1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)autoconf.c	7.1 (Berkeley) 5/9/91
38  * $FreeBSD: src/sys/i386/i386/autoconf.c,v 1.146.2.2 2001/06/07 06:05:58 dd Exp $
39  */
40 
41 /*
42  * Setup the system to run on the current machine.
43  *
44  * Configure() is called at boot time and initializes the vba
45  * device tables and the memory controller monitoring.  Available
46  * devices are determined (from possibilities mentioned in ioconf.c),
47  * and the drivers are initialized.
48  */
49 #include "opt_bootp.h"
50 #include "opt_ffs.h"
51 #include "opt_cd9660.h"
52 #include "opt_nfs.h"
53 #include "opt_nfsroot.h"
54 #include "opt_rootdevname.h"
55 
56 #include "use_isa.h"
57 
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/bootmaj.h>
61 #include <sys/bus.h>
62 #include <sys/buf.h>
63 #include <sys/conf.h>
64 #include <sys/diskslice.h>
65 #include <sys/reboot.h>
66 #include <sys/kernel.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/cons.h>
70 #include <sys/thread.h>
71 #include <sys/device.h>
72 #include <sys/machintr.h>
73 
74 #include <vm/vm_kern.h>
75 #include <vm/vm_extern.h>
76 #include <vm/vm_pager.h>
77 
78 #if 0
79 #include <machine/pcb.h>
80 #include <machine/pcb_ext.h>
81 #endif
82 #include <machine/smp.h>
83 #include <machine/globaldata.h>
84 #include <machine/md_var.h>
85 
86 #if NISA > 0
87 #include <bus/isa/isavar.h>
88 
89 device_t isa_bus_device = NULL;
90 #endif
91 
92 static void cpu_startup (void *);
93 static void configure_first (void *);
94 static void configure (void *);
95 static void configure_final (void *);
96 
97 #if defined(FFS) && defined(FFS_ROOT)
98 static void	setroot (void);
99 #endif
100 
101 #if defined(NFS) && defined(NFS_ROOT)
102 #if !defined(BOOTP_NFSROOT)
103 static void	pxe_setup_nfsdiskless(void);
104 #endif
105 #endif
106 
107 SYSINIT(cpu, SI_BOOT2_START_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
108 SYSINIT(configure1, SI_SUB_CONFIGURE, SI_ORDER_FIRST, configure_first, NULL);
109 /* SI_ORDER_SECOND is hookable */
110 SYSINIT(configure2, SI_SUB_CONFIGURE, SI_ORDER_THIRD, configure, NULL);
111 /* SI_ORDER_MIDDLE is hookable */
112 SYSINIT(configure3, SI_SUB_CONFIGURE, SI_ORDER_ANY, configure_final, NULL);
113 
114 cdev_t	rootdev = NULL;
115 cdev_t	dumpdev = NULL;
116 
117 /*
118  *
119  */
120 static void
121 cpu_startup(void *dummy)
122 {
123 	vm_offset_t buffer_sva;
124 	vm_offset_t buffer_eva;
125 	vm_offset_t pager_sva;
126 	vm_offset_t pager_eva;
127 
128 	kprintf("%s", version);
129 	kprintf("real memory = %ju (%juK bytes)\n",
130 	    (uintmax_t)ptoa(Maxmem), (uintmax_t)(ptoa(Maxmem) / 1024));
131 
132 	if (nbuf == 0) {
133 		int factor = 4 * BKVASIZE / 1024;
134 		int kbytes = Maxmem * (PAGE_SIZE / 1024);
135 
136 		nbuf = 50;
137 		if (kbytes > 4096)
138 			nbuf += min((kbytes - 4096) / factor, 65536 / factor);
139 		if (kbytes > 65536)
140 			nbuf += (kbytes - 65536) * 2 / (factor * 5);
141 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
142 			nbuf = maxbcache / BKVASIZE;
143 	}
144 	if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
145 		nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
146 		kprintf("Warning: nbufs capped at %ld\n", nbuf);
147 	}
148 
149 	nswbuf = lmax(lmin(nbuf / 4, 256), 16);
150 #ifdef NSWBUF_MIN
151 	if (nswbuf < NSWBUF_MIN)
152 		nswbuf = NSWBUF_MIN;
153 #endif
154 
155 	/*
156 	 * Allocate memory for the buffer cache
157 	 */
158 	buf = (void *)kmem_alloc(&kernel_map, nbuf * sizeof(struct buf));
159 	swbuf = (void *)kmem_alloc(&kernel_map, nswbuf * sizeof(struct buf));
160 
161 
162 #ifdef DIRECTIO
163         ffs_rawread_setup();
164 #endif
165 	kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
166 		      (nbuf*BKVASIZE*2) + (nswbuf*MAXPHYS) + pager_map_size);
167 	kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
168 		      (nbuf*BKVASIZE*2));
169 	buffer_map.system_map = 1;
170 	kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
171 		      (nswbuf*MAXPHYS) + pager_map_size);
172 	pager_map.system_map = 1;
173 	kprintf("avail memory = %lu (%luK bytes)\n", ptoa(vmstats.v_free_count),
174 		ptoa(vmstats.v_free_count) / 1024);
175 	mp_start();
176 	mp_announce();
177 	cpu_setregs();
178 }
179 
180 /*
181  * Determine i/o configuration for a machine.
182  */
183 static void
184 configure_first(void *dummy)
185 {
186 }
187 
188 static void
189 configure(void *dummy)
190 {
191         /*
192 	 * Final interrupt support acviation, then enable hardware interrupts.
193 	 */
194 	MachIntrABI.finalize();
195 	cpu_enable_intr();
196 
197 	/*
198 	 * This will configure all devices, generally starting with the
199 	 * nexus (i386/i386/nexus.c).  The nexus ISA code explicitly
200 	 * dummies up the attach in order to delay legacy initialization
201 	 * until after all other busses/subsystems have had a chance
202 	 * at those resources.
203 	 */
204 	root_bus_configure();
205 
206 #if NISA > 0
207 	/*
208 	 * Explicitly probe and attach ISA last.  The isa bus saves
209 	 * it's device node at attach time for us here.
210 	 */
211 	if (isa_bus_device)
212 		isa_probe_children(isa_bus_device);
213 #endif
214 
215 	/*
216 	 * Allow lowering of the ipl to the lowest kernel level if we
217 	 * panic (or call tsleep() before clearing `cold').  No level is
218 	 * completely safe (since a panic may occur in a critical region
219 	 * at splhigh()), but we want at least bio interrupts to work.
220 	 */
221 	safepri = TDPRI_KERN_USER;
222 }
223 
224 static void
225 configure_final(void *dummy)
226 {
227 	cninit_finish();
228 
229 	if (bootverbose)
230 		kprintf("Device configuration finished.\n");
231 }
232 
233 #ifdef BOOTP
234 void bootpc_init(void);
235 #endif
236 /*
237  * Do legacy root filesystem discovery.
238  */
239 void
240 cpu_rootconf(void)
241 {
242 #ifdef BOOTP
243         bootpc_init();
244 #endif
245 #if defined(NFS) && defined(NFS_ROOT)
246 #if !defined(BOOTP_NFSROOT)
247 	pxe_setup_nfsdiskless();
248 	if (nfs_diskless_valid)
249 #endif
250 		rootdevnames[0] = "nfs:";
251 #endif
252 #if defined(FFS) && defined(FFS_ROOT)
253         if (!rootdevnames[0])
254                 setroot();
255 #endif
256 }
257 SYSINIT(cpu_rootconf, SI_SUB_ROOT_CONF, SI_ORDER_FIRST, cpu_rootconf, NULL);
258 
259 u_long	bootdev = 0;		/* not a cdev_t - encoding is different */
260 
261 #if defined(FFS) && defined(FFS_ROOT)
262 
263 /*
264  * The boot code uses old block device major numbers to pass bootdev to
265  * us.  We have to translate these to character device majors because
266  * we don't have block devices any more.
267  */
268 static int
269 boot_translate_majdev(int bmajor)
270 {
271 	static int conv[] = { BOOTMAJOR_CONVARY };
272 
273 	if (bmajor >= 0 && bmajor < NELEM(conv))
274 		return(conv[bmajor]);
275 	return(-1);
276 }
277 
278 /*
279  * Attempt to find the device from which we were booted.
280  * If we can do so, and not instructed not to do so,
281  * set rootdevs[] and rootdevnames[] to correspond to the
282  * boot device(s).
283  *
284  * This code survives in order to allow the system to be
285  * booted from legacy environments that do not correctly
286  * populate the kernel environment. There are significant
287  * restrictions on the bootability of the system in this
288  * situation; it can only be mounting root from a 'da'
289  * 'wd' or 'fd' device, and the root filesystem must be ufs.
290  */
291 static void
292 setroot(void)
293 {
294 	int majdev, mindev, unit, slice, part;
295 	cdev_t newrootdev, dev;
296 	char partname[2];
297 	char *sname;
298 
299 	if ((bootdev & B_MAGICMASK) != B_DEVMAGIC) {
300 		kprintf("no B_DEVMAGIC (bootdev=%#lx)\n", bootdev);
301 		return;
302 	}
303 	majdev = boot_translate_majdev(B_TYPE(bootdev));
304 	if (bootverbose) {
305 		kprintf("bootdev: %08lx type=%ld unit=%ld "
306 			"slice=%ld part=%ld major=%d\n",
307 			bootdev, B_TYPE(bootdev), B_UNIT(bootdev),
308 			B_SLICE(bootdev), B_PARTITION(bootdev), majdev);
309 	}
310 	dev = udev2dev(makeudev(majdev, 0), 0);
311 	if (!dev_is_good(dev))
312 		return;
313 	unit = B_UNIT(bootdev);
314 	slice = B_SLICE(bootdev);
315 	if (slice == WHOLE_DISK_SLICE)
316 		slice = COMPATIBILITY_SLICE;
317 	if (slice < 0 || slice >= MAX_SLICES) {
318 		kprintf("bad slice\n");
319 		return;
320 	}
321 
322 	part = B_PARTITION(bootdev);
323 	mindev = dkmakeminor(unit, slice, part);
324 	newrootdev = udev2dev(makeudev(majdev, mindev), 0);
325 	if (!dev_is_good(newrootdev))
326 		return;
327 	sname = dsname(newrootdev, unit, slice, part, partname);
328 	rootdevnames[0] = kmalloc(strlen(sname) + 6, M_DEVBUF, M_WAITOK);
329 	ksprintf(rootdevnames[0], "ufs:%s%s", sname, partname);
330 
331 	/*
332 	 * For properly dangerously dedicated disks (ones with a historical
333 	 * bogus partition table), the boot blocks will give slice = 4, but
334 	 * the kernel will only provide the compatibility slice since it
335 	 * knows that slice 4 is not a real slice.  Arrange to try mounting
336 	 * the compatibility slice as root if mounting the slice passed by
337 	 * the boot blocks fails.  This handles the dangerously dedicated
338 	 * case and perhaps others.
339 	 */
340 	if (slice == COMPATIBILITY_SLICE)
341 		return;
342 	slice = COMPATIBILITY_SLICE;
343 	sname = dsname(newrootdev, unit, slice, part, partname);
344 	rootdevnames[1] = kmalloc(strlen(sname) + 6, M_DEVBUF, M_WAITOK);
345 	ksprintf(rootdevnames[1], "ufs:%s%s", sname, partname);
346 }
347 #endif
348 
349 #if defined(NFS) && defined(NFS_ROOT)
350 #if !defined(BOOTP_NFSROOT)
351 
352 #include <sys/socket.h>
353 #include <net/if.h>
354 #include <net/if_dl.h>
355 #include <net/if_types.h>
356 #include <net/if_var.h>
357 #include <net/ethernet.h>
358 #include <netinet/in.h>
359 #include <vfs/nfs/rpcv2.h>
360 #include <vfs/nfs/nfsproto.h>
361 #include <vfs/nfs/nfs.h>
362 #include <vfs/nfs/nfsdiskless.h>
363 
364 extern struct nfs_diskless	nfs_diskless;
365 
366 /*
367  * Convert a kenv variable to a sockaddr.  If the kenv variable does not
368  * exist the sockaddr will remain zerod out (callers typically just check
369  * sin_len).  A network address of 0.0.0.0 is equivalent to failure.
370  */
371 static int
372 inaddr_to_sockaddr(char *ev, struct sockaddr_in *sa)
373 {
374 	u_int32_t	a[4];
375 	char		*cp;
376 
377 	bzero(sa, sizeof(*sa));
378 
379 	if ((cp = kgetenv(ev)) == NULL)
380 		return(1);
381 	if (ksscanf(cp, "%d.%d.%d.%d", &a[0], &a[1], &a[2], &a[3]) != 4)
382 		return(1);
383 	if (a[0] == 0 && a[1] == 0 && a[2] == 0 && a[3] == 0)
384 		return(1);
385 	/* XXX is this ordering correct? */
386 	sa->sin_addr.s_addr = (a[3] << 24) + (a[2] << 16) + (a[1] << 8) + a[0];
387 	sa->sin_len = sizeof(*sa);
388 	sa->sin_family = AF_INET;
389 	return(0);
390 }
391 
392 static int
393 hwaddr_to_sockaddr(char *ev, struct sockaddr_dl *sa)
394 {
395 	char		*cp;
396 	u_int32_t	a[6];
397 
398 	bzero(sa, sizeof(*sa));
399 	sa->sdl_len = sizeof(*sa);
400 	sa->sdl_family = AF_LINK;
401 	sa->sdl_type = IFT_ETHER;
402 	sa->sdl_alen = ETHER_ADDR_LEN;
403 	if ((cp = kgetenv(ev)) == NULL)
404 		return(1);
405 	if (ksscanf(cp, "%x:%x:%x:%x:%x:%x", &a[0], &a[1], &a[2], &a[3], &a[4], &a[5]) != 6)
406 		return(1);
407 	sa->sdl_data[0] = a[0];
408 	sa->sdl_data[1] = a[1];
409 	sa->sdl_data[2] = a[2];
410 	sa->sdl_data[3] = a[3];
411 	sa->sdl_data[4] = a[4];
412 	sa->sdl_data[5] = a[5];
413 	return(0);
414 }
415 
416 static int
417 decode_nfshandle(char *ev, u_char *fh)
418 {
419 	u_char	*cp;
420 	int	len, val;
421 
422 	if (((cp = kgetenv(ev)) == NULL) || (strlen(cp) < 2) || (*cp != 'X'))
423 		return(0);
424 	len = 0;
425 	cp++;
426 	for (;;) {
427 		if (*cp == 'X')
428 			return(len);
429 		if ((ksscanf(cp, "%2x", &val) != 1) || (val > 0xff))
430 			return(0);
431 		*(fh++) = val;
432 		len++;
433 		cp += 2;
434 		if (len > NFSX_V2FH)
435 		    return(0);
436 	}
437 }
438 
439 /*
440  * Populate the essential fields in the nfsv3_diskless structure.
441  *
442  * The loader is expected to export the following environment variables:
443  *
444  * boot.netif.ip		IP address on boot interface
445  * boot.netif.netmask		netmask on boot interface
446  * boot.netif.gateway		default gateway (optional)
447  * boot.netif.hwaddr		hardware address of boot interface
448  * boot.netif.name		name of boot interface (instead of hw addr)
449  * boot.nfsroot.server		IP address of root filesystem server
450  * boot.nfsroot.path		path of the root filesystem on server
451  * boot.nfsroot.nfshandle	NFS handle for root filesystem on server
452  */
453 static void
454 pxe_setup_nfsdiskless(void)
455 {
456 	struct nfs_diskless	*nd = &nfs_diskless;
457 	struct ifnet		*ifp;
458 	struct ifaddr		*ifa;
459 	struct sockaddr_dl	*sdl, ourdl;
460 	struct sockaddr_in	myaddr, netmask;
461 	char			*cp;
462 
463 	/* set up interface */
464 	if (inaddr_to_sockaddr("boot.netif.ip", &myaddr))
465 		return;
466 	if (inaddr_to_sockaddr("boot.netif.netmask", &netmask)) {
467 		kprintf("PXE: no netmask\n");
468 		return;
469 	}
470 	bcopy(&myaddr, &nd->myif.ifra_addr, sizeof(myaddr));
471 	bcopy(&myaddr, &nd->myif.ifra_broadaddr, sizeof(myaddr));
472 	((struct sockaddr_in *) &nd->myif.ifra_broadaddr)->sin_addr.s_addr =
473 		myaddr.sin_addr.s_addr | ~ netmask.sin_addr.s_addr;
474 	bcopy(&netmask, &nd->myif.ifra_mask, sizeof(netmask));
475 
476 	if ((cp = kgetenv("boot.netif.name")) != NULL) {
477 		ifnet_lock();
478 		ifp = ifunit(cp);
479 		if (ifp) {
480 			strlcpy(nd->myif.ifra_name, ifp->if_xname,
481 			    sizeof(nd->myif.ifra_name));
482 			ifnet_unlock();
483 			goto match_done;
484 		}
485 		ifnet_unlock();
486 		kprintf("PXE: cannot find interface %s\n", cp);
487 		return;
488 	}
489 
490 	if (hwaddr_to_sockaddr("boot.netif.hwaddr", &ourdl)) {
491 		kprintf("PXE: no hardware address\n");
492 		return;
493 	}
494 	ifa = NULL;
495 	ifnet_lock();
496 	TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
497 		struct ifaddr_container *ifac;
498 
499 		TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
500 			ifa = ifac->ifa;
501 
502 			if ((ifa->ifa_addr->sa_family == AF_LINK) &&
503 			    (sdl = ((struct sockaddr_dl *)ifa->ifa_addr))) {
504 				if ((sdl->sdl_type == ourdl.sdl_type) &&
505 				    (sdl->sdl_alen == ourdl.sdl_alen) &&
506 				    !bcmp(sdl->sdl_data + sdl->sdl_nlen,
507 					  ourdl.sdl_data + ourdl.sdl_nlen,
508 					  sdl->sdl_alen)) {
509 					strlcpy(nd->myif.ifra_name,
510 					    ifp->if_xname,
511 					    sizeof(nd->myif.ifra_name));
512 					ifnet_unlock();
513 					goto match_done;
514 				}
515 			}
516 		}
517 	}
518 	ifnet_unlock();
519 	kprintf("PXE: no interface\n");
520 	return;	/* no matching interface */
521 match_done:
522 	/* set up gateway */
523 	inaddr_to_sockaddr("boot.netif.gateway", &nd->mygateway);
524 
525 	/* XXX set up swap? */
526 
527 	/* set up root mount */
528 	nd->root_args.rsize = 8192;		/* XXX tunable? */
529 	nd->root_args.wsize = 8192;
530 	nd->root_args.sotype = SOCK_STREAM;
531 	nd->root_args.flags = NFSMNT_WSIZE | NFSMNT_RSIZE | NFSMNT_RESVPORT;
532 	if (inaddr_to_sockaddr("boot.nfsroot.server", &nd->root_saddr)) {
533 		kprintf("PXE: no server\n");
534 		return;
535 	}
536 	nd->root_saddr.sin_port = htons(NFS_PORT);
537 
538 	/*
539 	 * A tftp-only loader may pass NFS path information without a
540 	 * root handle.  Generate a warning but continue configuring.
541 	 */
542 	if (decode_nfshandle("boot.nfsroot.nfshandle", &nd->root_fh[0]) == 0) {
543 		kprintf("PXE: Warning, no NFS handle passed from loader\n");
544 	}
545 	if ((cp = kgetenv("boot.nfsroot.path")) != NULL)
546 		strncpy(nd->root_hostnam, cp, MNAMELEN - 1);
547 
548 	nfs_diskless_valid = 1;
549 }
550 
551 #endif
552 #endif
553