1/*
2 * Copyright (c) 2003,2004,2008 The DragonFly Project.  All rights reserved.
3 * Copyright (c) 2008 Jordan Gordeev.
4 *
5 * This code is derived from software contributed to The DragonFly Project
6 * by Matthew Dillon <dillon@backplane.com>
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 *    notice, this list of conditions and the following disclaimer in
16 *    the documentation and/or other materials provided with the
17 *    distribution.
18 * 3. Neither the name of The DragonFly Project nor the names of its
19 *    contributors may be used to endorse or promote products derived
20 *    from this software without specific, prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * Copyright (c) 1990 The Regents of the University of California.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to Berkeley by
39 * William Jolitz.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by the University of
52 *	California, Berkeley and its contributors.
53 * 4. Neither the name of the University nor the names of its contributors
54 *    may be used to endorse or promote products derived from this software
55 *    without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * $FreeBSD: src/sys/i386/i386/swtch.s,v 1.89.2.10 2003/01/23 03:36:24 ps Exp $
70 */
71
72//#include "use_npx.h"
73
74#include <sys/rtprio.h>
75
76#include <machine/asmacros.h>
77#include <machine/segments.h>
78
79#include <machine/pmap.h>
80#include <machine/lock.h>
81
82#define CHECKNZ(expr, scratch_reg) \
83	movq expr, scratch_reg; testq scratch_reg, scratch_reg; jnz 7f; int $3; 7:
84
85#include "assym.s"
86
87#if defined(SMP)
88#define MPLOCKED        lock ;
89#else
90#define MPLOCKED
91#endif
92
93	.data
94
95	.globl	panic
96
97#if defined(SWTCH_OPTIM_STATS)
98	.globl	swtch_optim_stats, tlb_flush_count
99swtch_optim_stats:	.long	0		/* number of _swtch_optims */
100tlb_flush_count:	.long	0
101#endif
102
103	.text
104
105
106/*
107 * cpu_heavy_switch(struct thread *next_thread)
108 *
109 *	Switch from the current thread to a new thread.  This entry
110 *	is normally called via the thread->td_switch function, and will
111 *	only be called when the current thread is a heavy weight process.
112 *
113 *	Some instructions have been reordered to reduce pipeline stalls.
114 *
115 *	YYY disable interrupts once giant is removed.
116 */
117ENTRY(cpu_heavy_switch)
118	/*
119	 * Save RIP, RSP and callee-saved registers (RBX, RBP, R12-R15).
120	 */
121	movq	PCPU(curthread),%rcx
122	/* On top of the stack is the return adress. */
123	movq	(%rsp),%rax			/* (reorder optimization) */
124	movq	TD_PCB(%rcx),%rdx		/* RDX = PCB */
125	movq	%rax,PCB_RIP(%rdx)		/* return PC may be modified */
126	movq	%rbx,PCB_RBX(%rdx)
127	movq	%rsp,PCB_RSP(%rdx)
128	movq	%rbp,PCB_RBP(%rdx)
129	movq	%r12,PCB_R12(%rdx)
130	movq	%r13,PCB_R13(%rdx)
131	movq	%r14,PCB_R14(%rdx)
132	movq	%r15,PCB_R15(%rdx)
133
134	movq	%rcx,%rbx			/* RBX = curthread */
135	movq	TD_LWP(%rcx),%rcx
136	movl	PCPU(cpuid), %eax
137	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
138	MPLOCKED btrl	%eax, VM_PMAP+PM_ACTIVE(%rcx)
139
140	/*
141	 * Push the LWKT switch restore function, which resumes a heavy
142	 * weight process.  Note that the LWKT switcher is based on
143	 * TD_SP, while the heavy weight process switcher is based on
144	 * PCB_RSP.  TD_SP is usually two ints pushed relative to
145	 * PCB_RSP.  We push the flags for later restore by cpu_heavy_restore.
146	 */
147	pushfq
148	movq	$cpu_heavy_restore, %rax
149	pushq	%rax
150	movq	%rsp,TD_SP(%rbx)
151
152	/*
153	 * Save debug regs if necessary
154	 */
155	movq    PCB_FLAGS(%rdx),%rax
156	andq    $PCB_DBREGS,%rax
157	jz      1f                              /* no, skip over */
158	movq    %dr7,%rax                       /* yes, do the save */
159	movq    %rax,PCB_DR7(%rdx)
160	/* JG correct value? */
161	andq    $0x0000fc00, %rax               /* disable all watchpoints */
162	movq    %rax,%dr7
163	movq    %dr6,%rax
164	movq    %rax,PCB_DR6(%rdx)
165	movq    %dr3,%rax
166	movq    %rax,PCB_DR3(%rdx)
167	movq    %dr2,%rax
168	movq    %rax,PCB_DR2(%rdx)
169	movq    %dr1,%rax
170	movq    %rax,PCB_DR1(%rdx)
171	movq    %dr0,%rax
172	movq    %rax,PCB_DR0(%rdx)
1731:
174
175#if 1
176	/*
177	 * Save the FP state if we have used the FP.  Note that calling
178	 * npxsave will NULL out PCPU(npxthread).
179	 */
180	cmpq	%rbx,PCPU(npxthread)
181	jne	1f
182	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
183	movq	TD_SAVEFPU(%rbx),%rdi
184	call	npxsave			/* do it in a big C function */
185	movq	%r12,%rdi		/* restore %rdi */
1861:
187#endif
188
189	/*
190	 * Switch to the next thread, which was passed as an argument
191	 * to cpu_heavy_switch().  The argument is in %rdi.
192	 * Set the current thread, load the stack pointer,
193	 * and 'ret' into the switch-restore function.
194	 *
195	 * The switch restore function expects the new thread to be in %rax
196	 * and the old one to be in %rbx.
197	 *
198	 * There is a one-instruction window where curthread is the new
199	 * thread but %rsp still points to the old thread's stack, but
200	 * we are protected by a critical section so it is ok.
201	 */
202	movq	%rdi,%rax		/* RAX = newtd, RBX = oldtd */
203	movq	%rax,PCPU(curthread)
204	movq	TD_SP(%rax),%rsp
205	CHECKNZ((%rsp), %r9)
206	ret
207
208/*
209 *  cpu_exit_switch(struct thread *next)
210 *
211 *	The switch function is changed to this when a thread is going away
212 *	for good.  We have to ensure that the MMU state is not cached, and
213 *	we don't bother saving the existing thread state before switching.
214 *
215 *	At this point we are in a critical section and this cpu owns the
216 *	thread's token, which serves as an interlock until the switchout is
217 *	complete.
218 */
219ENTRY(cpu_exit_switch)
220	/*
221	 * Get us out of the vmspace
222	 */
223#if 0
224	movq	KPML4phys,%rcx
225	movq	%cr3,%rax
226	cmpq	%rcx,%rax
227	je	1f
228	/* JG no increment of statistics counters? see cpu_heavy_restore */
229	movq	%rcx,%cr3
2301:
231#endif
232	movq	PCPU(curthread),%rbx
233
234	/*
235	 * If this is a process/lwp, deactivate the pmap after we've
236	 * switched it out.
237	 */
238	movq	TD_LWP(%rbx),%rcx
239	testq	%rcx,%rcx
240	jz	2f
241	movl	PCPU(cpuid), %eax
242	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
243	MPLOCKED btrl	%eax, VM_PMAP+PM_ACTIVE(%rcx)
2442:
245	/*
246	 * Switch to the next thread.  RET into the restore function, which
247	 * expects the new thread in RAX and the old in RBX.
248	 *
249	 * There is a one-instruction window where curthread is the new
250	 * thread but %rsp still points to the old thread's stack, but
251	 * we are protected by a critical section so it is ok.
252	 */
253	movq	%rdi,%rax
254	movq	%rax,PCPU(curthread)
255	movq	TD_SP(%rax),%rsp
256	CHECKNZ((%rsp), %r9)
257	ret
258
259/*
260 * cpu_heavy_restore()	(current thread in %rax on entry)
261 *
262 *	Restore the thread after an LWKT switch.  This entry is normally
263 *	called via the LWKT switch restore function, which was pulled
264 *	off the thread stack and jumped to.
265 *
266 *	This entry is only called if the thread was previously saved
267 *	using cpu_heavy_switch() (the heavy weight process thread switcher),
268 *	or when a new process is initially scheduled.  The first thing we
269 *	do is clear the TDF_RUNNING bit in the old thread and set it in the
270 *	new thread.
271 *
272 *	NOTE: The lwp may be in any state, not necessarily LSRUN, because
273 *	a preemption switch may interrupt the process and then return via
274 *	cpu_heavy_restore.
275 *
276 *	YYY theoretically we do not have to restore everything here, a lot
277 *	of this junk can wait until we return to usermode.  But for now
278 *	we restore everything.
279 *
280 *	YYY the PCB crap is really crap, it makes startup a bitch because
281 *	we can't switch away.
282 *
283 *	YYY note: spl check is done in mi_switch when it splx()'s.
284 */
285
286ENTRY(cpu_heavy_restore)
287	popfq
288	movq	TD_PCB(%rax),%rdx		/* RDX = PCB */
289	movq	TD_LWP(%rax),%rcx
290
291#if defined(SWTCH_OPTIM_STATS)
292	incl	_swtch_optim_stats
293#endif
294	/*
295	 * Tell the pmap that our cpu is using the VMSPACE now.  We cannot
296	 * safely test/reload %cr3 until after we have set the bit in the
297	 * pmap (remember, we do not hold the MP lock in the switch code).
298	 */
299	movq	LWP_VMSPACE(%rcx), %rcx		/* RCX = vmspace */
300	movl	PCPU(cpuid), %esi
301	MPLOCKED btsl	%esi, VM_PMAP+PM_ACTIVE(%rcx)
302
303	/*
304	 * Restore the MMU address space.  If it is the same as the last
305	 * thread we don't have to invalidate the tlb (i.e. reload cr3).
306	 * YYY which naturally also means that the PM_ACTIVE bit had better
307	 * already have been set before we set it above, check? YYY
308	 */
309#if 0
310	movq	%cr3,%rsi
311	movq	PCB_CR3(%rdx),%rcx
312	cmpq	%rsi,%rcx
313	je	4f
314#if defined(SWTCH_OPTIM_STATS)
315	decl	_swtch_optim_stats
316	incl	_tlb_flush_count
317#endif
318	movq	%rcx,%cr3
3194:
320#endif
321	/*
322	 * Clear TDF_RUNNING flag in old thread only after cleaning up
323	 * %cr3.  The target thread is already protected by being TDF_RUNQ
324	 * so setting TDF_RUNNING isn't as big a deal.
325	 */
326	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
327	orl	$TDF_RUNNING,TD_FLAGS(%rax)
328
329#if 0
330	/*
331	 * Deal with the PCB extension, restore the private tss
332	 */
333	movq	PCB_EXT(%rdx),%rdi	/* check for a PCB extension */
334	/* JG cheaper than "movq $1,%rbx", right? */
335	/* JG what's that magic value $1? */
336	movl	$1,%ebx			/* maybe mark use of a private tss */
337	testq	%rdi,%rdi
338#if JG
339	jnz	2f
340#endif
341
342	/* JG
343	 * Going back to the common_tss.  We may need to update TSS_ESP0
344	 * which sets the top of the supervisor stack when entering from
345	 * usermode.  The PCB is at the top of the stack but we need another
346	 * 16 bytes to take vm86 into account.
347	 */
348	leaq	-16(%rdx),%rbx
349	movq	%rbx, PCPU(common_tss) + TSS_RSP0
350	movq	%rbx, PCPU(rsp0)
351
352#if JG
353	cmpl	$0,PCPU(private_tss)	/* don't have to reload if      */
354	je	3f			/* already using the common TSS */
355
356	/* JG? */
357	subl	%ebx,%ebx		/* unmark use of private tss */
358
359	/*
360	 * Get the address of the common TSS descriptor for the ltr.
361	 * There is no way to get the address of a segment-accessed variable
362	 * so we store a self-referential pointer at the base of the per-cpu
363	 * data area and add the appropriate offset.
364	 */
365	/* JG movl? */
366	movq	$gd_common_tssd, %rdi
367	/* JG name for "%gs:0"? */
368	addq	%gs:0, %rdi
369
370	/*
371	 * Move the correct TSS descriptor into the GDT slot, then reload
372	 * ltr.
373	 */
3742:
375	/* JG */
376	movl	%ebx,PCPU(private_tss)		/* mark/unmark private tss */
377	movq	PCPU(tss_gdt), %rbx		/* entry in GDT */
378	movq	0(%rdi), %rax
379	movq	%rax, 0(%rbx)
380	movl	$GPROC0_SEL*8, %esi		/* GSEL(entry, SEL_KPL) */
381	ltr	%si
382#endif
383
3843:
385#endif
386#if 0
387	/*
388	 * Restore the user %gs and %fs
389	 */
390	movq	PCB_FSBASE(%rdx),%r9
391	cmpq	PCPU(user_fs),%r9
392	je	4f
393	movq	%rdx,%r10
394	movq	%r9,PCPU(user_fs)
395	movl	$MSR_FSBASE,%ecx
396	movl	PCB_FSBASE(%r10),%eax
397	movl	PCB_FSBASE+4(%r10),%edx
398	wrmsr
399	movq	%r10,%rdx
4004:
401	movq	PCB_GSBASE(%rdx),%r9
402	cmpq	PCPU(user_gs),%r9
403	je	5f
404	movq	%rdx,%r10
405	movq	%r9,PCPU(user_gs)
406	movl	$MSR_KGSBASE,%ecx	/* later swapgs moves it to GSBASE */
407	movl	PCB_GSBASE(%r10),%eax
408	movl	PCB_GSBASE+4(%r10),%edx
409	wrmsr
410	movq	%r10,%rdx
4115:
412#endif
413
414	/*
415	 * Restore general registers.
416	 */
417	movq	PCB_RBX(%rdx), %rbx
418	movq	PCB_RSP(%rdx), %rsp
419	movq	PCB_RBP(%rdx), %rbp
420	movq	PCB_R12(%rdx), %r12
421	movq	PCB_R13(%rdx), %r13
422	movq	PCB_R14(%rdx), %r14
423	movq	PCB_R15(%rdx), %r15
424	movq	PCB_RIP(%rdx), %rax
425	movq	%rax, (%rsp)
426
427#if 0
428	/*
429	 * Restore the user LDT if we have one
430	 */
431	cmpl	$0, PCB_USERLDT(%edx)
432	jnz	1f
433	movl	_default_ldt,%eax
434	cmpl	PCPU(currentldt),%eax
435	je	2f
436	lldt	_default_ldt
437	movl	%eax,PCPU(currentldt)
438	jmp	2f
4391:	pushl	%edx
440	call	set_user_ldt
441	popl	%edx
4422:
443#endif
444#if 0
445	/*
446	 * Restore the user TLS if we have one
447	 */
448	pushl	%edx
449	call	set_user_TLS
450	popl	%edx
451#endif
452
453	/*
454	 * Restore the DEBUG register state if necessary.
455	 */
456	movq    PCB_FLAGS(%rdx),%rax
457	andq    $PCB_DBREGS,%rax
458	jz      1f                              /* no, skip over */
459	movq    PCB_DR6(%rdx),%rax              /* yes, do the restore */
460	movq    %rax,%dr6
461	movq    PCB_DR3(%rdx),%rax
462	movq    %rax,%dr3
463	movq    PCB_DR2(%rdx),%rax
464	movq    %rax,%dr2
465	movq    PCB_DR1(%rdx),%rax
466	movq    %rax,%dr1
467	movq    PCB_DR0(%rdx),%rax
468	movq    %rax,%dr0
469	movq	%dr7,%rax                /* load dr7 so as not to disturb */
470	/* JG correct value? */
471	andq    $0x0000fc00,%rax         /*   reserved bits               */
472	/* JG we've got more registers on x86_64 */
473	pushq   %rbx
474	movq    PCB_DR7(%rdx),%rbx
475	/* JG correct value? */
476	andq	$~0x0000fc00,%rbx
477	orq     %rbx,%rax
478	popq	%rbx
479	movq    %rax,%dr7
4801:
481
482	CHECKNZ((%rsp), %r9)
483	ret
484
485/*
486 * savectx(struct pcb *pcb)
487 *
488 * Update pcb, saving current processor state.
489 */
490ENTRY(savectx)
491	/* fetch PCB */
492	/* JG use %rdi instead of %rcx everywhere? */
493	movq	%rdi,%rcx
494
495	/* caller's return address - child won't execute this routine */
496	movq	(%rsp),%rax
497	movq	%rax,PCB_RIP(%rcx)
498	movq	%rbx,PCB_RBX(%rcx)
499	movq	%rsp,PCB_RSP(%rcx)
500	movq	%rbp,PCB_RBP(%rcx)
501	movq	%r12,PCB_R12(%rcx)
502	movq	%r13,PCB_R13(%rcx)
503	movq	%r14,PCB_R14(%rcx)
504	movq	%r15,PCB_R15(%rcx)
505
506#if 1
507	/*
508	 * If npxthread == NULL, then the npx h/w state is irrelevant and the
509	 * state had better already be in the pcb.  This is true for forks
510	 * but not for dumps (the old book-keeping with FP flags in the pcb
511	 * always lost for dumps because the dump pcb has 0 flags).
512	 *
513	 * If npxthread != NULL, then we have to save the npx h/w state to
514	 * npxthread's pcb and copy it to the requested pcb, or save to the
515	 * requested pcb and reload.  Copying is easier because we would
516	 * have to handle h/w bugs for reloading.  We used to lose the
517	 * parent's npx state for forks by forgetting to reload.
518	 */
519	movq	PCPU(npxthread),%rax
520	testq	%rax,%rax
521	jz	1f
522
523	pushq	%rcx			/* target pcb */
524	movq	TD_SAVEFPU(%rax),%rax	/* originating savefpu area */
525	pushq	%rax
526
527	movq	%rax,%rdi
528	call	npxsave
529
530	popq	%rax
531	popq	%rcx
532
533	movq	$PCB_SAVEFPU_SIZE,%rdx
534	leaq    PCB_SAVEFPU(%rcx),%rcx
535	movq	%rcx,%rsi
536	movq	%rax,%rdi
537	call	bcopy
538#endif
539
5401:
541	CHECKNZ((%rsp), %r9)
542	ret
543
544/*
545 * cpu_idle_restore()	(current thread in %rax on entry) (one-time execution)
546 *
547 *	Don't bother setting up any regs other than %rbp so backtraces
548 *	don't die.  This restore function is used to bootstrap into the
549 *	cpu_idle() LWKT only, after that cpu_lwkt_*() will be used for
550 *	switching.
551 *
552 *	Clear TDF_RUNNING in old thread only after we've cleaned up %cr3.
553 *
554 *	If we are an AP we have to call ap_init() before jumping to
555 *	cpu_idle().  ap_init() will synchronize with the BP and finish
556 *	setting up various ncpu-dependant globaldata fields.  This may
557 *	happen on UP as well as SMP if we happen to be simulating multiple
558 *	cpus.
559 */
560ENTRY(cpu_idle_restore)
561	/* cli */
562	/* JG xor? */
563	movl	$0,%ebp
564	/* JG push RBP? */
565	pushq	$0
566	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
567	orl	$TDF_RUNNING,TD_FLAGS(%rax)
568#ifdef SMP
569	cmpl	$0,PCPU(cpuid)
570	je	1f
571	call	ap_init
5721:
573#endif
574	/* sti */
575	jmp	cpu_idle
576
577/*
578 * cpu_kthread_restore() (current thread is %rax on entry) (one-time execution)
579 *
580 *	Don't bother setting up any regs other then %rbp so backtraces
581 *	don't die.  This restore function is used to bootstrap into an
582 *	LWKT based kernel thread only.  cpu_lwkt_switch() will be used
583 *	after this.
584 *
585 *	Since all of our context is on the stack we are reentrant and
586 *	we can release our critical section and enable interrupts early.
587 */
588ENTRY(cpu_kthread_restore)
589	/*sti*/
590	movq	TD_PCB(%rax),%rdx
591	/* JG "movq $0, %rbp"? "xorq %rbp, %rbp"? */
592	movl	$0,%ebp
593	/* rax and rbx come from the switchout code */
594	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
595	orl	$TDF_RUNNING,TD_FLAGS(%rax)
596	decl	TD_CRITCOUNT(%rax)
597	movq	PCB_R12(%rdx),%rdi	/* argument to RBX function */
598	movq	PCB_RBX(%rdx),%rax	/* thread function */
599	/* note: top of stack return address inherited by function */
600	CHECKNZ(%rax, %r9)
601	jmp	*%rax
602
603/*
604 * cpu_lwkt_switch(struct thread *)
605 *
606 *	Standard LWKT switching function.  Only non-scratch registers are
607 *	saved and we don't bother with the MMU state or anything else.
608 *
609 *	This function is always called while in a critical section.
610 *
611 *	There is a one-instruction window where curthread is the new
612 *	thread but %rsp still points to the old thread's stack, but
613 *	we are protected by a critical section so it is ok.
614 *
615 *	YYY BGL, SPL
616 */
617ENTRY(cpu_lwkt_switch)
618	pushq	%rbp	/* JG note: GDB hacked to locate ebp relative to td_sp */
619	/* JG we've got more registers on x86_64 */
620	pushq	%rbx
621	movq	PCPU(curthread),%rbx
622	pushq	%r12
623	pushq	%r13
624	pushq	%r14
625	pushq	%r15
626	pushfq
627
628#if 1
629	/*
630	 * Save the FP state if we have used the FP.  Note that calling
631	 * npxsave will NULL out PCPU(npxthread).
632	 *
633	 * We have to deal with the FP state for LWKT threads in case they
634	 * happen to get preempted or block while doing an optimized
635	 * bzero/bcopy/memcpy.
636	 */
637	cmpq	%rbx,PCPU(npxthread)
638	jne	1f
639	movq	%rdi,%r12		/* save %rdi. %r12 is callee-saved */
640	movq	TD_SAVEFPU(%rbx),%rdi
641	call	npxsave			/* do it in a big C function */
642	movq	%r12,%rdi		/* restore %rdi */
6431:
644#endif
645
646	movq	%rdi,%rax		/* switch to this thread */
647	pushq	$cpu_lwkt_restore
648	movq	%rsp,TD_SP(%rbx)
649	movq	%rax,PCPU(curthread)
650	movq	TD_SP(%rax),%rsp
651
652	/*
653	 * %rax contains new thread, %rbx contains old thread.
654	 */
655	CHECKNZ((%rsp), %r9)
656	ret
657
658/*
659 * cpu_lwkt_restore()	(current thread in %rax on entry)
660 *
661 *	Standard LWKT restore function.  This function is always called
662 *	while in a critical section.
663 *
664 *	Warning: due to preemption the restore function can be used to
665 *	'return' to the original thread.  Interrupt disablement must be
666 *	protected through the switch so we cannot run splz here.
667 */
668ENTRY(cpu_lwkt_restore)
669	andl	$~TDF_RUNNING,TD_FLAGS(%rbx)
670	orl	$TDF_RUNNING,TD_FLAGS(%rax)
671	popfq
672	popq	%r15
673	popq	%r14
674	popq	%r13
675	popq	%r12
676	popq	%rbx
677	popq	%rbp
678	ret
679
680/*
681 * bootstrap_idle()
682 *
683 * Make AP become the idle loop.
684 */
685ENTRY(bootstrap_idle)
686	movq	PCPU(curthread),%rax
687	movq	%rax,%rbx
688	movq	TD_SP(%rax),%rsp
689	ret
690