1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1994 David Greenman
7  * Copyright (c) 2003 Peter Wemm
8  * Copyright (c) 2005-2008 Alan L. Cox <alc@cs.rice.edu>
9  * Copyright (c) 2008, 2009 The DragonFly Project.
10  * Copyright (c) 2008, 2009 Jordan Gordeev.
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * the Systems Programming Group of the University of Utah Computer
15  * Science Department and William Jolitz of UUNET Technologies Inc.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
46  * $FreeBSD: src/sys/i386/i386/pmap.c,v 1.250.2.18 2002/03/06 22:48:53 silby Exp $
47  */
48 
49 /*
50  * Manages physical address maps.
51  *
52  * In most cases the vm_token must be held when manipulating a user pmap
53  * or elements within a vm_page, and the kvm_token must be held when
54  * manipulating the kernel pmap.  Operations on user pmaps may require
55  * additional synchronization.
56  *
57  * In some cases the caller may hold the required tokens to prevent pmap
58  * functions from blocking on those same tokens.  This typically only works
59  * for lookup-style operations.
60  */
61 
62 #if JG
63 #include "opt_pmap.h"
64 #endif
65 #include "opt_msgbuf.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/proc.h>
71 #include <sys/msgbuf.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/vmspace.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_param.h>
78 #include <sys/sysctl.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/vm_page.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_extern.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_zone.h>
88 
89 #include <sys/user.h>
90 #include <sys/thread2.h>
91 #include <sys/sysref2.h>
92 
93 #include <machine/cputypes.h>
94 #include <machine/md_var.h>
95 #include <machine/specialreg.h>
96 #include <machine/smp.h>
97 #include <machine/globaldata.h>
98 #include <machine/pmap.h>
99 #include <machine/pmap_inval.h>
100 
101 #include <ddb/ddb.h>
102 
103 #include <stdio.h>
104 #include <assert.h>
105 #include <stdlib.h>
106 
107 #define PMAP_KEEP_PDIRS
108 #ifndef PMAP_SHPGPERPROC
109 #define PMAP_SHPGPERPROC 200
110 #endif
111 
112 #if defined(DIAGNOSTIC)
113 #define PMAP_DIAGNOSTIC
114 #endif
115 
116 #define MINPV 2048
117 
118 #if !defined(PMAP_DIAGNOSTIC)
119 #define PMAP_INLINE __inline
120 #else
121 #define PMAP_INLINE
122 #endif
123 
124 /*
125  * Get PDEs and PTEs for user/kernel address space
126  */
127 static pd_entry_t *pmap_pde(pmap_t pmap, vm_offset_t va);
128 #define pdir_pde(m, v) (m[(vm_offset_t)(v) >> PDRSHIFT])
129 
130 #define pmap_pde_v(pte)		((*(pd_entry_t *)pte & VPTE_V) != 0)
131 #define pmap_pte_w(pte)		((*(pt_entry_t *)pte & VPTE_WIRED) != 0)
132 #define pmap_pte_m(pte)		((*(pt_entry_t *)pte & VPTE_M) != 0)
133 #define pmap_pte_u(pte)		((*(pt_entry_t *)pte & VPTE_A) != 0)
134 #define pmap_pte_v(pte)		((*(pt_entry_t *)pte & VPTE_V) != 0)
135 
136 /*
137  * Given a map and a machine independent protection code,
138  * convert to a vax protection code.
139  */
140 #define pte_prot(m, p)		\
141 	(protection_codes[p & (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE)])
142 static int protection_codes[8];
143 
144 struct pmap kernel_pmap;
145 static TAILQ_HEAD(,pmap)	pmap_list = TAILQ_HEAD_INITIALIZER(pmap_list);
146 
147 static boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
148 
149 static vm_object_t kptobj;
150 
151 static int nkpt;
152 
153 static uint64_t	KPDphys;	/* phys addr of kernel level 2 */
154 uint64_t		KPDPphys;	/* phys addr of kernel level 3 */
155 uint64_t		KPML4phys;	/* phys addr of kernel level 4 */
156 
157 
158 /*
159  * Data for the pv entry allocation mechanism
160  */
161 static vm_zone_t pvzone;
162 static struct vm_zone pvzone_store;
163 static struct vm_object pvzone_obj;
164 static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0;
165 static int pmap_pagedaemon_waken = 0;
166 static struct pv_entry *pvinit;
167 
168 /*
169  * All those kernel PT submaps that BSD is so fond of
170  */
171 pt_entry_t *CMAP1 = 0, *ptmmap;
172 caddr_t CADDR1 = 0;
173 static pt_entry_t *msgbufmap;
174 
175 uint64_t KPTphys;
176 
177 static PMAP_INLINE void	free_pv_entry (pv_entry_t pv);
178 static pv_entry_t get_pv_entry (void);
179 static void	i386_protection_init (void);
180 static __inline void	pmap_clearbit (vm_page_t m, int bit);
181 
182 static void	pmap_remove_all (vm_page_t m);
183 static int pmap_remove_pte (struct pmap *pmap, pt_entry_t *ptq,
184 				vm_offset_t sva);
185 static void pmap_remove_page (struct pmap *pmap, vm_offset_t va);
186 static int pmap_remove_entry (struct pmap *pmap, vm_page_t m,
187 				vm_offset_t va);
188 static boolean_t pmap_testbit (vm_page_t m, int bit);
189 static void pmap_insert_entry (pmap_t pmap, vm_offset_t va,
190 		vm_page_t mpte, vm_page_t m);
191 
192 static vm_page_t pmap_allocpte (pmap_t pmap, vm_offset_t va);
193 
194 static int pmap_release_free_page (pmap_t pmap, vm_page_t p);
195 static vm_page_t _pmap_allocpte (pmap_t pmap, vm_pindex_t ptepindex);
196 #if JGPMAP32
197 static pt_entry_t * pmap_pte_quick (pmap_t pmap, vm_offset_t va);
198 #endif
199 static vm_page_t pmap_page_lookup (vm_object_t object, vm_pindex_t pindex);
200 static int pmap_unuse_pt (pmap_t, vm_offset_t, vm_page_t);
201 
202 /*
203  * pmap_pte_quick:
204  *
205  *	Super fast pmap_pte routine best used when scanning the pv lists.
206  *	This eliminates many course-grained invltlb calls.  Note that many of
207  *	the pv list scans are across different pmaps and it is very wasteful
208  *	to do an entire invltlb when checking a single mapping.
209  *
210  *	Should only be called while in a critical section.
211  */
212 #if JGPMAP32
213 static __inline pt_entry_t *pmap_pte(pmap_t pmap, vm_offset_t va);
214 
215 static pt_entry_t *
216 pmap_pte_quick(pmap_t pmap, vm_offset_t va)
217 {
218 	return pmap_pte(pmap, va);
219 }
220 #endif
221 
222 /* Return a non-clipped PD index for a given VA */
223 static __inline vm_pindex_t
224 pmap_pde_pindex(vm_offset_t va)
225 {
226 	return va >> PDRSHIFT;
227 }
228 
229 /* Return various clipped indexes for a given VA */
230 static __inline vm_pindex_t
231 pmap_pte_index(vm_offset_t va)
232 {
233 
234 	return ((va >> PAGE_SHIFT) & ((1ul << NPTEPGSHIFT) - 1));
235 }
236 
237 static __inline vm_pindex_t
238 pmap_pde_index(vm_offset_t va)
239 {
240 
241 	return ((va >> PDRSHIFT) & ((1ul << NPDEPGSHIFT) - 1));
242 }
243 
244 static __inline vm_pindex_t
245 pmap_pdpe_index(vm_offset_t va)
246 {
247 
248 	return ((va >> PDPSHIFT) & ((1ul << NPDPEPGSHIFT) - 1));
249 }
250 
251 static __inline vm_pindex_t
252 pmap_pml4e_index(vm_offset_t va)
253 {
254 
255 	return ((va >> PML4SHIFT) & ((1ul << NPML4EPGSHIFT) - 1));
256 }
257 
258 /* Return a pointer to the PML4 slot that corresponds to a VA */
259 static __inline pml4_entry_t *
260 pmap_pml4e(pmap_t pmap, vm_offset_t va)
261 {
262 
263 	return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
264 }
265 
266 /* Return a pointer to the PDP slot that corresponds to a VA */
267 static __inline pdp_entry_t *
268 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
269 {
270 	pdp_entry_t *pdpe;
271 
272 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & VPTE_FRAME);
273 	return (&pdpe[pmap_pdpe_index(va)]);
274 }
275 
276 /* Return a pointer to the PDP slot that corresponds to a VA */
277 static __inline pdp_entry_t *
278 pmap_pdpe(pmap_t pmap, vm_offset_t va)
279 {
280 	pml4_entry_t *pml4e;
281 
282 	pml4e = pmap_pml4e(pmap, va);
283 	if ((*pml4e & VPTE_V) == 0)
284 		return NULL;
285 	return (pmap_pml4e_to_pdpe(pml4e, va));
286 }
287 
288 /* Return a pointer to the PD slot that corresponds to a VA */
289 static __inline pd_entry_t *
290 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
291 {
292 	pd_entry_t *pde;
293 
294 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & VPTE_FRAME);
295 	return (&pde[pmap_pde_index(va)]);
296 }
297 
298 /* Return a pointer to the PD slot that corresponds to a VA */
299 static __inline pd_entry_t *
300 pmap_pde(pmap_t pmap, vm_offset_t va)
301 {
302 	pdp_entry_t *pdpe;
303 
304 	pdpe = pmap_pdpe(pmap, va);
305 	if (pdpe == NULL || (*pdpe & VPTE_V) == 0)
306 		 return NULL;
307 	return (pmap_pdpe_to_pde(pdpe, va));
308 }
309 
310 /* Return a pointer to the PT slot that corresponds to a VA */
311 static __inline pt_entry_t *
312 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
313 {
314 	pt_entry_t *pte;
315 
316 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & VPTE_FRAME);
317 	return (&pte[pmap_pte_index(va)]);
318 }
319 
320 /* Return a pointer to the PT slot that corresponds to a VA */
321 static __inline pt_entry_t *
322 pmap_pte(pmap_t pmap, vm_offset_t va)
323 {
324 	pd_entry_t *pde;
325 
326 	pde = pmap_pde(pmap, va);
327 	if (pde == NULL || (*pde & VPTE_V) == 0)
328 		return NULL;
329 	if ((*pde & VPTE_PS) != 0)	/* compat with i386 pmap_pte() */
330 		return ((pt_entry_t *)pde);
331 	return (pmap_pde_to_pte(pde, va));
332 }
333 
334 
335 #if JGV
336 PMAP_INLINE pt_entry_t *
337 vtopte(vm_offset_t va)
338 {
339 	uint64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
340 
341 	return (PTmap + ((va >> PAGE_SHIFT) & mask));
342 }
343 
344 static __inline pd_entry_t *
345 vtopde(vm_offset_t va)
346 {
347 	uint64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
348 
349 	return (PDmap + ((va >> PDRSHIFT) & mask));
350 }
351 #else
352 static PMAP_INLINE pt_entry_t *
353 vtopte(vm_offset_t va)
354 {
355 	pt_entry_t *x;
356 	x = pmap_pte(&kernel_pmap, va);
357 	assert(x != NULL);
358 	return x;
359 }
360 
361 static __inline pd_entry_t *
362 vtopde(vm_offset_t va)
363 {
364 	pd_entry_t *x;
365 	x = pmap_pde(&kernel_pmap, va);
366 	assert(x != NULL);
367 	return x;
368 }
369 #endif
370 
371 static uint64_t
372 allocpages(vm_paddr_t *firstaddr, int n)
373 {
374 	uint64_t ret;
375 
376 	ret = *firstaddr;
377 #if JGV
378 	bzero((void *)ret, n * PAGE_SIZE);
379 #endif
380 	*firstaddr += n * PAGE_SIZE;
381 	return (ret);
382 }
383 
384 static void
385 create_pagetables(vm_paddr_t *firstaddr, int64_t ptov_offset)
386 {
387 	int i;
388 	pml4_entry_t *KPML4virt;
389 	pdp_entry_t *KPDPvirt;
390 	pd_entry_t *KPDvirt;
391 	pt_entry_t *KPTvirt;
392 	int kpml4i = pmap_pml4e_index(ptov_offset);
393 	int kpdpi = pmap_pdpe_index(ptov_offset);
394 
395 	/*
396          * Calculate NKPT - number of kernel page tables.  We have to
397          * accomodoate prealloction of the vm_page_array, dump bitmap,
398          * MSGBUF_SIZE, and other stuff.  Be generous.
399          *
400          * Maxmem is in pages.
401          */
402         nkpt = (Maxmem * (sizeof(struct vm_page) * 2) + MSGBUF_SIZE) / NBPDR;
403 
404 	/*
405 	 * Allocate pages
406 	 */
407 	KPML4phys = allocpages(firstaddr, 1);
408 	KPDPphys = allocpages(firstaddr, NKPML4E);
409 	KPDphys = allocpages(firstaddr, NKPDPE);
410 	KPTphys = allocpages(firstaddr, nkpt);
411 
412 	KPML4virt = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
413 	KPDPvirt = (pdp_entry_t *)PHYS_TO_DMAP(KPDPphys);
414 	KPDvirt = (pd_entry_t *)PHYS_TO_DMAP(KPDphys);
415 	KPTvirt = (pt_entry_t *)PHYS_TO_DMAP(KPTphys);
416 
417 	bzero(KPML4virt, 1 * PAGE_SIZE);
418 	bzero(KPDPvirt, NKPML4E * PAGE_SIZE);
419 	bzero(KPDvirt, NKPDPE * PAGE_SIZE);
420 	bzero(KPTvirt, nkpt * PAGE_SIZE);
421 
422 	/* Now map the page tables at their location within PTmap */
423 	for (i = 0; i < nkpt; i++) {
424 		KPDvirt[i] = KPTphys + (i << PAGE_SHIFT);
425 		KPDvirt[i] |= VPTE_R | VPTE_W | VPTE_V;
426 	}
427 
428 	/* And connect up the PD to the PDP */
429 	for (i = 0; i < NKPDPE; i++) {
430 		KPDPvirt[i + kpdpi] = KPDphys + (i << PAGE_SHIFT);
431 		KPDPvirt[i + kpdpi] |= VPTE_R | VPTE_W | VPTE_V;
432 	}
433 
434 	/* And recursively map PML4 to itself in order to get PTmap */
435 	KPML4virt[PML4PML4I] = KPML4phys;
436 	KPML4virt[PML4PML4I] |= VPTE_R | VPTE_W | VPTE_V;
437 
438 	/* Connect the KVA slot up to the PML4 */
439 	KPML4virt[kpml4i] = KPDPphys;
440 	KPML4virt[kpml4i] |= VPTE_R | VPTE_W | VPTE_V;
441 }
442 
443 /*
444  *	Bootstrap the system enough to run with virtual memory.
445  *
446  *	On the i386 this is called after mapping has already been enabled
447  *	and just syncs the pmap module with what has already been done.
448  *	[We can't call it easily with mapping off since the kernel is not
449  *	mapped with PA == VA, hence we would have to relocate every address
450  *	from the linked base (virtual) address "KERNBASE" to the actual
451  *	(physical) address starting relative to 0]
452  */
453 void
454 pmap_bootstrap(vm_paddr_t *firstaddr, int64_t ptov_offset)
455 {
456 	vm_offset_t va;
457 	pt_entry_t *pte;
458 
459 	/*
460 	 * Create an initial set of page tables to run the kernel in.
461 	 */
462 	create_pagetables(firstaddr, ptov_offset);
463 
464 	virtual_start = KvaStart + *firstaddr;
465 	virtual_end = KvaEnd;
466 
467 	/*
468 	 * Initialize protection array.
469 	 */
470 	i386_protection_init();
471 
472 	/*
473 	 * The kernel's pmap is statically allocated so we don't have to use
474 	 * pmap_create, which is unlikely to work correctly at this part of
475 	 * the boot sequence (XXX and which no longer exists).
476 	 */
477 	kernel_pmap.pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
478 	kernel_pmap.pm_count = 1;
479 	kernel_pmap.pm_active = (cpumask_t)-1;	/* don't allow deactivation */
480 	TAILQ_INIT(&kernel_pmap.pm_pvlist);
481 
482 	/*
483 	 * Reserve some special page table entries/VA space for temporary
484 	 * mapping of pages.
485 	 */
486 #define	SYSMAP(c, p, v, n)	\
487 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
488 
489 	va = virtual_start;
490 	pte = pmap_pte(&kernel_pmap, va);
491 
492 	/*
493 	 * CMAP1/CMAP2 are used for zeroing and copying pages.
494 	 */
495 	SYSMAP(caddr_t, CMAP1, CADDR1, 1)
496 
497 #if JGV
498 	/*
499 	 * Crashdump maps.
500 	 */
501 	SYSMAP(caddr_t, pt_crashdumpmap, crashdumpmap, MAXDUMPPGS);
502 #endif
503 
504 	/*
505 	 * ptvmmap is used for reading arbitrary physical pages via
506 	 * /dev/mem.
507 	 */
508 	SYSMAP(caddr_t, ptmmap, ptvmmap, 1)
509 
510 	/*
511 	 * msgbufp is used to map the system message buffer.
512 	 * XXX msgbufmap is not used.
513 	 */
514 	SYSMAP(struct msgbuf *, msgbufmap, msgbufp,
515 	       atop(round_page(MSGBUF_SIZE)))
516 
517 	virtual_start = va;
518 
519 	*CMAP1 = 0;
520 
521 	cpu_invltlb();
522 }
523 
524 /*
525  *	Initialize the pmap module.
526  *	Called by vm_init, to initialize any structures that the pmap
527  *	system needs to map virtual memory.
528  *	pmap_init has been enhanced to support in a fairly consistant
529  *	way, discontiguous physical memory.
530  */
531 void
532 pmap_init(void)
533 {
534 	int i;
535 	int initial_pvs;
536 
537 	/*
538 	 * object for kernel page table pages
539 	 */
540 	/* JG I think the number can be arbitrary */
541 	kptobj = vm_object_allocate(OBJT_DEFAULT, 5);
542 
543 	/*
544 	 * Allocate memory for random pmap data structures.  Includes the
545 	 * pv_head_table.
546 	 */
547 
548 	for(i = 0; i < vm_page_array_size; i++) {
549 		vm_page_t m;
550 
551 		m = &vm_page_array[i];
552 		TAILQ_INIT(&m->md.pv_list);
553 		m->md.pv_list_count = 0;
554 	}
555 
556 	/*
557 	 * init the pv free list
558 	 */
559 	initial_pvs = vm_page_array_size;
560 	if (initial_pvs < MINPV)
561 		initial_pvs = MINPV;
562 	pvzone = &pvzone_store;
563 	pvinit = (struct pv_entry *) kmem_alloc(&kernel_map,
564 		initial_pvs * sizeof (struct pv_entry));
565 	zbootinit(pvzone, "PV ENTRY", sizeof (struct pv_entry), pvinit,
566 		initial_pvs);
567 
568 	/*
569 	 * Now it is safe to enable pv_table recording.
570 	 */
571 	pmap_initialized = TRUE;
572 }
573 
574 /*
575  * Initialize the address space (zone) for the pv_entries.  Set a
576  * high water mark so that the system can recover from excessive
577  * numbers of pv entries.
578  */
579 void
580 pmap_init2(void)
581 {
582 	int shpgperproc = PMAP_SHPGPERPROC;
583 
584 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
585 	pv_entry_max = shpgperproc * maxproc + vm_page_array_size;
586 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
587 	pv_entry_high_water = 9 * (pv_entry_max / 10);
588 	zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1);
589 }
590 
591 
592 /***************************************************
593  * Low level helper routines.....
594  ***************************************************/
595 
596 /*
597  * The modification bit is not tracked for any pages in this range. XXX
598  * such pages in this maps should always use pmap_k*() functions and not
599  * be managed anyhow.
600  *
601  * XXX User and kernel address spaces are independant for virtual kernels,
602  * this function only applies to the kernel pmap.
603  */
604 static int
605 pmap_track_modified(pmap_t pmap, vm_offset_t va)
606 {
607 	if (pmap != &kernel_pmap)
608 		return 1;
609 	if ((va < clean_sva) || (va >= clean_eva))
610 		return 1;
611 	else
612 		return 0;
613 }
614 
615 /*
616  * Extract the physical page address associated with the map/VA pair.
617  *
618  * No requirements.
619  */
620 vm_paddr_t
621 pmap_extract(pmap_t pmap, vm_offset_t va)
622 {
623 	vm_paddr_t rtval;
624 	pt_entry_t *pte;
625 	pd_entry_t pde, *pdep;
626 
627 	lwkt_gettoken(&vm_token);
628 	rtval = 0;
629 	pdep = pmap_pde(pmap, va);
630 	if (pdep != NULL) {
631 		pde = *pdep;
632 		if (pde) {
633 			if ((pde & VPTE_PS) != 0) {
634 				/* JGV */
635 				rtval = (pde & PG_PS_FRAME) | (va & PDRMASK);
636 			} else {
637 				pte = pmap_pde_to_pte(pdep, va);
638 				rtval = (*pte & VPTE_FRAME) | (va & PAGE_MASK);
639 			}
640 		}
641 	}
642 	lwkt_reltoken(&vm_token);
643 	return rtval;
644 }
645 
646 /*
647  *	Routine:	pmap_kextract
648  *	Function:
649  *		Extract the physical page address associated
650  *		kernel virtual address.
651  */
652 vm_paddr_t
653 pmap_kextract(vm_offset_t va)
654 {
655 	pd_entry_t pde;
656 	vm_paddr_t pa;
657 
658 	KKASSERT(va >= KvaStart && va < KvaEnd);
659 
660 	/*
661 	 * The DMAP region is not included in [KvaStart, KvaEnd)
662 	 */
663 #if 0
664 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
665 		pa = DMAP_TO_PHYS(va);
666 	} else {
667 #endif
668 		pde = *vtopde(va);
669 		if (pde & VPTE_PS) {
670 			/* JGV */
671 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
672 		} else {
673 			/*
674 			 * Beware of a concurrent promotion that changes the
675 			 * PDE at this point!  For example, vtopte() must not
676 			 * be used to access the PTE because it would use the
677 			 * new PDE.  It is, however, safe to use the old PDE
678 			 * because the page table page is preserved by the
679 			 * promotion.
680 			 */
681 			pa = *pmap_pde_to_pte(&pde, va);
682 			pa = (pa & VPTE_FRAME) | (va & PAGE_MASK);
683 		}
684 #if 0
685 	}
686 #endif
687 	return pa;
688 }
689 
690 /***************************************************
691  * Low level mapping routines.....
692  ***************************************************/
693 
694 /*
695  * Enter a mapping into kernel_pmap.  Mappings created in this fashion
696  * are not managed.  Mappings must be immediately accessible on all cpus.
697  *
698  * Call pmap_inval_pte() to invalidate the virtual pte and clean out the
699  * real pmap and handle related races before storing the new vpte.
700  */
701 void
702 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
703 {
704 	pt_entry_t *pte;
705 	pt_entry_t npte;
706 
707 	KKASSERT(va >= KvaStart && va < KvaEnd);
708 	npte = pa | VPTE_R | VPTE_W | VPTE_V;
709 	pte = vtopte(va);
710 	if (*pte & VPTE_V)
711 		pmap_inval_pte(pte, &kernel_pmap, va);
712 	*pte = npte;
713 }
714 
715 /*
716  * Enter an unmanaged KVA mapping for the private use of the current
717  * cpu only.  pmap_kenter_sync() may be called to make the mapping usable
718  * by other cpus.
719  *
720  * It is illegal for the mapping to be accessed by other cpus unleess
721  * pmap_kenter_sync*() is called.
722  */
723 void
724 pmap_kenter_quick(vm_offset_t va, vm_paddr_t pa)
725 {
726 	pt_entry_t *pte;
727 	pt_entry_t npte;
728 
729 	KKASSERT(va >= KvaStart && va < KvaEnd);
730 
731 	npte = (vpte_t)pa | VPTE_R | VPTE_W | VPTE_V;
732 	pte = vtopte(va);
733 	if (*pte & VPTE_V)
734 		pmap_inval_pte_quick(pte, &kernel_pmap, va);
735 	*pte = npte;
736 	//cpu_invlpg((void *)va);
737 }
738 
739 /*
740  * Synchronize a kvm mapping originally made for the private use on
741  * some other cpu so it can be used on all cpus.
742  *
743  * XXX add MADV_RESYNC to improve performance.
744  */
745 void
746 pmap_kenter_sync(vm_offset_t va)
747 {
748 	madvise((void *)va, PAGE_SIZE, MADV_INVAL);
749 }
750 
751 /*
752  * Synchronize a kvm mapping originally made for the private use on
753  * some other cpu so it can be used on our cpu.  Turns out to be the
754  * same madvise() call, because we have to sync the real pmaps anyway.
755  *
756  * XXX add MADV_RESYNC to improve performance.
757  */
758 void
759 pmap_kenter_sync_quick(vm_offset_t va)
760 {
761 	madvise((void *)va, PAGE_SIZE, MADV_INVAL);
762 }
763 
764 /*
765  * Remove an unmanaged mapping created with pmap_kenter*().
766  */
767 void
768 pmap_kremove(vm_offset_t va)
769 {
770 	pt_entry_t *pte;
771 
772 	KKASSERT(va >= KvaStart && va < KvaEnd);
773 
774 	pte = vtopte(va);
775 	if (*pte & VPTE_V)
776 		pmap_inval_pte(pte, &kernel_pmap, va);
777 	*pte = 0;
778 }
779 
780 /*
781  * Remove an unmanaged mapping created with pmap_kenter*() but synchronize
782  * only with this cpu.
783  *
784  * Unfortunately because we optimize new entries by testing VPTE_V later
785  * on, we actually still have to synchronize with all the cpus.  XXX maybe
786  * store a junk value and test against 0 in the other places instead?
787  */
788 void
789 pmap_kremove_quick(vm_offset_t va)
790 {
791 	pt_entry_t *pte;
792 
793 	KKASSERT(va >= KvaStart && va < KvaEnd);
794 
795 	pte = vtopte(va);
796 	if (*pte & VPTE_V)
797 		pmap_inval_pte(pte, &kernel_pmap, va); /* NOT _quick */
798 	*pte = 0;
799 }
800 
801 /*
802  *	Used to map a range of physical addresses into kernel
803  *	virtual address space.
804  *
805  *	For now, VM is already on, we only need to map the
806  *	specified memory.
807  */
808 vm_offset_t
809 pmap_map(vm_offset_t *virtp, vm_paddr_t start, vm_paddr_t end, int prot)
810 {
811 	return PHYS_TO_DMAP(start);
812 }
813 
814 
815 /*
816  * Map a set of unmanaged VM pages into KVM.
817  */
818 void
819 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
820 {
821 	vm_offset_t end_va;
822 
823 	end_va = va + count * PAGE_SIZE;
824 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
825 
826 	while (va < end_va) {
827 		pt_entry_t *pte;
828 
829 		pte = vtopte(va);
830 		if (*pte & VPTE_V)
831 			pmap_inval_pte(pte, &kernel_pmap, va);
832 		*pte = VM_PAGE_TO_PHYS(*m) | VPTE_R | VPTE_W | VPTE_V;
833 		va += PAGE_SIZE;
834 		m++;
835 	}
836 }
837 
838 /*
839  * Undo the effects of pmap_qenter*().
840  */
841 void
842 pmap_qremove(vm_offset_t va, int count)
843 {
844 	vm_offset_t end_va;
845 
846 	end_va = va + count * PAGE_SIZE;
847 	KKASSERT(va >= KvaStart && end_va < KvaEnd);
848 
849 	while (va < end_va) {
850 		pt_entry_t *pte;
851 
852 		pte = vtopte(va);
853 		if (*pte & VPTE_V)
854 			pmap_inval_pte(pte, &kernel_pmap, va);
855 		*pte = 0;
856 		va += PAGE_SIZE;
857 	}
858 }
859 
860 /*
861  * This routine works like vm_page_lookup() but also blocks as long as the
862  * page is busy.  This routine does not busy the page it returns.
863  *
864  * Unless the caller is managing objects whos pages are in a known state,
865  * the call should be made with a critical section held so the page's object
866  * association remains valid on return.
867  */
868 static vm_page_t
869 pmap_page_lookup(vm_object_t object, vm_pindex_t pindex)
870 {
871 	vm_page_t m;
872 
873 	do {
874 		m = vm_page_lookup(object, pindex);
875 	} while (m && vm_page_sleep_busy(m, FALSE, "pplookp"));
876 
877 	return(m);
878 }
879 
880 /*
881  * Create a new thread and optionally associate it with a (new) process.
882  * NOTE! the new thread's cpu may not equal the current cpu.
883  */
884 void
885 pmap_init_thread(thread_t td)
886 {
887 	/* enforce pcb placement */
888 	td->td_pcb = (struct pcb *)(td->td_kstack + td->td_kstack_size) - 1;
889 	td->td_savefpu = &td->td_pcb->pcb_save;
890 	td->td_sp = (char *)td->td_pcb - 16; /* JG is -16 needed on x86_64? */
891 }
892 
893 /*
894  * This routine directly affects the fork perf for a process.
895  */
896 void
897 pmap_init_proc(struct proc *p)
898 {
899 }
900 
901 /*
902  * Dispose the UPAGES for a process that has exited.
903  * This routine directly impacts the exit perf of a process.
904  */
905 void
906 pmap_dispose_proc(struct proc *p)
907 {
908 	KASSERT(p->p_lock == 0, ("attempt to dispose referenced proc! %p", p));
909 }
910 
911 /***************************************************
912  * Page table page management routines.....
913  ***************************************************/
914 
915 static __inline int pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va,
916 			vm_page_t m);
917 
918 /*
919  * This routine unholds page table pages, and if the hold count
920  * drops to zero, then it decrements the wire count.
921  *
922  * We must recheck that this is the last hold reference after busy-sleeping
923  * on the page.
924  */
925 static int
926 _pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
927 {
928 	while (vm_page_sleep_busy(m, FALSE, "pmuwpt"))
929 		;
930 	KASSERT(m->queue == PQ_NONE,
931 		("_pmap_unwire_pte_hold: %p->queue != PQ_NONE", m));
932 
933 	if (m->hold_count == 1) {
934 		/*
935 		 * Unmap the page table page.
936 		 */
937 		//abort(); /* JG */
938 		vm_page_busy(m);
939 		/* pmap_inval_add(info, pmap, -1); */
940 
941 		if (m->pindex >= (NUPDE + NUPDPE)) {
942 			/* PDP page */
943 			pml4_entry_t *pml4;
944 			pml4 = pmap_pml4e(pmap, va);
945 			*pml4 = 0;
946 		} else if (m->pindex >= NUPDE) {
947 			/* PD page */
948 			pdp_entry_t *pdp;
949 			pdp = pmap_pdpe(pmap, va);
950 			*pdp = 0;
951 		} else {
952 			/* PT page */
953 			pd_entry_t *pd;
954 			pd = pmap_pde(pmap, va);
955 			*pd = 0;
956 		}
957 
958 		KKASSERT(pmap->pm_stats.resident_count > 0);
959 		--pmap->pm_stats.resident_count;
960 
961 		if (pmap->pm_ptphint == m)
962 			pmap->pm_ptphint = NULL;
963 
964 		if (m->pindex < NUPDE) {
965 			/* We just released a PT, unhold the matching PD */
966 			vm_page_t pdpg;
967 
968 			pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & VPTE_FRAME);
969 			pmap_unwire_pte_hold(pmap, va, pdpg);
970 		}
971 		if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
972 			/* We just released a PD, unhold the matching PDP */
973 			vm_page_t pdppg;
974 
975 			pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & VPTE_FRAME);
976 			pmap_unwire_pte_hold(pmap, va, pdppg);
977 		}
978 
979 		/*
980 		 * This was our last hold, the page had better be unwired
981 		 * after we decrement wire_count.
982 		 *
983 		 * FUTURE NOTE: shared page directory page could result in
984 		 * multiple wire counts.
985 		 */
986 		vm_page_unhold(m);
987 		--m->wire_count;
988 		KKASSERT(m->wire_count == 0);
989 		--vmstats.v_wire_count;
990 		vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
991 		vm_page_flash(m);
992 		vm_page_free_zero(m);
993 		return 1;
994 	} else {
995 		KKASSERT(m->hold_count > 1);
996 		vm_page_unhold(m);
997 		return 0;
998 	}
999 }
1000 
1001 static __inline int
1002 pmap_unwire_pte_hold(pmap_t pmap, vm_offset_t va, vm_page_t m)
1003 {
1004 	KKASSERT(m->hold_count > 0);
1005 	if (m->hold_count > 1) {
1006 		vm_page_unhold(m);
1007 		return 0;
1008 	} else {
1009 		return _pmap_unwire_pte_hold(pmap, va, m);
1010 	}
1011 }
1012 
1013 /*
1014  * After removing a page table entry, this routine is used to
1015  * conditionally free the page, and manage the hold/wire counts.
1016  */
1017 static int
1018 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
1019 {
1020 	/* JG Use FreeBSD/amd64 or FreeBSD/i386 ptepde approaches? */
1021 	vm_pindex_t ptepindex;
1022 
1023 	if (mpte == NULL) {
1024 		/*
1025 		 * page table pages in the kernel_pmap are not managed.
1026 		 */
1027 		if (pmap == &kernel_pmap)
1028 			return(0);
1029 		ptepindex = pmap_pde_pindex(va);
1030 		if (pmap->pm_ptphint &&
1031 			(pmap->pm_ptphint->pindex == ptepindex)) {
1032 			mpte = pmap->pm_ptphint;
1033 		} else {
1034 			mpte = pmap_page_lookup(pmap->pm_pteobj, ptepindex);
1035 			pmap->pm_ptphint = mpte;
1036 		}
1037 	}
1038 
1039 	return pmap_unwire_pte_hold(pmap, va, mpte);
1040 }
1041 
1042 /*
1043  * Initialize pmap0/vmspace0 .  Since process 0 never enters user mode we
1044  * just dummy it up so it works well enough for fork().
1045  *
1046  * In DragonFly, process pmaps may only be used to manipulate user address
1047  * space, never kernel address space.
1048  */
1049 void
1050 pmap_pinit0(struct pmap *pmap)
1051 {
1052 	pmap_pinit(pmap);
1053 }
1054 
1055 /*
1056  * Initialize a preallocated and zeroed pmap structure,
1057  * such as one in a vmspace structure.
1058  */
1059 void
1060 pmap_pinit(struct pmap *pmap)
1061 {
1062 	vm_page_t ptdpg;
1063 
1064 	/*
1065 	 * No need to allocate page table space yet but we do need a valid
1066 	 * page directory table.
1067 	 */
1068 	if (pmap->pm_pml4 == NULL) {
1069 		pmap->pm_pml4 =
1070 		    (pml4_entry_t *)kmem_alloc_pageable(&kernel_map, PAGE_SIZE);
1071 	}
1072 
1073 	/*
1074 	 * Allocate an object for the ptes
1075 	 */
1076 	if (pmap->pm_pteobj == NULL)
1077 		pmap->pm_pteobj = vm_object_allocate(OBJT_DEFAULT, NUPDE + NUPDPE + PML4PML4I + 1);
1078 
1079 	/*
1080 	 * Allocate the page directory page, unless we already have
1081 	 * one cached.  If we used the cached page the wire_count will
1082 	 * already be set appropriately.
1083 	 */
1084 	if ((ptdpg = pmap->pm_pdirm) == NULL) {
1085 		ptdpg = vm_page_grab(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I,
1086 				     VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1087 		pmap->pm_pdirm = ptdpg;
1088 		vm_page_flag_clear(ptdpg, PG_MAPPED | PG_BUSY);
1089 		ptdpg->valid = VM_PAGE_BITS_ALL;
1090 		if (ptdpg->wire_count == 0)
1091 			++vmstats.v_wire_count;
1092 		ptdpg->wire_count = 1;
1093 		pmap_kenter((vm_offset_t)pmap->pm_pml4, VM_PAGE_TO_PHYS(ptdpg));
1094 	}
1095 	if ((ptdpg->flags & PG_ZERO) == 0)
1096 		bzero(pmap->pm_pml4, PAGE_SIZE);
1097 
1098 	pmap->pm_count = 1;
1099 	pmap->pm_active = 0;
1100 	pmap->pm_ptphint = NULL;
1101 	TAILQ_INIT(&pmap->pm_pvlist);
1102 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
1103 	pmap->pm_stats.resident_count = 1;
1104 }
1105 
1106 /*
1107  * Clean up a pmap structure so it can be physically freed.  This routine
1108  * is called by the vmspace dtor function.  A great deal of pmap data is
1109  * left passively mapped to improve vmspace management so we have a bit
1110  * of cleanup work to do here.
1111  *
1112  * No requirements.
1113  */
1114 void
1115 pmap_puninit(pmap_t pmap)
1116 {
1117 	vm_page_t p;
1118 
1119 	KKASSERT(pmap->pm_active == 0);
1120 	lwkt_gettoken(&vm_token);
1121 	if ((p = pmap->pm_pdirm) != NULL) {
1122 		KKASSERT(pmap->pm_pml4 != NULL);
1123 		pmap_kremove((vm_offset_t)pmap->pm_pml4);
1124 		p->wire_count--;
1125 		vmstats.v_wire_count--;
1126 		KKASSERT((p->flags & PG_BUSY) == 0);
1127 		vm_page_busy(p);
1128 		vm_page_free_zero(p);
1129 		pmap->pm_pdirm = NULL;
1130 	}
1131 	lwkt_reltoken(&vm_token);
1132 	if (pmap->pm_pml4) {
1133 		kmem_free(&kernel_map, (vm_offset_t)pmap->pm_pml4, PAGE_SIZE);
1134 		pmap->pm_pml4 = NULL;
1135 	}
1136 	if (pmap->pm_pteobj) {
1137 		vm_object_deallocate(pmap->pm_pteobj);
1138 		pmap->pm_pteobj = NULL;
1139 	}
1140 }
1141 
1142 /*
1143  * Wire in kernel global address entries.  To avoid a race condition
1144  * between pmap initialization and pmap_growkernel, this procedure
1145  * adds the pmap to the master list (which growkernel scans to update),
1146  * then copies the template.
1147  *
1148  * In a virtual kernel there are no kernel global address entries.
1149  *
1150  * No requirements.
1151  */
1152 void
1153 pmap_pinit2(struct pmap *pmap)
1154 {
1155 	crit_enter();
1156 	lwkt_gettoken(&vm_token);
1157 	TAILQ_INSERT_TAIL(&pmap_list, pmap, pm_pmnode);
1158 	lwkt_reltoken(&vm_token);
1159 	crit_exit();
1160 }
1161 
1162 /*
1163  * Attempt to release and free a vm_page in a pmap.  Returns 1 on success,
1164  * 0 on failure (if the procedure had to sleep).
1165  *
1166  * When asked to remove the page directory page itself, we actually just
1167  * leave it cached so we do not have to incur the SMP inval overhead of
1168  * removing the kernel mapping.  pmap_puninit() will take care of it.
1169  */
1170 static int
1171 pmap_release_free_page(struct pmap *pmap, vm_page_t p)
1172 {
1173 	/*
1174 	 * This code optimizes the case of freeing non-busy
1175 	 * page-table pages.  Those pages are zero now, and
1176 	 * might as well be placed directly into the zero queue.
1177 	 */
1178 	if (vm_page_sleep_busy(p, FALSE, "pmaprl"))
1179 		return 0;
1180 
1181 	vm_page_busy(p);
1182 
1183 	/*
1184 	 * Remove the page table page from the processes address space.
1185 	 */
1186 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1187 		/*
1188 		 * We are the pml4 table itself.
1189 		 */
1190 		/* XXX anything to do here? */
1191 	} else if (p->pindex >= (NUPDE + NUPDPE)) {
1192 		/*
1193 		 * We are a PDP page.
1194 		 * We look for the PML4 entry that points to us.
1195 		 */
1196 		vm_page_t m4 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + PML4PML4I);
1197 		KKASSERT(m4 != NULL);
1198 		pml4_entry_t *pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m4));
1199 		int idx = (p->pindex - (NUPDE + NUPDPE)) % NPML4EPG;
1200 		KKASSERT(pml4[idx] != 0);
1201 		pml4[idx] = 0;
1202 		m4->hold_count--;
1203 		/* JG What about wire_count? */
1204 	} else if (p->pindex >= NUPDE) {
1205 		/*
1206 		 * We are a PD page.
1207 		 * We look for the PDP entry that points to us.
1208 		 */
1209 		vm_page_t m3 = vm_page_lookup(pmap->pm_pteobj, NUPDE + NUPDPE + (p->pindex - NUPDE) / NPDPEPG);
1210 		KKASSERT(m3 != NULL);
1211 		pdp_entry_t *pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m3));
1212 		int idx = (p->pindex - NUPDE) % NPDPEPG;
1213 		KKASSERT(pdp[idx] != 0);
1214 		pdp[idx] = 0;
1215 		m3->hold_count--;
1216 		/* JG What about wire_count? */
1217 	} else {
1218 		/* We are a PT page.
1219 		 * We look for the PD entry that points to us.
1220 		 */
1221 		vm_page_t m2 = vm_page_lookup(pmap->pm_pteobj, NUPDE + p->pindex / NPDEPG);
1222 		KKASSERT(m2 != NULL);
1223 		pd_entry_t *pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m2));
1224 		int idx = p->pindex % NPDEPG;
1225 		pd[idx] = 0;
1226 		m2->hold_count--;
1227 		/* JG What about wire_count? */
1228 	}
1229 	KKASSERT(pmap->pm_stats.resident_count > 0);
1230 	--pmap->pm_stats.resident_count;
1231 
1232 	if (p->hold_count)  {
1233 		panic("pmap_release: freeing held page table page");
1234 	}
1235 	if (pmap->pm_ptphint && (pmap->pm_ptphint->pindex == p->pindex))
1236 		pmap->pm_ptphint = NULL;
1237 
1238 	/*
1239 	 * We leave the top-level page table page cached, wired, and mapped in
1240 	 * the pmap until the dtor function (pmap_puninit()) gets called.
1241 	 * However, still clean it up so we can set PG_ZERO.
1242 	 */
1243 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1244 		bzero(pmap->pm_pml4, PAGE_SIZE);
1245 		vm_page_flag_set(p, PG_ZERO);
1246 		vm_page_wakeup(p);
1247 	} else {
1248 		abort();
1249 		p->wire_count--;
1250 		vmstats.v_wire_count--;
1251 		/* JG eventually revert to using vm_page_free_zero() */
1252 		vm_page_free(p);
1253 	}
1254 	return 1;
1255 }
1256 
1257 /*
1258  * this routine is called if the page table page is not
1259  * mapped correctly.
1260  */
1261 static vm_page_t
1262 _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex)
1263 {
1264 	vm_page_t m, pdppg, pdpg;
1265 
1266 	/*
1267 	 * Find or fabricate a new pagetable page
1268 	 */
1269 	m = vm_page_grab(pmap->pm_pteobj, ptepindex,
1270 			VM_ALLOC_NORMAL | VM_ALLOC_ZERO | VM_ALLOC_RETRY);
1271 
1272 	if ((m->flags & PG_ZERO) == 0) {
1273 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
1274 	}
1275 
1276 	KASSERT(m->queue == PQ_NONE,
1277 		("_pmap_allocpte: %p->queue != PQ_NONE", m));
1278 
1279 	/*
1280 	 * Increment the hold count for the page we will be returning to
1281 	 * the caller.
1282 	 */
1283 	m->hold_count++;
1284 
1285 	if (m->wire_count == 0)
1286 		vmstats.v_wire_count++;
1287 	m->wire_count++;
1288 
1289 	/*
1290 	 * Map the pagetable page into the process address space, if
1291 	 * it isn't already there.
1292 	 */
1293 
1294 	++pmap->pm_stats.resident_count;
1295 
1296 	if (ptepindex >= (NUPDE + NUPDPE)) {
1297 		pml4_entry_t *pml4;
1298 		vm_pindex_t pml4index;
1299 
1300 		/* Wire up a new PDP page */
1301 		pml4index = ptepindex - (NUPDE + NUPDPE);
1302 		pml4 = &pmap->pm_pml4[pml4index];
1303 		*pml4 = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1304 			VPTE_A | VPTE_M;
1305 	} else if (ptepindex >= NUPDE) {
1306 		vm_pindex_t pml4index;
1307 		vm_pindex_t pdpindex;
1308 		pml4_entry_t *pml4;
1309 		pdp_entry_t *pdp;
1310 
1311 		/* Wire up a new PD page */
1312 		pdpindex = ptepindex - NUPDE;
1313 		pml4index = pdpindex >> NPML4EPGSHIFT;
1314 
1315 		pml4 = &pmap->pm_pml4[pml4index];
1316 		if ((*pml4 & VPTE_V) == 0) {
1317 			/* Have to allocate a new PDP page, recurse */
1318 			if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index)
1319 			     == NULL) {
1320 				--m->wire_count;
1321 				vm_page_free(m);
1322 				return (NULL);
1323 			}
1324 		} else {
1325 			/* Add reference to the PDP page */
1326 			pdppg = PHYS_TO_VM_PAGE(*pml4 & VPTE_FRAME);
1327 			pdppg->hold_count++;
1328 		}
1329 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1330 
1331 		/* Now find the pdp page */
1332 		pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1333 		KKASSERT(*pdp == 0);	/* JG DEBUG64 */
1334 		*pdp = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1335 		       VPTE_A | VPTE_M;
1336 	} else {
1337 		vm_pindex_t pml4index;
1338 		vm_pindex_t pdpindex;
1339 		pml4_entry_t *pml4;
1340 		pdp_entry_t *pdp;
1341 		pd_entry_t *pd;
1342 
1343 		/* Wire up a new PT page */
1344 		pdpindex = ptepindex >> NPDPEPGSHIFT;
1345 		pml4index = pdpindex >> NPML4EPGSHIFT;
1346 
1347 		/* First, find the pdp and check that its valid. */
1348 		pml4 = &pmap->pm_pml4[pml4index];
1349 		if ((*pml4 & VPTE_V) == 0) {
1350 			/* We miss a PDP page. We ultimately need a PD page.
1351 			 * Recursively allocating a PD page will allocate
1352 			 * the missing PDP page and will also allocate
1353 			 * the PD page we need.
1354 			 */
1355 			/* Have to allocate a new PD page, recurse */
1356 			if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1357 			     == NULL) {
1358 				--m->wire_count;
1359 				vm_page_free(m);
1360 				return (NULL);
1361 			}
1362 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1363 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1364 		} else {
1365 			pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & VPTE_FRAME);
1366 			pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
1367 			if ((*pdp & VPTE_V) == 0) {
1368 				/* Have to allocate a new PD page, recurse */
1369 				if (_pmap_allocpte(pmap, NUPDE + pdpindex)
1370 				     == NULL) {
1371 					--m->wire_count;
1372 					vm_page_free(m);
1373 					return (NULL);
1374 				}
1375 			} else {
1376 				/* Add reference to the PD page */
1377 				pdpg = PHYS_TO_VM_PAGE(*pdp & VPTE_FRAME);
1378 				pdpg->hold_count++;
1379 			}
1380 		}
1381 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & VPTE_FRAME);
1382 
1383 		/* Now we know where the page directory page is */
1384 		pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
1385 		KKASSERT(*pd == 0);	/* JG DEBUG64 */
1386 		*pd = VM_PAGE_TO_PHYS(m) | VPTE_R | VPTE_W | VPTE_V |
1387 		      VPTE_A | VPTE_M;
1388 	}
1389 
1390 	/*
1391 	 * Set the page table hint
1392 	 */
1393 	pmap->pm_ptphint = m;
1394 
1395 	m->valid = VM_PAGE_BITS_ALL;
1396 	vm_page_flag_clear(m, PG_ZERO);
1397 	vm_page_flag_set(m, PG_MAPPED);
1398 	vm_page_wakeup(m);
1399 
1400 	return m;
1401 }
1402 
1403 /*
1404  * Determine the page table page required to access the VA in the pmap
1405  * and allocate it if necessary.  Return a held vm_page_t for the page.
1406  *
1407  * Only used with user pmaps.
1408  */
1409 static vm_page_t
1410 pmap_allocpte(pmap_t pmap, vm_offset_t va)
1411 {
1412 	vm_pindex_t ptepindex;
1413 	pd_entry_t *pd;
1414 	vm_page_t m;
1415 
1416 	/*
1417 	 * Calculate pagetable page index
1418 	 */
1419 	ptepindex = pmap_pde_pindex(va);
1420 
1421 	/*
1422 	 * Get the page directory entry
1423 	 */
1424 	pd = pmap_pde(pmap, va);
1425 
1426 	/*
1427 	 * This supports switching from a 2MB page to a
1428 	 * normal 4K page.
1429 	 */
1430 	if (pd != NULL && (*pd & (VPTE_PS | VPTE_V)) == (VPTE_PS | VPTE_V)) {
1431 		panic("no promotion/demotion yet");
1432 		*pd = 0;
1433 		pd = NULL;
1434 		/*cpu_invltlb();*/
1435 		/*smp_invltlb();*/
1436 	}
1437 
1438 	/*
1439 	 * If the page table page is mapped, we just increment the
1440 	 * hold count, and activate it.
1441 	 */
1442 	if (pd != NULL && (*pd & VPTE_V) != 0) {
1443 		/* YYY hint is used here on i386 */
1444 		m = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
1445 		pmap->pm_ptphint = m;
1446 		m->hold_count++;
1447 		return m;
1448 	}
1449 	/*
1450 	 * Here if the pte page isn't mapped, or if it has been deallocated.
1451 	 */
1452 	return _pmap_allocpte(pmap, ptepindex);
1453 }
1454 
1455 
1456 /***************************************************
1457  * Pmap allocation/deallocation routines.
1458  ***************************************************/
1459 
1460 /*
1461  * Release any resources held by the given physical map.
1462  * Called when a pmap initialized by pmap_pinit is being released.
1463  * Should only be called if the map contains no valid mappings.
1464  *
1465  * No requirements.
1466  */
1467 static int pmap_release_callback(struct vm_page *p, void *data);
1468 
1469 void
1470 pmap_release(struct pmap *pmap)
1471 {
1472 	vm_object_t object = pmap->pm_pteobj;
1473 	struct rb_vm_page_scan_info info;
1474 
1475 	KKASSERT(pmap != &kernel_pmap);
1476 
1477 #if defined(DIAGNOSTIC)
1478 	if (object->ref_count != 1)
1479 		panic("pmap_release: pteobj reference count != 1");
1480 #endif
1481 
1482 	info.pmap = pmap;
1483 	info.object = object;
1484 	crit_enter();
1485 	lwkt_gettoken(&vm_token);
1486 	TAILQ_REMOVE(&pmap_list, pmap, pm_pmnode);
1487 	crit_exit();
1488 
1489 	do {
1490 		crit_enter();
1491 		info.error = 0;
1492 		info.mpte = NULL;
1493 		info.limit = object->generation;
1494 
1495 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1496 				        pmap_release_callback, &info);
1497 		if (info.error == 0 && info.mpte) {
1498 			if (!pmap_release_free_page(pmap, info.mpte))
1499 				info.error = 1;
1500 		}
1501 		crit_exit();
1502 	} while (info.error);
1503 	lwkt_reltoken(&vm_token);
1504 }
1505 
1506 static int
1507 pmap_release_callback(struct vm_page *p, void *data)
1508 {
1509 	struct rb_vm_page_scan_info *info = data;
1510 
1511 	if (p->pindex == NUPDE + NUPDPE + PML4PML4I) {
1512 		info->mpte = p;
1513 		return(0);
1514 	}
1515 	if (!pmap_release_free_page(info->pmap, p)) {
1516 		info->error = 1;
1517 		return(-1);
1518 	}
1519 	if (info->object->generation != info->limit) {
1520 		info->error = 1;
1521 		return(-1);
1522 	}
1523 	return(0);
1524 }
1525 
1526 /*
1527  * Grow the number of kernel page table entries, if needed.
1528  *
1529  * No requirements.
1530  */
1531 void
1532 pmap_growkernel(vm_offset_t kstart, vm_offset_t kend)
1533 {
1534 	vm_offset_t addr;
1535 	vm_paddr_t paddr;
1536 	vm_offset_t ptppaddr;
1537 	vm_page_t nkpg;
1538 	pd_entry_t *pde, newpdir;
1539 	pdp_entry_t newpdp;
1540 
1541 	addr = kend;
1542 
1543 	crit_enter();
1544 	lwkt_gettoken(&vm_token);
1545 	if (kernel_vm_end == 0) {
1546 		kernel_vm_end = KvaStart;
1547 		nkpt = 0;
1548 		while ((*pmap_pde(&kernel_pmap, kernel_vm_end) & VPTE_V) != 0) {
1549 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) & ~(PAGE_SIZE * NPTEPG - 1);
1550 			nkpt++;
1551 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1552 				kernel_vm_end = kernel_map.max_offset;
1553 				break;
1554 			}
1555 		}
1556 	}
1557 	addr = roundup2(addr, PAGE_SIZE * NPTEPG);
1558 	if (addr - 1 >= kernel_map.max_offset)
1559 		addr = kernel_map.max_offset;
1560 	while (kernel_vm_end < addr) {
1561 		pde = pmap_pde(&kernel_pmap, kernel_vm_end);
1562 		if (pde == NULL) {
1563 			/* We need a new PDP entry */
1564 			nkpg = vm_page_alloc(kptobj, nkpt,
1565 			                     VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM
1566 					     | VM_ALLOC_INTERRUPT);
1567 			if (nkpg == NULL) {
1568 				panic("pmap_growkernel: no memory to "
1569 				      "grow kernel");
1570 			}
1571 			paddr = VM_PAGE_TO_PHYS(nkpg);
1572 			if ((nkpg->flags & PG_ZERO) == 0)
1573 				pmap_zero_page(paddr);
1574 			vm_page_flag_clear(nkpg, PG_ZERO);
1575 			newpdp = (pdp_entry_t)(paddr | VPTE_V | VPTE_R |
1576 					       VPTE_W | VPTE_A | VPTE_M);
1577 			*pmap_pdpe(&kernel_pmap, kernel_vm_end) = newpdp;
1578 			nkpt++;
1579 			continue; /* try again */
1580 		}
1581 		if ((*pde & VPTE_V) != 0) {
1582 			kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1583 					~(PAGE_SIZE * NPTEPG - 1);
1584 			if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1585 				kernel_vm_end = kernel_map.max_offset;
1586 				break;
1587 			}
1588 			continue;
1589 		}
1590 
1591 		/*
1592 		 * This index is bogus, but out of the way
1593 		 */
1594 		nkpg = vm_page_alloc(kptobj, nkpt,
1595 				     VM_ALLOC_NORMAL |
1596 				     VM_ALLOC_SYSTEM |
1597 				     VM_ALLOC_INTERRUPT);
1598 		if (nkpg == NULL)
1599 			panic("pmap_growkernel: no memory to grow kernel");
1600 
1601 		vm_page_wire(nkpg);
1602 		ptppaddr = VM_PAGE_TO_PHYS(nkpg);
1603 		pmap_zero_page(ptppaddr);
1604 		vm_page_flag_clear(nkpg, PG_ZERO);
1605 		newpdir = (pd_entry_t)(ptppaddr | VPTE_V | VPTE_R |
1606 				       VPTE_W | VPTE_A | VPTE_M);
1607 		*pmap_pde(&kernel_pmap, kernel_vm_end) = newpdir;
1608 		nkpt++;
1609 
1610 		kernel_vm_end = (kernel_vm_end + PAGE_SIZE * NPTEPG) &
1611 				~(PAGE_SIZE * NPTEPG - 1);
1612 		if (kernel_vm_end - 1 >= kernel_map.max_offset) {
1613 			kernel_vm_end = kernel_map.max_offset;
1614 			break;
1615 		}
1616 	}
1617 	lwkt_reltoken(&vm_token);
1618 	crit_exit();
1619 }
1620 
1621 /*
1622  * Retire the given physical map from service.  Should only be called
1623  * if the map contains no valid mappings.
1624  *
1625  * No requirements.
1626  */
1627 void
1628 pmap_destroy(pmap_t pmap)
1629 {
1630 	if (pmap == NULL)
1631 		return;
1632 
1633 	lwkt_gettoken(&vm_token);
1634 	if (--pmap->pm_count == 0) {
1635 		pmap_release(pmap);
1636 		panic("destroying a pmap is not yet implemented");
1637 	}
1638 	lwkt_reltoken(&vm_token);
1639 }
1640 
1641 /*
1642  * Add a reference to the specified pmap.
1643  *
1644  * No requirements.
1645  */
1646 void
1647 pmap_reference(pmap_t pmap)
1648 {
1649 	if (pmap) {
1650 		lwkt_gettoken(&vm_token);
1651 		++pmap->pm_count;
1652 		lwkt_reltoken(&vm_token);
1653 	}
1654 }
1655 
1656 /************************************************************************
1657  *	   		VMSPACE MANAGEMENT				*
1658  ************************************************************************
1659  *
1660  * The VMSPACE management we do in our virtual kernel must be reflected
1661  * in the real kernel.  This is accomplished by making vmspace system
1662  * calls to the real kernel.
1663  */
1664 void
1665 cpu_vmspace_alloc(struct vmspace *vm)
1666 {
1667 	int r;
1668 	void *rp;
1669 	vpte_t vpte;
1670 
1671 #define USER_SIZE	(VM_MAX_USER_ADDRESS - VM_MIN_USER_ADDRESS)
1672 
1673 	if (vmspace_create(&vm->vm_pmap, 0, NULL) < 0)
1674 		panic("vmspace_create() failed");
1675 
1676 	rp = vmspace_mmap(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1677 			  PROT_READ|PROT_WRITE,
1678 			  MAP_FILE|MAP_SHARED|MAP_VPAGETABLE|MAP_FIXED,
1679 			  MemImageFd, 0);
1680 	if (rp == MAP_FAILED)
1681 		panic("vmspace_mmap: failed");
1682 	vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1683 			 MADV_NOSYNC, 0);
1684 	vpte = VM_PAGE_TO_PHYS(vmspace_pmap(vm)->pm_pdirm) | VPTE_R | VPTE_W | VPTE_V;
1685 	r = vmspace_mcontrol(&vm->vm_pmap, VM_MIN_USER_ADDRESS, USER_SIZE,
1686 			     MADV_SETMAP, vpte);
1687 	if (r < 0)
1688 		panic("vmspace_mcontrol: failed");
1689 }
1690 
1691 void
1692 cpu_vmspace_free(struct vmspace *vm)
1693 {
1694 	if (vmspace_destroy(&vm->vm_pmap) < 0)
1695 		panic("vmspace_destroy() failed");
1696 }
1697 
1698 /***************************************************
1699 * page management routines.
1700  ***************************************************/
1701 
1702 /*
1703  * free the pv_entry back to the free list.  This function may be
1704  * called from an interrupt.
1705  */
1706 static __inline void
1707 free_pv_entry(pv_entry_t pv)
1708 {
1709 	pv_entry_count--;
1710 	KKASSERT(pv_entry_count >= 0);
1711 	zfree(pvzone, pv);
1712 }
1713 
1714 /*
1715  * get a new pv_entry, allocating a block from the system
1716  * when needed.  This function may be called from an interrupt.
1717  */
1718 static pv_entry_t
1719 get_pv_entry(void)
1720 {
1721 	pv_entry_count++;
1722 	if (pv_entry_high_water &&
1723 		(pv_entry_count > pv_entry_high_water) &&
1724 		(pmap_pagedaemon_waken == 0)) {
1725 		pmap_pagedaemon_waken = 1;
1726 		wakeup(&vm_pages_needed);
1727 	}
1728 	return zalloc(pvzone);
1729 }
1730 
1731 /*
1732  * This routine is very drastic, but can save the system
1733  * in a pinch.
1734  *
1735  * No requirements.
1736  */
1737 void
1738 pmap_collect(void)
1739 {
1740 	int i;
1741 	vm_page_t m;
1742 	static int warningdone=0;
1743 
1744 	if (pmap_pagedaemon_waken == 0)
1745 		return;
1746 	lwkt_gettoken(&vm_token);
1747 	pmap_pagedaemon_waken = 0;
1748 
1749 	if (warningdone < 5) {
1750 		kprintf("pmap_collect: collecting pv entries -- suggest increasing PMAP_SHPGPERPROC\n");
1751 		warningdone++;
1752 	}
1753 
1754 	for(i = 0; i < vm_page_array_size; i++) {
1755 		m = &vm_page_array[i];
1756 		if (m->wire_count || m->hold_count || m->busy ||
1757 		    (m->flags & PG_BUSY))
1758 			continue;
1759 		pmap_remove_all(m);
1760 	}
1761 	lwkt_reltoken(&vm_token);
1762 }
1763 
1764 
1765 /*
1766  * If it is the first entry on the list, it is actually
1767  * in the header and we must copy the following entry up
1768  * to the header.  Otherwise we must search the list for
1769  * the entry.  In either case we free the now unused entry.
1770  */
1771 static int
1772 pmap_remove_entry(struct pmap *pmap, vm_page_t m, vm_offset_t va)
1773 {
1774 	pv_entry_t pv;
1775 	int rtval;
1776 
1777 	crit_enter();
1778 	if (m->md.pv_list_count < pmap->pm_stats.resident_count) {
1779 		TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
1780 			if (pmap == pv->pv_pmap && va == pv->pv_va)
1781 				break;
1782 		}
1783 	} else {
1784 		TAILQ_FOREACH(pv, &pmap->pm_pvlist, pv_plist) {
1785 			if (va == pv->pv_va)
1786 				break;
1787 		}
1788 	}
1789 
1790 	/*
1791 	 * Note that pv_ptem is NULL if the page table page itself is not
1792 	 * managed, even if the page being removed IS managed.
1793 	 */
1794 	rtval = 0;
1795 	/* JGXXX When can 'pv' be NULL? */
1796 	if (pv) {
1797 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
1798 		m->md.pv_list_count--;
1799 		m->object->agg_pv_list_count--;
1800 		KKASSERT(m->md.pv_list_count >= 0);
1801 		if (TAILQ_EMPTY(&m->md.pv_list))
1802 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
1803 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
1804 		++pmap->pm_generation;
1805 		rtval = pmap_unuse_pt(pmap, va, pv->pv_ptem);
1806 		free_pv_entry(pv);
1807 	}
1808 	crit_exit();
1809 	return rtval;
1810 }
1811 
1812 /*
1813  * Create a pv entry for page at pa for (pmap, va).  If the page table page
1814  * holding the VA is managed, mpte will be non-NULL.
1815  */
1816 static void
1817 pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t mpte, vm_page_t m)
1818 {
1819 	pv_entry_t pv;
1820 
1821 	crit_enter();
1822 	pv = get_pv_entry();
1823 	pv->pv_va = va;
1824 	pv->pv_pmap = pmap;
1825 	pv->pv_ptem = mpte;
1826 
1827 	TAILQ_INSERT_TAIL(&pmap->pm_pvlist, pv, pv_plist);
1828 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
1829 	m->md.pv_list_count++;
1830 	m->object->agg_pv_list_count++;
1831 
1832 	crit_exit();
1833 }
1834 
1835 /*
1836  * pmap_remove_pte: do the things to unmap a page in a process
1837  */
1838 static int
1839 pmap_remove_pte(struct pmap *pmap, pt_entry_t *ptq, vm_offset_t va)
1840 {
1841 	pt_entry_t oldpte;
1842 	vm_page_t m;
1843 
1844 	oldpte = pmap_inval_loadandclear(ptq, pmap, va);
1845 	if (oldpte & VPTE_WIRED)
1846 		--pmap->pm_stats.wired_count;
1847 	KKASSERT(pmap->pm_stats.wired_count >= 0);
1848 
1849 #if 0
1850 	/*
1851 	 * Machines that don't support invlpg, also don't support
1852 	 * PG_G.  XXX PG_G is disabled for SMP so don't worry about
1853 	 * the SMP case.
1854 	 */
1855 	if (oldpte & PG_G)
1856 		cpu_invlpg((void *)va);
1857 #endif
1858 	KKASSERT(pmap->pm_stats.resident_count > 0);
1859 	--pmap->pm_stats.resident_count;
1860 	if (oldpte & VPTE_MANAGED) {
1861 		m = PHYS_TO_VM_PAGE(oldpte);
1862 		if (oldpte & VPTE_M) {
1863 #if defined(PMAP_DIAGNOSTIC)
1864 			if (pmap_nw_modified((pt_entry_t) oldpte)) {
1865 				kprintf(
1866 	"pmap_remove: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
1867 				    va, oldpte);
1868 			}
1869 #endif
1870 			if (pmap_track_modified(pmap, va))
1871 				vm_page_dirty(m);
1872 		}
1873 		if (oldpte & VPTE_A)
1874 			vm_page_flag_set(m, PG_REFERENCED);
1875 		return pmap_remove_entry(pmap, m, va);
1876 	} else {
1877 		return pmap_unuse_pt(pmap, va, NULL);
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 /*
1884  * pmap_remove_page:
1885  *
1886  *	Remove a single page from a process address space.
1887  *
1888  *	This function may not be called from an interrupt if the pmap is
1889  *	not kernel_pmap.
1890  */
1891 static void
1892 pmap_remove_page(struct pmap *pmap, vm_offset_t va)
1893 {
1894 	pt_entry_t *pte;
1895 
1896 	pte = pmap_pte(pmap, va);
1897 	if (pte == NULL)
1898 		return;
1899 	if ((*pte & VPTE_V) == 0)
1900 		return;
1901 	pmap_remove_pte(pmap, pte, va);
1902 }
1903 
1904 /*
1905  * Remove the given range of addresses from the specified map.
1906  *
1907  * It is assumed that the start and end are properly rounded to
1908  * the page size.
1909  *
1910  * This function may not be called from an interrupt if the pmap is
1911  * not kernel_pmap.
1912  *
1913  * No requirements.
1914  */
1915 void
1916 pmap_remove(struct pmap *pmap, vm_offset_t sva, vm_offset_t eva)
1917 {
1918 	vm_offset_t va_next;
1919 	pml4_entry_t *pml4e;
1920 	pdp_entry_t *pdpe;
1921 	pd_entry_t ptpaddr, *pde;
1922 	pt_entry_t *pte;
1923 
1924 	if (pmap == NULL)
1925 		return;
1926 
1927 	lwkt_gettoken(&vm_token);
1928 	KKASSERT(pmap->pm_stats.resident_count >= 0);
1929 	if (pmap->pm_stats.resident_count == 0) {
1930 		lwkt_reltoken(&vm_token);
1931 		return;
1932 	}
1933 
1934 	/*
1935 	 * special handling of removing one page.  a very
1936 	 * common operation and easy to short circuit some
1937 	 * code.
1938 	 */
1939 	if (sva + PAGE_SIZE == eva) {
1940 		pde = pmap_pde(pmap, sva);
1941 		if (pde && (*pde & VPTE_PS) == 0) {
1942 			pmap_remove_page(pmap, sva);
1943 			lwkt_reltoken(&vm_token);
1944 			return;
1945 		}
1946 	}
1947 
1948 	for (; sva < eva; sva = va_next) {
1949 		pml4e = pmap_pml4e(pmap, sva);
1950 		if ((*pml4e & VPTE_V) == 0) {
1951 			va_next = (sva + NBPML4) & ~PML4MASK;
1952 			if (va_next < sva)
1953 				va_next = eva;
1954 			continue;
1955 		}
1956 
1957 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
1958 		if ((*pdpe & VPTE_V) == 0) {
1959 			va_next = (sva + NBPDP) & ~PDPMASK;
1960 			if (va_next < sva)
1961 				va_next = eva;
1962 			continue;
1963 		}
1964 
1965 		/*
1966 		 * Calculate index for next page table.
1967 		 */
1968 		va_next = (sva + NBPDR) & ~PDRMASK;
1969 		if (va_next < sva)
1970 			va_next = eva;
1971 
1972 		pde = pmap_pdpe_to_pde(pdpe, sva);
1973 		ptpaddr = *pde;
1974 
1975 		/*
1976 		 * Weed out invalid mappings.
1977 		 */
1978 		if (ptpaddr == 0)
1979 			continue;
1980 
1981 		/*
1982 		 * Check for large page.
1983 		 */
1984 		if ((ptpaddr & VPTE_PS) != 0) {
1985 			/* JG FreeBSD has more complex treatment here */
1986 			KKASSERT(*pde != 0);
1987 			pmap_inval_pde(pde, pmap, sva);
1988 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
1989 			continue;
1990 		}
1991 
1992 		/*
1993 		 * Limit our scan to either the end of the va represented
1994 		 * by the current page table page, or to the end of the
1995 		 * range being removed.
1996 		 */
1997 		if (va_next > eva)
1998 			va_next = eva;
1999 
2000 		/*
2001 		 * NOTE: pmap_remove_pte() can block.
2002 		 */
2003 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2004 		    sva += PAGE_SIZE) {
2005 			if (*pte == 0)
2006 				continue;
2007 			if (pmap_remove_pte(pmap, pte, sva))
2008 				break;
2009 		}
2010 	}
2011 	lwkt_reltoken(&vm_token);
2012 }
2013 
2014 /*
2015  * Removes this physical page from all physical maps in which it resides.
2016  * Reflects back modify bits to the pager.
2017  *
2018  * This routine may not be called from an interrupt.
2019  *
2020  * No requirements.
2021  */
2022 
2023 static void
2024 pmap_remove_all(vm_page_t m)
2025 {
2026 	pt_entry_t *pte, tpte;
2027 	pv_entry_t pv;
2028 
2029 #if defined(PMAP_DIAGNOSTIC)
2030 	/*
2031 	 * XXX this makes pmap_page_protect(NONE) illegal for non-managed
2032 	 * pages!
2033 	 */
2034 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) {
2035 		panic("pmap_page_protect: illegal for unmanaged page, va: 0x%08llx", (long long)VM_PAGE_TO_PHYS(m));
2036 	}
2037 #endif
2038 
2039 	crit_enter();
2040 	lwkt_gettoken(&vm_token);
2041 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
2042 		KKASSERT(pv->pv_pmap->pm_stats.resident_count > 0);
2043 		--pv->pv_pmap->pm_stats.resident_count;
2044 
2045 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2046 		KKASSERT(pte != NULL);
2047 
2048 		tpte = pmap_inval_loadandclear(pte, pv->pv_pmap, pv->pv_va);
2049 		if (tpte & VPTE_WIRED)
2050 			pv->pv_pmap->pm_stats.wired_count--;
2051 		KKASSERT(pv->pv_pmap->pm_stats.wired_count >= 0);
2052 
2053 		if (tpte & VPTE_A)
2054 			vm_page_flag_set(m, PG_REFERENCED);
2055 
2056 		/*
2057 		 * Update the vm_page_t clean and reference bits.
2058 		 */
2059 		if (tpte & VPTE_M) {
2060 #if defined(PMAP_DIAGNOSTIC)
2061 			if (pmap_nw_modified(tpte)) {
2062 				kprintf(
2063 	"pmap_remove_all: modified page not writable: va: 0x%lx, pte: 0x%lx\n",
2064 				    pv->pv_va, tpte);
2065 			}
2066 #endif
2067 			if (pmap_track_modified(pv->pv_pmap, pv->pv_va))
2068 				vm_page_dirty(m);
2069 		}
2070 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2071 		TAILQ_REMOVE(&pv->pv_pmap->pm_pvlist, pv, pv_plist);
2072 		++pv->pv_pmap->pm_generation;
2073 		m->md.pv_list_count--;
2074 		m->object->agg_pv_list_count--;
2075 		KKASSERT(m->md.pv_list_count >= 0);
2076 		if (TAILQ_EMPTY(&m->md.pv_list))
2077 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2078 		pmap_unuse_pt(pv->pv_pmap, pv->pv_va, pv->pv_ptem);
2079 		free_pv_entry(pv);
2080 	}
2081 	KKASSERT((m->flags & (PG_MAPPED|PG_WRITEABLE)) == 0);
2082 	lwkt_reltoken(&vm_token);
2083 	crit_exit();
2084 }
2085 
2086 /*
2087  * Set the physical protection on the specified range of this map
2088  * as requested.
2089  *
2090  * This function may not be called from an interrupt if the map is
2091  * not the kernel_pmap.
2092  *
2093  * No requirements.
2094  */
2095 void
2096 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
2097 {
2098 	vm_offset_t va_next;
2099 	pml4_entry_t *pml4e;
2100 	pdp_entry_t *pdpe;
2101 	pd_entry_t ptpaddr, *pde;
2102 	pt_entry_t *pte;
2103 
2104 	/* JG review for NX */
2105 
2106 	if (pmap == NULL)
2107 		return;
2108 
2109 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2110 		pmap_remove(pmap, sva, eva);
2111 		return;
2112 	}
2113 
2114 	if (prot & VM_PROT_WRITE)
2115 		return;
2116 
2117 	lwkt_gettoken(&vm_token);
2118 
2119 	for (; sva < eva; sva = va_next) {
2120 
2121 		pml4e = pmap_pml4e(pmap, sva);
2122 		if ((*pml4e & VPTE_V) == 0) {
2123 			va_next = (sva + NBPML4) & ~PML4MASK;
2124 			if (va_next < sva)
2125 				va_next = eva;
2126 			continue;
2127 		}
2128 
2129 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
2130 		if ((*pdpe & VPTE_V) == 0) {
2131 			va_next = (sva + NBPDP) & ~PDPMASK;
2132 			if (va_next < sva)
2133 				va_next = eva;
2134 			continue;
2135 		}
2136 
2137 		va_next = (sva + NBPDR) & ~PDRMASK;
2138 		if (va_next < sva)
2139 			va_next = eva;
2140 
2141 		pde = pmap_pdpe_to_pde(pdpe, sva);
2142 		ptpaddr = *pde;
2143 
2144 		/*
2145 		 * Check for large page.
2146 		 */
2147 		if ((ptpaddr & VPTE_PS) != 0) {
2148 			/* JG correct? */
2149 			pmap_clean_pde(pde, pmap, sva);
2150 			pmap->pm_stats.resident_count -= NBPDR / PAGE_SIZE;
2151 			continue;
2152 		}
2153 
2154 		/*
2155 		 * Weed out invalid mappings. Note: we assume that the page
2156 		 * directory table is always allocated, and in kernel virtual.
2157 		 */
2158 		if (ptpaddr == 0)
2159 			continue;
2160 
2161 		if (va_next > eva)
2162 			va_next = eva;
2163 
2164 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
2165 		    sva += PAGE_SIZE) {
2166 			pt_entry_t pbits;
2167 			vm_page_t m;
2168 
2169 			/*
2170 			 * Clean managed pages and also check the accessed
2171 			 * bit.  Just remove write perms for unmanaged
2172 			 * pages.  Be careful of races, turning off write
2173 			 * access will force a fault rather then setting
2174 			 * the modified bit at an unexpected time.
2175 			 */
2176 			if (*pte & VPTE_MANAGED) {
2177 				pbits = pmap_clean_pte(pte, pmap, sva);
2178 				m = NULL;
2179 				if (pbits & VPTE_A) {
2180 					m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2181 					vm_page_flag_set(m, PG_REFERENCED);
2182 					atomic_clear_long(pte, VPTE_A);
2183 				}
2184 				if (pbits & VPTE_M) {
2185 					if (pmap_track_modified(pmap, sva)) {
2186 						if (m == NULL)
2187 							m = PHYS_TO_VM_PAGE(pbits & VPTE_FRAME);
2188 						vm_page_dirty(m);
2189 					}
2190 				}
2191 			} else {
2192 				pbits = pmap_setro_pte(pte, pmap, sva);
2193 			}
2194 		}
2195 	}
2196 	lwkt_reltoken(&vm_token);
2197 }
2198 
2199 /*
2200  * Enter a managed page into a pmap.  If the page is not wired related pmap
2201  * data can be destroyed at any time for later demand-operation.
2202  *
2203  * Insert the vm_page (m) at virtual address (v) in (pmap), with the
2204  * specified protection, and wire the mapping if requested.
2205  *
2206  * NOTE: This routine may not lazy-evaluate or lose information.  The
2207  * page must actually be inserted into the given map NOW.
2208  *
2209  * NOTE: When entering a page at a KVA address, the pmap must be the
2210  * kernel_pmap.
2211  *
2212  * No requirements.
2213  */
2214 void
2215 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
2216 	   boolean_t wired)
2217 {
2218 	vm_paddr_t pa;
2219 	pd_entry_t *pde;
2220 	pt_entry_t *pte;
2221 	vm_paddr_t opa;
2222 	pt_entry_t origpte, newpte;
2223 	vm_page_t mpte;
2224 
2225 	if (pmap == NULL)
2226 		return;
2227 
2228 	va = trunc_page(va);
2229 
2230 	lwkt_gettoken(&vm_token);
2231 
2232 	/*
2233 	 * Get the page table page.   The kernel_pmap's page table pages
2234 	 * are preallocated and have no associated vm_page_t.
2235 	 */
2236 	if (pmap == &kernel_pmap)
2237 		mpte = NULL;
2238 	else
2239 		mpte = pmap_allocpte(pmap, va);
2240 
2241 	pde = pmap_pde(pmap, va);
2242 	if (pde != NULL && (*pde & VPTE_V) != 0) {
2243 		if ((*pde & VPTE_PS) != 0)
2244 			panic("pmap_enter: attempted pmap_enter on 2MB page");
2245 		pte = pmap_pde_to_pte(pde, va);
2246 	} else {
2247 		panic("pmap_enter: invalid page directory va=%#lx", va);
2248 	}
2249 
2250 	KKASSERT(pte != NULL);
2251 	/*
2252 	 * Deal with races on the original mapping (though don't worry
2253 	 * about VPTE_A races) by cleaning it.  This will force a fault
2254 	 * if an attempt is made to write to the page.
2255 	 */
2256 	pa = VM_PAGE_TO_PHYS(m);
2257 	origpte = pmap_clean_pte(pte, pmap, va);
2258 	opa = origpte & VPTE_FRAME;
2259 
2260 	if (origpte & VPTE_PS)
2261 		panic("pmap_enter: attempted pmap_enter on 2MB page");
2262 
2263 	/*
2264 	 * Mapping has not changed, must be protection or wiring change.
2265 	 */
2266 	if (origpte && (opa == pa)) {
2267 		/*
2268 		 * Wiring change, just update stats. We don't worry about
2269 		 * wiring PT pages as they remain resident as long as there
2270 		 * are valid mappings in them. Hence, if a user page is wired,
2271 		 * the PT page will be also.
2272 		 */
2273 		if (wired && ((origpte & VPTE_WIRED) == 0))
2274 			++pmap->pm_stats.wired_count;
2275 		else if (!wired && (origpte & VPTE_WIRED))
2276 			--pmap->pm_stats.wired_count;
2277 
2278 		/*
2279 		 * Remove the extra pte reference.  Note that we cannot
2280 		 * optimize the RO->RW case because we have adjusted the
2281 		 * wiring count above and may need to adjust the wiring
2282 		 * bits below.
2283 		 */
2284 		if (mpte)
2285 			mpte->hold_count--;
2286 
2287 		/*
2288 		 * We might be turning off write access to the page,
2289 		 * so we go ahead and sense modify status.
2290 		 */
2291 		if (origpte & VPTE_MANAGED) {
2292 			if ((origpte & VPTE_M) &&
2293 			    pmap_track_modified(pmap, va)) {
2294 				vm_page_t om;
2295 				om = PHYS_TO_VM_PAGE(opa);
2296 				vm_page_dirty(om);
2297 			}
2298 			pa |= VPTE_MANAGED;
2299 			KKASSERT(m->flags & PG_MAPPED);
2300 		}
2301 		goto validate;
2302 	}
2303 	/*
2304 	 * Mapping has changed, invalidate old range and fall through to
2305 	 * handle validating new mapping.
2306 	 */
2307 	if (opa) {
2308 		int err;
2309 		err = pmap_remove_pte(pmap, pte, va);
2310 		if (err)
2311 			panic("pmap_enter: pte vanished, va: 0x%lx", va);
2312 	}
2313 
2314 	/*
2315 	 * Enter on the PV list if part of our managed memory. Note that we
2316 	 * raise IPL while manipulating pv_table since pmap_enter can be
2317 	 * called at interrupt time.
2318 	 */
2319 	if (pmap_initialized &&
2320 	    (m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2321 		pmap_insert_entry(pmap, va, mpte, m);
2322 		pa |= VPTE_MANAGED;
2323 		vm_page_flag_set(m, PG_MAPPED);
2324 	}
2325 
2326 	/*
2327 	 * Increment counters
2328 	 */
2329 	++pmap->pm_stats.resident_count;
2330 	if (wired)
2331 		pmap->pm_stats.wired_count++;
2332 
2333 validate:
2334 	/*
2335 	 * Now validate mapping with desired protection/wiring.
2336 	 */
2337 	newpte = (pt_entry_t) (pa | pte_prot(pmap, prot) | VPTE_V);
2338 
2339 	if (wired)
2340 		newpte |= VPTE_WIRED;
2341 	if (pmap != &kernel_pmap)
2342 		newpte |= VPTE_U;
2343 
2344 	/*
2345 	 * If the mapping or permission bits are different from the
2346 	 * (now cleaned) original pte, an update is needed.  We've
2347 	 * already downgraded or invalidated the page so all we have
2348 	 * to do now is update the bits.
2349 	 *
2350 	 * XXX should we synchronize RO->RW changes to avoid another
2351 	 * fault?
2352 	 */
2353 	if ((origpte & ~(VPTE_W|VPTE_M|VPTE_A)) != newpte) {
2354 		*pte = newpte | VPTE_A;
2355 		if (newpte & VPTE_W)
2356 			vm_page_flag_set(m, PG_WRITEABLE);
2357 	}
2358 	KKASSERT((newpte & VPTE_MANAGED) == 0 || (m->flags & PG_MAPPED));
2359 	lwkt_reltoken(&vm_token);
2360 }
2361 
2362 /*
2363  * This code works like pmap_enter() but assumes VM_PROT_READ and not-wired.
2364  *
2365  * Currently this routine may only be used on user pmaps, not kernel_pmap.
2366  *
2367  * No requirements.
2368  */
2369 void
2370 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m)
2371 {
2372 	pt_entry_t *pte;
2373 	vm_paddr_t pa;
2374 	vm_page_t mpte;
2375 	vm_pindex_t ptepindex;
2376 	pd_entry_t *ptepa;
2377 
2378 	KKASSERT(pmap != &kernel_pmap);
2379 
2380 	KKASSERT(va >= VM_MIN_USER_ADDRESS && va < VM_MAX_USER_ADDRESS);
2381 
2382 	/*
2383 	 * Calculate pagetable page index
2384 	 */
2385 	ptepindex = pmap_pde_pindex(va);
2386 
2387 	lwkt_gettoken(&vm_token);
2388 
2389 	do {
2390 		/*
2391 		 * Get the page directory entry
2392 		 */
2393 		ptepa = pmap_pde(pmap, va);
2394 
2395 		/*
2396 		 * If the page table page is mapped, we just increment
2397 		 * the hold count, and activate it.
2398 		 */
2399 		if (ptepa && (*ptepa & VPTE_V) != 0) {
2400 			if (*ptepa & VPTE_PS)
2401 				panic("pmap_enter_quick: unexpected mapping into 2MB page");
2402 			if (pmap->pm_ptphint &&
2403 			    (pmap->pm_ptphint->pindex == ptepindex)) {
2404 				mpte = pmap->pm_ptphint;
2405 			} else {
2406 				mpte = pmap_page_lookup( pmap->pm_pteobj, ptepindex);
2407 				pmap->pm_ptphint = mpte;
2408 			}
2409 			if (mpte)
2410 				mpte->hold_count++;
2411 		} else {
2412 			mpte = _pmap_allocpte(pmap, ptepindex);
2413 		}
2414 	} while (mpte == NULL);
2415 
2416 	/*
2417 	 * Ok, now that the page table page has been validated, get the pte.
2418 	 * If the pte is already mapped undo mpte's hold_count and
2419 	 * just return.
2420 	 */
2421 	pte = pmap_pte(pmap, va);
2422 	if (*pte & VPTE_V) {
2423 		KKASSERT(mpte != NULL);
2424 		pmap_unwire_pte_hold(pmap, va, mpte);
2425 		pa = VM_PAGE_TO_PHYS(m);
2426 		KKASSERT(((*pte ^ pa) & VPTE_FRAME) == 0);
2427 		lwkt_reltoken(&vm_token);
2428 		return;
2429 	}
2430 
2431 	/*
2432 	 * Enter on the PV list if part of our managed memory
2433 	 */
2434 	if ((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0) {
2435 		pmap_insert_entry(pmap, va, mpte, m);
2436 		vm_page_flag_set(m, PG_MAPPED);
2437 	}
2438 
2439 	/*
2440 	 * Increment counters
2441 	 */
2442 	++pmap->pm_stats.resident_count;
2443 
2444 	pa = VM_PAGE_TO_PHYS(m);
2445 
2446 	/*
2447 	 * Now validate mapping with RO protection
2448 	 */
2449 	if (m->flags & (PG_FICTITIOUS|PG_UNMANAGED))
2450 		*pte = (vpte_t)pa | VPTE_V | VPTE_U;
2451 	else
2452 		*pte = (vpte_t)pa | VPTE_V | VPTE_U | VPTE_MANAGED;
2453 	/*pmap_inval_add(&info, pmap, va); shouldn't be needed 0->valid */
2454 	/*pmap_inval_flush(&info); don't need for vkernel */
2455 	lwkt_reltoken(&vm_token);
2456 }
2457 
2458 /*
2459  * Make a temporary mapping for a physical address.  This is only intended
2460  * to be used for panic dumps.
2461  */
2462 void *
2463 pmap_kenter_temporary(vm_paddr_t pa, int i)
2464 {
2465 	pmap_kenter(crashdumpmap + (i * PAGE_SIZE), pa);
2466 	return ((void *)crashdumpmap);
2467 }
2468 
2469 #define MAX_INIT_PT (96)
2470 
2471 /*
2472  * This routine preloads the ptes for a given object into the specified pmap.
2473  * This eliminates the blast of soft faults on process startup and
2474  * immediately after an mmap.
2475  *
2476  * No requirements.
2477  */
2478 static int pmap_object_init_pt_callback(vm_page_t p, void *data);
2479 
2480 void
2481 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_prot_t prot,
2482 		    vm_object_t object, vm_pindex_t pindex,
2483 		    vm_size_t size, int limit)
2484 {
2485 	struct rb_vm_page_scan_info info;
2486 	struct lwp *lp;
2487 	vm_size_t psize;
2488 
2489 	/*
2490 	 * We can't preinit if read access isn't set or there is no pmap
2491 	 * or object.
2492 	 */
2493 	if ((prot & VM_PROT_READ) == 0 || pmap == NULL || object == NULL)
2494 		return;
2495 
2496 	/*
2497 	 * We can't preinit if the pmap is not the current pmap
2498 	 */
2499 	lp = curthread->td_lwp;
2500 	if (lp == NULL || pmap != vmspace_pmap(lp->lwp_vmspace))
2501 		return;
2502 
2503 	psize = x86_64_btop(size);
2504 
2505 	if ((object->type != OBJT_VNODE) ||
2506 		((limit & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
2507 			(object->resident_page_count > MAX_INIT_PT))) {
2508 		return;
2509 	}
2510 
2511 	if (psize + pindex > object->size) {
2512 		if (object->size < pindex)
2513 			return;
2514 		psize = object->size - pindex;
2515 	}
2516 
2517 	if (psize == 0)
2518 		return;
2519 
2520 	/*
2521 	 * Use a red-black scan to traverse the requested range and load
2522 	 * any valid pages found into the pmap.
2523 	 *
2524 	 * We cannot safely scan the object's memq unless we are in a
2525 	 * critical section since interrupts can remove pages from objects.
2526 	 */
2527 	info.start_pindex = pindex;
2528 	info.end_pindex = pindex + psize - 1;
2529 	info.limit = limit;
2530 	info.mpte = NULL;
2531 	info.addr = addr;
2532 	info.pmap = pmap;
2533 
2534 	crit_enter();
2535 	lwkt_gettoken(&vm_token);
2536 	vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2537 				pmap_object_init_pt_callback, &info);
2538 	lwkt_reltoken(&vm_token);
2539 	crit_exit();
2540 }
2541 
2542 static
2543 int
2544 pmap_object_init_pt_callback(vm_page_t p, void *data)
2545 {
2546 	struct rb_vm_page_scan_info *info = data;
2547 	vm_pindex_t rel_index;
2548 	/*
2549 	 * don't allow an madvise to blow away our really
2550 	 * free pages allocating pv entries.
2551 	 */
2552 	if ((info->limit & MAP_PREFAULT_MADVISE) &&
2553 		vmstats.v_free_count < vmstats.v_free_reserved) {
2554 		    return(-1);
2555 	}
2556 	if (((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2557 	    (p->busy == 0) && (p->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2558 		if ((p->queue - p->pc) == PQ_CACHE)
2559 			vm_page_deactivate(p);
2560 		vm_page_busy(p);
2561 		rel_index = p->pindex - info->start_pindex;
2562 		pmap_enter_quick(info->pmap,
2563 				 info->addr + x86_64_ptob(rel_index), p);
2564 		vm_page_wakeup(p);
2565 	}
2566 	return(0);
2567 }
2568 
2569 /*
2570  * Return TRUE if the pmap is in shape to trivially
2571  * pre-fault the specified address.
2572  *
2573  * Returns FALSE if it would be non-trivial or if a
2574  * pte is already loaded into the slot.
2575  *
2576  * No requirements.
2577  */
2578 int
2579 pmap_prefault_ok(pmap_t pmap, vm_offset_t addr)
2580 {
2581 	pt_entry_t *pte;
2582 	pd_entry_t *pde;
2583 	int ret;
2584 
2585 	lwkt_gettoken(&vm_token);
2586 	pde = pmap_pde(pmap, addr);
2587 	if (pde == NULL || *pde == 0) {
2588 		ret = 0;
2589 	} else {
2590 		pte = pmap_pde_to_pte(pde, addr);
2591 		ret = (*pte) ? 0 : 1;
2592 	}
2593 	lwkt_reltoken(&vm_token);
2594 	return (ret);
2595 }
2596 
2597 /*
2598  * Change the wiring attribute for a map/virtual-address pair.
2599  *
2600  * The mapping must already exist in the pmap.
2601  * No other requirements.
2602  */
2603 void
2604 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
2605 {
2606 	pt_entry_t *pte;
2607 
2608 	if (pmap == NULL)
2609 		return;
2610 
2611 	lwkt_gettoken(&vm_token);
2612 	pte = pmap_pte(pmap, va);
2613 
2614 	if (wired && !pmap_pte_w(pte))
2615 		pmap->pm_stats.wired_count++;
2616 	else if (!wired && pmap_pte_w(pte))
2617 		pmap->pm_stats.wired_count--;
2618 
2619 	/*
2620 	 * Wiring is not a hardware characteristic so there is no need to
2621 	 * invalidate TLB.  However, in an SMP environment we must use
2622 	 * a locked bus cycle to update the pte (if we are not using
2623 	 * the pmap_inval_*() API that is)... it's ok to do this for simple
2624 	 * wiring changes.
2625 	 */
2626 	if (wired)
2627 		atomic_set_long(pte, VPTE_WIRED);
2628 	else
2629 		atomic_clear_long(pte, VPTE_WIRED);
2630 	lwkt_reltoken(&vm_token);
2631 }
2632 
2633 /*
2634  *	Copy the range specified by src_addr/len
2635  *	from the source map to the range dst_addr/len
2636  *	in the destination map.
2637  *
2638  *	This routine is only advisory and need not do anything.
2639  */
2640 void
2641 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
2642 	vm_size_t len, vm_offset_t src_addr)
2643 {
2644 	/*
2645 	 * XXX BUGGY.  Amoung other things srcmpte is assumed to remain
2646 	 * valid through blocking calls, and that's just not going to
2647 	 * be the case.
2648 	 *
2649 	 * FIXME!
2650 	 */
2651 	return;
2652 }
2653 
2654 /*
2655  * pmap_zero_page:
2656  *
2657  *	Zero the specified physical page.
2658  *
2659  *	This function may be called from an interrupt and no locking is
2660  *	required.
2661  */
2662 void
2663 pmap_zero_page(vm_paddr_t phys)
2664 {
2665 	vm_offset_t va = PHYS_TO_DMAP(phys);
2666 
2667 	bzero((void *)va, PAGE_SIZE);
2668 }
2669 
2670 /*
2671  * pmap_page_assertzero:
2672  *
2673  *	Assert that a page is empty, panic if it isn't.
2674  */
2675 void
2676 pmap_page_assertzero(vm_paddr_t phys)
2677 {
2678 	int i;
2679 
2680 	crit_enter();
2681 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2682 
2683 	for (i = 0; i < PAGE_SIZE; i += sizeof(int)) {
2684 	    if (*(int *)((char *)virt + i) != 0) {
2685 		panic("pmap_page_assertzero() @ %p not zero!\n",
2686 		    (void *)virt);
2687 	    }
2688 	}
2689 	crit_exit();
2690 }
2691 
2692 /*
2693  * pmap_zero_page:
2694  *
2695  *	Zero part of a physical page by mapping it into memory and clearing
2696  *	its contents with bzero.
2697  *
2698  *	off and size may not cover an area beyond a single hardware page.
2699  */
2700 void
2701 pmap_zero_page_area(vm_paddr_t phys, int off, int size)
2702 {
2703 	crit_enter();
2704 	vm_offset_t virt = PHYS_TO_DMAP(phys);
2705 	bzero((char *)virt + off, size);
2706 	crit_exit();
2707 }
2708 
2709 /*
2710  * pmap_copy_page:
2711  *
2712  *	Copy the physical page from the source PA to the target PA.
2713  *	This function may be called from an interrupt.  No locking
2714  *	is required.
2715  */
2716 void
2717 pmap_copy_page(vm_paddr_t src, vm_paddr_t dst)
2718 {
2719 	vm_offset_t src_virt, dst_virt;
2720 
2721 	crit_enter();
2722 	src_virt = PHYS_TO_DMAP(src);
2723 	dst_virt = PHYS_TO_DMAP(dst);
2724 	bcopy((void *)src_virt, (void *)dst_virt, PAGE_SIZE);
2725 	crit_exit();
2726 }
2727 
2728 /*
2729  * pmap_copy_page_frag:
2730  *
2731  *	Copy the physical page from the source PA to the target PA.
2732  *	This function may be called from an interrupt.  No locking
2733  *	is required.
2734  */
2735 void
2736 pmap_copy_page_frag(vm_paddr_t src, vm_paddr_t dst, size_t bytes)
2737 {
2738 	vm_offset_t src_virt, dst_virt;
2739 
2740 	crit_enter();
2741 	src_virt = PHYS_TO_DMAP(src);
2742 	dst_virt = PHYS_TO_DMAP(dst);
2743 	bcopy((char *)src_virt + (src & PAGE_MASK),
2744 	      (char *)dst_virt + (dst & PAGE_MASK),
2745 	      bytes);
2746 	crit_exit();
2747 }
2748 
2749 /*
2750  * Returns true if the pmap's pv is one of the first 16 pvs linked to
2751  * from this page.  This count may be changed upwards or downwards
2752  * in the future; it is only necessary that true be returned for a small
2753  * subset of pmaps for proper page aging.
2754  *
2755  * No other requirements.
2756  */
2757 boolean_t
2758 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
2759 {
2760 	pv_entry_t pv;
2761 	int loops = 0;
2762 
2763 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2764 		return FALSE;
2765 
2766 	crit_enter();
2767 	lwkt_gettoken(&vm_token);
2768 
2769 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2770 		if (pv->pv_pmap == pmap) {
2771 			lwkt_reltoken(&vm_token);
2772 			crit_exit();
2773 			return TRUE;
2774 		}
2775 		loops++;
2776 		if (loops >= 16)
2777 			break;
2778 	}
2779 	lwkt_reltoken(&vm_token);
2780 	crit_exit();
2781 	return (FALSE);
2782 }
2783 
2784 /*
2785  * Remove all pages from specified address space this aids process
2786  * exit speeds.  Also, this code is special cased for current
2787  * process only, but can have the more generic (and slightly slower)
2788  * mode enabled.  This is much faster than pmap_remove in the case
2789  * of running down an entire address space.
2790  *
2791  * No other requirements.
2792  */
2793 void
2794 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
2795 {
2796 	pt_entry_t *pte, tpte;
2797 	pv_entry_t pv, npv;
2798 	vm_page_t m;
2799 	int save_generation;
2800 
2801 	crit_enter();
2802 	lwkt_gettoken(&vm_token);
2803 	for (pv = TAILQ_FIRST(&pmap->pm_pvlist); pv; pv = npv) {
2804 		if (pv->pv_va >= eva || pv->pv_va < sva) {
2805 			npv = TAILQ_NEXT(pv, pv_plist);
2806 			continue;
2807 		}
2808 
2809 		KKASSERT(pmap == pv->pv_pmap);
2810 
2811 		pte = pmap_pte(pmap, pv->pv_va);
2812 
2813 		/*
2814 		 * We cannot remove wired pages from a process' mapping
2815 		 * at this time
2816 		 */
2817 		if (*pte & VPTE_WIRED) {
2818 			npv = TAILQ_NEXT(pv, pv_plist);
2819 			continue;
2820 		}
2821 		tpte = pmap_inval_loadandclear(pte, pmap, pv->pv_va);
2822 
2823 		m = PHYS_TO_VM_PAGE(tpte & VPTE_FRAME);
2824 
2825 		KASSERT(m < &vm_page_array[vm_page_array_size],
2826 			("pmap_remove_pages: bad tpte %lx", tpte));
2827 
2828 		KKASSERT(pmap->pm_stats.resident_count > 0);
2829 		--pmap->pm_stats.resident_count;
2830 
2831 		/*
2832 		 * Update the vm_page_t clean and reference bits.
2833 		 */
2834 		if (tpte & VPTE_M) {
2835 			vm_page_dirty(m);
2836 		}
2837 
2838 		npv = TAILQ_NEXT(pv, pv_plist);
2839 		TAILQ_REMOVE(&pmap->pm_pvlist, pv, pv_plist);
2840 		save_generation = ++pmap->pm_generation;
2841 
2842 		m->md.pv_list_count--;
2843 		m->object->agg_pv_list_count--;
2844 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
2845 		if (TAILQ_EMPTY(&m->md.pv_list))
2846 			vm_page_flag_clear(m, PG_MAPPED | PG_WRITEABLE);
2847 
2848 		pmap_unuse_pt(pmap, pv->pv_va, pv->pv_ptem);
2849 		free_pv_entry(pv);
2850 
2851 		/*
2852 		 * Restart the scan if we blocked during the unuse or free
2853 		 * calls and other removals were made.
2854 		 */
2855 		if (save_generation != pmap->pm_generation) {
2856 			kprintf("Warning: pmap_remove_pages race-A avoided\n");
2857 			npv = TAILQ_FIRST(&pmap->pm_pvlist);
2858 		}
2859 	}
2860 	lwkt_reltoken(&vm_token);
2861 	crit_exit();
2862 }
2863 
2864 /*
2865  * pmap_testbit tests bits in active mappings of a VM page.
2866  */
2867 static boolean_t
2868 pmap_testbit(vm_page_t m, int bit)
2869 {
2870 	pv_entry_t pv;
2871 	pt_entry_t *pte;
2872 
2873 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2874 		return FALSE;
2875 
2876 	if (TAILQ_FIRST(&m->md.pv_list) == NULL)
2877 		return FALSE;
2878 
2879 	crit_enter();
2880 
2881 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2882 		/*
2883 		 * if the bit being tested is the modified bit, then
2884 		 * mark clean_map and ptes as never
2885 		 * modified.
2886 		 */
2887 		if (bit & (VPTE_A|VPTE_M)) {
2888 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2889 				continue;
2890 		}
2891 
2892 #if defined(PMAP_DIAGNOSTIC)
2893 		if (pv->pv_pmap == NULL) {
2894 			kprintf("Null pmap (tb) at va: 0x%lx\n", pv->pv_va);
2895 			continue;
2896 		}
2897 #endif
2898 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2899 		if (*pte & bit) {
2900 			crit_exit();
2901 			return TRUE;
2902 		}
2903 	}
2904 	crit_exit();
2905 	return (FALSE);
2906 }
2907 
2908 /*
2909  * This routine is used to clear bits in ptes.  Certain bits require special
2910  * handling, in particular (on virtual kernels) the VPTE_M (modify) bit.
2911  *
2912  * This routine is only called with certain VPTE_* bit combinations.
2913  */
2914 static __inline void
2915 pmap_clearbit(vm_page_t m, int bit)
2916 {
2917 	pv_entry_t pv;
2918 	pt_entry_t *pte;
2919 	pt_entry_t pbits;
2920 
2921 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
2922 		return;
2923 
2924 	crit_enter();
2925 
2926 	/*
2927 	 * Loop over all current mappings setting/clearing as appropos If
2928 	 * setting RO do we need to clear the VAC?
2929 	 */
2930 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_list) {
2931 		/*
2932 		 * don't write protect pager mappings
2933 		 */
2934 		if (bit == VPTE_W) {
2935 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
2936 				continue;
2937 		}
2938 
2939 #if defined(PMAP_DIAGNOSTIC)
2940 		if (pv->pv_pmap == NULL) {
2941 			kprintf("Null pmap (cb) at va: 0x%lx\n", pv->pv_va);
2942 			continue;
2943 		}
2944 #endif
2945 
2946 		/*
2947 		 * Careful here.  We can use a locked bus instruction to
2948 		 * clear VPTE_A or VPTE_M safely but we need to synchronize
2949 		 * with the target cpus when we mess with VPTE_W.
2950 		 *
2951 		 * On virtual kernels we must force a new fault-on-write
2952 		 * in the real kernel if we clear the Modify bit ourselves,
2953 		 * otherwise the real kernel will not get a new fault and
2954 		 * will never set our Modify bit again.
2955 		 */
2956 		pte = pmap_pte(pv->pv_pmap, pv->pv_va);
2957 		if (*pte & bit) {
2958 			if (bit == VPTE_W) {
2959 				/*
2960 				 * We must also clear VPTE_M when clearing
2961 				 * VPTE_W
2962 				 */
2963 				pbits = pmap_clean_pte(pte, pv->pv_pmap,
2964 						       pv->pv_va);
2965 				if (pbits & VPTE_M)
2966 					vm_page_dirty(m);
2967 			} else if (bit == VPTE_M) {
2968 				/*
2969 				 * We do not have to make the page read-only
2970 				 * when clearing the Modify bit.  The real
2971 				 * kernel will make the real PTE read-only
2972 				 * or otherwise detect the write and set
2973 				 * our VPTE_M again simply by us invalidating
2974 				 * the real kernel VA for the pmap (as we did
2975 				 * above).  This allows the real kernel to
2976 				 * handle the write fault without forwarding
2977 				 * the fault to us.
2978 				 */
2979 				atomic_clear_long(pte, VPTE_M);
2980 			} else if ((bit & (VPTE_W|VPTE_M)) == (VPTE_W|VPTE_M)) {
2981 				/*
2982 				 * We've been asked to clear W & M, I guess
2983 				 * the caller doesn't want us to update
2984 				 * the dirty status of the VM page.
2985 				 */
2986 				pmap_clean_pte(pte, pv->pv_pmap, pv->pv_va);
2987 			} else {
2988 				/*
2989 				 * We've been asked to clear bits that do
2990 				 * not interact with hardware.
2991 				 */
2992 				atomic_clear_long(pte, bit);
2993 			}
2994 		}
2995 	}
2996 	crit_exit();
2997 }
2998 
2999 /*
3000  * Lower the permission for all mappings to a given page.
3001  *
3002  * No other requirements.
3003  */
3004 void
3005 pmap_page_protect(vm_page_t m, vm_prot_t prot)
3006 {
3007 	/* JG NX support? */
3008 	if ((prot & VM_PROT_WRITE) == 0) {
3009 		lwkt_gettoken(&vm_token);
3010 		if (prot & (VM_PROT_READ | VM_PROT_EXECUTE)) {
3011 			pmap_clearbit(m, VPTE_W);
3012 			vm_page_flag_clear(m, PG_WRITEABLE);
3013 		} else {
3014 			pmap_remove_all(m);
3015 		}
3016 		lwkt_reltoken(&vm_token);
3017 	}
3018 }
3019 
3020 vm_paddr_t
3021 pmap_phys_address(vm_pindex_t ppn)
3022 {
3023 	return (x86_64_ptob(ppn));
3024 }
3025 
3026 /*
3027  * Return a count of reference bits for a page, clearing those bits.
3028  * It is not necessary for every reference bit to be cleared, but it
3029  * is necessary that 0 only be returned when there are truly no
3030  * reference bits set.
3031  *
3032  * XXX: The exact number of bits to check and clear is a matter that
3033  * should be tested and standardized at some point in the future for
3034  * optimal aging of shared pages.
3035  *
3036  * No other requirements.
3037  */
3038 int
3039 pmap_ts_referenced(vm_page_t m)
3040 {
3041 	pv_entry_t pv, pvf, pvn;
3042 	pt_entry_t *pte;
3043 	int rtval = 0;
3044 
3045 	if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
3046 		return (rtval);
3047 
3048 	crit_enter();
3049 	lwkt_gettoken(&vm_token);
3050 
3051 	if ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
3052 
3053 		pvf = pv;
3054 
3055 		do {
3056 			pvn = TAILQ_NEXT(pv, pv_list);
3057 
3058 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_list);
3059 
3060 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_list);
3061 
3062 			if (!pmap_track_modified(pv->pv_pmap, pv->pv_va))
3063 				continue;
3064 
3065 			pte = pmap_pte(pv->pv_pmap, pv->pv_va);
3066 
3067 			if (pte && (*pte & VPTE_A)) {
3068 #ifdef SMP
3069 				atomic_clear_long(pte, VPTE_A);
3070 #else
3071 				atomic_clear_long_nonlocked(pte, VPTE_A);
3072 #endif
3073 				rtval++;
3074 				if (rtval > 4) {
3075 					break;
3076 				}
3077 			}
3078 		} while ((pv = pvn) != NULL && pv != pvf);
3079 	}
3080 	lwkt_reltoken(&vm_token);
3081 	crit_exit();
3082 
3083 	return (rtval);
3084 }
3085 
3086 /*
3087  * Return whether or not the specified physical page was modified
3088  * in any physical maps.
3089  *
3090  * No other requirements.
3091  */
3092 boolean_t
3093 pmap_is_modified(vm_page_t m)
3094 {
3095 	boolean_t res;
3096 
3097 	lwkt_gettoken(&vm_token);
3098 	res = pmap_testbit(m, VPTE_M);
3099 	lwkt_reltoken(&vm_token);
3100 	return (res);
3101 }
3102 
3103 /*
3104  * Clear the modify bits on the specified physical page.
3105  *
3106  * No other requirements.
3107  */
3108 void
3109 pmap_clear_modify(vm_page_t m)
3110 {
3111 	lwkt_gettoken(&vm_token);
3112 	pmap_clearbit(m, VPTE_M);
3113 	lwkt_reltoken(&vm_token);
3114 }
3115 
3116 /*
3117  * Clear the reference bit on the specified physical page.
3118  *
3119  * No other requirements.
3120  */
3121 void
3122 pmap_clear_reference(vm_page_t m)
3123 {
3124 	lwkt_gettoken(&vm_token);
3125 	pmap_clearbit(m, VPTE_A);
3126 	lwkt_reltoken(&vm_token);
3127 }
3128 
3129 /*
3130  * Miscellaneous support routines follow
3131  */
3132 
3133 static void
3134 i386_protection_init(void)
3135 {
3136 	int *kp, prot;
3137 
3138 	kp = protection_codes;
3139 	for (prot = 0; prot < 8; prot++) {
3140 		if (prot & VM_PROT_READ)
3141 			*kp |= VPTE_R;
3142 		if (prot & VM_PROT_WRITE)
3143 			*kp |= VPTE_W;
3144 		if (prot & VM_PROT_EXECUTE)
3145 			*kp |= VPTE_X;
3146 		++kp;
3147 	}
3148 }
3149 
3150 /*
3151  * Perform the pmap work for mincore
3152  *
3153  * No other requirements.
3154  */
3155 int
3156 pmap_mincore(pmap_t pmap, vm_offset_t addr)
3157 {
3158 	pt_entry_t *ptep, pte;
3159 	vm_page_t m;
3160 	int val = 0;
3161 
3162 	lwkt_gettoken(&vm_token);
3163 	ptep = pmap_pte(pmap, addr);
3164 
3165 	if (ptep && (pte = *ptep) != 0) {
3166 		vm_paddr_t pa;
3167 
3168 		val = MINCORE_INCORE;
3169 		if ((pte & VPTE_MANAGED) == 0)
3170 			goto done;
3171 
3172 		pa = pte & VPTE_FRAME;
3173 
3174 		m = PHYS_TO_VM_PAGE(pa);
3175 
3176 		/*
3177 		 * Modified by us
3178 		 */
3179 		if (pte & VPTE_M)
3180 			val |= MINCORE_MODIFIED|MINCORE_MODIFIED_OTHER;
3181 		/*
3182 		 * Modified by someone
3183 		 */
3184 		else if (m->dirty || pmap_is_modified(m))
3185 			val |= MINCORE_MODIFIED_OTHER;
3186 		/*
3187 		 * Referenced by us
3188 		 */
3189 		if (pte & VPTE_A)
3190 			val |= MINCORE_REFERENCED|MINCORE_REFERENCED_OTHER;
3191 
3192 		/*
3193 		 * Referenced by someone
3194 		 */
3195 		else if ((m->flags & PG_REFERENCED) || pmap_ts_referenced(m)) {
3196 			val |= MINCORE_REFERENCED_OTHER;
3197 			vm_page_flag_set(m, PG_REFERENCED);
3198 		}
3199 	}
3200 done:
3201 	lwkt_reltoken(&vm_token);
3202 	return val;
3203 }
3204 
3205 /*
3206  * Replace p->p_vmspace with a new one.  If adjrefs is non-zero the new
3207  * vmspace will be ref'd and the old one will be deref'd.
3208  */
3209 void
3210 pmap_replacevm(struct proc *p, struct vmspace *newvm, int adjrefs)
3211 {
3212 	struct vmspace *oldvm;
3213 	struct lwp *lp;
3214 
3215 	crit_enter();
3216 	oldvm = p->p_vmspace;
3217 	if (oldvm != newvm) {
3218 		p->p_vmspace = newvm;
3219 		KKASSERT(p->p_nthreads == 1);
3220 		lp = RB_ROOT(&p->p_lwp_tree);
3221 		pmap_setlwpvm(lp, newvm);
3222 		if (adjrefs) {
3223 			sysref_get(&newvm->vm_sysref);
3224 			sysref_put(&oldvm->vm_sysref);
3225 		}
3226 	}
3227 	crit_exit();
3228 }
3229 
3230 /*
3231  * Set the vmspace for a LWP.  The vmspace is almost universally set the
3232  * same as the process vmspace, but virtual kernels need to swap out contexts
3233  * on a per-lwp basis.
3234  */
3235 void
3236 pmap_setlwpvm(struct lwp *lp, struct vmspace *newvm)
3237 {
3238 	struct vmspace *oldvm;
3239 	struct pmap *pmap;
3240 
3241 	crit_enter();
3242 	oldvm = lp->lwp_vmspace;
3243 
3244 	if (oldvm != newvm) {
3245 		lp->lwp_vmspace = newvm;
3246 		if (curthread->td_lwp == lp) {
3247 			pmap = vmspace_pmap(newvm);
3248 #if defined(SMP)
3249 			atomic_set_int(&pmap->pm_active, 1 << mycpu->gd_cpuid);
3250 #else
3251 			pmap->pm_active |= 1;
3252 #endif
3253 #if defined(SWTCH_OPTIM_STATS)
3254 			tlb_flush_count++;
3255 #endif
3256 			pmap = vmspace_pmap(oldvm);
3257 #if defined(SMP)
3258 			atomic_clear_int(&pmap->pm_active,
3259 					  1 << mycpu->gd_cpuid);
3260 #else
3261 			pmap->pm_active &= ~1;
3262 #endif
3263 		}
3264 	}
3265 	crit_exit();
3266 }
3267 
3268 vm_offset_t
3269 pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size)
3270 {
3271 
3272 	if ((obj == NULL) || (size < NBPDR) || (obj->type != OBJT_DEVICE)) {
3273 		return addr;
3274 	}
3275 
3276 	addr = (addr + (NBPDR - 1)) & ~(NBPDR - 1);
3277 	return addr;
3278 }
3279 
3280 /*
3281  * Used by kmalloc/kfree, page already exists at va
3282  */
3283 vm_page_t
3284 pmap_kvtom(vm_offset_t va)
3285 {
3286 	vpte_t *ptep;
3287 
3288 	KKASSERT(va >= KvaStart && va < KvaEnd);
3289 	ptep = vtopte(va);
3290 	return(PHYS_TO_VM_PAGE(*ptep & PG_FRAME));
3291 }
3292