xref: /dragonfly/sys/sys/queue.h (revision 6b5c5d0d)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
34  * $FreeBSD: src/sys/sys/queue.h,v 1.32.2.7 2002/04/17 14:21:02 des Exp $
35  * $DragonFly: src/sys/sys/queue.h,v 1.8 2007/01/08 12:15:27 swildner Exp $
36  */
37 
38 #ifndef _SYS_QUEUE_H_
39 #define	_SYS_QUEUE_H_
40 
41 #ifndef _MACHINE_STDINT_H_
42 #include <machine/stdint.h>	/* for __offsetof */
43 #endif
44 
45 /*
46  * This file defines five types of data structures: singly-linked lists,
47  * singly-linked tail queues, lists, tail queues, and circular queues.
48  *
49  * A singly-linked list is headed by a single forward pointer. The elements
50  * are singly linked for minimum space and pointer manipulation overhead at
51  * the expense of O(n) removal for arbitrary elements. New elements can be
52  * added to the list after an existing element or at the head of the list.
53  * Elements being removed from the head of the list should use the explicit
54  * macro for this purpose for optimum efficiency. A singly-linked list may
55  * only be traversed in the forward direction.  Singly-linked lists are ideal
56  * for applications with large datasets and few or no removals or for
57  * implementing a LIFO queue.
58  *
59  * A singly-linked tail queue is headed by a pair of pointers, one to the
60  * head of the list and the other to the tail of the list. The elements are
61  * singly linked for minimum space and pointer manipulation overhead at the
62  * expense of O(n) removal for arbitrary elements. New elements can be added
63  * to the list after an existing element, at the head of the list, or at the
64  * end of the list. Elements being removed from the head of the tail queue
65  * should use the explicit macro for this purpose for optimum efficiency.
66  * A singly-linked tail queue may only be traversed in the forward direction.
67  * Singly-linked tail queues are ideal for applications with large datasets
68  * and few or no removals or for implementing a FIFO queue.
69  *
70  * A list is headed by a single forward pointer (or an array of forward
71  * pointers for a hash table header). The elements are doubly linked
72  * so that an arbitrary element can be removed without a need to
73  * traverse the list. New elements can be added to the list before
74  * or after an existing element or at the head of the list. A list
75  * may only be traversed in the forward direction.
76  *
77  * A tail queue is headed by a pair of pointers, one to the head of the
78  * list and the other to the tail of the list. The elements are doubly
79  * linked so that an arbitrary element can be removed without a need to
80  * traverse the list. New elements can be added to the list before or
81  * after an existing element, at the head of the list, or at the end of
82  * the list. A tail queue may be traversed in either direction.
83  *
84  * A circle queue is headed by a pair of pointers, one to the head of the
85  * list and the other to the tail of the list. The elements are doubly
86  * linked so that an arbitrary element can be removed without a need to
87  * traverse the list. New elements can be added to the list before or after
88  * an existing element, at the head of the list, or at the end of the list.
89  * A circle queue may be traversed in either direction, but has a more
90  * complex end of list detection.
91  *
92  * For details on the use of these macros, see the queue(3) manual page.
93  *
94  *
95  *			SLIST	LIST	STAILQ	TAILQ	CIRCLEQ
96  * _HEAD		+	+	+	+	+
97  * _HEAD_INITIALIZER	+	+	+	+	+
98  * _ENTRY		+	+	+	+	+
99  * _INIT		+	+	+	+	+
100  * _EMPTY		+	+	+	+	+
101  * _FIRST		+	+	+	+	+
102  * _NEXT		+	+	+	+	+
103  * _PREV		-	-	-	+	+
104  * _LAST		-	-	+	+	+
105  * _FOREACH		+	+	+	+	+
106  * _FOREACH_MUTABLE	-	+	-	+	-
107  * _FOREACH_REVERSE	-	-	-	+	+
108  * _INSERT_HEAD		+	+	+	+	+
109  * _INSERT_BEFORE	-	+	-	+	+
110  * _INSERT_AFTER	+	+	+	+	+
111  * _INSERT_TAIL		-	-	+	+	+
112  * _CONCAT		-	-	+	+	-
113  * _REMOVE_HEAD		+	-	+	-	-
114  * _REMOVE		+	+	+	+	+
115  *
116  */
117 
118 /*
119  * Singly-linked List declarations.
120  */
121 #define	SLIST_HEAD(name, type)						\
122 struct name {								\
123 	struct type *slh_first;	/* first element */			\
124 }
125 
126 #define	SLIST_HEAD_INITIALIZER(head)					\
127 	{ NULL }
128 
129 #define	SLIST_ENTRY(type)						\
130 struct {								\
131 	struct type *sle_next;	/* next element */			\
132 }
133 
134 #define SLIST_ENTRY_INITIALIZER	{ NULL }
135 
136 /*
137  * Singly-linked List functions.
138  */
139 #define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
140 
141 #define	SLIST_FIRST(head)	((head)->slh_first)
142 
143 #define	SLIST_FOREACH(var, head, field)					\
144 	for ((var) = SLIST_FIRST((head));				\
145 	    (var);							\
146 	    (var) = SLIST_NEXT((var), field))
147 
148 #define	SLIST_INIT(head) do {						\
149 	SLIST_FIRST((head)) = NULL;					\
150 } while (0)
151 
152 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
153 	SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field);	\
154 	SLIST_NEXT((slistelm), field) = (elm);				\
155 } while (0)
156 
157 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
158 	SLIST_NEXT((elm), field) = SLIST_FIRST((head));			\
159 	SLIST_FIRST((head)) = (elm);					\
160 } while (0)
161 
162 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
163 
164 #define	SLIST_REMOVE(head, elm, type, field) do {			\
165 	if (SLIST_FIRST((head)) == (elm)) {				\
166 		SLIST_REMOVE_HEAD((head), field);			\
167 	}								\
168 	else {								\
169 		struct type *curelm = SLIST_FIRST((head));		\
170 		while (SLIST_NEXT(curelm, field) != (elm))		\
171 			curelm = SLIST_NEXT(curelm, field);		\
172 		SLIST_NEXT(curelm, field) =				\
173 		    SLIST_NEXT(SLIST_NEXT(curelm, field), field);	\
174 	}								\
175 } while (0)
176 
177 #define	SLIST_REMOVE_HEAD(head, field) do {				\
178 	SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field);	\
179 } while (0)
180 
181 /*
182  * Singly-linked Tail queue declarations.
183  */
184 #define	STAILQ_HEAD(name, type)						\
185 struct name {								\
186 	struct type *stqh_first;/* first element */			\
187 	struct type **stqh_last;/* addr of last next element */		\
188 }
189 
190 #define	STAILQ_HEAD_INITIALIZER(head)					\
191 	{ NULL, &(head).stqh_first }
192 
193 #define	STAILQ_ENTRY(type)						\
194 struct {								\
195 	struct type *stqe_next;	/* next element */			\
196 }
197 
198 /*
199  * Singly-linked Tail queue functions.
200  */
201 #define	STAILQ_CONCAT(head1, head2) do {				\
202 	if (!STAILQ_EMPTY((head2))) {					\
203 		*(head1)->stqh_last = (head2)->stqh_first;		\
204 		(head1)->stqh_last = (head2)->stqh_last;		\
205 		STAILQ_INIT((head2));					\
206 	}								\
207 } while (0)
208 
209 #define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)
210 
211 #define	STAILQ_FIRST(head)	((head)->stqh_first)
212 
213 #define	STAILQ_FOREACH(var, head, field)				\
214 	for((var) = STAILQ_FIRST((head));				\
215 	   (var);							\
216 	   (var) = STAILQ_NEXT((var), field))
217 
218 #define	STAILQ_INIT(head) do {						\
219 	STAILQ_FIRST((head)) = NULL;					\
220 	(head)->stqh_last = &STAILQ_FIRST((head));			\
221 } while (0)
222 
223 #define	STAILQ_INSERT_AFTER(head, tqelm, elm, field) do {		\
224 	if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
225 		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
226 	STAILQ_NEXT((tqelm), field) = (elm);				\
227 } while (0)
228 
229 #define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
230 	if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL)	\
231 		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
232 	STAILQ_FIRST((head)) = (elm);					\
233 } while (0)
234 
235 #define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
236 	STAILQ_NEXT((elm), field) = NULL;				\
237 	*(head)->stqh_last = (elm);					\
238 	(head)->stqh_last = &STAILQ_NEXT((elm), field);			\
239 } while (0)
240 
241 #define	STAILQ_LAST(head, type, field)					\
242 	(STAILQ_EMPTY(head) ?						\
243 		NULL :							\
244 	        ((struct type *)					\
245 		((char *)((head)->stqh_last) - __offsetof(struct type, field))))
246 
247 #define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
248 
249 #define	STAILQ_REMOVE(head, elm, type, field) do {			\
250 	if (STAILQ_FIRST((head)) == (elm)) {				\
251 		STAILQ_REMOVE_HEAD(head, field);			\
252 	}								\
253 	else {								\
254 		struct type *curelm = STAILQ_FIRST((head));		\
255 		while (STAILQ_NEXT(curelm, field) != (elm))		\
256 			curelm = STAILQ_NEXT(curelm, field);		\
257 		if ((STAILQ_NEXT(curelm, field) =			\
258 		     STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\
259 			(head)->stqh_last = &STAILQ_NEXT((curelm), field);\
260 	}								\
261 } while (0)
262 
263 #define	STAILQ_REMOVE_HEAD(head, field) do {				\
264 	if ((STAILQ_FIRST((head)) =					\
265 	     STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL)		\
266 		(head)->stqh_last = &STAILQ_FIRST((head));		\
267 } while (0)
268 
269 #define	STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do {			\
270 	if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL)	\
271 		(head)->stqh_last = &STAILQ_FIRST((head));		\
272 } while (0)
273 
274 /*
275  * List declarations.
276  */
277 #define	LIST_HEAD(name, type)						\
278 struct name {								\
279 	struct type *lh_first;	/* first element */			\
280 }
281 
282 #define	LIST_HEAD_INITIALIZER(head)					\
283 	{ NULL }
284 
285 #define	LIST_ENTRY(type)						\
286 struct {								\
287 	struct type *le_next;	/* next element */			\
288 	struct type **le_prev;	/* address of previous next element */	\
289 }
290 
291 /*
292  * List functions.
293  */
294 
295 #define	LIST_EMPTY(head)	((head)->lh_first == NULL)
296 
297 #define	LIST_FIRST(head)	((head)->lh_first)
298 
299 #define	LIST_FOREACH(var, head, field)					\
300 	for ((var) = LIST_FIRST((head));				\
301 	    (var);							\
302 	    (var) = LIST_NEXT((var), field))
303 
304 #define	LIST_FOREACH_MUTABLE(var, head, field, nvar)			\
305 	for ((var) = LIST_FIRST((head));				\
306 	     (var) && ((nvar) = LIST_NEXT((var), field), (var));	\
307 	     (var) = (nvar))
308 
309 #define	LIST_INIT(head) do {						\
310 	LIST_FIRST((head)) = NULL;					\
311 } while (0)
312 
313 #define	LIST_INSERT_AFTER(listelm, elm, field) do {			\
314 	if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
315 		LIST_NEXT((listelm), field)->field.le_prev =		\
316 		    &LIST_NEXT((elm), field);				\
317 	LIST_NEXT((listelm), field) = (elm);				\
318 	(elm)->field.le_prev = &LIST_NEXT((listelm), field);		\
319 } while (0)
320 
321 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
322 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
323 	LIST_NEXT((elm), field) = (listelm);				\
324 	*(listelm)->field.le_prev = (elm);				\
325 	(listelm)->field.le_prev = &LIST_NEXT((elm), field);		\
326 } while (0)
327 
328 #define	LIST_INSERT_HEAD(head, elm, field) do {				\
329 	if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL)	\
330 		LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
331 	LIST_FIRST((head)) = (elm);					\
332 	(elm)->field.le_prev = &LIST_FIRST((head));			\
333 } while (0)
334 
335 #define	LIST_NEXT(elm, field)	((elm)->field.le_next)
336 
337 #define	LIST_REMOVE(elm, field) do {					\
338 	if (LIST_NEXT((elm), field) != NULL)				\
339 		LIST_NEXT((elm), field)->field.le_prev = 		\
340 		    (elm)->field.le_prev;				\
341 	*(elm)->field.le_prev = LIST_NEXT((elm), field);		\
342 } while (0)
343 
344 /*
345  * Tail queue declarations.
346  */
347 #define	TAILQ_HEAD(name, type)						\
348 struct name {								\
349 	struct type *tqh_first;	/* first element */			\
350 	struct type **tqh_last;	/* addr of last next element */		\
351 }
352 
353 #define	TAILQ_HEAD_INITIALIZER(head)					\
354 	{ NULL, &(head).tqh_first }
355 
356 #define	TAILQ_ENTRY(type)						\
357 struct {								\
358 	struct type *tqe_next;	/* next element */			\
359 	struct type **tqe_prev;	/* address of previous next element */	\
360 }
361 
362 /*
363  * Tail queue functions.
364  */
365 #define	TAILQ_CONCAT(head1, head2, field) do {				\
366 	if (!TAILQ_EMPTY(head2)) {					\
367 		*(head1)->tqh_last = (head2)->tqh_first;		\
368 		(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;	\
369 		(head1)->tqh_last = (head2)->tqh_last;			\
370 		TAILQ_INIT((head2));					\
371 	}								\
372 } while (0)
373 
374 #define	TAILQ_EMPTY(head)	((head)->tqh_first == NULL)
375 
376 #define	TAILQ_FIRST(head)	((head)->tqh_first)
377 
378 #define	TAILQ_FOREACH(var, head, field)					\
379 	for ((var) = TAILQ_FIRST((head));				\
380 	    (var);							\
381 	    (var) = TAILQ_NEXT((var), field))
382 
383 #define	TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
384 	for ((var) = TAILQ_LAST((head), headname);			\
385 	    (var);							\
386 	    (var) = TAILQ_PREV((var), headname, field))
387 
388 #define	TAILQ_FOREACH_MUTABLE(var, head, field, nvar)			\
389 	for ((var) = TAILQ_FIRST((head));				\
390 	     (var) && ((nvar) = TAILQ_NEXT((var), field), (var));	\
391 	     (var) = (nvar))
392 
393 #define	TAILQ_INIT(head) do {						\
394 	TAILQ_FIRST((head)) = NULL;					\
395 	(head)->tqh_last = &TAILQ_FIRST((head));			\
396 } while (0)
397 
398 #define	TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
399 	if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
400 		TAILQ_NEXT((elm), field)->field.tqe_prev = 		\
401 		    &TAILQ_NEXT((elm), field);				\
402 	else								\
403 		(head)->tqh_last = &TAILQ_NEXT((elm), field);		\
404 	TAILQ_NEXT((listelm), field) = (elm);				\
405 	(elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field);		\
406 } while (0)
407 
408 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
409 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
410 	TAILQ_NEXT((elm), field) = (listelm);				\
411 	*(listelm)->field.tqe_prev = (elm);				\
412 	(listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field);		\
413 } while (0)
414 
415 #define	TAILQ_INSERT_HEAD(head, elm, field) do {			\
416 	if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL)	\
417 		TAILQ_FIRST((head))->field.tqe_prev =			\
418 		    &TAILQ_NEXT((elm), field);				\
419 	else								\
420 		(head)->tqh_last = &TAILQ_NEXT((elm), field);		\
421 	TAILQ_FIRST((head)) = (elm);					\
422 	(elm)->field.tqe_prev = &TAILQ_FIRST((head));			\
423 } while (0)
424 
425 #define	TAILQ_INSERT_TAIL(head, elm, field) do {			\
426 	TAILQ_NEXT((elm), field) = NULL;				\
427 	(elm)->field.tqe_prev = (head)->tqh_last;			\
428 	*(head)->tqh_last = (elm);					\
429 	(head)->tqh_last = &TAILQ_NEXT((elm), field);			\
430 } while (0)
431 
432 #define	TAILQ_LAST(head, headname)					\
433 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
434 
435 #define	TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
436 
437 #define	TAILQ_PREV(elm, headname, field)				\
438 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
439 
440 #define	TAILQ_REMOVE(head, elm, field) do {				\
441 	if ((TAILQ_NEXT((elm), field)) != NULL)				\
442 		TAILQ_NEXT((elm), field)->field.tqe_prev = 		\
443 		    (elm)->field.tqe_prev;				\
444 	else								\
445 		(head)->tqh_last = (elm)->field.tqe_prev;		\
446 	*(elm)->field.tqe_prev = TAILQ_NEXT((elm), field);		\
447 } while (0)
448 
449 /*
450  * Circular queue declarations.
451  */
452 #define	CIRCLEQ_HEAD(name, type)					\
453 struct name {								\
454 	struct type *cqh_first;		/* first element */		\
455 	struct type *cqh_last;		/* last element */		\
456 }
457 
458 #define	CIRCLEQ_HEAD_INITIALIZER(head)					\
459 	{ (void *)&(head), (void *)&(head) }
460 
461 #define	CIRCLEQ_ENTRY(type)						\
462 struct {								\
463 	struct type *cqe_next;		/* next element */		\
464 	struct type *cqe_prev;		/* previous element */		\
465 }
466 
467 /*
468  * Circular queue functions.
469  */
470 #define	CIRCLEQ_EMPTY(head)	((head)->cqh_first == (void *)(head))
471 
472 #define	CIRCLEQ_FIRST(head)	((head)->cqh_first)
473 
474 #define	CIRCLEQ_FOREACH(var, head, field)				\
475 	for ((var) = CIRCLEQ_FIRST((head));				\
476 	    (var) != (void *)(head) || ((var) = NULL);			\
477 	    (var) = CIRCLEQ_NEXT((var), field))
478 
479 #define	CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
480 	for ((var) = CIRCLEQ_LAST((head));				\
481 	    (var) != (void *)(head) || ((var) = NULL);			\
482 	    (var) = CIRCLEQ_PREV((var), field))
483 
484 #define	CIRCLEQ_INIT(head) do {						\
485 	CIRCLEQ_FIRST((head)) = (void *)(head);				\
486 	CIRCLEQ_LAST((head)) = (void *)(head);				\
487 } while (0)
488 
489 #define	CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
490 	CIRCLEQ_NEXT((elm), field) = CIRCLEQ_NEXT((listelm), field);	\
491 	CIRCLEQ_PREV((elm), field) = (listelm);				\
492 	if (CIRCLEQ_NEXT((listelm), field) == (void *)(head))		\
493 		CIRCLEQ_LAST((head)) = (elm);				\
494 	else								\
495 		CIRCLEQ_PREV(CIRCLEQ_NEXT((listelm), field), field) = (elm);\
496 	CIRCLEQ_NEXT((listelm), field) = (elm);				\
497 } while (0)
498 
499 #define	CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
500 	CIRCLEQ_NEXT((elm), field) = (listelm);				\
501 	CIRCLEQ_PREV((elm), field) = CIRCLEQ_PREV((listelm), field);	\
502 	if (CIRCLEQ_PREV((listelm), field) == (void *)(head))		\
503 		CIRCLEQ_FIRST((head)) = (elm);				\
504 	else								\
505 		CIRCLEQ_NEXT(CIRCLEQ_PREV((listelm), field), field) = (elm);\
506 	CIRCLEQ_PREV((listelm), field) = (elm);				\
507 } while (0)
508 
509 #define	CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
510 	CIRCLEQ_NEXT((elm), field) = CIRCLEQ_FIRST((head));		\
511 	CIRCLEQ_PREV((elm), field) = (void *)(head);			\
512 	if (CIRCLEQ_LAST((head)) == (void *)(head))			\
513 		CIRCLEQ_LAST((head)) = (elm);				\
514 	else								\
515 		CIRCLEQ_PREV(CIRCLEQ_FIRST((head)), field) = (elm);	\
516 	CIRCLEQ_FIRST((head)) = (elm);					\
517 } while (0)
518 
519 #define	CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
520 	CIRCLEQ_NEXT((elm), field) = (void *)(head);			\
521 	CIRCLEQ_PREV((elm), field) = CIRCLEQ_LAST((head));		\
522 	if (CIRCLEQ_FIRST((head)) == (void *)(head))			\
523 		CIRCLEQ_FIRST((head)) = (elm);				\
524 	else								\
525 		CIRCLEQ_NEXT(CIRCLEQ_LAST((head)), field) = (elm);	\
526 	CIRCLEQ_LAST((head)) = (elm);					\
527 } while (0)
528 
529 #define	CIRCLEQ_LAST(head)	((head)->cqh_last)
530 
531 #define	CIRCLEQ_NEXT(elm,field)	((elm)->field.cqe_next)
532 
533 #define	CIRCLEQ_PREV(elm,field)	((elm)->field.cqe_prev)
534 
535 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
536 	if (CIRCLEQ_NEXT((elm), field) == (void *)(head))		\
537 		CIRCLEQ_LAST((head)) = CIRCLEQ_PREV((elm), field);	\
538 	else								\
539 		CIRCLEQ_PREV(CIRCLEQ_NEXT((elm), field), field) =	\
540 		    CIRCLEQ_PREV((elm), field);				\
541 	if (CIRCLEQ_PREV((elm), field) == (void *)(head))		\
542 		CIRCLEQ_FIRST((head)) = CIRCLEQ_NEXT((elm), field);	\
543 	else								\
544 		CIRCLEQ_NEXT(CIRCLEQ_PREV((elm), field), field) =	\
545 		    CIRCLEQ_NEXT((elm), field);				\
546 } while (0)
547 
548 #ifdef _KERNEL
549 
550 /*
551  * XXX insque() and remque() are an old way of handling certain queues.
552  * They bogusly assumes that all queue heads look alike.
553  */
554 
555 struct quehead {
556 	struct quehead *qh_link;
557 	struct quehead *qh_rlink;
558 };
559 
560 #ifdef	__GNUC__
561 
562 static __inline void
563 insque(void *a, void *b)
564 {
565 	struct quehead *element = (struct quehead *)a,
566 		 *head = (struct quehead *)b;
567 
568 	element->qh_link = head->qh_link;
569 	element->qh_rlink = head;
570 	head->qh_link = element;
571 	element->qh_link->qh_rlink = element;
572 }
573 
574 static __inline void
575 remque(void *a)
576 {
577 	struct quehead *element = (struct quehead *)a;
578 
579 	element->qh_link->qh_rlink = element->qh_rlink;
580 	element->qh_rlink->qh_link = element->qh_link;
581 	element->qh_rlink = 0;
582 }
583 
584 #else /* !__GNUC__ */
585 
586 void	insque (void *a, void *b);
587 void	remque (void *a);
588 
589 #endif /* __GNUC__ */
590 
591 #endif /* _KERNEL */
592 
593 #endif /* !_SYS_QUEUE_H_ */
594