tid %d, trapno %ld, eva %lu)",
367 	 pid_t pid, lwpid_t tid,  register_t trapno, vm_offset_t eva);
368 KTR_INFO(KTR_KERNENTRY, kernentry, trap_ret, 0, "TRAP_RET(pid %d, tid %d)",
369 	 pid_t pid, lwpid_t tid);
370 KTR_INFO(KTR_KERNENTRY, kernentry, syscall, 0, "SYSC(pid %d, tid %d, nr %ld)",
371 	 pid_t pid, lwpid_t tid,  register_t trapno);
372 KTR_INFO(KTR_KERNENTRY, kernentry, syscall_ret, 0, "SYSRET(pid %d, tid %d, err %d)",
373 	 pid_t pid, lwpid_t tid,  int err);
374 KTR_INFO(KTR_KERNENTRY, kernentry, fork_ret, 0, "FORKRET(pid %d, tid %d)",
375 	 pid_t pid, lwpid_t tid);
376 
377 /*
378  * Exception, fault, and trap interface to the kernel.
379  * This common code is called from assembly language IDT gate entry
380  * routines that prepare a suitable stack frame, and restore this
381  * frame after the exception has been processed.
382  *
383  * This function is also called from doreti in an interlock to handle ASTs.
384  * For example:  hardwareint->INTROUTINE->(set ast)->doreti->trap
385  *
386  * NOTE!  We have to retrieve the fault address prior to obtaining the
387  * MP lock because get_mplock() may switch out.  YYY cr2 really ought
388  * to be retrieved by the assembly code, not here.
389  *
390  * XXX gd_trap_nesting_level currently prevents lwkt_switch() from panicing
391  * if an attempt is made to switch from a fast interrupt or IPI.  This is
392  * necessary to properly take fatal kernel traps on SMP machines if
393  * get_mplock() has to block.
394  */
395 
396 void
397 trap(struct trapframe *frame)
398 {
399 	struct globaldata *gd = mycpu;
400 	struct thread *td = gd->gd_curthread;
401 	struct lwp *lp = td->td_lwp;
402 	struct proc *p;
403 	int sticks = 0;
404 	int i = 0, ucode = 0, type, code;
405 #ifdef SMP
406 	int have_mplock = 0;
407 #endif
408 #ifdef INVARIANTS
409 	int crit_count = td->td_critcount;
410 	lwkt_tokref_t curstop = td->td_toks_stop;
411 #endif
412 	vm_offset_t eva;
413 
414 	p = td->td_proc;
415 	clear_quickret();
416 
417 #ifdef DDB
418         /*
419 	 * We need to allow T_DNA faults when the debugger is active since
420 	 * some dumping paths do large bcopy() which use the floating
421 	 * point registers for faster copying.
422 	 */
423 	if (db_active && frame->tf_trapno != T_DNA) {
424 		eva = (frame->tf_trapno == T_PAGEFLT ? frame->tf_addr : 0);
425 		++gd->gd_trap_nesting_level;
426 		MAKEMPSAFE(have_mplock);
427 		trap_fatal(frame, eva);
428 		--gd->gd_trap_nesting_level;
429 		goto out2;
430 	}
431 #endif
432 
433 	eva = 0;
434 
435 	if ((frame->tf_rflags & PSL_I) == 0) {
436 		/*
437 		 * Buggy application or kernel code has disabled interrupts
438 		 * and then trapped.  Enabling interrupts now is wrong, but
439 		 * it is better than running with interrupts disabled until
440 		 * they are accidentally enabled later.
441 		 */
442 		type = frame->tf_trapno;
443 		if (ISPL(frame->tf_cs) == SEL_UPL) {
444 			MAKEMPSAFE(have_mplock);
445 			/* JG curproc can be NULL */
446 			kprintf(
447 			    "pid %ld (%s): trap %d with interrupts disabled\n",
448 			    (long)curproc->p_pid, curproc->p_comm, type);
449 		} else if (type != T_NMI && type != T_BPTFLT &&
450 		    type != T_TRCTRAP) {
451 			/*
452 			 * XXX not quite right, since this may be for a
453 			 * multiple fault in user mode.
454 			 */
455 			MAKEMPSAFE(have_mplock);
456 			kprintf("kernel trap %d with interrupts disabled\n",
457 			    type);
458 		}
459 		cpu_enable_intr();
460 	}
461 
462 	type = frame->tf_trapno;
463 	code = frame->tf_err;
464 
465 	if (ISPL(frame->tf_cs) == SEL_UPL) {
466 		/* user trap */
467 
468 		KTR_LOG(kernentry_trap, p->p_pid, lp->lwp_tid,
469 			frame->tf_trapno, eva);
470 
471 		userenter(td, p);
472 
473 		sticks = (int)td->td_sticks;
474 		KASSERT(lp->lwp_md.md_regs == frame,
475 			("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
476 
477 		switch (type) {
478 		case T_PRIVINFLT:	/* privileged instruction fault */
479 			i = SIGILL;
480 			ucode = ILL_PRVOPC;
481 			break;
482 
483 		case T_BPTFLT:		/* bpt instruction fault */
484 		case T_TRCTRAP:		/* trace trap */
485 			frame->tf_rflags &= ~PSL_T;
486 			i = SIGTRAP;
487 			ucode = (type == T_TRCTRAP ? TRAP_TRACE : TRAP_BRKPT);
488 			break;
489 
490 		case T_ARITHTRAP:	/* arithmetic trap */
491 			ucode = code;
492 			i = SIGFPE;
493 			break;
494 
495 		case T_ASTFLT:		/* Allow process switch */
496 			mycpu->gd_cnt.v_soft++;
497 			if (mycpu->gd_reqflags & RQF_AST_OWEUPC) {
498 				atomic_clear_int(&mycpu->gd_reqflags,
499 						 RQF_AST_OWEUPC);
500 				addupc_task(p, p->p_prof.pr_addr,
501 					    p->p_prof.pr_ticks);
502 			}
503 			goto out;
504 
505 		case T_PROTFLT:		/* general protection fault */
506 			i = SIGBUS;
507 			ucode = BUS_OBJERR;
508 			break;
509 		case T_STKFLT:		/* stack fault */
510 		case T_SEGNPFLT:	/* segment not present fault */
511 			i = SIGBUS;
512 			ucode = BUS_ADRERR;
513 			break;
514 		case T_TSSFLT:		/* invalid TSS fault */
515 		case T_DOUBLEFLT:	/* double fault */
516 		default:
517 			i = SIGBUS;
518 			ucode = BUS_OBJERR;
519 			break;
520 
521 		case T_PAGEFLT:		/* page fault */
522 			i = trap_pfault(frame, TRUE);
523 			if (frame->tf_rip == 0) {
524 				kprintf("T_PAGEFLT: Warning %%rip == 0!\n");
525 				while (freeze_on_seg_fault) {
526 					tsleep(p, 0, "freeze", hz * 20);
527 				}
528 			}
529 			if (i == -1 || i == 0)
530 				goto out;
531 
532 
533 			if (i == SIGSEGV)
534 				ucode = SEGV_MAPERR;
535 			else {
536 				i = SIGSEGV;
537 				ucode = SEGV_ACCERR;
538 			}
539 			break;
540 
541 		case T_DIVIDE:		/* integer divide fault */
542 			ucode = FPE_INTDIV;
543 			i = SIGFPE;
544 			break;
545 
546 #if NISA > 0
547 		case T_NMI:
548 			MAKEMPSAFE(have_mplock);
549 			/* machine/parity/power fail/"kitchen sink" faults */
550 			if (isa_nmi(code) == 0) {
551 #ifdef DDB
552 				/*
553 				 * NMI can be hooked up to a pushbutton
554 				 * for debugging.
555 				 */
556 				if (ddb_on_nmi) {
557 					kprintf ("NMI ... going to debugger\n");
558 					kdb_trap(type, 0, frame);
559 				}
560 #endif /* DDB */
561 				goto out2;
562 			} else if (panic_on_nmi)
563 				panic("NMI indicates hardware failure");
564 			break;
565 #endif /* NISA > 0 */
566 
567 		case T_OFLOW:		/* integer overflow fault */
568 			ucode = FPE_INTOVF;
569 			i = SIGFPE;
570 			break;
571 
572 		case T_BOUND:		/* bounds check fault */
573 			ucode = FPE_FLTSUB;
574 			i = SIGFPE;
575 			break;
576 
577 		case T_DNA:
578 			/*
579 			 * Virtual kernel intercept - pass the DNA exception
580 			 * to the virtual kernel if it asked to handle it.
581 			 * This occurs when the virtual kernel is holding
582 			 * onto the FP context for a different emulated
583 			 * process then the one currently running.
584 			 *
585 			 * We must still call npxdna() since we may have
586 			 * saved FP state that the virtual kernel needs
587 			 * to hand over to a different emulated process.
588 			 */
589 			if (lp->lwp_vkernel && lp->lwp_vkernel->ve &&
590 			    (td->td_pcb->pcb_flags & FP_VIRTFP)
591 			) {
592 				npxdna();
593 				break;
594 			}
595 
596 			/*
597 			 * The kernel may have switched out the FP unit's
598 			 * state, causing the user process to take a fault
599 			 * when it tries to use the FP unit.  Restore the
600 			 * state here
601 			 */
602 			if (npxdna())
603 				goto out;
604 			i = SIGFPE;
605 			ucode = FPE_FPU_NP_TRAP;
606 			break;
607 
608 		case T_FPOPFLT:		/* FPU operand fetch fault */
609 			ucode = ILL_COPROC;
610 			i = SIGILL;
611 			break;
612 
613 		case T_XMMFLT:		/* SIMD floating-point exception */
614 			ucode = 0; /* XXX */
615 			i = SIGFPE;
616 			break;
617 		}
618 	} else {
619 		/* kernel trap */
620 
621 		switch (type) {
622 		case T_PAGEFLT:			/* page fault */
623 			trap_pfault(frame, FALSE);
624 			goto out2;
625 
626 		case T_DNA:
627 			/*
628 			 * The kernel is apparently using fpu for copying.
629 			 * XXX this should be fatal unless the kernel has
630 			 * registered such use.
631 			 */
632 			if (npxdna())
633 				goto out2;
634 			break;
635 
636 		case T_STKFLT:		/* stack fault */
637 			break;
638 
639 		case T_PROTFLT:		/* general protection fault */
640 		case T_SEGNPFLT:	/* segment not present fault */
641 			/*
642 			 * Invalid segment selectors and out of bounds
643 			 * %rip's and %rsp's can be set up in user mode.
644 			 * This causes a fault in kernel mode when the
645 			 * kernel tries to return to user mode.  We want
646 			 * to get this fault so that we can fix the
647 			 * problem here and not have to check all the
648 			 * selectors and pointers when the user changes
649 			 * them.
650 			 */
651 			if (mycpu->gd_intr_nesting_level == 0) {
652 				if (td->td_pcb->pcb_onfault) {
653 					frame->tf_rip = (register_t)
654 						td->td_pcb->pcb_onfault;
655 					goto out2;
656 				}
657 				if (frame->tf_rip == (long)doreti_iret) {
658 					frame->tf_rip = (long)doreti_iret_fault;
659 					goto out2;
660 				}
661 			}
662 			break;
663 
664 		case T_TSSFLT:
665 			/*
666 			 * PSL_NT can be set in user mode and isn't cleared
667 			 * automatically when the kernel is entered.  This
668 			 * causes a TSS fault when the kernel attempts to
669 			 * `iret' because the TSS link is uninitialized.  We
670 			 * want to get this fault so that we can fix the
671 			 * problem here and not every time the kernel is
672 			 * entered.
673 			 */
674 			if (frame->tf_rflags & PSL_NT) {
675 				frame->tf_rflags &= ~PSL_NT;
676 				goto out2;
677 			}
678 			break;
679 
680 		case T_TRCTRAP:	 /* trace trap */
681 #if 0
682 			if (frame->tf_rip == (int)IDTVEC(syscall)) {
683 				/*
684 				 * We've just entered system mode via the
685 				 * syscall lcall.  Continue single stepping
686 				 * silently until the syscall handler has
687 				 * saved the flags.
688 				 */
689 				goto out2;
690 			}
691 			if (frame->tf_rip == (int)IDTVEC(syscall) + 1) {
692 				/*
693 				 * The syscall handler has now saved the
694 				 * flags.  Stop single stepping it.
695 				 */
696 				frame->tf_rflags &= ~PSL_T;
697 				goto out2;
698 			}
699 #endif
700 
701 			/*
702 			 * Ignore debug register trace traps due to
703 			 * accesses in the user's address space, which
704 			 * can happen under several conditions such as
705 			 * if a user sets a watchpoint on a buffer and
706 			 * then passes that buffer to a system call.
707 			 * We still want to get TRCTRAPS for addresses
708 			 * in kernel space because that is useful when
709 			 * debugging the kernel.
710 			 */
711 #if JG
712 			if (user_dbreg_trap()) {
713 				/*
714 				 * Reset breakpoint bits because the
715 				 * processor doesn't
716 				 */
717 				/* XXX check upper bits here */
718 				load_dr6(rdr6() & 0xfffffff0);
719 				goto out2;
720 			}
721 #endif
722 			/*
723 			 * FALLTHROUGH (TRCTRAP kernel mode, kernel address)
724 			 */
725 		case T_BPTFLT:
726 			/*
727 			 * If DDB is enabled, let it handle the debugger trap.
728 			 * Otherwise, debugger traps "can't happen".
729 			 */
730 			ucode = TRAP_BRKPT;
731 #ifdef DDB
732 			MAKEMPSAFE(have_mplock);
733 			if (kdb_trap(type, 0, frame))
734 				goto out2;
735 #endif
736 			break;
737 
738 #if NISA > 0
739 		case T_NMI:
740 			MAKEMPSAFE(have_mplock);
741 			/* machine/parity/power fail/"kitchen sink" faults */
742 			if (isa_nmi(code) == 0) {
743 #ifdef DDB
744 				/*
745 				 * NMI can be hooked up to a pushbutton
746 				 * for debugging.
747 				 */
748 				if (ddb_on_nmi) {
749 					kprintf ("NMI ... going to debugger\n");
750 					kdb_trap(type, 0, frame);
751 				}
752 #endif /* DDB */
753 				goto out2;
754 			} else if (panic_on_nmi == 0)
755 				goto out2;
756 			/* FALL THROUGH */
757 #endif /* NISA > 0 */
758 		}
759 		MAKEMPSAFE(have_mplock);
760 		trap_fatal(frame, 0);
761 		goto out2;
762 	}
763 
764 	/*
765 	 * Virtual kernel intercept - if the fault is directly related to a
766 	 * VM context managed by a virtual kernel then let the virtual kernel
767 	 * handle it.
768 	 */
769 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
770 		vkernel_trap(lp, frame);
771 		goto out;
772 	}
773 
774 	/* Translate fault for emulators (e.g. Linux) */
775 	if (*p->p_sysent->sv_transtrap)
776 		i = (*p->p_sysent->sv_transtrap)(i, type);
777 
778 	MAKEMPSAFE(have_mplock);
779 	trapsignal(lp, i, ucode);
780 
781 #ifdef DEBUG
782 	if (type <= MAX_TRAP_MSG) {
783 		uprintf("fatal process exception: %s",
784 			trap_msg[type]);
785 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
786 			uprintf(", fault VA = 0x%lx", frame->tf_addr);
787 		uprintf("\n");
788 	}
789 #endif
790 
791 out:
792 	userret(lp, frame, sticks);
793 	userexit(lp);
794 out2:	;
795 #ifdef SMP
796 	if (have_mplock)
797 		rel_mplock();
798 #endif
799 	if (p != NULL && lp != NULL)
800 		KTR_LOG(kernentry_trap_ret, p->p_pid, lp->lwp_tid);
801 #ifdef INVARIANTS
802 	KASSERT(crit_count == td->td_critcount,
803 		("trap: critical section count mismatch! %d/%d",
804 		crit_count, td->td_pri));
805 	KASSERT(curstop == td->td_toks_stop,
806 		("trap: extra tokens held after trap! %ld/%ld",
807 		curstop - &td->td_toks_base,
808 		td->td_toks_stop - &td->td_toks_base));
809 #endif
810 }
811 
812 static int
813 trap_pfault(struct trapframe *frame, int usermode)
814 {
815 	vm_offset_t va;
816 	struct vmspace *vm = NULL;
817 	vm_map_t map;
818 	int rv = 0;
819 	int fault_flags;
820 	vm_prot_t ftype;
821 	thread_t td = curthread;
822 	struct lwp *lp = td->td_lwp;
823 	struct proc *p;
824 
825 	va = trunc_page(frame->tf_addr);
826 	if (va >= VM_MIN_KERNEL_ADDRESS) {
827 		/*
828 		 * Don't allow user-mode faults in kernel address space.
829 		 */
830 		if (usermode) {
831 			fault_flags = -1;
832 			ftype = -1;
833 			goto nogo;
834 		}
835 
836 		map = &kernel_map;
837 	} else {
838 		/*
839 		 * This is a fault on non-kernel virtual memory.
840 		 * vm is initialized above to NULL. If curproc is NULL
841 		 * or curproc->p_vmspace is NULL the fault is fatal.
842 		 */
843 		if (lp != NULL)
844 			vm = lp->lwp_vmspace;
845 
846 		if (vm == NULL) {
847 			fault_flags = -1;
848 			ftype = -1;
849 			goto nogo;
850 		}
851 
852 		/*
853 		 * Debugging, try to catch kernel faults on the user address space when not inside
854 		 * on onfault (e.g. copyin/copyout) routine.
855 		 */
856 		if (usermode == 0 && (td->td_pcb == NULL || td->td_pcb->pcb_onfault == NULL)) {
857 			if (freeze_on_seg_fault) {
858 				kprintf("trap_pfault: user address fault from kernel mode "
859 					"%016lx\n", (long)frame->tf_addr);
860 				while (freeze_on_seg_fault) {
861 					    tsleep(&freeze_on_seg_fault, 0, "frzseg", hz * 20);
862 				}
863 			}
864 		}
865 		map = &vm->vm_map;
866 	}
867 
868 	/*
869 	 * PGEX_I is defined only if the execute disable bit capability is
870 	 * supported and enabled.
871 	 */
872 	if (frame->tf_err & PGEX_W)
873 		ftype = VM_PROT_WRITE;
874 #if JG
875 	else if ((frame->tf_err & PGEX_I) && pg_nx != 0)
876 		ftype = VM_PROT_EXECUTE;
877 #endif
878 	else
879 		ftype = VM_PROT_READ;
880 
881 	if (map != &kernel_map) {
882 		/*
883 		 * Keep swapout from messing with us during this
884 		 *	critical time.
885 		 */
886 		PHOLD(lp->lwp_proc);
887 
888 		/*
889 		 * Issue fault
890 		 */
891 		fault_flags = 0;
892 		if (usermode)
893 			fault_flags |= VM_FAULT_BURST;
894 		if (ftype & VM_PROT_WRITE)
895 			fault_flags |= VM_FAULT_DIRTY;
896 		else
897 			fault_flags |= VM_FAULT_NORMAL;
898 		rv = vm_fault(map, va, ftype, fault_flags);
899 
900 		PRELE(lp->lwp_proc);
901 	} else {
902 		/*
903 		 * Don't have to worry about process locking or stacks in the
904 		 * kernel.
905 		 */
906 		fault_flags = VM_FAULT_NORMAL;
907 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
908 	}
909 	if (rv == KERN_SUCCESS)
910 		return (0);
911 nogo:
912 	if (!usermode) {
913 		if (td->td_gd->gd_intr_nesting_level == 0 &&
914 		    td->td_pcb->pcb_onfault) {
915 			frame->tf_rip = (register_t)td->td_pcb->pcb_onfault;
916 			return (0);
917 		}
918 		trap_fatal(frame, frame->tf_addr);
919 		return (-1);
920 	}
921 
922 	/*
923 	 * NOTE: on x86_64 we have a tf_addr field in the trapframe, no
924 	 * kludge is needed to pass the fault address to signal handlers.
925 	 */
926 	p = td->td_proc;
927 	if (td->td_lwp->lwp_vkernel == NULL) {
928 		if (bootverbose || freeze_on_seg_fault || ddb_on_seg_fault) {
929 			kprintf("seg-fault ft=%04x ff=%04x addr=%p rip=%p "
930 			    "pid=%d cpu=%d p_comm=%s\n",
931 			    ftype, fault_flags,
932 			    (void *)frame->tf_addr,
933 			    (void *)frame->tf_rip,
934 			    p->p_pid, mycpu->gd_cpuid, p->p_comm);
935 		}
936 #ifdef DDB
937 		while (freeze_on_seg_fault) {
938 			tsleep(p, 0, "freeze", hz * 20);
939 		}
940 		if (ddb_on_seg_fault)
941 			Debugger("ddb_on_seg_fault");
942 #endif
943 	}
944 
945 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
946 }
947 
948 static void
949 trap_fatal(struct trapframe *frame, vm_offset_t eva)
950 {
951 	int code, ss;
952 	u_int type;
953 	long rsp;
954 	struct soft_segment_descriptor softseg;
955 	char *msg;
956 
957 	code = frame->tf_err;
958 	type = frame->tf_trapno;
959 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)], &softseg);
960 
961 	if (type <= MAX_TRAP_MSG)
962 		msg = trap_msg[type];
963 	else
964 		msg = "UNKNOWN";
965 	kprintf("\n\nFatal trap %d: %s while in %s mode\n", type, msg,
966 	    ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
967 #ifdef SMP
968 	/* three separate prints in case of a trap on an unmapped page */
969 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
970 	kprintf("lapic->id = %08x\n", lapic->id);
971 #endif
972 	if (type == T_PAGEFLT) {
973 		kprintf("fault virtual address	= 0x%lx\n", eva);
974 		kprintf("fault code		= %s %s %s, %s\n",
975 			code & PGEX_U ? "user" : "supervisor",
976 			code & PGEX_W ? "write" : "read",
977 			code & PGEX_I ? "instruction" : "data",
978 			code & PGEX_P ? "protection violation" : "page not present");
979 	}
980 	kprintf("instruction pointer	= 0x%lx:0x%lx\n",
981 	       frame->tf_cs & 0xffff, frame->tf_rip);
982         if (ISPL(frame->tf_cs) == SEL_UPL) {
983 		ss = frame->tf_ss & 0xffff;
984 		rsp = frame->tf_rsp;
985 	} else {
986 		ss = GSEL(GDATA_SEL, SEL_KPL);
987 		rsp = (long)&frame->tf_rsp;
988 	}
989 	kprintf("stack pointer	        = 0x%x:0x%lx\n", ss, rsp);
990 	kprintf("frame pointer	        = 0x%x:0x%lx\n", ss, frame->tf_rbp);
991 	kprintf("code segment		= base 0x%lx, limit 0x%lx, type 0x%x\n",
992 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
993 	kprintf("			= DPL %d, pres %d, long %d, def32 %d, gran %d\n",
994 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_long, softseg.ssd_def32,
995 	       softseg.ssd_gran);
996 	kprintf("processor eflags	= ");
997 	if (frame->tf_rflags & PSL_T)
998 		kprintf("trace trap, ");
999 	if (frame->tf_rflags & PSL_I)
1000 		kprintf("interrupt enabled, ");
1001 	if (frame->tf_rflags & PSL_NT)
1002 		kprintf("nested task, ");
1003 	if (frame->tf_rflags & PSL_RF)
1004 		kprintf("resume, ");
1005 	kprintf("IOPL = %ld\n", (frame->tf_rflags & PSL_IOPL) >> 12);
1006 	kprintf("current process		= ");
1007 	if (curproc) {
1008 		kprintf("%lu\n",
1009 		    (u_long)curproc->p_pid);
1010 	} else {
1011 		kprintf("Idle\n");
1012 	}
1013 	kprintf("current thread          = pri %d ", curthread->td_pri);
1014 	if (curthread->td_critcount)
1015 		kprintf("(CRIT)");
1016 	kprintf("\n");
1017 
1018 #ifdef DDB
1019 	if ((debugger_on_panic || db_active) && kdb_trap(type, code, frame))
1020 		return;
1021 #endif
1022 	kprintf("trap number		= %d\n", type);
1023 	if (type <= MAX_TRAP_MSG)
1024 		panic("%s", trap_msg[type]);
1025 	else
1026 		panic("unknown/reserved trap");
1027 }
1028 
1029 /*
1030  * Double fault handler. Called when a fault occurs while writing
1031  * a frame for a trap/exception onto the stack. This usually occurs
1032  * when the stack overflows (such is the case with infinite recursion,
1033  * for example).
1034  */
1035 static __inline
1036 int
1037 in_kstack_guard(register_t rptr)
1038 {
1039 	thread_t td = curthread;
1040 
1041 	if ((char *)rptr >= td->td_kstack &&
1042 	    (char *)rptr < td->td_kstack + PAGE_SIZE) {
1043 		return 1;
1044 	}
1045 	return 0;
1046 }
1047 
1048 void
1049 dblfault_handler(struct trapframe *frame)
1050 {
1051 	thread_t td = curthread;
1052 
1053 	if (in_kstack_guard(frame->tf_rsp) || in_kstack_guard(frame->tf_rbp)) {
1054 		kprintf("DOUBLE FAULT - KERNEL STACK GUARD HIT!\n");
1055 		if (in_kstack_guard(frame->tf_rsp))
1056 			frame->tf_rsp = (register_t)(td->td_kstack + PAGE_SIZE);
1057 		if (in_kstack_guard(frame->tf_rbp))
1058 			frame->tf_rbp = (register_t)(td->td_kstack + PAGE_SIZE);
1059 	} else {
1060 		kprintf("DOUBLE FAULT\n");
1061 	}
1062 	kprintf("\nFatal double fault\n");
1063 	kprintf("rip = 0x%lx\n", frame->tf_rip);
1064 	kprintf("rsp = 0x%lx\n", frame->tf_rsp);
1065 	kprintf("rbp = 0x%lx\n", frame->tf_rbp);
1066 #ifdef SMP
1067 	/* three separate prints in case of a trap on an unmapped page */
1068 	kprintf("cpuid = %d; ", mycpu->gd_cpuid);
1069 	kprintf("lapic->id = %08x\n", lapic->id);
1070 #endif
1071 	panic("double fault");
1072 }
1073 
1074 /*
1075  * syscall2 -	MP aware system call request C handler
1076  *
1077  * A system call is essentially treated as a trap except that the
1078  * MP lock is not held on entry or return.  We are responsible for
1079  * obtaining the MP lock if necessary and for handling ASTs
1080  * (e.g. a task switch) prior to return.
1081  *
1082  * MPSAFE
1083  */
1084 void
1085 syscall2(struct trapframe *frame)
1086 {
1087 	struct thread *td = curthread;
1088 	struct proc *p = td->td_proc;
1089 	struct lwp *lp = td->td_lwp;
1090 	caddr_t params;
1091 	struct sysent *callp;
1092 	register_t orig_tf_rflags;
1093 	int sticks;
1094 	int error;
1095 	int narg;
1096 #ifdef INVARIANTS
1097 	int crit_count = td->td_critcount;
1098 #endif
1099 #ifdef SMP
1100 	int have_mplock = 0;
1101 #endif
1102 	register_t *argp;
1103 	u_int code;
1104 	int reg, regcnt;
1105 	union sysunion args;
1106 	register_t *argsdst;
1107 
1108 	mycpu->gd_cnt.v_syscall++;
1109 
1110 #ifdef DIAGNOSTIC
1111 	if (ISPL(frame->tf_cs) != SEL_UPL) {
1112 		get_mplock();
1113 		panic("syscall");
1114 		/* NOT REACHED */
1115 	}
1116 #endif
1117 
1118 	KTR_LOG(kernentry_syscall, p->p_pid, lp->lwp_tid,
1119 		frame->tf_rax);
1120 
1121 	userenter(td, p);	/* lazy raise our priority */
1122 
1123 	reg = 0;
1124 	regcnt = 6;
1125 	/*
1126 	 * Misc
1127 	 */
1128 	sticks = (int)td->td_sticks;
1129 	orig_tf_rflags = frame->tf_rflags;
1130 
1131 	/*
1132 	 * Virtual kernel intercept - if a VM context managed by a virtual
1133 	 * kernel issues a system call the virtual kernel handles it, not us.
1134 	 * Restore the virtual kernel context and return from its system
1135 	 * call.  The current frame is copied out to the virtual kernel.
1136 	 */
1137 	if (lp->lwp_vkernel && lp->lwp_vkernel->ve) {
1138 		vkernel_trap(lp, frame);
1139 		error = EJUSTRETURN;
1140 		goto out;
1141 	}
1142 
1143 	/*
1144 	 * Get the system call parameters and account for time
1145 	 */
1146 	KASSERT(lp->lwp_md.md_regs == frame,
1147 		("Frame mismatch %p %p", lp->lwp_md.md_regs, frame));
1148 	params = (caddr_t)frame->tf_rsp + sizeof(register_t);
1149 	code = frame->tf_rax;
1150 
1151 	if (p->p_sysent->sv_prepsyscall) {
1152 		(*p->p_sysent->sv_prepsyscall)(
1153 			frame, (int *)(&args.nosys.sysmsg + 1),
1154 			&code, &params);
1155 	} else {
1156 		if (code == SYS_syscall || code == SYS___syscall) {
1157 			code = frame->tf_rdi;
1158 			reg++;
1159 			regcnt--;
1160 		}
1161 	}
1162 
1163 	if (p->p_sysent->sv_mask)
1164 		code &= p->p_sysent->sv_mask;
1165 
1166 	if (code >= p->p_sysent->sv_size)
1167 		callp = &p->p_sysent->sv_table[0];
1168 	else
1169 		callp = &p->p_sysent->sv_table[code];
1170 
1171 	narg = callp->sy_narg & SYF_ARGMASK;
1172 
1173 	/*
1174 	 * On x86_64 we get up to six arguments in registers. The rest are
1175 	 * on the stack. The first six members of 'struct trapframe' happen
1176 	 * to be the registers used to pass arguments, in exactly the right
1177 	 * order.
1178 	 */
1179 	argp = &frame->tf_rdi;
1180 	argp += reg;
1181 	argsdst = (register_t *)(&args.nosys.sysmsg + 1);
1182 	/*
1183 	 * JG can we overflow the space pointed to by 'argsdst'
1184 	 * either with 'bcopy' or with 'copyin'?
1185 	 */
1186 	bcopy(argp, argsdst, sizeof(register_t) * regcnt);
1187 	/*
1188 	 * copyin is MP aware, but the tracing code is not
1189 	 */
1190 	if (narg > regcnt) {
1191 		KASSERT(params != NULL, ("copyin args with no params!"));
1192 		error = copyin(params, &argsdst[regcnt],
1193 			(narg - regcnt) * sizeof(register_t));
1194 		if (error) {
1195 #ifdef KTRACE
1196 			if (KTRPOINT(td, KTR_SYSCALL)) {
1197 				MAKEMPSAFE(have_mplock);
1198 
1199 				ktrsyscall(lp, code, narg,
1200 					(void *)(&args.nosys.sysmsg + 1));
1201 			}
1202 #endif
1203 			goto bad;
1204 		}
1205 	}
1206 
1207 #ifdef KTRACE
1208 	if (KTRPOINT(td, KTR_SYSCALL)) {
1209 		MAKEMPSAFE(have_mplock);
1210 		ktrsyscall(lp, code, narg, (void *)(&args.nosys.sysmsg + 1));
1211 	}
1212 #endif
1213 
1214 	/*
1215 	 * Default return value is 0 (will be copied to %rax).  Double-value
1216 	 * returns use %rax and %rdx.  %rdx is left unchanged for system
1217 	 * calls which return only one result.
1218 	 */
1219 	args.sysmsg_fds[0] = 0;
1220 	args.sysmsg_fds[1] = frame->tf_rdx;
1221 
1222 	/*
1223 	 * The syscall might manipulate the trap frame. If it does it
1224 	 * will probably return EJUSTRETURN.
1225 	 */
1226 	args.sysmsg_frame = frame;
1227 
1228 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1229 
1230 	/*
1231 	 * NOTE: All system calls run MPSAFE now.  The system call itself
1232 	 *	 is responsible for getting the MP lock.
1233 	 */
1234 #ifdef SYSCALL_DEBUG
1235 	uint64_t tscval = rdtsc();
1236 #endif
1237 	error = (*callp->sy_call)(&args);
1238 #ifdef SYSCALL_DEBUG
1239 	tscval = rdtsc() - tscval;
1240 	tscval = tscval * 1000000 / tsc_frequency;
1241 	if (SysCallsWorstCase[code] < tscval)
1242 		SysCallsWorstCase[code] = tscval;
1243 #endif
1244 
1245 out:
1246 	/*
1247 	 * MP SAFE (we may or may not have the MP lock at this point)
1248 	 */
1249 	//kprintf("SYSMSG %d ", error);
1250 	switch (error) {
1251 	case 0:
1252 		/*
1253 		 * Reinitialize proc pointer `p' as it may be different
1254 		 * if this is a child returning from fork syscall.
1255 		 */
1256 		p = curproc;
1257 		lp = curthread->td_lwp;
1258 		frame->tf_rax = args.sysmsg_fds[0];
1259 		frame->tf_rdx = args.sysmsg_fds[1];
1260 		frame->tf_rflags &= ~PSL_C;
1261 		break;
1262 	case ERESTART:
1263 		/*
1264 		 * Reconstruct pc, we know that 'syscall' is 2 bytes.
1265 		 * We have to do a full context restore so that %r10
1266 		 * (which was holding the value of %rcx) is restored for
1267 		 * the next iteration.
1268 		 */
1269 		if (frame->tf_err != 0 && frame->tf_err != 2)
1270 			kprintf("lp %s:%d frame->tf_err is weird %ld\n",
1271 				td->td_comm, lp->lwp_proc->p_pid, frame->tf_err);
1272 		frame->tf_rip -= frame->tf_err;
1273 		frame->tf_r10 = frame->tf_rcx;
1274 		break;
1275 	case EJUSTRETURN:
1276 		break;
1277 	case EASYNC:
1278 		panic("Unexpected EASYNC return value (for now)");
1279 	default:
1280 bad:
1281 		if (p->p_sysent->sv_errsize) {
1282 			if (error >= p->p_sysent->sv_errsize)
1283 				error = -1;	/* XXX */
1284 			else
1285 				error = p->p_sysent->sv_errtbl[error];
1286 		}
1287 		frame->tf_rax = error;
1288 		frame->tf_rflags |= PSL_C;
1289 		break;
1290 	}
1291 
1292 	/*
1293 	 * Traced syscall.  trapsignal() is not MP aware.
1294 	 */
1295 	if (orig_tf_rflags & PSL_T) {
1296 		MAKEMPSAFE(have_mplock);
1297 		frame->tf_rflags &= ~PSL_T;
1298 		trapsignal(lp, SIGTRAP, TRAP_TRACE);
1299 	}
1300 
1301 	/*
1302 	 * Handle reschedule and other end-of-syscall issues
1303 	 */
1304 	userret(lp, frame, sticks);
1305 
1306 #ifdef KTRACE
1307 	if (KTRPOINT(td, KTR_SYSRET)) {
1308 		MAKEMPSAFE(have_mplock);
1309 		ktrsysret(lp, code, error, args.sysmsg_result);
1310 	}
1311 #endif
1312 
1313 	/*
1314 	 * This works because errno is findable through the
1315 	 * register set.  If we ever support an emulation where this
1316 	 * is not the case, this code will need to be revisited.
1317 	 */
1318 	STOPEVENT(p, S_SCX, code);
1319 
1320 	userexit(lp);
1321 #ifdef SMP
1322 	/*
1323 	 * Release the MP lock if we had to get it
1324 	 */
1325 	if (have_mplock)
1326 		rel_mplock();
1327 #endif
1328 	KTR_LOG(kernentry_syscall_ret, p->p_pid, lp->lwp_tid, error);
1329 #ifdef INVARIANTS
1330 	KASSERT(crit_count == td->td_critcount,
1331 		("syscall: critical section count mismatch! %d/%d",
1332 		crit_count, td->td_pri));
1333 	KASSERT(&td->td_toks_base == td->td_toks_stop,
1334 		("syscall: extra tokens held after trap! %ld",
1335 		td->td_toks_stop - &td->td_toks_base));
1336 #endif
1337 }
1338 
1339 /*
1340  * NOTE: mplock not held at any point
1341  */
1342 void
1343 fork_return(struct lwp *lp, struct trapframe *frame)
1344 {
1345 	frame->tf_rax = 0;		/* Child returns zero */
1346 	frame->tf_rflags &= ~PSL_C;	/* success */
1347 	frame->tf_rdx = 1;
1348 
1349 	generic_lwp_return(lp, frame);
1350 	KTR_LOG(kernentry_fork_ret, lp->lwp_proc->p_pid, lp->lwp_tid);
1351 }
1352 
1353 /*
1354  * Simplified back end of syscall(), used when returning from fork()
1355  * directly into user mode.
1356  *
1357  * This code will return back into the fork trampoline code which then
1358  * runs doreti.
1359  *
1360  * NOTE: The mplock is not held at any point.
1361  */
1362 void
1363 generic_lwp_return(struct lwp *lp, struct trapframe *frame)
1364 {
1365 	struct proc *p = lp->lwp_proc;
1366 
1367 	/*
1368 	 * Newly forked processes are given a kernel priority.  We have to
1369 	 * adjust the priority to a normal user priority and fake entry
1370 	 * into the kernel (call userenter()) to install a passive release
1371 	 * function just in case userret() decides to stop the process.  This
1372 	 * can occur when ^Z races a fork.  If we do not install the passive
1373 	 * release function the current process designation will not be
1374 	 * released when the thread goes to sleep.
1375 	 */
1376 	lwkt_setpri_self(TDPRI_USER_NORM);
1377 	userenter(lp->lwp_thread, p);
1378 	userret(lp, frame, 0);
1379 #ifdef KTRACE
1380 	if (KTRPOINT(lp->lwp_thread, KTR_SYSRET))
1381 		ktrsysret(lp, SYS_fork, 0, 0);
1382 #endif
1383 	lp->lwp_flags |= LWP_PASSIVE_ACQ;
1384 	userexit(lp);
1385 	lp->lwp_flags &= ~LWP_PASSIVE_ACQ;
1386 }
1387 
1388 /*
1389  * If PGEX_FPFAULT is set then set FP_VIRTFP in the PCB to force a T_DNA
1390  * fault (which is then passed back to the virtual kernel) if an attempt is
1391  * made to use the FP unit.
1392  *
1393  * XXX this is a fairly big hack.
1394  */
1395 void
1396 set_vkernel_fp(struct trapframe *frame)
1397 {
1398 	struct thread *td = curthread;
1399 
1400 	if (frame->tf_xflags & PGEX_FPFAULT) {
1401 		td->td_pcb->pcb_flags |= FP_VIRTFP;
1402 		if (mdcpu->gd_npxthread == td)
1403 			npxexit();
1404 	} else {
1405 		td->td_pcb->pcb_flags &= ~FP_VIRTFP;
1406 	}
1407 }
1408 
1409 /*
1410  * Called from vkernel_trap() to fixup the vkernel's syscall
1411  * frame for vmspace_ctl() return.
1412  */
1413 void
1414 cpu_vkernel_trap(struct trapframe *frame, int error)
1415 {
1416 	frame->tf_rax = error;
1417 	if (error)
1418 		frame->tf_rflags |= PSL_C;
1419 	else
1420 		frame->tf_rflags &= ~PSL_C;
1421 }
1422