xref: /dragonfly/sys/vfs/hammer/hammer_cursor.c (revision cae2835b)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * HAMMER B-Tree index - cursor support routines
37  */
38 #include "hammer.h"
39 
40 static int hammer_load_cursor_parent(hammer_cursor_t cursor, int try_exclusive);
41 
42 /*
43  * Initialize a fresh cursor using the B-Tree node cache.  If the cache
44  * is not available initialize a fresh cursor at the root of the filesystem.
45  */
46 int
47 hammer_init_cursor(hammer_transaction_t trans, hammer_cursor_t cursor,
48 		   hammer_node_cache_t cache, hammer_inode_t ip)
49 {
50 	hammer_volume_t volume;
51 	hammer_node_t node;
52 	hammer_mount_t hmp;
53 	u_int tticks;
54 	int error;
55 
56 	bzero(cursor, sizeof(*cursor));
57 
58 	cursor->trans = trans;
59 	hmp = trans->hmp;
60 
61 	/*
62 	 * As the number of inodes queued to the flusher increases we use
63 	 * time-domain multiplexing to control read vs flush performance.
64 	 * We have to do it here, before acquiring any ip or node locks,
65 	 * to avoid deadlocking or excessively delaying the flusher.
66 	 *
67 	 * The full time period is hammer_tdmux_ticks, typically 1/5 of
68 	 * a second.
69 	 *
70 	 * inode allocation begins to get restrained at 2/4 the limit
71 	 * via the "hmrrcm" mechanism in hammer_inode.  We want to begin
72 	 * limiting read activity before that to try to avoid processes
73 	 * stalling out in "hmrrcm".
74 	 */
75 	tticks = hammer_tdmux_ticks;
76 	if (trans->type != HAMMER_TRANS_FLS && tticks &&
77 	    hmp->count_reclaims > hammer_limit_reclaims / tticks &&
78 	    hmp->count_reclaims > hammer_autoflush * 2 &&
79 	    hammer_flusher_running(hmp)) {
80 		u_int rticks;
81 		u_int xticks;
82 		u_int dummy;
83 
84 		/*
85 		 * 0 ... xticks ... tticks
86 		 *
87 		 * rticks is the calculated position, xticks is the demarc
88 		 * where values below xticks are reserved for the flusher
89 		 * and values >= to xticks may be used by the frontend.
90 		 *
91 		 * At least one tick is always made available for the
92 		 * frontend.
93 		 */
94 		rticks = (u_int)ticks % tticks;
95 		xticks = hmp->count_reclaims * tticks / hammer_limit_reclaims;
96 
97 		/*
98 		 * Ensure rticks and xticks are stable
99 		 */
100 		cpu_ccfence();
101 		if (rticks < xticks) {
102 			if (hammer_debug_general & 0x0004)
103 				hdkprintf("rt %3u, xt %3u, tt %3u\n",
104 					rticks, xticks, tticks);
105 			tsleep(&dummy, 0, "htdmux", xticks - rticks);
106 		}
107 	}
108 
109 	/*
110 	 * If the cursor operation is on behalf of an inode, lock
111 	 * the inode.
112 	 *
113 	 * When acquiring a shared lock on an inode on which the backend
114 	 * flusher deadlocked, wait up to hammer_tdmux_ticks (1 second)
115 	 * for the deadlock to clear.
116 	 */
117 	if ((cursor->ip = ip) != NULL) {
118 		++ip->cursor_ip_refs;
119 		if (trans->type == HAMMER_TRANS_FLS) {
120 			hammer_lock_ex(&ip->lock);
121 		} else {
122 #if 0
123 			if (ip->cursor_exclreq_count) {
124 				tsleep(&ip->cursor_exclreq_count, 0,
125 				       "hstag1", hammer_tdmux_ticks);
126 			}
127 #endif
128 			hammer_lock_sh(&ip->lock);
129 		}
130 	}
131 
132 	/*
133 	 * Step 1 - acquire a locked node from the cache if possible
134 	 */
135 	if (cache && cache->node) {
136 		node = hammer_ref_node_safe(trans, cache, &error);
137 		if (error == 0) {
138 			hammer_lock_sh(&node->lock);
139 			if (node->flags & HAMMER_NODE_DELETED) {
140 				hammer_unlock(&node->lock);
141 				hammer_rel_node(node);
142 				node = NULL;
143 			}
144 		}
145 		if (node == NULL)
146 			++hammer_stats_btree_root_iterations;
147 	} else {
148 		node = NULL;
149 		++hammer_stats_btree_root_iterations;
150 	}
151 
152 	/*
153 	 * Step 2 - If we couldn't get a node from the cache, get
154 	 * the one from the root of the filesystem.
155 	 */
156 	while (node == NULL) {
157 		volume = hammer_get_root_volume(hmp, &error);
158 		if (error)
159 			break;
160 		node = hammer_get_node(trans, volume->ondisk->vol0_btree_root,
161 				       0, &error);
162 		hammer_rel_volume(volume, 0);
163 		if (error)
164 			break;
165 		/*
166 		 * When the frontend acquires the root b-tree node while the
167 		 * backend is deadlocked on it, wait up to hammer_tdmux_ticks
168 		 * (1 second) for the deadlock to clear.
169 		 */
170 #if 0
171 		if (node->cursor_exclreq_count &&
172 		    cursor->trans->type != HAMMER_TRANS_FLS) {
173 			tsleep(&node->cursor_exclreq_count, 0,
174 			       "hstag3", hammer_tdmux_ticks);
175 		}
176 #endif
177 		hammer_lock_sh(&node->lock);
178 
179 		/*
180 		 * If someone got in before we could lock the node, retry.
181 		 */
182 		if (node->flags & HAMMER_NODE_DELETED) {
183 			hammer_unlock(&node->lock);
184 			hammer_rel_node(node);
185 			node = NULL;
186 			continue;
187 		}
188 		if (volume->ondisk->vol0_btree_root != node->node_offset) {
189 			hammer_unlock(&node->lock);
190 			hammer_rel_node(node);
191 			node = NULL;
192 			continue;
193 		}
194 	}
195 
196 	/*
197 	 * Step 3 - finish initializing the cursor by acquiring the parent
198 	 */
199 	cursor->node = node;
200 	if (error == 0)
201 		error = hammer_load_cursor_parent(cursor, 0);
202 	KKASSERT(error == 0);
203 	/* if (error) hammer_done_cursor(cursor); */
204 	return(error);
205 }
206 
207 /*
208  * Normalize a cursor.  Sometimes cursors can be left in a state
209  * where node is NULL.  If the cursor is in this state, cursor up.
210  */
211 void
212 hammer_normalize_cursor(hammer_cursor_t cursor)
213 {
214 	if (cursor->node == NULL) {
215 		KKASSERT(cursor->parent != NULL);
216 		hammer_cursor_up(cursor);
217 	}
218 }
219 
220 
221 /*
222  * We are finished with a cursor.  We NULL out various fields as sanity
223  * check, in case the structure is inappropriately used afterwords.
224  */
225 void
226 hammer_done_cursor(hammer_cursor_t cursor)
227 {
228 	hammer_inode_t ip;
229 
230 	KKASSERT((cursor->flags & HAMMER_CURSOR_TRACKED) == 0);
231 	if (cursor->parent) {
232 		hammer_unlock(&cursor->parent->lock);
233 		hammer_rel_node(cursor->parent);
234 		cursor->parent = NULL;
235 	}
236 	if (cursor->node) {
237 		hammer_unlock(&cursor->node->lock);
238 		hammer_rel_node(cursor->node);
239 		cursor->node = NULL;
240 	}
241         if (cursor->data_buffer) {
242                 hammer_rel_buffer(cursor->data_buffer, 0);
243                 cursor->data_buffer = NULL;
244         }
245 	if ((ip = cursor->ip) != NULL) {
246                 KKASSERT(ip->cursor_ip_refs > 0);
247                 --ip->cursor_ip_refs;
248 		hammer_unlock(&ip->lock);
249                 cursor->ip = NULL;
250         }
251 	if (cursor->iprec) {
252 		hammer_rel_mem_record(cursor->iprec);
253 		cursor->iprec = NULL;
254 	}
255 
256 	/*
257 	 * If we deadlocked this node will be referenced.  Do a quick
258 	 * lock/unlock to wait for the deadlock condition to clear.
259 	 *
260 	 * Maintain exclreq_count / wakeup as necessary to notify new
261 	 * entrants into ip.  We continue to hold the fs_token so our
262 	 * EDEADLK retry loop should get its chance before another thread
263 	 * steals the lock.
264 	 */
265 	if (cursor->deadlk_node) {
266 #if 0
267 		if (ip && cursor->trans->type == HAMMER_TRANS_FLS)
268 			++ip->cursor_exclreq_count;
269 		++cursor->deadlk_node->cursor_exclreq_count;
270 #endif
271 		hammer_lock_ex_ident(&cursor->deadlk_node->lock, "hmrdlk");
272 		hammer_unlock(&cursor->deadlk_node->lock);
273 #if 0
274 		if (--cursor->deadlk_node->cursor_exclreq_count == 0)
275 			wakeup(&cursor->deadlk_node->cursor_exclreq_count);
276 		if (ip && cursor->trans->type == HAMMER_TRANS_FLS) {
277 			if (--ip->cursor_exclreq_count == 0)
278 				wakeup(&ip->cursor_exclreq_count);
279 		}
280 #endif
281 		hammer_rel_node(cursor->deadlk_node);
282 		cursor->deadlk_node = NULL;
283 	}
284 	if (cursor->deadlk_rec) {
285 		hammer_wait_mem_record_ident(cursor->deadlk_rec, "hmmdlr");
286 		hammer_rel_mem_record(cursor->deadlk_rec);
287 		cursor->deadlk_rec = NULL;
288 	}
289 
290 	cursor->data = NULL;
291 	cursor->leaf = NULL;
292 	cursor->left_bound = NULL;
293 	cursor->right_bound = NULL;
294 	cursor->trans = NULL;
295 }
296 
297 /*
298  * Upgrade cursor->node and cursor->parent to exclusive locks.  This
299  * function can return EDEADLK.
300  *
301  * The lock must already be either held shared or already held exclusively
302  * by us.
303  *
304  * We upgrade the parent first as it is the most likely to collide first
305  * with the downward traversal that the frontend typically does.
306  *
307  * If we fail to upgrade the lock and cursor->deadlk_node is NULL,
308  * we add another reference to the node that failed and set
309  * cursor->deadlk_node so hammer_done_cursor() can block on it.
310  */
311 int
312 hammer_cursor_upgrade(hammer_cursor_t cursor)
313 {
314 	int error;
315 
316 	if (cursor->parent) {
317 		error = hammer_lock_upgrade(&cursor->parent->lock, 1);
318 		if (error && cursor->deadlk_node == NULL) {
319 			cursor->deadlk_node = cursor->parent;
320 			hammer_ref_node(cursor->deadlk_node);
321 		}
322 	} else {
323 		error = 0;
324 	}
325 	if (error == 0) {
326 		error = hammer_lock_upgrade(&cursor->node->lock, 1);
327 		if (error && cursor->deadlk_node == NULL) {
328 			cursor->deadlk_node = cursor->node;
329 			hammer_ref_node(cursor->deadlk_node);
330 		}
331 	}
332 #if 0
333 	error = hammer_lock_upgrade(&cursor->node->lock, 1);
334 	if (error && cursor->deadlk_node == NULL) {
335 		cursor->deadlk_node = cursor->node;
336 		hammer_ref_node(cursor->deadlk_node);
337 	} else if (error == 0 && cursor->parent) {
338 		error = hammer_lock_upgrade(&cursor->parent->lock, 1);
339 		if (error && cursor->deadlk_node == NULL) {
340 			cursor->deadlk_node = cursor->parent;
341 			hammer_ref_node(cursor->deadlk_node);
342 		}
343 	}
344 #endif
345 	return(error);
346 }
347 
348 int
349 hammer_cursor_upgrade_node(hammer_cursor_t cursor)
350 {
351 	int error;
352 
353 	error = hammer_lock_upgrade(&cursor->node->lock, 1);
354 	if (error && cursor->deadlk_node == NULL) {
355 		cursor->deadlk_node = cursor->node;
356 		hammer_ref_node(cursor->deadlk_node);
357 	}
358 	return(error);
359 }
360 
361 /*
362  * Downgrade cursor->node and cursor->parent to shared locks.
363  */
364 void
365 hammer_cursor_downgrade(hammer_cursor_t cursor)
366 {
367 	if (hammer_lock_excl_owned(&cursor->node->lock, curthread))
368 		hammer_lock_downgrade(&cursor->node->lock, 1);
369 	if (cursor->parent &&
370 	    hammer_lock_excl_owned(&cursor->parent->lock, curthread)) {
371 		hammer_lock_downgrade(&cursor->parent->lock, 1);
372 	}
373 }
374 
375 /*
376  * Upgrade and downgrade pairs of cursors.  This is used by the dedup
377  * code which must deal with two cursors.  A special function is needed
378  * because some of the nodes may be shared between the two cursors,
379  * resulting in share counts > 1 which will normally cause an upgrade
380  * to fail.
381  */
382 static __noinline
383 int
384 collect_node(hammer_node_t *array, int *counts, int n, hammer_node_t node)
385 {
386 	int i;
387 
388 	for (i = 0; i < n; ++i) {
389 		if (array[i] == node)
390 			break;
391 	}
392 	if (i == n) {
393 		array[i] = node;
394 		counts[i] = 1;
395 		++i;
396 	} else {
397 		++counts[i];
398 	}
399 	return(i);
400 }
401 
402 int
403 hammer_cursor_upgrade2(hammer_cursor_t cursor1, hammer_cursor_t cursor2)
404 {
405 	hammer_node_t nodes[4];
406 	int counts[4];
407 	int error;
408 	int i;
409 	int n;
410 
411 	n = collect_node(nodes, counts, 0, cursor1->node);
412 	if (cursor1->parent)
413 		n = collect_node(nodes, counts, n, cursor1->parent);
414 	n = collect_node(nodes, counts, n, cursor2->node);
415 	if (cursor2->parent)
416 		n = collect_node(nodes, counts, n, cursor2->parent);
417 
418 	error = 0;
419 	for (i = 0; i < n; ++i) {
420 		error = hammer_lock_upgrade(&nodes[i]->lock, counts[i]);
421 		if (error)
422 			break;
423 	}
424 	if (error) {
425 		while (--i >= 0)
426 			hammer_lock_downgrade(&nodes[i]->lock, counts[i]);
427 	}
428 	return (error);
429 }
430 
431 void
432 hammer_cursor_downgrade2(hammer_cursor_t cursor1, hammer_cursor_t cursor2)
433 {
434 	hammer_node_t nodes[4];
435 	int counts[4];
436 	int i;
437 	int n;
438 
439 	n = collect_node(nodes, counts, 0, cursor1->node);
440 	if (cursor1->parent)
441 		n = collect_node(nodes, counts, n, cursor1->parent);
442 	n = collect_node(nodes, counts, n, cursor2->node);
443 	if (cursor2->parent)
444 		n = collect_node(nodes, counts, n, cursor2->parent);
445 
446 	for (i = 0; i < n; ++i)
447 		hammer_lock_downgrade(&nodes[i]->lock, counts[i]);
448 }
449 
450 /*
451  * Seek the cursor to the specified node and index.
452  *
453  * The caller must ref the node prior to calling this routine and release
454  * it after it returns.  If the seek succeeds the cursor will gain its own
455  * ref on the node.
456  */
457 int
458 hammer_cursor_seek(hammer_cursor_t cursor, hammer_node_t node, int index)
459 {
460 	int error;
461 
462 	hammer_cursor_downgrade(cursor);
463 	error = 0;
464 
465 	if (cursor->node != node) {
466 		hammer_unlock(&cursor->node->lock);
467 		hammer_rel_node(cursor->node);
468 		cursor->node = node;
469 		hammer_ref_node(node);
470 		hammer_lock_sh(&node->lock);
471 		KKASSERT ((node->flags & HAMMER_NODE_DELETED) == 0);
472 
473 		if (cursor->parent) {
474 			hammer_unlock(&cursor->parent->lock);
475 			hammer_rel_node(cursor->parent);
476 			cursor->parent = NULL;
477 			cursor->parent_index = 0;
478 		}
479 		error = hammer_load_cursor_parent(cursor, 0);
480 	}
481 	cursor->index = index;
482 	return (error);
483 }
484 
485 /*
486  * Load the parent of cursor->node into cursor->parent.
487  */
488 static
489 int
490 hammer_load_cursor_parent(hammer_cursor_t cursor, int try_exclusive)
491 {
492 	hammer_mount_t hmp;
493 	hammer_node_t parent;
494 	hammer_node_t node;
495 	hammer_btree_elm_t elm;
496 	int error;
497 	int parent_index;
498 
499 	hmp = cursor->trans->hmp;
500 
501 	if (cursor->node->ondisk->parent) {
502 		node = cursor->node;
503 		parent = hammer_btree_get_parent(cursor->trans, node,
504 						 &parent_index,
505 						 &error, try_exclusive);
506 		if (error == 0) {
507 			elm = &parent->ondisk->elms[parent_index];
508 			cursor->parent = parent;
509 			cursor->parent_index = parent_index;
510 			cursor->left_bound = &elm[0].internal.base;
511 			cursor->right_bound = &elm[1].internal.base;
512 		}
513 	} else {
514 		cursor->parent = NULL;
515 		cursor->parent_index = 0;
516 		cursor->left_bound = &hmp->root_btree_beg;
517 		cursor->right_bound = &hmp->root_btree_end;
518 		error = 0;
519 	}
520 	return(error);
521 }
522 
523 /*
524  * Cursor up to our parent node.  Return ENOENT if we are at the root of
525  * the filesystem.
526  */
527 int
528 hammer_cursor_up(hammer_cursor_t cursor)
529 {
530 	int error;
531 
532 	hammer_cursor_downgrade(cursor);
533 
534 	/*
535 	 * If the parent is NULL we are at the root of the B-Tree and
536 	 * return ENOENT.
537 	 */
538 	if (cursor->parent == NULL)
539 		return (ENOENT);
540 
541 	/*
542 	 * Set the node to its parent.
543 	 */
544 	hammer_unlock(&cursor->node->lock);
545 	hammer_rel_node(cursor->node);
546 	cursor->node = cursor->parent;
547 	cursor->index = cursor->parent_index;
548 	cursor->parent = NULL;
549 	cursor->parent_index = 0;
550 
551 	error = hammer_load_cursor_parent(cursor, 0);
552 	return(error);
553 }
554 
555 /*
556  * Special cursor up given a locked cursor.  The orignal node is not
557  * unlocked or released and the cursor is not downgraded.
558  *
559  * This function can fail with EDEADLK.
560  *
561  * This function is only run when recursively deleting parent nodes
562  * to get rid of an empty leaf.
563  */
564 int
565 hammer_cursor_up_locked(hammer_cursor_t cursor)
566 {
567 	hammer_node_t save;
568 	int error;
569 	int save_index;
570 
571 	/*
572 	 * If the parent is NULL we are at the root of the B-Tree and
573 	 * return ENOENT.
574 	 */
575 	if (cursor->parent == NULL)
576 		return (ENOENT);
577 
578 	save = cursor->node;
579 	save_index = cursor->index;
580 
581 	/*
582 	 * Set the node to its parent.
583 	 */
584 	cursor->node = cursor->parent;
585 	cursor->index = cursor->parent_index;
586 	cursor->parent = NULL;
587 	cursor->parent_index = 0;
588 
589 	/*
590 	 * load the new parent, attempt to exclusively lock it.  Note that
591 	 * we are still holding the old parent (now cursor->node) exclusively
592 	 * locked.
593 	 *
594 	 * This can return EDEADLK.  Undo the operation on any error.  These
595 	 * up sequences can occur during iterations so be sure to restore
596 	 * the index.
597 	 */
598 	error = hammer_load_cursor_parent(cursor, 1);
599 	if (error) {
600 		cursor->parent = cursor->node;
601 		cursor->parent_index = cursor->index;
602 		cursor->node = save;
603 		cursor->index = save_index;
604 	}
605 	return(error);
606 }
607 
608 
609 /*
610  * Cursor down through the current node, which must be an internal node.
611  *
612  * This routine adjusts the cursor and sets index to 0.
613  */
614 int
615 hammer_cursor_down(hammer_cursor_t cursor)
616 {
617 	hammer_node_t node;
618 	hammer_btree_elm_t elm;
619 	int error;
620 
621 	/*
622 	 * The current node becomes the current parent
623 	 */
624 	hammer_cursor_downgrade(cursor);
625 	node = cursor->node;
626 	KKASSERT(cursor->index >= 0 && cursor->index < node->ondisk->count);
627 	if (cursor->parent) {
628 		hammer_unlock(&cursor->parent->lock);
629 		hammer_rel_node(cursor->parent);
630 	}
631 	cursor->parent = node;
632 	cursor->parent_index = cursor->index;
633 	cursor->node = NULL;
634 	cursor->index = 0;
635 
636 	/*
637 	 * Extract element to push into at (node,index), set bounds.
638 	 */
639 	elm = &node->ondisk->elms[cursor->parent_index];
640 
641 	/*
642 	 * Ok, push down into elm of an internal node.
643 	 */
644 	KKASSERT(node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
645 	KKASSERT(elm->internal.subtree_offset != 0);
646 	cursor->left_bound = &elm[0].internal.base;
647 	cursor->right_bound = &elm[1].internal.base;
648 	node = hammer_get_node(cursor->trans,
649 			       elm->internal.subtree_offset, 0, &error);
650 	if (error == 0) {
651 		KASSERT(elm->base.btype == node->ondisk->type,
652 			("BTYPE MISMATCH %c %c NODE %p",
653 			 elm->base.btype, node->ondisk->type, node));
654 		if (node->ondisk->parent != cursor->parent->node_offset)
655 			hpanic("node %p %016jx vs %016jx",
656 				node,
657 				(intmax_t)node->ondisk->parent,
658 				(intmax_t)cursor->parent->node_offset);
659 		KKASSERT(node->ondisk->parent == cursor->parent->node_offset);
660 	}
661 
662 	/*
663 	 * If no error occured we can lock the new child node.  If the
664 	 * node is deadlock flagged wait up to hammer_tdmux_ticks (1 second)
665 	 * for the deadlock to clear.  Otherwise a large number of concurrent
666 	 * readers can continuously stall the flusher.
667 	 *
668 	 * We specifically do this in the cursor_down() code in order to
669 	 * deal with frontend top-down searches smashing against bottom-up
670 	 * flusher-based mirror updates.  These collisions typically occur
671 	 * above the inode in the B-Tree and are not covered by the
672 	 * ip->cursor_exclreq_count logic.
673 	 */
674 	if (error == 0) {
675 #if 0
676 		if (node->cursor_exclreq_count &&
677 		    cursor->trans->type != HAMMER_TRANS_FLS) {
678 			tsleep(&node->cursor_exclreq_count, 0,
679 			       "hstag2", hammer_tdmux_ticks);
680 		}
681 #endif
682 		hammer_lock_sh(&node->lock);
683 		KKASSERT ((node->flags & HAMMER_NODE_DELETED) == 0);
684 		cursor->node = node;
685 		cursor->index = 0;
686 	}
687 	return(error);
688 }
689 
690 /************************************************************************
691  *				DEADLOCK RECOVERY			*
692  ************************************************************************
693  *
694  * These are the new deadlock recovery functions.  Currently they are only
695  * used for the mirror propagation and physical node removal cases but
696  * ultimately the intention is to use them for all deadlock recovery
697  * operations.
698  *
699  * WARNING!  The contents of the cursor may be modified while unlocked.
700  *	     passive modifications including adjusting the node, parent,
701  *	     indexes, and leaf pointer.
702  *
703  *	     An outright removal of the element the cursor was pointing at
704  *	     will cause the HAMMER_CURSOR_TRACKED_RIPOUT flag to be set,
705  *	     which chains to causing the HAMMER_CURSOR_RETEST to be set
706  *	     when the cursor is locked again.
707  */
708 void
709 hammer_unlock_cursor(hammer_cursor_t cursor)
710 {
711 	hammer_node_t node;
712 
713 	KKASSERT((cursor->flags & HAMMER_CURSOR_TRACKED) == 0);
714 	KKASSERT(cursor->node);
715 
716 	/*
717 	 * Release the cursor's locks and track B-Tree operations on node.
718 	 * While being tracked our cursor can be modified by other threads
719 	 * and the node may be replaced.
720 	 */
721 	if (cursor->parent) {
722 		hammer_unlock(&cursor->parent->lock);
723 		hammer_rel_node(cursor->parent);
724 		cursor->parent = NULL;
725 	}
726 	node = cursor->node;
727 	cursor->flags |= HAMMER_CURSOR_TRACKED;
728 	TAILQ_INSERT_TAIL(&node->cursor_list, cursor, deadlk_entry);
729 	hammer_unlock(&node->lock);
730 }
731 
732 /*
733  * Get the cursor heated up again.  The cursor's node may have
734  * changed and we might have to locate the new parent.
735  *
736  * If the exact element we were on got deleted RIPOUT will be
737  * set and we must clear ATEDISK so an iteration does not skip
738  * the element after it.
739  */
740 int
741 hammer_lock_cursor(hammer_cursor_t cursor)
742 {
743 	hammer_node_t node;
744 	int error;
745 
746 	KKASSERT(cursor->flags & HAMMER_CURSOR_TRACKED);
747 
748 	/*
749 	 * Relock the node
750 	 */
751 	for (;;) {
752 		node = cursor->node;
753 		hammer_ref_node(node);
754 		hammer_lock_sh(&node->lock);
755 		if (cursor->node == node) {
756 			hammer_rel_node(node);
757 			break;
758 		}
759 		hammer_unlock(&node->lock);
760 		hammer_rel_node(node);
761 	}
762 
763 	/*
764 	 * Untrack the cursor, clean up, and re-establish the parent node.
765 	 */
766 	TAILQ_REMOVE(&node->cursor_list, cursor, deadlk_entry);
767 	cursor->flags &= ~HAMMER_CURSOR_TRACKED;
768 
769 	/*
770 	 * If a ripout has occured iterations must re-test the (new)
771 	 * current element.  Clearing ATEDISK prevents the element from
772 	 * being skipped and RETEST causes it to be re-tested.
773 	 */
774 	if (cursor->flags & HAMMER_CURSOR_TRACKED_RIPOUT) {
775 		cursor->flags &= ~HAMMER_CURSOR_TRACKED_RIPOUT;
776 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
777 		cursor->flags |= HAMMER_CURSOR_RETEST;
778 	}
779 	error = hammer_load_cursor_parent(cursor, 0);
780 	return(error);
781 }
782 
783 /*
784  * Recover from a deadlocked cursor, tracking any node removals or
785  * replacements.  If the cursor's current node is removed by another
786  * thread (via btree_remove()) the cursor will be seeked upwards.
787  *
788  * The caller is working a modifying operation and must be holding the
789  * sync lock (shared).  We do not release the sync lock because this
790  * would break atomicy.
791  */
792 int
793 hammer_recover_cursor(hammer_cursor_t cursor)
794 {
795 	hammer_transaction_t trans __debugvar;
796 #if 0
797 	hammer_inode_t ip;
798 #endif
799 	int error;
800 
801 	hammer_unlock_cursor(cursor);
802 
803 #if 0
804 	ip = cursor->ip;
805 #endif
806 	trans = cursor->trans;
807 	KKASSERT(trans->sync_lock_refs > 0);
808 
809 	/*
810 	 * Wait for the deadlock to clear.
811 	 *
812 	 * Maintain exclreq_count / wakeup as necessary to notify new
813 	 * entrants into ip.  We continue to hold the fs_token so our
814 	 * EDEADLK retry loop should get its chance before another thread
815 	 * steals the lock.
816 	 */
817 	if (cursor->deadlk_node) {
818 #if 0
819 		if (ip && trans->type == HAMMER_TRANS_FLS)
820 			++ip->cursor_exclreq_count;
821 		++cursor->deadlk_node->cursor_exclreq_count;
822 #endif
823 		hammer_lock_ex_ident(&cursor->deadlk_node->lock, "hmrdlk");
824 		hammer_unlock(&cursor->deadlk_node->lock);
825 #if 0
826 		if (--cursor->deadlk_node->cursor_exclreq_count == 0)
827 			wakeup(&cursor->deadlk_node->cursor_exclreq_count);
828 		if (ip && trans->type == HAMMER_TRANS_FLS) {
829 			if (--ip->cursor_exclreq_count == 0)
830 				wakeup(&ip->cursor_exclreq_count);
831 		}
832 #endif
833 		hammer_rel_node(cursor->deadlk_node);
834 		cursor->deadlk_node = NULL;
835 	}
836 	if (cursor->deadlk_rec) {
837 		hammer_wait_mem_record_ident(cursor->deadlk_rec, "hmmdlr");
838 		hammer_rel_mem_record(cursor->deadlk_rec);
839 		cursor->deadlk_rec = NULL;
840 	}
841 	error = hammer_lock_cursor(cursor);
842 	return(error);
843 }
844 
845 /*
846  * Dup ocursor to ncursor.  ncursor inherits ocursor's locks and ocursor
847  * is effectively unlocked and becomes tracked.  If ocursor was not locked
848  * then ncursor also inherits the tracking.
849  *
850  * After the caller finishes working with ncursor it must be cleaned up
851  * with hammer_done_cursor(), and the caller must re-lock ocursor.
852  */
853 hammer_cursor_t
854 hammer_push_cursor(hammer_cursor_t ocursor)
855 {
856 	hammer_cursor_t ncursor;
857 	hammer_inode_t ip;
858 	hammer_node_t node;
859 	hammer_mount_t hmp;
860 
861 	hmp = ocursor->trans->hmp;
862 	ncursor = kmalloc(sizeof(*ncursor), hmp->m_misc, M_WAITOK | M_ZERO);
863 	bcopy(ocursor, ncursor, sizeof(*ocursor));
864 
865 	node = ocursor->node;
866 	hammer_ref_node(node);
867 	if ((ocursor->flags & HAMMER_CURSOR_TRACKED) == 0) {
868 		ocursor->flags |= HAMMER_CURSOR_TRACKED;
869 		TAILQ_INSERT_TAIL(&node->cursor_list, ocursor, deadlk_entry);
870 	}
871 	if (ncursor->parent)
872 		ocursor->parent = NULL;
873 	ocursor->data_buffer = NULL;
874 	ocursor->leaf = NULL;
875 	ocursor->data = NULL;
876 	if (ncursor->flags & HAMMER_CURSOR_TRACKED)
877 		TAILQ_INSERT_TAIL(&node->cursor_list, ncursor, deadlk_entry);
878 	if ((ip = ncursor->ip) != NULL) {
879                 ++ip->cursor_ip_refs;
880 	}
881 	if (ncursor->iprec)
882 		hammer_ref(&ncursor->iprec->lock);
883 	return(ncursor);
884 }
885 
886 /*
887  * Destroy ncursor and restore ocursor
888  *
889  * This is a temporary hack for the release.  We can't afford to lose
890  * the IP lock until the IP object scan code is able to deal with it,
891  * so have ocursor inherit it back.
892  */
893 void
894 hammer_pop_cursor(hammer_cursor_t ocursor, hammer_cursor_t ncursor)
895 {
896 	hammer_mount_t hmp;
897 	hammer_inode_t ip;
898 
899 	hmp = ncursor->trans->hmp;
900 	ip = ncursor->ip;
901 	ncursor->ip = NULL;
902 	if (ip)
903                 --ip->cursor_ip_refs;
904 	hammer_done_cursor(ncursor);
905 	kfree(ncursor, hmp->m_misc);
906 	KKASSERT(ocursor->ip == ip);
907 	hammer_lock_cursor(ocursor);
908 }
909 
910 /*
911  * onode is being replaced by nnode by the reblocking code.
912  */
913 void
914 hammer_cursor_replaced_node(hammer_node_t onode, hammer_node_t nnode)
915 {
916 	hammer_cursor_t cursor;
917 	hammer_node_ondisk_t ondisk;
918 	hammer_node_ondisk_t nndisk;
919 
920 	ondisk = onode->ondisk;
921 	nndisk = nnode->ondisk;
922 
923 	while ((cursor = TAILQ_FIRST(&onode->cursor_list)) != NULL) {
924 		TAILQ_REMOVE(&onode->cursor_list, cursor, deadlk_entry);
925 		TAILQ_INSERT_TAIL(&nnode->cursor_list, cursor, deadlk_entry);
926 		KKASSERT(cursor->node == onode);
927 		if (cursor->leaf == &ondisk->elms[cursor->index].leaf)
928 			cursor->leaf = &nndisk->elms[cursor->index].leaf;
929 		cursor->node = nnode;
930 		hammer_ref_node(nnode);
931 		hammer_rel_node(onode);
932 	}
933 }
934 
935 /*
936  * We have removed <node> from the parent and collapsed the parent.
937  *
938  * Cursors in deadlock recovery are seeked upward to the parent so the
939  * btree_remove() recursion works properly even though we have marked
940  * the cursor as requiring a reseek.
941  *
942  * This is the only cursor function which sets HAMMER_CURSOR_ITERATE_CHECK,
943  * meaning the cursor is no longer definitively pointing at an element
944  * within its iteration (if the cursor is being used to iterate).  The
945  * iteration code will take this into account instead of asserting if the
946  * cursor is outside the iteration range.
947  */
948 void
949 hammer_cursor_removed_node(hammer_node_t node, hammer_node_t parent, int index)
950 {
951 	hammer_cursor_t cursor;
952 	hammer_node_ondisk_t ondisk;
953 
954 	KKASSERT(parent != NULL);
955 	ondisk = node->ondisk;
956 
957 	while ((cursor = TAILQ_FIRST(&node->cursor_list)) != NULL) {
958 		KKASSERT(cursor->node == node);
959 		KKASSERT(cursor->index == 0);
960 		TAILQ_REMOVE(&node->cursor_list, cursor, deadlk_entry);
961 		TAILQ_INSERT_TAIL(&parent->cursor_list, cursor, deadlk_entry);
962 		if (cursor->leaf == &ondisk->elms[cursor->index].leaf)
963 			cursor->leaf = NULL;
964 		cursor->flags |= HAMMER_CURSOR_TRACKED_RIPOUT;
965 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
966 		cursor->node = parent;
967 		cursor->index = index;
968 		hammer_ref_node(parent);
969 		hammer_rel_node(node);
970 	}
971 }
972 
973 /*
974  * node was split at (onode, index) with elements >= index moved to nnode.
975  */
976 void
977 hammer_cursor_split_node(hammer_node_t onode, hammer_node_t nnode, int index)
978 {
979 	hammer_cursor_t cursor;
980 	hammer_node_ondisk_t ondisk;
981 	hammer_node_ondisk_t nndisk;
982 
983 	ondisk = onode->ondisk;
984 	nndisk = nnode->ondisk;
985 
986 again:
987 	TAILQ_FOREACH(cursor, &onode->cursor_list, deadlk_entry) {
988 		KKASSERT(cursor->node == onode);
989 		if (cursor->index < index)
990 			continue;
991 		TAILQ_REMOVE(&onode->cursor_list, cursor, deadlk_entry);
992 		TAILQ_INSERT_TAIL(&nnode->cursor_list, cursor, deadlk_entry);
993 		if (cursor->leaf == &ondisk->elms[cursor->index].leaf)
994 			cursor->leaf = &nndisk->elms[cursor->index - index].leaf;
995 		cursor->node = nnode;
996 		cursor->index -= index;
997 		hammer_ref_node(nnode);
998 		hammer_rel_node(onode);
999 		goto again;
1000 	}
1001 }
1002 
1003 /*
1004  * An element was moved from one node to another or within a node.  The
1005  * index may also represent the end of the node (index == numelements).
1006  *
1007  * {oparent,pindex} is the parent node's pointer to onode/oindex.
1008  *
1009  * This is used by the rebalancing code.  This is not an insertion or
1010  * deletion and any additional elements, including the degenerate case at
1011  * the end of the node, will be dealt with by additional distinct calls.
1012  */
1013 void
1014 hammer_cursor_moved_element(hammer_node_t oparent, int pindex,
1015 			    hammer_node_t onode, int oindex,
1016 			    hammer_node_t nnode, int nindex)
1017 {
1018 	hammer_cursor_t cursor;
1019 	hammer_node_ondisk_t ondisk;
1020 	hammer_node_ondisk_t nndisk;
1021 
1022 	/*
1023 	 * Adjust any cursors pointing at the element
1024 	 */
1025 	ondisk = onode->ondisk;
1026 	nndisk = nnode->ondisk;
1027 again1:
1028 	TAILQ_FOREACH(cursor, &onode->cursor_list, deadlk_entry) {
1029 		KKASSERT(cursor->node == onode);
1030 		if (cursor->index != oindex)
1031 			continue;
1032 		TAILQ_REMOVE(&onode->cursor_list, cursor, deadlk_entry);
1033 		TAILQ_INSERT_TAIL(&nnode->cursor_list, cursor, deadlk_entry);
1034 		if (cursor->leaf == &ondisk->elms[oindex].leaf)
1035 			cursor->leaf = &nndisk->elms[nindex].leaf;
1036 		cursor->node = nnode;
1037 		cursor->index = nindex;
1038 		hammer_ref_node(nnode);
1039 		hammer_rel_node(onode);
1040 		goto again1;
1041 	}
1042 
1043 	/*
1044 	 * When moving the first element of onode to a different node any
1045 	 * cursor which is pointing at (oparent,pindex) must be repointed
1046 	 * to nnode and ATEDISK must be cleared.
1047 	 *
1048 	 * This prevents cursors from losing track due to insertions.
1049 	 * Insertions temporarily release the cursor in order to update
1050 	 * the mirror_tids.  It primarily effects the mirror_write code.
1051 	 * The other code paths generally only do a single insertion and
1052 	 * then relookup or drop the cursor.
1053 	 */
1054 	if (onode == nnode || oindex)
1055 		return;
1056 	ondisk = oparent->ondisk;
1057 again2:
1058 	TAILQ_FOREACH(cursor, &oparent->cursor_list, deadlk_entry) {
1059 		KKASSERT(cursor->node == oparent);
1060 		if (cursor->index != pindex)
1061 			continue;
1062 		hkprintf("debug: shifted cursor pointing at parent\n"
1063 			"parent %016jx:%d onode %016jx:%d nnode %016jx:%d\n",
1064 			(intmax_t)oparent->node_offset, pindex,
1065 			(intmax_t)onode->node_offset, oindex,
1066 			(intmax_t)nnode->node_offset, nindex);
1067 		TAILQ_REMOVE(&oparent->cursor_list, cursor, deadlk_entry);
1068 		TAILQ_INSERT_TAIL(&nnode->cursor_list, cursor, deadlk_entry);
1069 		if (cursor->leaf == &ondisk->elms[oindex].leaf)
1070 			cursor->leaf = &nndisk->elms[nindex].leaf;
1071 		cursor->node = nnode;
1072 		cursor->index = nindex;
1073 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1074 		hammer_ref_node(nnode);
1075 		hammer_rel_node(oparent);
1076 		goto again2;
1077 	}
1078 }
1079 
1080 /*
1081  * The B-Tree element pointing to the specified node was moved from (oparent)
1082  * to (nparent, nindex).  We must locate any tracked cursors pointing at
1083  * node and adjust their parent accordingly.
1084  *
1085  * This is used by the rebalancing code when packing elements causes an
1086  * element to shift from one node to another.
1087  */
1088 void
1089 hammer_cursor_parent_changed(hammer_node_t node, hammer_node_t oparent,
1090 			     hammer_node_t nparent, int nindex)
1091 {
1092 	hammer_cursor_t cursor;
1093 
1094 again:
1095 	TAILQ_FOREACH(cursor, &node->cursor_list, deadlk_entry) {
1096 		KKASSERT(cursor->node == node);
1097 		if (cursor->parent == oparent) {
1098 			cursor->parent = nparent;
1099 			cursor->parent_index = nindex;
1100 			hammer_ref_node(nparent);
1101 			hammer_rel_node(oparent);
1102 			goto again;
1103 		}
1104 	}
1105 }
1106 
1107 /*
1108  * Deleted element at (node, index)
1109  *
1110  * Shift indexes >= index
1111  */
1112 void
1113 hammer_cursor_deleted_element(hammer_node_t node, int index)
1114 {
1115 	hammer_cursor_t cursor;
1116 	hammer_node_ondisk_t ondisk;
1117 
1118 	ondisk = node->ondisk;
1119 
1120 	TAILQ_FOREACH(cursor, &node->cursor_list, deadlk_entry) {
1121 		KKASSERT(cursor->node == node);
1122 		if (cursor->index == index) {
1123 			cursor->flags |= HAMMER_CURSOR_TRACKED_RIPOUT;
1124 			if (cursor->leaf == &ondisk->elms[cursor->index].leaf)
1125 				cursor->leaf = NULL;
1126 		} else if (cursor->index > index) {
1127 			if (cursor->leaf == &ondisk->elms[cursor->index].leaf)
1128 				cursor->leaf = &ondisk->elms[cursor->index - 1].leaf;
1129 			--cursor->index;
1130 		}
1131 	}
1132 }
1133 
1134 /*
1135  * Inserted element at (node, index)
1136  *
1137  * Shift indexes >= index
1138  */
1139 void
1140 hammer_cursor_inserted_element(hammer_node_t node, int index)
1141 {
1142 	hammer_cursor_t cursor;
1143 	hammer_node_ondisk_t ondisk;
1144 
1145 	ondisk = node->ondisk;
1146 
1147 	TAILQ_FOREACH(cursor, &node->cursor_list, deadlk_entry) {
1148 		KKASSERT(cursor->node == node);
1149 		if (cursor->index >= index) {
1150 			if (cursor->leaf == &ondisk->elms[cursor->index].leaf)
1151 				cursor->leaf = &ondisk->elms[cursor->index + 1].leaf;
1152 			++cursor->index;
1153 		}
1154 	}
1155 }
1156 
1157 /*
1158  * Invalidate the cached data buffer associated with a cursor.
1159  *
1160  * This needs to be done when the underlying block is being freed or
1161  * the referenced buffer can prevent the related buffer cache buffer
1162  * from being properly invalidated.
1163  */
1164 void
1165 hammer_cursor_invalidate_cache(hammer_cursor_t cursor)
1166 {
1167         if (cursor->data_buffer) {
1168                 hammer_rel_buffer(cursor->data_buffer, 0);
1169                 cursor->data_buffer = NULL;
1170 		cursor->data = NULL;
1171         }
1172 }
1173 
1174