1 /*-
2  * Copyright (c) 1992 Terrence R. Lambert.
3  * Copyright (C) 1994, David Greenman
4  * Copyright (c) 1982, 1987, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)machdep.c	7.4 (Berkeley) 6/3/91
39  * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
40  */
41 
42 #include "opt_compat.h"
43 #include "opt_ddb.h"
44 #include "opt_directio.h"
45 #include "opt_inet.h"
46 #include "opt_msgbuf.h"
47 #include "opt_swap.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/sysproto.h>
52 #include <sys/signalvar.h>
53 #include <sys/kernel.h>
54 #include <sys/linker.h>
55 #include <sys/malloc.h>
56 #include <sys/proc.h>
57 #include <sys/buf.h>
58 #include <sys/reboot.h>
59 #include <sys/mbuf.h>
60 #include <sys/msgbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sysctl.h>
63 #include <sys/vmmeter.h>
64 #include <sys/bus.h>
65 #include <sys/usched.h>
66 #include <sys/reg.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <sys/lock.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_object.h>
73 #include <vm/vm_page.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_pager.h>
76 #include <vm/vm_extern.h>
77 
78 #include <sys/thread2.h>
79 #include <sys/mplock2.h>
80 
81 #include <sys/user.h>
82 #include <sys/exec.h>
83 #include <sys/cons.h>
84 
85 #include <ddb/ddb.h>
86 
87 #include <machine/cpu.h>
88 #include <machine/clock.h>
89 #include <machine/specialreg.h>
90 #include <machine/md_var.h>
91 #include <machine/pcb_ext.h>		/* pcb.h included via sys/user.h */
92 #include <machine/globaldata.h>		/* CPU_prvspace */
93 #include <machine/smp.h>
94 #ifdef PERFMON
95 #include <machine/perfmon.h>
96 #endif
97 #include <machine/cputypes.h>
98 
99 #include <bus/isa/rtc.h>
100 #include <sys/random.h>
101 #include <sys/ptrace.h>
102 #include <machine/sigframe.h>
103 #include <unistd.h>		/* umtx_* functions */
104 #include <pthread.h>		/* pthread_yield() */
105 
106 extern void dblfault_handler (void);
107 
108 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
109 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
110 #ifdef DIRECTIO
111 extern void ffs_rawread_setup(void);
112 #endif /* DIRECTIO */
113 
114 int64_t tsc_offsets[MAXCPU];
115 
116 #if defined(SWTCH_OPTIM_STATS)
117 extern int swtch_optim_stats;
118 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
119 	CTLFLAG_RD, &swtch_optim_stats, 0, "");
120 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
121 	CTLFLAG_RD, &tlb_flush_count, 0, "");
122 #endif
123 
124 static int
125 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
126 {
127 	u_long pmem = ctob(physmem);
128 
129 	int error = sysctl_handle_long(oidp, &pmem, 0, req);
130 	return (error);
131 }
132 
133 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_ULONG|CTLFLAG_RD,
134 	0, 0, sysctl_hw_physmem, "LU", "Total system memory in bytes (number of pages * page size)");
135 
136 static int
137 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
138 {
139 	/* JG */
140 	int error = sysctl_handle_int(oidp, 0,
141 		ctob((int)Maxmem - vmstats.v_wire_count), req);
142 	return (error);
143 }
144 
145 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
146 	0, 0, sysctl_hw_usermem, "IU", "");
147 
148 SYSCTL_ULONG(_hw, OID_AUTO, availpages, CTLFLAG_RD, &Maxmem, 0, "");
149 
150 /*
151  * Send an interrupt to process.
152  *
153  * Stack is set up to allow sigcode stored
154  * at top to call routine, followed by kcall
155  * to sigreturn routine below.  After sigreturn
156  * resets the signal mask, the stack, and the
157  * frame pointer, it returns to the user
158  * specified pc, psl.
159  */
160 void
161 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
162 {
163 	struct lwp *lp = curthread->td_lwp;
164 	struct proc *p = lp->lwp_proc;
165 	struct trapframe *regs;
166 	struct sigacts *psp = p->p_sigacts;
167 	struct sigframe sf, *sfp;
168 	int oonstack;
169 	char *sp;
170 
171 	regs = lp->lwp_md.md_regs;
172 	oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
173 
174 	/* Save user context */
175 	bzero(&sf, sizeof(struct sigframe));
176 	sf.sf_uc.uc_sigmask = *mask;
177 	sf.sf_uc.uc_stack = lp->lwp_sigstk;
178 	sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
179 	KKASSERT(__offsetof(struct trapframe, tf_rdi) == 0);
180 	bcopy(regs, &sf.sf_uc.uc_mcontext.mc_rdi, sizeof(struct trapframe));
181 
182 	/* Make the size of the saved context visible to userland */
183 	sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
184 
185 	/* Allocate and validate space for the signal handler context. */
186         if ((lp->lwp_flags & LWP_ALTSTACK) != 0 && !oonstack &&
187 	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
188 		sp = (char *)(lp->lwp_sigstk.ss_sp + lp->lwp_sigstk.ss_size -
189 			      sizeof(struct sigframe));
190 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
191 	} else {
192 		/* We take red zone into account */
193 		sp = (char *)regs->tf_rsp - sizeof(struct sigframe) - 128;
194 	}
195 
196 	/* Align to 16 bytes */
197 	sfp = (struct sigframe *)((intptr_t)sp & ~0xFUL);
198 
199 	/* Translate the signal is appropriate */
200 	if (p->p_sysent->sv_sigtbl) {
201 		if (sig <= p->p_sysent->sv_sigsize)
202 			sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
203 	}
204 
205 	/*
206 	 * Build the argument list for the signal handler.
207 	 *
208 	 * Arguments are in registers (%rdi, %rsi, %rdx, %rcx)
209 	 */
210 	regs->tf_rdi = sig;				/* argument 1 */
211 	regs->tf_rdx = (register_t)&sfp->sf_uc;		/* argument 3 */
212 
213 	if (SIGISMEMBER(psp->ps_siginfo, sig)) {
214 		/*
215 		 * Signal handler installed with SA_SIGINFO.
216 		 *
217 		 * action(signo, siginfo, ucontext)
218 		 */
219 		regs->tf_rsi = (register_t)&sfp->sf_si;	/* argument 2 */
220 		regs->tf_rcx = (register_t)regs->tf_err; /* argument 4 */
221 		sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
222 
223 		/* fill siginfo structure */
224 		sf.sf_si.si_signo = sig;
225 		sf.sf_si.si_code = code;
226 		sf.sf_si.si_addr = (void *)regs->tf_addr;
227 	} else {
228 		/*
229 		 * Old FreeBSD-style arguments.
230 		 *
231 		 * handler (signo, code, [uc], addr)
232 		 */
233 		regs->tf_rsi = (register_t)code;	/* argument 2 */
234 		regs->tf_rcx = (register_t)regs->tf_addr; /* argument 4 */
235 		sf.sf_ahu.sf_handler = catcher;
236 	}
237 
238 #if 0
239 	/*
240 	 * If we're a vm86 process, we want to save the segment registers.
241 	 * We also change eflags to be our emulated eflags, not the actual
242 	 * eflags.
243 	 */
244 	if (regs->tf_eflags & PSL_VM) {
245 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
246 		struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
247 
248 		sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
249 		sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
250 		sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
251 		sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
252 
253 		if (vm86->vm86_has_vme == 0)
254 			sf.sf_uc.uc_mcontext.mc_eflags =
255 			    (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
256 			    (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
257 
258 		/*
259 		 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
260 		 * syscalls made by the signal handler.  This just avoids
261 		 * wasting time for our lazy fixup of such faults.  PSL_NT
262 		 * does nothing in vm86 mode, but vm86 programs can set it
263 		 * almost legitimately in probes for old cpu types.
264 		 */
265 		tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
266 	}
267 #endif
268 
269 	/*
270 	 * Save the FPU state and reinit the FP unit
271 	 */
272 	npxpush(&sf.sf_uc.uc_mcontext);
273 
274 	/*
275 	 * Copy the sigframe out to the user's stack.
276 	 */
277 	if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
278 		/*
279 		 * Something is wrong with the stack pointer.
280 		 * ...Kill the process.
281 		 */
282 		sigexit(lp, SIGILL);
283 	}
284 
285 	regs->tf_rsp = (register_t)sfp;
286 	regs->tf_rip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
287 
288 	/*
289 	 * i386 abi specifies that the direction flag must be cleared
290 	 * on function entry
291 	 */
292 	regs->tf_rflags &= ~(PSL_T|PSL_D);
293 
294 	/*
295 	 * 64 bit mode has a code and stack selector but
296 	 * no data or extra selector.  %fs and %gs are not
297 	 * stored in-context.
298 	 */
299 	regs->tf_cs = _ucodesel;
300 	regs->tf_ss = _udatasel;
301 }
302 
303 /*
304  * Sanitize the trapframe for a virtual kernel passing control to a custom
305  * VM context.  Remove any items that would otherwise create a privilage
306  * issue.
307  *
308  * XXX at the moment we allow userland to set the resume flag.  Is this a
309  * bad idea?
310  */
311 int
312 cpu_sanitize_frame(struct trapframe *frame)
313 {
314 	frame->tf_cs = _ucodesel;
315 	frame->tf_ss = _udatasel;
316 	/* XXX VM (8086) mode not supported? */
317 	frame->tf_rflags &= (PSL_RF | PSL_USERCHANGE | PSL_VM_UNSUPP);
318 	frame->tf_rflags |= PSL_RESERVED_DEFAULT | PSL_I;
319 
320 	return(0);
321 }
322 
323 /*
324  * Sanitize the tls so loading the descriptor does not blow up
325  * on us.  For x86_64 we don't have to do anything.
326  */
327 int
328 cpu_sanitize_tls(struct savetls *tls)
329 {
330 	return(0);
331 }
332 
333 /*
334  * sigreturn(ucontext_t *sigcntxp)
335  *
336  * System call to cleanup state after a signal
337  * has been taken.  Reset signal mask and
338  * stack state from context left by sendsig (above).
339  * Return to previous pc and psl as specified by
340  * context left by sendsig. Check carefully to
341  * make sure that the user has not modified the
342  * state to gain improper privileges.
343  */
344 #define	EFL_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
345 #define	CS_SECURE(cs)		(ISPL(cs) == SEL_UPL)
346 
347 int
348 sys_sigreturn(struct sigreturn_args *uap)
349 {
350 	struct lwp *lp = curthread->td_lwp;
351 	struct trapframe *regs;
352 	ucontext_t uc;
353 	ucontext_t *ucp;
354 	register_t rflags;
355 	int cs;
356 	int error;
357 
358 	/*
359 	 * We have to copy the information into kernel space so userland
360 	 * can't modify it while we are sniffing it.
361 	 */
362 	regs = lp->lwp_md.md_regs;
363 	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
364 	if (error)
365 		return (error);
366 	ucp = &uc;
367 	rflags = ucp->uc_mcontext.mc_rflags;
368 
369 	/* VM (8086) mode not supported */
370 	rflags &= ~PSL_VM_UNSUPP;
371 
372 #if 0
373 	if (eflags & PSL_VM) {
374 		struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
375 		struct vm86_kernel *vm86;
376 
377 		/*
378 		 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
379 		 * set up the vm86 area, and we can't enter vm86 mode.
380 		 */
381 		if (lp->lwp_thread->td_pcb->pcb_ext == 0)
382 			return (EINVAL);
383 		vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
384 		if (vm86->vm86_inited == 0)
385 			return (EINVAL);
386 
387 		/* go back to user mode if both flags are set */
388 		if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
389 			trapsignal(lp->lwp_proc, SIGBUS, 0);
390 
391 		if (vm86->vm86_has_vme) {
392 			eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
393 			    (eflags & VME_USERCHANGE) | PSL_VM;
394 		} else {
395 			vm86->vm86_eflags = eflags;	/* save VIF, VIP */
396 			eflags = (tf->tf_eflags & ~VM_USERCHANGE) |					    (eflags & VM_USERCHANGE) | PSL_VM;
397 		}
398 		bcopy(&ucp.uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
399 		tf->tf_eflags = eflags;
400 		tf->tf_vm86_ds = tf->tf_ds;
401 		tf->tf_vm86_es = tf->tf_es;
402 		tf->tf_vm86_fs = tf->tf_fs;
403 		tf->tf_vm86_gs = tf->tf_gs;
404 		tf->tf_ds = _udatasel;
405 		tf->tf_es = _udatasel;
406 #if 0
407 		tf->tf_fs = _udatasel;
408 		tf->tf_gs = _udatasel;
409 #endif
410 	} else
411 #endif
412 	{
413 		/*
414 		 * Don't allow users to change privileged or reserved flags.
415 		 */
416 		/*
417 		 * XXX do allow users to change the privileged flag PSL_RF.
418 		 * The cpu sets PSL_RF in tf_eflags for faults.  Debuggers
419 		 * should sometimes set it there too.  tf_eflags is kept in
420 		 * the signal context during signal handling and there is no
421 		 * other place to remember it, so the PSL_RF bit may be
422 		 * corrupted by the signal handler without us knowing.
423 		 * Corruption of the PSL_RF bit at worst causes one more or
424 		 * one less debugger trap, so allowing it is fairly harmless.
425 		 */
426 		if (!EFL_SECURE(rflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
427 			kprintf("sigreturn: rflags = 0x%lx\n", (long)rflags);
428 			return(EINVAL);
429 		}
430 
431 		/*
432 		 * Don't allow users to load a valid privileged %cs.  Let the
433 		 * hardware check for invalid selectors, excess privilege in
434 		 * other selectors, invalid %eip's and invalid %esp's.
435 		 */
436 		cs = ucp->uc_mcontext.mc_cs;
437 		if (!CS_SECURE(cs)) {
438 			kprintf("sigreturn: cs = 0x%x\n", cs);
439 			trapsignal(lp, SIGBUS, T_PROTFLT);
440 			return(EINVAL);
441 		}
442 		bcopy(&ucp->uc_mcontext.mc_rdi, regs, sizeof(struct trapframe));
443 	}
444 
445 	/*
446 	 * Restore the FPU state from the frame
447 	 */
448 	npxpop(&ucp->uc_mcontext);
449 
450 	if (ucp->uc_mcontext.mc_onstack & 1)
451 		lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
452 	else
453 		lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
454 
455 	lp->lwp_sigmask = ucp->uc_sigmask;
456 	SIG_CANTMASK(lp->lwp_sigmask);
457 	return(EJUSTRETURN);
458 }
459 
460 /*
461  * cpu_idle() represents the idle LWKT.  You cannot return from this function
462  * (unless you want to blow things up!).  Instead we look for runnable threads
463  * and loop or halt as appropriate.  Giant is not held on entry to the thread.
464  *
465  * The main loop is entered with a critical section held, we must release
466  * the critical section before doing anything else.  lwkt_switch() will
467  * check for pending interrupts due to entering and exiting its own
468  * critical section.
469  *
470  * Note on cpu_idle_hlt:  On an SMP system we rely on a scheduler IPI
471  * to wake a HLTed cpu up.
472  */
473 static int	cpu_idle_hlt = 1;
474 static int	cpu_idle_hltcnt;
475 static int	cpu_idle_spincnt;
476 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
477     &cpu_idle_hlt, 0, "Idle loop HLT enable");
478 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
479     &cpu_idle_hltcnt, 0, "Idle loop entry halts");
480 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
481     &cpu_idle_spincnt, 0, "Idle loop entry spins");
482 
483 void
484 cpu_idle(void)
485 {
486 	struct thread *td = curthread;
487 	struct mdglobaldata *gd = mdcpu;
488 	int reqflags;
489 
490 	crit_exit();
491 	KKASSERT(td->td_critcount == 0);
492 	cpu_enable_intr();
493 
494 	for (;;) {
495 		/*
496 		 * See if there are any LWKTs ready to go.
497 		 */
498 		lwkt_switch();
499 
500 		/*
501 		 * The idle loop halts only if no threads are scheduleable
502 		 * and no signals have occured.
503 		 */
504 		if (cpu_idle_hlt &&
505 		    (td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
506 			splz();
507 			if ((td->td_gd->gd_reqflags & RQF_IDLECHECK_WK_MASK) == 0) {
508 #ifdef DEBUGIDLE
509 				struct timeval tv1, tv2;
510 				gettimeofday(&tv1, NULL);
511 #endif
512 				reqflags = gd->mi.gd_reqflags &
513 					   ~RQF_IDLECHECK_WK_MASK;
514 				KKASSERT(gd->mi.gd_processing_ipiq == 0);
515 				umtx_sleep(&gd->mi.gd_reqflags, reqflags,
516 					   1000000);
517 #ifdef DEBUGIDLE
518 				gettimeofday(&tv2, NULL);
519 				if (tv2.tv_usec - tv1.tv_usec +
520 				    (tv2.tv_sec - tv1.tv_sec) * 1000000
521 				    > 500000) {
522 					kprintf("cpu %d idlelock %08x %08x\n",
523 						gd->mi.gd_cpuid,
524 						gd->mi.gd_reqflags,
525 						gd->gd_fpending);
526 				}
527 #endif
528 			}
529 			++cpu_idle_hltcnt;
530 		} else {
531 			splz();
532 			__asm __volatile("pause");
533 			++cpu_idle_spincnt;
534 		}
535 	}
536 }
537 
538 /*
539  * Called by the spinlock code with or without a critical section held
540  * when a spinlock is found to be seriously constested.
541  *
542  * We need to enter a critical section to prevent signals from recursing
543  * into pthreads.
544  */
545 void
546 cpu_spinlock_contested(void)
547 {
548 	cpu_pause();
549 }
550 
551 /*
552  * Clear registers on exec
553  */
554 void
555 exec_setregs(u_long entry, u_long stack, u_long ps_strings)
556 {
557 	struct thread *td = curthread;
558 	struct lwp *lp = td->td_lwp;
559 	struct pcb *pcb = td->td_pcb;
560 	struct trapframe *regs = lp->lwp_md.md_regs;
561 
562 	/* was i386_user_cleanup() in NetBSD */
563 	user_ldt_free(pcb);
564 
565 	bzero((char *)regs, sizeof(struct trapframe));
566 	regs->tf_rip = entry;
567 	regs->tf_rsp = ((stack - 8) & ~0xFul) + 8; /* align the stack */
568 	regs->tf_rdi = stack;		/* argv */
569 	regs->tf_rflags = PSL_USER | (regs->tf_rflags & PSL_T);
570 	regs->tf_ss = _udatasel;
571 	regs->tf_cs = _ucodesel;
572 	regs->tf_rbx = ps_strings;
573 
574 	/*
575 	 * Reset the hardware debug registers if they were in use.
576 	 * They won't have any meaning for the newly exec'd process.
577 	 */
578 	if (pcb->pcb_flags & PCB_DBREGS) {
579 		pcb->pcb_dr0 = 0;
580 		pcb->pcb_dr1 = 0;
581 		pcb->pcb_dr2 = 0;
582 		pcb->pcb_dr3 = 0;
583 		pcb->pcb_dr6 = 0;
584 		pcb->pcb_dr7 = 0; /* JG set bit 10? */
585 		if (pcb == td->td_pcb) {
586 			/*
587 			 * Clear the debug registers on the running
588 			 * CPU, otherwise they will end up affecting
589 			 * the next process we switch to.
590 			 */
591 			reset_dbregs();
592 		}
593 		pcb->pcb_flags &= ~PCB_DBREGS;
594 	}
595 
596 	/*
597 	 * Initialize the math emulator (if any) for the current process.
598 	 * Actually, just clear the bit that says that the emulator has
599 	 * been initialized.  Initialization is delayed until the process
600 	 * traps to the emulator (if it is done at all) mainly because
601 	 * emulators don't provide an entry point for initialization.
602 	 */
603 	pcb->pcb_flags &= ~FP_SOFTFP;
604 
605 	/*
606 	 * NOTE: do not set CR0_TS here.  npxinit() must do it after clearing
607 	 *	 gd_npxthread.  Otherwise a preemptive interrupt thread
608 	 *	 may panic in npxdna().
609 	 */
610 	crit_enter();
611 #if 0
612 	load_cr0(rcr0() | CR0_MP);
613 #endif
614 
615 	/*
616 	 * NOTE: The MSR values must be correct so we can return to
617 	 * 	 userland.  gd_user_fs/gs must be correct so the switch
618 	 *	 code knows what the current MSR values are.
619 	 */
620 	pcb->pcb_fsbase = 0;	/* Values loaded from PCB on switch */
621 	pcb->pcb_gsbase = 0;
622 	/* Initialize the npx (if any) for the current process. */
623 	npxinit();
624 	crit_exit();
625 
626 	/*
627 	 * note: linux emulator needs edx to be 0x0 on entry, which is
628 	 * handled in execve simply by setting the 64 bit syscall
629 	 * return value to 0.
630 	 */
631 }
632 
633 void
634 cpu_setregs(void)
635 {
636 #if 0
637 	unsigned int cr0;
638 
639 	cr0 = rcr0();
640 	cr0 |= CR0_NE;			/* Done by npxinit() */
641 	cr0 |= CR0_MP | CR0_TS;		/* Done at every execve() too. */
642 	cr0 |= CR0_WP | CR0_AM;
643 	load_cr0(cr0);
644 	load_gs(_udatasel);
645 #endif
646 }
647 
648 static int
649 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
650 {
651 	int error;
652 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
653 		req);
654 	if (!error && req->newptr)
655 		resettodr();
656 	return (error);
657 }
658 
659 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
660 	&adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
661 
662 extern u_long bootdev;		/* not a cdev_t - encoding is different */
663 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
664 	CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
665 
666 /*
667  * Initialize 386 and configure to run kernel
668  */
669 
670 /*
671  * Initialize segments & interrupt table
672  */
673 
674 extern  struct user *proc0paddr;
675 
676 #if 0
677 
678 extern inthand_t
679 	IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
680 	IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
681 	IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
682 	IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align),
683 	IDTVEC(xmm), IDTVEC(dblfault),
684 	IDTVEC(fast_syscall), IDTVEC(fast_syscall32);
685 #endif
686 
687 int
688 ptrace_set_pc(struct lwp *lp, unsigned long addr)
689 {
690 	lp->lwp_md.md_regs->tf_rip = addr;
691 	return (0);
692 }
693 
694 int
695 ptrace_single_step(struct lwp *lp)
696 {
697 	lp->lwp_md.md_regs->tf_rflags |= PSL_T;
698 	return (0);
699 }
700 
701 int
702 fill_regs(struct lwp *lp, struct reg *regs)
703 {
704 	struct trapframe *tp;
705 
706 	if ((tp = lp->lwp_md.md_regs) == NULL)
707 		return EINVAL;
708 	bcopy(&tp->tf_rdi, &regs->r_rdi, sizeof(*regs));
709 	return (0);
710 }
711 
712 int
713 set_regs(struct lwp *lp, struct reg *regs)
714 {
715 	struct trapframe *tp;
716 
717 	tp = lp->lwp_md.md_regs;
718 	if (!EFL_SECURE(regs->r_rflags, tp->tf_rflags) ||
719 	    !CS_SECURE(regs->r_cs))
720 		return (EINVAL);
721 	bcopy(&regs->r_rdi, &tp->tf_rdi, sizeof(*regs));
722 	return (0);
723 }
724 
725 static void
726 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
727 {
728 	struct env87 *penv_87 = &sv_87->sv_env;
729 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
730 	int i;
731 
732 	/* FPU control/status */
733 	penv_87->en_cw = penv_xmm->en_cw;
734 	penv_87->en_sw = penv_xmm->en_sw;
735 	penv_87->en_tw = penv_xmm->en_tw;
736 	penv_87->en_fip = penv_xmm->en_fip;
737 	penv_87->en_fcs = penv_xmm->en_fcs;
738 	penv_87->en_opcode = penv_xmm->en_opcode;
739 	penv_87->en_foo = penv_xmm->en_foo;
740 	penv_87->en_fos = penv_xmm->en_fos;
741 
742 	/* FPU registers */
743 	for (i = 0; i < 8; ++i)
744 		sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
745 }
746 
747 static void
748 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
749 {
750 	struct env87 *penv_87 = &sv_87->sv_env;
751 	struct envxmm *penv_xmm = &sv_xmm->sv_env;
752 	int i;
753 
754 	/* FPU control/status */
755 	penv_xmm->en_cw = penv_87->en_cw;
756 	penv_xmm->en_sw = penv_87->en_sw;
757 	penv_xmm->en_tw = penv_87->en_tw;
758 	penv_xmm->en_fip = penv_87->en_fip;
759 	penv_xmm->en_fcs = penv_87->en_fcs;
760 	penv_xmm->en_opcode = penv_87->en_opcode;
761 	penv_xmm->en_foo = penv_87->en_foo;
762 	penv_xmm->en_fos = penv_87->en_fos;
763 
764 	/* FPU registers */
765 	for (i = 0; i < 8; ++i)
766 		sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
767 }
768 
769 int
770 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
771 {
772 	if (lp->lwp_thread == NULL || lp->lwp_thread->td_pcb == NULL)
773 		return EINVAL;
774 	if (cpu_fxsr) {
775 		fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
776 				(struct save87 *)fpregs);
777 		return (0);
778 	}
779 	bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
780 	return (0);
781 }
782 
783 int
784 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
785 {
786 	if (cpu_fxsr) {
787 		set_fpregs_xmm((struct save87 *)fpregs,
788 			       &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
789 		return (0);
790 	}
791 	bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
792 	return (0);
793 }
794 
795 int
796 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
797 {
798 	return (ENOSYS);
799 }
800 
801 int
802 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
803 {
804 	return (ENOSYS);
805 }
806 
807 #if 0
808 /*
809  * Return > 0 if a hardware breakpoint has been hit, and the
810  * breakpoint was in user space.  Return 0, otherwise.
811  */
812 int
813 user_dbreg_trap(void)
814 {
815         u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
816         u_int32_t bp;       /* breakpoint bits extracted from dr6 */
817         int nbp;            /* number of breakpoints that triggered */
818         caddr_t addr[4];    /* breakpoint addresses */
819         int i;
820 
821         dr7 = rdr7();
822         if ((dr7 & 0x000000ff) == 0) {
823                 /*
824                  * all GE and LE bits in the dr7 register are zero,
825                  * thus the trap couldn't have been caused by the
826                  * hardware debug registers
827                  */
828                 return 0;
829         }
830 
831         nbp = 0;
832         dr6 = rdr6();
833         bp = dr6 & 0x0000000f;
834 
835         if (!bp) {
836                 /*
837                  * None of the breakpoint bits are set meaning this
838                  * trap was not caused by any of the debug registers
839                  */
840                 return 0;
841         }
842 
843         /*
844          * at least one of the breakpoints were hit, check to see
845          * which ones and if any of them are user space addresses
846          */
847 
848         if (bp & 0x01) {
849                 addr[nbp++] = (caddr_t)rdr0();
850         }
851         if (bp & 0x02) {
852                 addr[nbp++] = (caddr_t)rdr1();
853         }
854         if (bp & 0x04) {
855                 addr[nbp++] = (caddr_t)rdr2();
856         }
857         if (bp & 0x08) {
858                 addr[nbp++] = (caddr_t)rdr3();
859         }
860 
861         for (i=0; i<nbp; i++) {
862                 if (addr[i] <
863                     (caddr_t)VM_MAX_USER_ADDRESS) {
864                         /*
865                          * addr[i] is in user space
866                          */
867                         return nbp;
868                 }
869         }
870 
871         /*
872          * None of the breakpoints are in user space.
873          */
874         return 0;
875 }
876 
877 #endif
878 
879 void
880 identcpu(void)
881 {
882 	int regs[4];
883 
884 	do_cpuid(1, regs);
885 	cpu_feature = regs[3];
886 }
887 
888 
889 #ifndef DDB
890 void
891 Debugger(const char *msg)
892 {
893 	kprintf("Debugger(\"%s\") called.\n", msg);
894 }
895 #endif /* no DDB */
896