xref: /dragonfly/sys/vfs/hammer/hammer_inode.c (revision 783d47c4)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "hammer.h"
36 #include <vm/vm_extern.h>
37 
38 static int	hammer_unload_inode(struct hammer_inode *ip);
39 static void	hammer_free_inode(hammer_inode_t ip);
40 static void	hammer_flush_inode_core(hammer_inode_t ip,
41 					hammer_flush_group_t flg, int flags);
42 static int	hammer_setup_child_callback(hammer_record_t rec, void *data);
43 #if 0
44 static int	hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
45 #endif
46 static int	hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
47 					hammer_flush_group_t flg);
48 static int	hammer_setup_parent_inodes_helper(hammer_record_t record,
49 					int depth, hammer_flush_group_t flg);
50 static void	hammer_inode_wakereclaims(hammer_inode_t ip);
51 static struct hammer_inostats *hammer_inode_inostats(hammer_mount_t hmp,
52 					pid_t pid);
53 
54 #ifdef DEBUG_TRUNCATE
55 extern struct hammer_inode *HammerTruncIp;
56 #endif
57 
58 /*
59  * RB-Tree support for inode structures
60  */
61 int
62 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
63 {
64 	if (ip1->obj_localization < ip2->obj_localization)
65 		return(-1);
66 	if (ip1->obj_localization > ip2->obj_localization)
67 		return(1);
68 	if (ip1->obj_id < ip2->obj_id)
69 		return(-1);
70 	if (ip1->obj_id > ip2->obj_id)
71 		return(1);
72 	if (ip1->obj_asof < ip2->obj_asof)
73 		return(-1);
74 	if (ip1->obj_asof > ip2->obj_asof)
75 		return(1);
76 	return(0);
77 }
78 
79 int
80 hammer_redo_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
81 {
82 	if (ip1->redo_fifo_start < ip2->redo_fifo_start)
83 		return(-1);
84 	if (ip1->redo_fifo_start > ip2->redo_fifo_start)
85 		return(1);
86 	return(0);
87 }
88 
89 /*
90  * RB-Tree support for inode structures / special LOOKUP_INFO
91  */
92 static int
93 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
94 {
95 	if (info->obj_localization < ip->obj_localization)
96 		return(-1);
97 	if (info->obj_localization > ip->obj_localization)
98 		return(1);
99 	if (info->obj_id < ip->obj_id)
100 		return(-1);
101 	if (info->obj_id > ip->obj_id)
102 		return(1);
103 	if (info->obj_asof < ip->obj_asof)
104 		return(-1);
105 	if (info->obj_asof > ip->obj_asof)
106 		return(1);
107 	return(0);
108 }
109 
110 /*
111  * Used by hammer_scan_inode_snapshots() to locate all of an object's
112  * snapshots.  Note that the asof field is not tested, which we can get
113  * away with because it is the lowest-priority field.
114  */
115 static int
116 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
117 {
118 	hammer_inode_info_t info = data;
119 
120 	if (ip->obj_localization > info->obj_localization)
121 		return(1);
122 	if (ip->obj_localization < info->obj_localization)
123 		return(-1);
124 	if (ip->obj_id > info->obj_id)
125 		return(1);
126 	if (ip->obj_id < info->obj_id)
127 		return(-1);
128 	return(0);
129 }
130 
131 /*
132  * Used by hammer_unload_pseudofs() to locate all inodes associated with
133  * a particular PFS.
134  */
135 static int
136 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
137 {
138 	u_int32_t localization = *(u_int32_t *)data;
139 	if (ip->obj_localization > localization)
140 		return(1);
141 	if (ip->obj_localization < localization)
142 		return(-1);
143 	return(0);
144 }
145 
146 /*
147  * RB-Tree support for pseudofs structures
148  */
149 static int
150 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
151 {
152 	if (p1->localization < p2->localization)
153 		return(-1);
154 	if (p1->localization > p2->localization)
155 		return(1);
156 	return(0);
157 }
158 
159 
160 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
161 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
162 		hammer_inode_info_cmp, hammer_inode_info_t);
163 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
164              hammer_pfs_rb_compare, u_int32_t, localization);
165 
166 /*
167  * The kernel is not actively referencing this vnode but is still holding
168  * it cached.
169  *
170  * This is called from the frontend.
171  *
172  * MPALMOSTSAFE
173  */
174 int
175 hammer_vop_inactive(struct vop_inactive_args *ap)
176 {
177 	struct hammer_inode *ip = VTOI(ap->a_vp);
178 	hammer_mount_t hmp;
179 
180 	/*
181 	 * Degenerate case
182 	 */
183 	if (ip == NULL) {
184 		vrecycle(ap->a_vp);
185 		return(0);
186 	}
187 
188 	/*
189 	 * If the inode no longer has visibility in the filesystem try to
190 	 * recycle it immediately, even if the inode is dirty.  Recycling
191 	 * it quickly allows the system to reclaim buffer cache and VM
192 	 * resources which can matter a lot in a heavily loaded system.
193 	 *
194 	 * This can deadlock in vfsync() if we aren't careful.
195 	 *
196 	 * Do not queue the inode to the flusher if we still have visibility,
197 	 * otherwise namespace calls such as chmod will unnecessarily generate
198 	 * multiple inode updates.
199 	 */
200 	if (ip->ino_data.nlinks == 0) {
201 		hmp = ip->hmp;
202 		lwkt_gettoken(&hmp->fs_token);
203 		hammer_inode_unloadable_check(ip, 0);
204 		if (ip->flags & HAMMER_INODE_MODMASK)
205 			hammer_flush_inode(ip, 0);
206 		lwkt_reltoken(&hmp->fs_token);
207 		vrecycle(ap->a_vp);
208 	}
209 	return(0);
210 }
211 
212 /*
213  * Release the vnode association.  This is typically (but not always)
214  * the last reference on the inode.
215  *
216  * Once the association is lost we are on our own with regards to
217  * flushing the inode.
218  *
219  * We must interlock ip->vp so hammer_get_vnode() can avoid races.
220  */
221 int
222 hammer_vop_reclaim(struct vop_reclaim_args *ap)
223 {
224 	struct hammer_inode *ip;
225 	hammer_mount_t hmp;
226 	struct vnode *vp;
227 
228 	vp = ap->a_vp;
229 
230 	if ((ip = vp->v_data) != NULL) {
231 		hmp = ip->hmp;
232 		lwkt_gettoken(&hmp->fs_token);
233 		hammer_lock_ex(&ip->lock);
234 		vp->v_data = NULL;
235 		ip->vp = NULL;
236 
237 		if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
238 			++hammer_count_reclaims;
239 			++hmp->count_reclaims;
240 			ip->flags |= HAMMER_INODE_RECLAIM;
241 		}
242 		hammer_unlock(&ip->lock);
243 		hammer_rel_inode(ip, 1);
244 		lwkt_reltoken(&hmp->fs_token);
245 	}
246 	return(0);
247 }
248 
249 /*
250  * Return a locked vnode for the specified inode.  The inode must be
251  * referenced but NOT LOCKED on entry and will remain referenced on
252  * return.
253  *
254  * Called from the frontend.
255  */
256 int
257 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
258 {
259 	hammer_mount_t hmp;
260 	struct vnode *vp;
261 	int error = 0;
262 	u_int8_t obj_type;
263 
264 	hmp = ip->hmp;
265 
266 	for (;;) {
267 		if ((vp = ip->vp) == NULL) {
268 			error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
269 			if (error)
270 				break;
271 			hammer_lock_ex(&ip->lock);
272 			if (ip->vp != NULL) {
273 				hammer_unlock(&ip->lock);
274 				vp = *vpp;
275 				vp->v_type = VBAD;
276 				vx_put(vp);
277 				continue;
278 			}
279 			hammer_ref(&ip->lock);
280 			vp = *vpp;
281 			ip->vp = vp;
282 
283 			obj_type = ip->ino_data.obj_type;
284 			vp->v_type = hammer_get_vnode_type(obj_type);
285 
286 			hammer_inode_wakereclaims(ip);
287 
288 			switch(ip->ino_data.obj_type) {
289 			case HAMMER_OBJTYPE_CDEV:
290 			case HAMMER_OBJTYPE_BDEV:
291 				vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
292 				addaliasu(vp, ip->ino_data.rmajor,
293 					  ip->ino_data.rminor);
294 				break;
295 			case HAMMER_OBJTYPE_FIFO:
296 				vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
297 				break;
298 			case HAMMER_OBJTYPE_REGFILE:
299 				break;
300 			default:
301 				break;
302 			}
303 
304 			/*
305 			 * Only mark as the root vnode if the ip is not
306 			 * historical, otherwise the VFS cache will get
307 			 * confused.  The other half of the special handling
308 			 * is in hammer_vop_nlookupdotdot().
309 			 *
310 			 * Pseudo-filesystem roots can be accessed via
311 			 * non-root filesystem paths and setting VROOT may
312 			 * confuse the namecache.  Set VPFSROOT instead.
313 			 */
314 			if (ip->obj_id == HAMMER_OBJID_ROOT &&
315 			    ip->obj_asof == hmp->asof) {
316 				if (ip->obj_localization == 0)
317 					vsetflags(vp, VROOT);
318 				else
319 					vsetflags(vp, VPFSROOT);
320 			}
321 
322 			vp->v_data = (void *)ip;
323 			/* vnode locked by getnewvnode() */
324 			/* make related vnode dirty if inode dirty? */
325 			hammer_unlock(&ip->lock);
326 			if (vp->v_type == VREG) {
327 				vinitvmio(vp, ip->ino_data.size,
328 					  hammer_blocksize(ip->ino_data.size),
329 					  hammer_blockoff(ip->ino_data.size));
330 			}
331 			break;
332 		}
333 
334 		/*
335 		 * Interlock vnode clearing.  This does not prevent the
336 		 * vnode from going into a reclaimed state but it does
337 		 * prevent it from being destroyed or reused so the vget()
338 		 * will properly fail.
339 		 */
340 		hammer_lock_ex(&ip->lock);
341 		if ((vp = ip->vp) == NULL) {
342 			hammer_unlock(&ip->lock);
343 			continue;
344 		}
345 		vhold_interlocked(vp);
346 		hammer_unlock(&ip->lock);
347 
348 		/*
349 		 * loop if the vget fails (aka races), or if the vp
350 		 * no longer matches ip->vp.
351 		 */
352 		if (vget(vp, LK_EXCLUSIVE) == 0) {
353 			if (vp == ip->vp) {
354 				vdrop(vp);
355 				break;
356 			}
357 			vput(vp);
358 		}
359 		vdrop(vp);
360 	}
361 	*vpp = vp;
362 	return(error);
363 }
364 
365 /*
366  * Locate all copies of the inode for obj_id compatible with the specified
367  * asof, reference, and issue the related call-back.  This routine is used
368  * for direct-io invalidation and does not create any new inodes.
369  */
370 void
371 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
372 		            int (*callback)(hammer_inode_t ip, void *data),
373 			    void *data)
374 {
375 	hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
376 				   hammer_inode_info_cmp_all_history,
377 				   callback, iinfo);
378 }
379 
380 /*
381  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
382  * do not attach or detach the related vnode (use hammer_get_vnode() for
383  * that).
384  *
385  * The flags argument is only applied for newly created inodes, and only
386  * certain flags are inherited.
387  *
388  * Called from the frontend.
389  */
390 struct hammer_inode *
391 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
392 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
393 		 int flags, int *errorp)
394 {
395 	hammer_mount_t hmp = trans->hmp;
396 	struct hammer_node_cache *cachep;
397 	struct hammer_inode_info iinfo;
398 	struct hammer_cursor cursor;
399 	struct hammer_inode *ip;
400 
401 
402 	/*
403 	 * Determine if we already have an inode cached.  If we do then
404 	 * we are golden.
405 	 *
406 	 * If we find an inode with no vnode we have to mark the
407 	 * transaction such that hammer_inode_waitreclaims() is
408 	 * called later on to avoid building up an infinite number
409 	 * of inodes.  Otherwise we can continue to * add new inodes
410 	 * faster then they can be disposed of, even with the tsleep
411 	 * delay.
412 	 *
413 	 * If we find a dummy inode we return a failure so dounlink
414 	 * (which does another lookup) doesn't try to mess with the
415 	 * link count.  hammer_vop_nresolve() uses hammer_get_dummy_inode()
416 	 * to ref dummy inodes.
417 	 */
418 	iinfo.obj_id = obj_id;
419 	iinfo.obj_asof = asof;
420 	iinfo.obj_localization = localization;
421 loop:
422 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
423 	if (ip) {
424 		if (ip->flags & HAMMER_INODE_DUMMY) {
425 			*errorp = ENOENT;
426 			return(NULL);
427 		}
428 		hammer_ref(&ip->lock);
429 		*errorp = 0;
430 		return(ip);
431 	}
432 
433 	/*
434 	 * Allocate a new inode structure and deal with races later.
435 	 */
436 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
437 	++hammer_count_inodes;
438 	++hmp->count_inodes;
439 	ip->obj_id = obj_id;
440 	ip->obj_asof = iinfo.obj_asof;
441 	ip->obj_localization = localization;
442 	ip->hmp = hmp;
443 	ip->flags = flags & HAMMER_INODE_RO;
444 	ip->cache[0].ip = ip;
445 	ip->cache[1].ip = ip;
446 	ip->cache[2].ip = ip;
447 	ip->cache[3].ip = ip;
448 	if (hmp->ronly)
449 		ip->flags |= HAMMER_INODE_RO;
450 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
451 		0x7FFFFFFFFFFFFFFFLL;
452 	RB_INIT(&ip->rec_tree);
453 	TAILQ_INIT(&ip->target_list);
454 	hammer_ref(&ip->lock);
455 
456 	/*
457 	 * Locate the on-disk inode.  If this is a PFS root we always
458 	 * access the current version of the root inode and (if it is not
459 	 * a master) always access information under it with a snapshot
460 	 * TID.
461 	 *
462 	 * We cache recent inode lookups in this directory in dip->cache[2].
463 	 * If we can't find it we assume the inode we are looking for is
464 	 * close to the directory inode.
465 	 */
466 retry:
467 	cachep = NULL;
468 	if (dip) {
469 		if (dip->cache[2].node)
470 			cachep = &dip->cache[2];
471 		else
472 			cachep = &dip->cache[0];
473 	}
474 	hammer_init_cursor(trans, &cursor, cachep, NULL);
475 	cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
476 	cursor.key_beg.obj_id = ip->obj_id;
477 	cursor.key_beg.key = 0;
478 	cursor.key_beg.create_tid = 0;
479 	cursor.key_beg.delete_tid = 0;
480 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
481 	cursor.key_beg.obj_type = 0;
482 
483 	cursor.asof = iinfo.obj_asof;
484 	cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
485 		       HAMMER_CURSOR_ASOF;
486 
487 	*errorp = hammer_btree_lookup(&cursor);
488 	if (*errorp == EDEADLK) {
489 		hammer_done_cursor(&cursor);
490 		goto retry;
491 	}
492 
493 	/*
494 	 * On success the B-Tree lookup will hold the appropriate
495 	 * buffer cache buffers and provide a pointer to the requested
496 	 * information.  Copy the information to the in-memory inode
497 	 * and cache the B-Tree node to improve future operations.
498 	 */
499 	if (*errorp == 0) {
500 		ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
501 		ip->ino_data = cursor.data->inode;
502 
503 		/*
504 		 * cache[0] tries to cache the location of the object inode.
505 		 * The assumption is that it is near the directory inode.
506 		 *
507 		 * cache[1] tries to cache the location of the object data.
508 		 * We might have something in the governing directory from
509 		 * scan optimizations (see the strategy code in
510 		 * hammer_vnops.c).
511 		 *
512 		 * We update dip->cache[2], if possible, with the location
513 		 * of the object inode for future directory shortcuts.
514 		 */
515 		hammer_cache_node(&ip->cache[0], cursor.node);
516 		if (dip) {
517 			if (dip->cache[3].node) {
518 				hammer_cache_node(&ip->cache[1],
519 						  dip->cache[3].node);
520 			}
521 			hammer_cache_node(&dip->cache[2], cursor.node);
522 		}
523 
524 		/*
525 		 * The file should not contain any data past the file size
526 		 * stored in the inode.  Setting save_trunc_off to the
527 		 * file size instead of max reduces B-Tree lookup overheads
528 		 * on append by allowing the flusher to avoid checking for
529 		 * record overwrites.
530 		 */
531 		ip->save_trunc_off = ip->ino_data.size;
532 
533 		/*
534 		 * Locate and assign the pseudofs management structure to
535 		 * the inode.
536 		 */
537 		if (dip && dip->obj_localization == ip->obj_localization) {
538 			ip->pfsm = dip->pfsm;
539 			hammer_ref(&ip->pfsm->lock);
540 		} else {
541 			ip->pfsm = hammer_load_pseudofs(trans,
542 							ip->obj_localization,
543 							errorp);
544 			*errorp = 0;	/* ignore ENOENT */
545 		}
546 	}
547 
548 	/*
549 	 * The inode is placed on the red-black tree and will be synced to
550 	 * the media when flushed or by the filesystem sync.  If this races
551 	 * another instantiation/lookup the insertion will fail.
552 	 */
553 	if (*errorp == 0) {
554 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
555 			hammer_free_inode(ip);
556 			hammer_done_cursor(&cursor);
557 			goto loop;
558 		}
559 		ip->flags |= HAMMER_INODE_ONDISK;
560 	} else {
561 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
562 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
563 			--hmp->rsv_inodes;
564 		}
565 
566 		hammer_free_inode(ip);
567 		ip = NULL;
568 	}
569 	hammer_done_cursor(&cursor);
570 
571 	/*
572 	 * NEWINODE is only set if the inode becomes dirty later,
573 	 * setting it here just leads to unnecessary stalls.
574 	 *
575 	 * trans->flags |= HAMMER_TRANSF_NEWINODE;
576 	 */
577 	return (ip);
578 }
579 
580 /*
581  * Get a dummy inode to placemark a broken directory entry.
582  */
583 struct hammer_inode *
584 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
585 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
586 		 int flags, int *errorp)
587 {
588 	hammer_mount_t hmp = trans->hmp;
589 	struct hammer_inode_info iinfo;
590 	struct hammer_inode *ip;
591 
592 	/*
593 	 * Determine if we already have an inode cached.  If we do then
594 	 * we are golden.
595 	 *
596 	 * If we find an inode with no vnode we have to mark the
597 	 * transaction such that hammer_inode_waitreclaims() is
598 	 * called later on to avoid building up an infinite number
599 	 * of inodes.  Otherwise we can continue to * add new inodes
600 	 * faster then they can be disposed of, even with the tsleep
601 	 * delay.
602 	 *
603 	 * If we find a non-fake inode we return an error.  Only fake
604 	 * inodes can be returned by this routine.
605 	 */
606 	iinfo.obj_id = obj_id;
607 	iinfo.obj_asof = asof;
608 	iinfo.obj_localization = localization;
609 loop:
610 	*errorp = 0;
611 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
612 	if (ip) {
613 		if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
614 			*errorp = ENOENT;
615 			return(NULL);
616 		}
617 		hammer_ref(&ip->lock);
618 		return(ip);
619 	}
620 
621 	/*
622 	 * Allocate a new inode structure and deal with races later.
623 	 */
624 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
625 	++hammer_count_inodes;
626 	++hmp->count_inodes;
627 	ip->obj_id = obj_id;
628 	ip->obj_asof = iinfo.obj_asof;
629 	ip->obj_localization = localization;
630 	ip->hmp = hmp;
631 	ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
632 	ip->cache[0].ip = ip;
633 	ip->cache[1].ip = ip;
634 	ip->cache[2].ip = ip;
635 	ip->cache[3].ip = ip;
636 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
637 		0x7FFFFFFFFFFFFFFFLL;
638 	RB_INIT(&ip->rec_tree);
639 	TAILQ_INIT(&ip->target_list);
640 	hammer_ref(&ip->lock);
641 
642 	/*
643 	 * Populate the dummy inode.  Leave everything zero'd out.
644 	 *
645 	 * (ip->ino_leaf and ip->ino_data)
646 	 *
647 	 * Make the dummy inode a FIFO object which most copy programs
648 	 * will properly ignore.
649 	 */
650 	ip->save_trunc_off = ip->ino_data.size;
651 	ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
652 
653 	/*
654 	 * Locate and assign the pseudofs management structure to
655 	 * the inode.
656 	 */
657 	if (dip && dip->obj_localization == ip->obj_localization) {
658 		ip->pfsm = dip->pfsm;
659 		hammer_ref(&ip->pfsm->lock);
660 	} else {
661 		ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
662 						errorp);
663 		*errorp = 0;	/* ignore ENOENT */
664 	}
665 
666 	/*
667 	 * The inode is placed on the red-black tree and will be synced to
668 	 * the media when flushed or by the filesystem sync.  If this races
669 	 * another instantiation/lookup the insertion will fail.
670 	 *
671 	 * NOTE: Do not set HAMMER_INODE_ONDISK.  The inode is a fake.
672 	 */
673 	if (*errorp == 0) {
674 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
675 			hammer_free_inode(ip);
676 			goto loop;
677 		}
678 	} else {
679 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
680 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
681 			--hmp->rsv_inodes;
682 		}
683 		hammer_free_inode(ip);
684 		ip = NULL;
685 	}
686 	trans->flags |= HAMMER_TRANSF_NEWINODE;
687 	return (ip);
688 }
689 
690 /*
691  * Return a referenced inode only if it is in our inode cache.
692  *
693  * Dummy inodes do not count.
694  */
695 struct hammer_inode *
696 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
697 		  hammer_tid_t asof, u_int32_t localization)
698 {
699 	hammer_mount_t hmp = trans->hmp;
700 	struct hammer_inode_info iinfo;
701 	struct hammer_inode *ip;
702 
703 	iinfo.obj_id = obj_id;
704 	iinfo.obj_asof = asof;
705 	iinfo.obj_localization = localization;
706 
707 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
708 	if (ip) {
709 		if (ip->flags & HAMMER_INODE_DUMMY)
710 			ip = NULL;
711 		else
712 			hammer_ref(&ip->lock);
713 	}
714 	return(ip);
715 }
716 
717 /*
718  * Create a new filesystem object, returning the inode in *ipp.  The
719  * returned inode will be referenced.  The inode is created in-memory.
720  *
721  * If pfsm is non-NULL the caller wishes to create the root inode for
722  * a master PFS.
723  */
724 int
725 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
726 		    struct ucred *cred,
727 		    hammer_inode_t dip, const char *name, int namelen,
728 		    hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
729 {
730 	hammer_mount_t hmp;
731 	hammer_inode_t ip;
732 	uid_t xuid;
733 	int error;
734 	int64_t namekey;
735 	u_int32_t dummy;
736 
737 	hmp = trans->hmp;
738 
739 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
740 	++hammer_count_inodes;
741 	++hmp->count_inodes;
742 	trans->flags |= HAMMER_TRANSF_NEWINODE;
743 
744 	if (pfsm) {
745 		KKASSERT(pfsm->localization != 0);
746 		ip->obj_id = HAMMER_OBJID_ROOT;
747 		ip->obj_localization = pfsm->localization;
748 	} else {
749 		KKASSERT(dip != NULL);
750 		namekey = hammer_directory_namekey(dip, name, namelen, &dummy);
751 		ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
752 		ip->obj_localization = dip->obj_localization;
753 	}
754 
755 	KKASSERT(ip->obj_id != 0);
756 	ip->obj_asof = hmp->asof;
757 	ip->hmp = hmp;
758 	ip->flush_state = HAMMER_FST_IDLE;
759 	ip->flags = HAMMER_INODE_DDIRTY |
760 		    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
761 	ip->cache[0].ip = ip;
762 	ip->cache[1].ip = ip;
763 	ip->cache[2].ip = ip;
764 	ip->cache[3].ip = ip;
765 
766 	ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
767 	/* ip->save_trunc_off = 0; (already zero) */
768 	RB_INIT(&ip->rec_tree);
769 	TAILQ_INIT(&ip->target_list);
770 
771 	ip->ino_data.atime = trans->time;
772 	ip->ino_data.mtime = trans->time;
773 	ip->ino_data.size = 0;
774 	ip->ino_data.nlinks = 0;
775 
776 	/*
777 	 * A nohistory designator on the parent directory is inherited by
778 	 * the child.  We will do this even for pseudo-fs creation... the
779 	 * sysad can turn it off.
780 	 */
781 	if (dip) {
782 		ip->ino_data.uflags = dip->ino_data.uflags &
783 				      (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
784 	}
785 
786 	ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
787 	ip->ino_leaf.base.localization = ip->obj_localization +
788 					 HAMMER_LOCALIZE_INODE;
789 	ip->ino_leaf.base.obj_id = ip->obj_id;
790 	ip->ino_leaf.base.key = 0;
791 	ip->ino_leaf.base.create_tid = 0;
792 	ip->ino_leaf.base.delete_tid = 0;
793 	ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
794 	ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
795 
796 	ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
797 	ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
798 	ip->ino_data.mode = vap->va_mode;
799 	ip->ino_data.ctime = trans->time;
800 
801 	/*
802 	 * If we are running version 2 or greater directory entries are
803 	 * inode-localized instead of data-localized.
804 	 */
805 	if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
806 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
807 			ip->ino_data.cap_flags |=
808 				HAMMER_INODE_CAP_DIR_LOCAL_INO;
809 		}
810 	}
811 	if (trans->hmp->version >= HAMMER_VOL_VERSION_SIX) {
812 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
813 			ip->ino_data.cap_flags |=
814 				HAMMER_INODE_CAP_DIRHASH_ALG1;
815 		}
816 	}
817 
818 	/*
819 	 * Setup the ".." pointer.  This only needs to be done for directories
820 	 * but we do it for all objects as a recovery aid.
821 	 */
822 	if (dip)
823 		ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
824 #if 0
825 	/*
826 	 * The parent_obj_localization field only applies to pseudo-fs roots.
827 	 * XXX this is no longer applicable, PFSs are no longer directly
828 	 * tied into the parent's directory structure.
829 	 */
830 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
831 	    ip->obj_id == HAMMER_OBJID_ROOT) {
832 		ip->ino_data.ext.obj.parent_obj_localization =
833 						dip->obj_localization;
834 	}
835 #endif
836 
837 	switch(ip->ino_leaf.base.obj_type) {
838 	case HAMMER_OBJTYPE_CDEV:
839 	case HAMMER_OBJTYPE_BDEV:
840 		ip->ino_data.rmajor = vap->va_rmajor;
841 		ip->ino_data.rminor = vap->va_rminor;
842 		break;
843 	default:
844 		break;
845 	}
846 
847 	/*
848 	 * Calculate default uid/gid and overwrite with information from
849 	 * the vap.
850 	 */
851 	if (dip) {
852 		xuid = hammer_to_unix_xid(&dip->ino_data.uid);
853 		xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
854 					     xuid, cred, &vap->va_mode);
855 	} else {
856 		xuid = 0;
857 	}
858 	ip->ino_data.mode = vap->va_mode;
859 
860 	if (vap->va_vaflags & VA_UID_UUID_VALID)
861 		ip->ino_data.uid = vap->va_uid_uuid;
862 	else if (vap->va_uid != (uid_t)VNOVAL)
863 		hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
864 	else
865 		hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
866 
867 	if (vap->va_vaflags & VA_GID_UUID_VALID)
868 		ip->ino_data.gid = vap->va_gid_uuid;
869 	else if (vap->va_gid != (gid_t)VNOVAL)
870 		hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
871 	else if (dip)
872 		ip->ino_data.gid = dip->ino_data.gid;
873 
874 	hammer_ref(&ip->lock);
875 
876 	if (pfsm) {
877 		ip->pfsm = pfsm;
878 		hammer_ref(&pfsm->lock);
879 		error = 0;
880 	} else if (dip->obj_localization == ip->obj_localization) {
881 		ip->pfsm = dip->pfsm;
882 		hammer_ref(&ip->pfsm->lock);
883 		error = 0;
884 	} else {
885 		ip->pfsm = hammer_load_pseudofs(trans,
886 						ip->obj_localization,
887 						&error);
888 		error = 0;	/* ignore ENOENT */
889 	}
890 
891 	if (error) {
892 		hammer_free_inode(ip);
893 		ip = NULL;
894 	} else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
895 		panic("hammer_create_inode: duplicate obj_id %llx",
896 		      (long long)ip->obj_id);
897 		/* not reached */
898 		hammer_free_inode(ip);
899 	}
900 	*ipp = ip;
901 	return(error);
902 }
903 
904 /*
905  * Final cleanup / freeing of an inode structure
906  */
907 static void
908 hammer_free_inode(hammer_inode_t ip)
909 {
910 	struct hammer_mount *hmp;
911 
912 	hmp = ip->hmp;
913 	KKASSERT(hammer_oneref(&ip->lock));
914 	hammer_uncache_node(&ip->cache[0]);
915 	hammer_uncache_node(&ip->cache[1]);
916 	hammer_uncache_node(&ip->cache[2]);
917 	hammer_uncache_node(&ip->cache[3]);
918 	hammer_inode_wakereclaims(ip);
919 	if (ip->objid_cache)
920 		hammer_clear_objid(ip);
921 	--hammer_count_inodes;
922 	--hmp->count_inodes;
923 	if (ip->pfsm) {
924 		hammer_rel_pseudofs(hmp, ip->pfsm);
925 		ip->pfsm = NULL;
926 	}
927 	kfree(ip, hmp->m_inodes);
928 	ip = NULL;
929 }
930 
931 /*
932  * Retrieve pseudo-fs data.  NULL will never be returned.
933  *
934  * If an error occurs *errorp will be set and a default template is returned,
935  * otherwise *errorp is set to 0.  Typically when an error occurs it will
936  * be ENOENT.
937  */
938 hammer_pseudofs_inmem_t
939 hammer_load_pseudofs(hammer_transaction_t trans,
940 		     u_int32_t localization, int *errorp)
941 {
942 	hammer_mount_t hmp = trans->hmp;
943 	hammer_inode_t ip;
944 	hammer_pseudofs_inmem_t pfsm;
945 	struct hammer_cursor cursor;
946 	int bytes;
947 
948 retry:
949 	pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
950 	if (pfsm) {
951 		hammer_ref(&pfsm->lock);
952 		*errorp = 0;
953 		return(pfsm);
954 	}
955 
956 	/*
957 	 * PFS records are stored in the root inode (not the PFS root inode,
958 	 * but the real root).  Avoid an infinite recursion if loading
959 	 * the PFS for the real root.
960 	 */
961 	if (localization) {
962 		ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
963 				      HAMMER_MAX_TID,
964 				      HAMMER_DEF_LOCALIZATION, 0, errorp);
965 	} else {
966 		ip = NULL;
967 	}
968 
969 	pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
970 	pfsm->localization = localization;
971 	pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
972 	pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
973 
974 	hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
975 	cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
976 				      HAMMER_LOCALIZE_MISC;
977 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
978 	cursor.key_beg.create_tid = 0;
979 	cursor.key_beg.delete_tid = 0;
980 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
981 	cursor.key_beg.obj_type = 0;
982 	cursor.key_beg.key = localization;
983 	cursor.asof = HAMMER_MAX_TID;
984 	cursor.flags |= HAMMER_CURSOR_ASOF;
985 
986 	if (ip)
987 		*errorp = hammer_ip_lookup(&cursor);
988 	else
989 		*errorp = hammer_btree_lookup(&cursor);
990 	if (*errorp == 0) {
991 		*errorp = hammer_ip_resolve_data(&cursor);
992 		if (*errorp == 0) {
993 			if (cursor.data->pfsd.mirror_flags &
994 			    HAMMER_PFSD_DELETED) {
995 				*errorp = ENOENT;
996 			} else {
997 				bytes = cursor.leaf->data_len;
998 				if (bytes > sizeof(pfsm->pfsd))
999 					bytes = sizeof(pfsm->pfsd);
1000 				bcopy(cursor.data, &pfsm->pfsd, bytes);
1001 			}
1002 		}
1003 	}
1004 	hammer_done_cursor(&cursor);
1005 
1006 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1007 	hammer_ref(&pfsm->lock);
1008 	if (ip)
1009 		hammer_rel_inode(ip, 0);
1010 	if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
1011 		kfree(pfsm, hmp->m_misc);
1012 		goto retry;
1013 	}
1014 	return(pfsm);
1015 }
1016 
1017 /*
1018  * Store pseudo-fs data.  The backend will automatically delete any prior
1019  * on-disk pseudo-fs data but we have to delete in-memory versions.
1020  */
1021 int
1022 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
1023 {
1024 	struct hammer_cursor cursor;
1025 	hammer_record_t record;
1026 	hammer_inode_t ip;
1027 	int error;
1028 
1029 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1030 			      HAMMER_DEF_LOCALIZATION, 0, &error);
1031 retry:
1032 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
1033 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
1034 	cursor.key_beg.localization = ip->obj_localization +
1035 				      HAMMER_LOCALIZE_MISC;
1036 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
1037 	cursor.key_beg.create_tid = 0;
1038 	cursor.key_beg.delete_tid = 0;
1039 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
1040 	cursor.key_beg.obj_type = 0;
1041 	cursor.key_beg.key = pfsm->localization;
1042 	cursor.asof = HAMMER_MAX_TID;
1043 	cursor.flags |= HAMMER_CURSOR_ASOF;
1044 
1045 	/*
1046 	 * Replace any in-memory version of the record.
1047 	 */
1048 	error = hammer_ip_lookup(&cursor);
1049 	if (error == 0 && hammer_cursor_inmem(&cursor)) {
1050 		record = cursor.iprec;
1051 		if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
1052 			KKASSERT(cursor.deadlk_rec == NULL);
1053 			hammer_ref(&record->lock);
1054 			cursor.deadlk_rec = record;
1055 			error = EDEADLK;
1056 		} else {
1057 			record->flags |= HAMMER_RECF_DELETED_FE;
1058 			error = 0;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * Allocate replacement general record.  The backend flush will
1064 	 * delete any on-disk version of the record.
1065 	 */
1066 	if (error == 0 || error == ENOENT) {
1067 		record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1068 		record->type = HAMMER_MEM_RECORD_GENERAL;
1069 
1070 		record->leaf.base.localization = ip->obj_localization +
1071 						 HAMMER_LOCALIZE_MISC;
1072 		record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1073 		record->leaf.base.key = pfsm->localization;
1074 		record->leaf.data_len = sizeof(pfsm->pfsd);
1075 		bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1076 		error = hammer_ip_add_record(trans, record);
1077 	}
1078 	hammer_done_cursor(&cursor);
1079 	if (error == EDEADLK)
1080 		goto retry;
1081 	hammer_rel_inode(ip, 0);
1082 	return(error);
1083 }
1084 
1085 /*
1086  * Create a root directory for a PFS if one does not alredy exist.
1087  *
1088  * The PFS root stands alone so we must also bump the nlinks count
1089  * to prevent it from being destroyed on release.
1090  */
1091 int
1092 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1093 		       hammer_pseudofs_inmem_t pfsm)
1094 {
1095 	hammer_inode_t ip;
1096 	struct vattr vap;
1097 	int error;
1098 
1099 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1100 			      pfsm->localization, 0, &error);
1101 	if (ip == NULL) {
1102 		vattr_null(&vap);
1103 		vap.va_mode = 0755;
1104 		vap.va_type = VDIR;
1105 		error = hammer_create_inode(trans, &vap, cred,
1106 					    NULL, NULL, 0,
1107 					    pfsm, &ip);
1108 		if (error == 0) {
1109 			++ip->ino_data.nlinks;
1110 			hammer_modify_inode(trans, ip, HAMMER_INODE_DDIRTY);
1111 		}
1112 	}
1113 	if (ip)
1114 		hammer_rel_inode(ip, 0);
1115 	return(error);
1116 }
1117 
1118 /*
1119  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1120  * if we are unable to disassociate all the inodes.
1121  */
1122 static
1123 int
1124 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1125 {
1126 	int res;
1127 
1128 	hammer_ref(&ip->lock);
1129 	if (hammer_isactive(&ip->lock) == 2 && ip->vp)
1130 		vclean_unlocked(ip->vp);
1131 	if (hammer_isactive(&ip->lock) == 1 && ip->vp == NULL)
1132 		res = 0;
1133 	else
1134 		res = -1;	/* stop, someone is using the inode */
1135 	hammer_rel_inode(ip, 0);
1136 	return(res);
1137 }
1138 
1139 int
1140 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1141 {
1142 	int res;
1143 	int try;
1144 
1145 	for (try = res = 0; try < 4; ++try) {
1146 		res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1147 					   hammer_inode_pfs_cmp,
1148 					   hammer_unload_pseudofs_callback,
1149 					   &localization);
1150 		if (res == 0 && try > 1)
1151 			break;
1152 		hammer_flusher_sync(trans->hmp);
1153 	}
1154 	if (res != 0)
1155 		res = ENOTEMPTY;
1156 	return(res);
1157 }
1158 
1159 
1160 /*
1161  * Release a reference on a PFS
1162  */
1163 void
1164 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1165 {
1166 	hammer_rel(&pfsm->lock);
1167 	if (hammer_norefs(&pfsm->lock)) {
1168 		RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1169 		kfree(pfsm, hmp->m_misc);
1170 	}
1171 }
1172 
1173 /*
1174  * Called by hammer_sync_inode().
1175  */
1176 static int
1177 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1178 {
1179 	hammer_transaction_t trans = cursor->trans;
1180 	hammer_record_t record;
1181 	int error;
1182 	int redirty;
1183 
1184 retry:
1185 	error = 0;
1186 
1187 	/*
1188 	 * If the inode has a presence on-disk then locate it and mark
1189 	 * it deleted, setting DELONDISK.
1190 	 *
1191 	 * The record may or may not be physically deleted, depending on
1192 	 * the retention policy.
1193 	 */
1194 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1195 	    HAMMER_INODE_ONDISK) {
1196 		hammer_normalize_cursor(cursor);
1197 		cursor->key_beg.localization = ip->obj_localization +
1198 					       HAMMER_LOCALIZE_INODE;
1199 		cursor->key_beg.obj_id = ip->obj_id;
1200 		cursor->key_beg.key = 0;
1201 		cursor->key_beg.create_tid = 0;
1202 		cursor->key_beg.delete_tid = 0;
1203 		cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1204 		cursor->key_beg.obj_type = 0;
1205 		cursor->asof = ip->obj_asof;
1206 		cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1207 		cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1208 		cursor->flags |= HAMMER_CURSOR_BACKEND;
1209 
1210 		error = hammer_btree_lookup(cursor);
1211 		if (hammer_debug_inode)
1212 			kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1213 
1214 		if (error == 0) {
1215 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
1216 			if (hammer_debug_inode)
1217 				kprintf(" error %d\n", error);
1218 			if (error == 0) {
1219 				ip->flags |= HAMMER_INODE_DELONDISK;
1220 			}
1221 			if (cursor->node)
1222 				hammer_cache_node(&ip->cache[0], cursor->node);
1223 		}
1224 		if (error == EDEADLK) {
1225 			hammer_done_cursor(cursor);
1226 			error = hammer_init_cursor(trans, cursor,
1227 						   &ip->cache[0], ip);
1228 			if (hammer_debug_inode)
1229 				kprintf("IPDED %p %d\n", ip, error);
1230 			if (error == 0)
1231 				goto retry;
1232 		}
1233 	}
1234 
1235 	/*
1236 	 * Ok, write out the initial record or a new record (after deleting
1237 	 * the old one), unless the DELETED flag is set.  This routine will
1238 	 * clear DELONDISK if it writes out a record.
1239 	 *
1240 	 * Update our inode statistics if this is the first application of
1241 	 * the inode on-disk.
1242 	 */
1243 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1244 		/*
1245 		 * Generate a record and write it to the media.  We clean-up
1246 		 * the state before releasing so we do not have to set-up
1247 		 * a flush_group.
1248 		 */
1249 		record = hammer_alloc_mem_record(ip, 0);
1250 		record->type = HAMMER_MEM_RECORD_INODE;
1251 		record->flush_state = HAMMER_FST_FLUSH;
1252 		record->leaf = ip->sync_ino_leaf;
1253 		record->leaf.base.create_tid = trans->tid;
1254 		record->leaf.data_len = sizeof(ip->sync_ino_data);
1255 		record->leaf.create_ts = trans->time32;
1256 		record->data = (void *)&ip->sync_ino_data;
1257 		record->flags |= HAMMER_RECF_INTERLOCK_BE;
1258 
1259 		/*
1260 		 * If this flag is set we cannot sync the new file size
1261 		 * because we haven't finished related truncations.  The
1262 		 * inode will be flushed in another flush group to finish
1263 		 * the job.
1264 		 */
1265 		if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1266 		    ip->sync_ino_data.size != ip->ino_data.size) {
1267 			redirty = 1;
1268 			ip->sync_ino_data.size = ip->ino_data.size;
1269 		} else {
1270 			redirty = 0;
1271 		}
1272 
1273 		for (;;) {
1274 			error = hammer_ip_sync_record_cursor(cursor, record);
1275 			if (hammer_debug_inode)
1276 				kprintf("GENREC %p rec %08x %d\n",
1277 					ip, record->flags, error);
1278 			if (error != EDEADLK)
1279 				break;
1280 			hammer_done_cursor(cursor);
1281 			error = hammer_init_cursor(trans, cursor,
1282 						   &ip->cache[0], ip);
1283 			if (hammer_debug_inode)
1284 				kprintf("GENREC reinit %d\n", error);
1285 			if (error)
1286 				break;
1287 		}
1288 
1289 		/*
1290 		 * Note:  The record was never on the inode's record tree
1291 		 * so just wave our hands importantly and destroy it.
1292 		 */
1293 		record->flags |= HAMMER_RECF_COMMITTED;
1294 		record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1295 		record->flush_state = HAMMER_FST_IDLE;
1296 		++ip->rec_generation;
1297 		hammer_rel_mem_record(record);
1298 
1299 		/*
1300 		 * Finish up.
1301 		 */
1302 		if (error == 0) {
1303 			if (hammer_debug_inode)
1304 				kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1305 			ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1306 					    HAMMER_INODE_SDIRTY |
1307 					    HAMMER_INODE_ATIME |
1308 					    HAMMER_INODE_MTIME);
1309 			ip->flags &= ~HAMMER_INODE_DELONDISK;
1310 			if (redirty)
1311 				ip->sync_flags |= HAMMER_INODE_DDIRTY;
1312 
1313 			/*
1314 			 * Root volume count of inodes
1315 			 */
1316 			hammer_sync_lock_sh(trans);
1317 			if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1318 				hammer_modify_volume_field(trans,
1319 							   trans->rootvol,
1320 							   vol0_stat_inodes);
1321 				++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1322 				hammer_modify_volume_done(trans->rootvol);
1323 				ip->flags |= HAMMER_INODE_ONDISK;
1324 				if (hammer_debug_inode)
1325 					kprintf("NOWONDISK %p\n", ip);
1326 			}
1327 			hammer_sync_unlock(trans);
1328 		}
1329 	}
1330 
1331 	/*
1332 	 * If the inode has been destroyed, clean out any left-over flags
1333 	 * that may have been set by the frontend.
1334 	 */
1335 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1336 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1337 				    HAMMER_INODE_SDIRTY |
1338 				    HAMMER_INODE_ATIME |
1339 				    HAMMER_INODE_MTIME);
1340 	}
1341 	return(error);
1342 }
1343 
1344 /*
1345  * Update only the itimes fields.
1346  *
1347  * ATIME can be updated without generating any UNDO.  MTIME is updated
1348  * with UNDO so it is guaranteed to be synchronized properly in case of
1349  * a crash.
1350  *
1351  * Neither field is included in the B-Tree leaf element's CRC, which is how
1352  * we can get away with updating ATIME the way we do.
1353  */
1354 static int
1355 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1356 {
1357 	hammer_transaction_t trans = cursor->trans;
1358 	int error;
1359 
1360 retry:
1361 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1362 	    HAMMER_INODE_ONDISK) {
1363 		return(0);
1364 	}
1365 
1366 	hammer_normalize_cursor(cursor);
1367 	cursor->key_beg.localization = ip->obj_localization +
1368 				       HAMMER_LOCALIZE_INODE;
1369 	cursor->key_beg.obj_id = ip->obj_id;
1370 	cursor->key_beg.key = 0;
1371 	cursor->key_beg.create_tid = 0;
1372 	cursor->key_beg.delete_tid = 0;
1373 	cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1374 	cursor->key_beg.obj_type = 0;
1375 	cursor->asof = ip->obj_asof;
1376 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1377 	cursor->flags |= HAMMER_CURSOR_ASOF;
1378 	cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1379 	cursor->flags |= HAMMER_CURSOR_GET_DATA;
1380 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1381 
1382 	error = hammer_btree_lookup(cursor);
1383 	if (error == 0) {
1384 		hammer_cache_node(&ip->cache[0], cursor->node);
1385 		if (ip->sync_flags & HAMMER_INODE_MTIME) {
1386 			/*
1387 			 * Updating MTIME requires an UNDO.  Just cover
1388 			 * both atime and mtime.
1389 			 */
1390 			hammer_sync_lock_sh(trans);
1391 			hammer_modify_buffer(trans, cursor->data_buffer,
1392 				     HAMMER_ITIMES_BASE(&cursor->data->inode),
1393 				     HAMMER_ITIMES_BYTES);
1394 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1395 			cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1396 			hammer_modify_buffer_done(cursor->data_buffer);
1397 			hammer_sync_unlock(trans);
1398 		} else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1399 			/*
1400 			 * Updating atime only can be done in-place with
1401 			 * no UNDO.
1402 			 */
1403 			hammer_sync_lock_sh(trans);
1404 			hammer_modify_buffer(trans, cursor->data_buffer,
1405 					     NULL, 0);
1406 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1407 			hammer_modify_buffer_done(cursor->data_buffer);
1408 			hammer_sync_unlock(trans);
1409 		}
1410 		ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1411 	}
1412 	if (error == EDEADLK) {
1413 		hammer_done_cursor(cursor);
1414 		error = hammer_init_cursor(trans, cursor,
1415 					   &ip->cache[0], ip);
1416 		if (error == 0)
1417 			goto retry;
1418 	}
1419 	return(error);
1420 }
1421 
1422 /*
1423  * Release a reference on an inode, flush as requested.
1424  *
1425  * On the last reference we queue the inode to the flusher for its final
1426  * disposition.
1427  */
1428 void
1429 hammer_rel_inode(struct hammer_inode *ip, int flush)
1430 {
1431 	/*hammer_mount_t hmp = ip->hmp;*/
1432 
1433 	/*
1434 	 * Handle disposition when dropping the last ref.
1435 	 */
1436 	for (;;) {
1437 		if (hammer_oneref(&ip->lock)) {
1438 			/*
1439 			 * Determine whether on-disk action is needed for
1440 			 * the inode's final disposition.
1441 			 */
1442 			KKASSERT(ip->vp == NULL);
1443 			hammer_inode_unloadable_check(ip, 0);
1444 			if (ip->flags & HAMMER_INODE_MODMASK) {
1445 				hammer_flush_inode(ip, 0);
1446 			} else if (hammer_oneref(&ip->lock)) {
1447 				hammer_unload_inode(ip);
1448 				break;
1449 			}
1450 		} else {
1451 			if (flush)
1452 				hammer_flush_inode(ip, 0);
1453 
1454 			/*
1455 			 * The inode still has multiple refs, try to drop
1456 			 * one ref.
1457 			 */
1458 			KKASSERT(hammer_isactive(&ip->lock) >= 1);
1459 			if (hammer_isactive(&ip->lock) > 1) {
1460 				hammer_rel(&ip->lock);
1461 				break;
1462 			}
1463 		}
1464 	}
1465 }
1466 
1467 /*
1468  * Unload and destroy the specified inode.  Must be called with one remaining
1469  * reference.  The reference is disposed of.
1470  *
1471  * The inode must be completely clean.
1472  */
1473 static int
1474 hammer_unload_inode(struct hammer_inode *ip)
1475 {
1476 	hammer_mount_t hmp = ip->hmp;
1477 
1478 	KASSERT(hammer_oneref(&ip->lock),
1479 		("hammer_unload_inode: %d refs", hammer_isactive(&ip->lock)));
1480 	KKASSERT(ip->vp == NULL);
1481 	KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1482 	KKASSERT(ip->cursor_ip_refs == 0);
1483 	KKASSERT(hammer_notlocked(&ip->lock));
1484 	KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1485 
1486 	KKASSERT(RB_EMPTY(&ip->rec_tree));
1487 	KKASSERT(TAILQ_EMPTY(&ip->target_list));
1488 
1489 	if (ip->flags & HAMMER_INODE_RDIRTY) {
1490 		RB_REMOVE(hammer_redo_rb_tree, &hmp->rb_redo_root, ip);
1491 		ip->flags &= ~HAMMER_INODE_RDIRTY;
1492 	}
1493 	RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1494 
1495 	hammer_free_inode(ip);
1496 	return(0);
1497 }
1498 
1499 /*
1500  * Called during unmounting if a critical error occured.  The in-memory
1501  * inode and all related structures are destroyed.
1502  *
1503  * If a critical error did not occur the unmount code calls the standard
1504  * release and asserts that the inode is gone.
1505  */
1506 int
1507 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1508 {
1509 	hammer_record_t rec;
1510 
1511 	/*
1512 	 * Get rid of the inodes in-memory records, regardless of their
1513 	 * state, and clear the mod-mask.
1514 	 */
1515 	while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1516 		TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1517 		rec->target_ip = NULL;
1518 		if (rec->flush_state == HAMMER_FST_SETUP)
1519 			rec->flush_state = HAMMER_FST_IDLE;
1520 	}
1521 	while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1522 		if (rec->flush_state == HAMMER_FST_FLUSH)
1523 			--rec->flush_group->refs;
1524 		else
1525 			hammer_ref(&rec->lock);
1526 		KKASSERT(hammer_oneref(&rec->lock));
1527 		rec->flush_state = HAMMER_FST_IDLE;
1528 		rec->flush_group = NULL;
1529 		rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1530 		rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1531 		++ip->rec_generation;
1532 		hammer_rel_mem_record(rec);
1533 	}
1534 	ip->flags &= ~HAMMER_INODE_MODMASK;
1535 	ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1536 	KKASSERT(ip->vp == NULL);
1537 
1538 	/*
1539 	 * Remove the inode from any flush group, force it idle.  FLUSH
1540 	 * and SETUP states have an inode ref.
1541 	 */
1542 	switch(ip->flush_state) {
1543 	case HAMMER_FST_FLUSH:
1544 		RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
1545 		--ip->flush_group->refs;
1546 		ip->flush_group = NULL;
1547 		/* fall through */
1548 	case HAMMER_FST_SETUP:
1549 		hammer_rel(&ip->lock);
1550 		ip->flush_state = HAMMER_FST_IDLE;
1551 		/* fall through */
1552 	case HAMMER_FST_IDLE:
1553 		break;
1554 	}
1555 
1556 	/*
1557 	 * There shouldn't be any associated vnode.  The unload needs at
1558 	 * least one ref, if we do have a vp steal its ip ref.
1559 	 */
1560 	if (ip->vp) {
1561 		kprintf("hammer_destroy_inode_callback: Unexpected "
1562 			"vnode association ip %p vp %p\n", ip, ip->vp);
1563 		ip->vp->v_data = NULL;
1564 		ip->vp = NULL;
1565 	} else {
1566 		hammer_ref(&ip->lock);
1567 	}
1568 	hammer_unload_inode(ip);
1569 	return(0);
1570 }
1571 
1572 /*
1573  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1574  * the read-only flag for cached inodes.
1575  *
1576  * This routine is called from a RB_SCAN().
1577  */
1578 int
1579 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1580 {
1581 	hammer_mount_t hmp = ip->hmp;
1582 
1583 	if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1584 		ip->flags |= HAMMER_INODE_RO;
1585 	else
1586 		ip->flags &= ~HAMMER_INODE_RO;
1587 	return(0);
1588 }
1589 
1590 /*
1591  * A transaction has modified an inode, requiring updates as specified by
1592  * the passed flags.
1593  *
1594  * HAMMER_INODE_DDIRTY: Inode data has been updated, not incl mtime/atime,
1595  *			and not including size changes due to write-append
1596  *			(but other size changes are included).
1597  * HAMMER_INODE_SDIRTY: Inode data has been updated, size changes due to
1598  *			write-append.
1599  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1600  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1601  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1602  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1603  */
1604 void
1605 hammer_modify_inode(hammer_transaction_t trans, hammer_inode_t ip, int flags)
1606 {
1607 	/*
1608 	 * ronly of 0 or 2 does not trigger assertion.
1609 	 * 2 is a special error state
1610 	 */
1611 	KKASSERT(ip->hmp->ronly != 1 ||
1612 		  (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1613 			    HAMMER_INODE_SDIRTY |
1614 			    HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1615 			    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1616 	if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1617 		ip->flags |= HAMMER_INODE_RSV_INODES;
1618 		++ip->hmp->rsv_inodes;
1619 	}
1620 
1621 	/*
1622 	 * Set the NEWINODE flag in the transaction if the inode
1623 	 * transitions to a dirty state.  This is used to track
1624 	 * the load on the inode cache.
1625 	 */
1626 	if (trans &&
1627 	    (ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1628 	    (flags & HAMMER_INODE_MODMASK)) {
1629 		trans->flags |= HAMMER_TRANSF_NEWINODE;
1630 	}
1631 
1632 	ip->flags |= flags;
1633 }
1634 
1635 /*
1636  * Attempt to quickly update the atime for a hammer inode.  Return 0 on
1637  * success, -1 on failure.
1638  *
1639  * We attempt to update the atime with only the ip lock and not the
1640  * whole filesystem lock in order to improve concurrency.  We can only
1641  * do this safely if the ATIME flag is already pending on the inode.
1642  *
1643  * This function is called via a vnops path (ip pointer is stable) without
1644  * fs_token held.
1645  */
1646 int
1647 hammer_update_atime_quick(hammer_inode_t ip)
1648 {
1649 	struct timeval tv;
1650 	int res = -1;
1651 
1652 	if ((ip->flags & HAMMER_INODE_RO) ||
1653 	    (ip->hmp->mp->mnt_flag & MNT_NOATIME)) {
1654 		/*
1655 		 * Silently indicate success on read-only mount/snap
1656 		 */
1657 		res = 0;
1658 	} else if (ip->flags & HAMMER_INODE_ATIME) {
1659 		/*
1660 		 * Double check with inode lock held against backend.  This
1661 		 * is only safe if all we need to do is update
1662 		 * ino_data.atime.
1663 		 */
1664 		getmicrotime(&tv);
1665 		hammer_lock_ex(&ip->lock);
1666 		if (ip->flags & HAMMER_INODE_ATIME) {
1667 			ip->ino_data.atime =
1668 			    (unsigned long)tv.tv_sec * 1000000ULL + tv.tv_usec;
1669 			res = 0;
1670 		}
1671 		hammer_unlock(&ip->lock);
1672 	}
1673 	return res;
1674 }
1675 
1676 /*
1677  * Request that an inode be flushed.  This whole mess cannot block and may
1678  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1679  * actively flush the inode until the flush can be done.
1680  *
1681  * The inode may already be flushing, or may be in a setup state.  We can
1682  * place the inode in a flushing state if it is currently idle and flag it
1683  * to reflush if it is currently flushing.
1684  *
1685  * Upon return if the inode could not be flushed due to a setup
1686  * dependancy, then it will be automatically flushed when the dependancy
1687  * is satisfied.
1688  */
1689 void
1690 hammer_flush_inode(hammer_inode_t ip, int flags)
1691 {
1692 	hammer_mount_t hmp;
1693 	hammer_flush_group_t flg;
1694 	int good;
1695 
1696 	/*
1697 	 * fill_flush_group is the first flush group we may be able to
1698 	 * continue filling, it may be open or closed but it will always
1699 	 * be past the currently flushing (running) flg.
1700 	 *
1701 	 * next_flush_group is the next open flush group.
1702 	 */
1703 	hmp = ip->hmp;
1704 	while ((flg = hmp->fill_flush_group) != NULL) {
1705 		KKASSERT(flg->running == 0);
1706 		if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit &&
1707 		    flg->total_count <= hammer_autoflush) {
1708 			break;
1709 		}
1710 		hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
1711 		hammer_flusher_async(ip->hmp, flg);
1712 	}
1713 	if (flg == NULL) {
1714 		flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1715 		flg->seq = hmp->flusher.next++;
1716 		if (hmp->next_flush_group == NULL)
1717 			hmp->next_flush_group = flg;
1718 		if (hmp->fill_flush_group == NULL)
1719 			hmp->fill_flush_group = flg;
1720 		RB_INIT(&flg->flush_tree);
1721 		TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1722 	}
1723 
1724 	/*
1725 	 * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1726 	 * state we have to put it back into an IDLE state so we can
1727 	 * drop the extra ref.
1728 	 *
1729 	 * If we have a parent dependancy we must still fall through
1730 	 * so we can run it.
1731 	 */
1732 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1733 		if (ip->flush_state == HAMMER_FST_SETUP &&
1734 		    TAILQ_EMPTY(&ip->target_list)) {
1735 			ip->flush_state = HAMMER_FST_IDLE;
1736 			hammer_rel_inode(ip, 0);
1737 		}
1738 		if (ip->flush_state == HAMMER_FST_IDLE)
1739 			return;
1740 	}
1741 
1742 	/*
1743 	 * Our flush action will depend on the current state.
1744 	 */
1745 	switch(ip->flush_state) {
1746 	case HAMMER_FST_IDLE:
1747 		/*
1748 		 * We have no dependancies and can flush immediately.  Some
1749 		 * our children may not be flushable so we have to re-test
1750 		 * with that additional knowledge.
1751 		 */
1752 		hammer_flush_inode_core(ip, flg, flags);
1753 		break;
1754 	case HAMMER_FST_SETUP:
1755 		/*
1756 		 * Recurse upwards through dependancies via target_list
1757 		 * and start their flusher actions going if possible.
1758 		 *
1759 		 * 'good' is our connectivity.  -1 means we have none and
1760 		 * can't flush, 0 means there weren't any dependancies, and
1761 		 * 1 means we have good connectivity.
1762 		 */
1763 		good = hammer_setup_parent_inodes(ip, 0, flg);
1764 
1765 		if (good >= 0) {
1766 			/*
1767 			 * We can continue if good >= 0.  Determine how
1768 			 * many records under our inode can be flushed (and
1769 			 * mark them).
1770 			 */
1771 			hammer_flush_inode_core(ip, flg, flags);
1772 		} else {
1773 			/*
1774 			 * Parent has no connectivity, tell it to flush
1775 			 * us as soon as it does.
1776 			 *
1777 			 * The REFLUSH flag is also needed to trigger
1778 			 * dependancy wakeups.
1779 			 */
1780 			ip->flags |= HAMMER_INODE_CONN_DOWN |
1781 				     HAMMER_INODE_REFLUSH;
1782 			if (flags & HAMMER_FLUSH_SIGNAL) {
1783 				ip->flags |= HAMMER_INODE_RESIGNAL;
1784 				hammer_flusher_async(ip->hmp, flg);
1785 			}
1786 		}
1787 		break;
1788 	case HAMMER_FST_FLUSH:
1789 		/*
1790 		 * We are already flushing, flag the inode to reflush
1791 		 * if needed after it completes its current flush.
1792 		 *
1793 		 * The REFLUSH flag is also needed to trigger
1794 		 * dependancy wakeups.
1795 		 */
1796 		if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1797 			ip->flags |= HAMMER_INODE_REFLUSH;
1798 		if (flags & HAMMER_FLUSH_SIGNAL) {
1799 			ip->flags |= HAMMER_INODE_RESIGNAL;
1800 			hammer_flusher_async(ip->hmp, flg);
1801 		}
1802 		break;
1803 	}
1804 }
1805 
1806 /*
1807  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1808  * ip which reference our ip.
1809  *
1810  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1811  *     so for now do not ref/deref the structures.  Note that if we use the
1812  *     ref/rel code later, the rel CAN block.
1813  */
1814 static int
1815 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1816 			   hammer_flush_group_t flg)
1817 {
1818 	hammer_record_t depend;
1819 	int good;
1820 	int r;
1821 
1822 	/*
1823 	 * If we hit our recursion limit and we have parent dependencies
1824 	 * We cannot continue.  Returning < 0 will cause us to be flagged
1825 	 * for reflush.  Returning -2 cuts off additional dependency checks
1826 	 * because they are likely to also hit the depth limit.
1827 	 *
1828 	 * We cannot return < 0 if there are no dependencies or there might
1829 	 * not be anything to wakeup (ip).
1830 	 */
1831 	if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1832 		kprintf("HAMMER Warning: depth limit reached on "
1833 			"setup recursion, inode %p %016llx\n",
1834 			ip, (long long)ip->obj_id);
1835 		return(-2);
1836 	}
1837 
1838 	/*
1839 	 * Scan dependencies
1840 	 */
1841 	good = 0;
1842 	TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1843 		r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1844 		KKASSERT(depend->target_ip == ip);
1845 		if (r < 0 && good == 0)
1846 			good = -1;
1847 		if (r > 0)
1848 			good = 1;
1849 
1850 		/*
1851 		 * If we failed due to the recursion depth limit then stop
1852 		 * now.
1853 		 */
1854 		if (r == -2)
1855 			break;
1856 	}
1857 	return(good);
1858 }
1859 
1860 /*
1861  * This helper function takes a record representing the dependancy between
1862  * the parent inode and child inode.
1863  *
1864  * record->ip		= parent inode
1865  * record->target_ip	= child inode
1866  *
1867  * We are asked to recurse upwards and convert the record from SETUP
1868  * to FLUSH if possible.
1869  *
1870  * Return 1 if the record gives us connectivity
1871  *
1872  * Return 0 if the record is not relevant
1873  *
1874  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1875  */
1876 static int
1877 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1878 				  hammer_flush_group_t flg)
1879 {
1880 	hammer_mount_t hmp;
1881 	hammer_inode_t pip;
1882 	int good;
1883 
1884 	KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1885 	pip = record->ip;
1886 	hmp = pip->hmp;
1887 
1888 	/*
1889 	 * If the record is already flushing, is it in our flush group?
1890 	 *
1891 	 * If it is in our flush group but it is a general record or a
1892 	 * delete-on-disk, it does not improve our connectivity (return 0),
1893 	 * and if the target inode is not trying to destroy itself we can't
1894 	 * allow the operation yet anyway (the second return -1).
1895 	 */
1896 	if (record->flush_state == HAMMER_FST_FLUSH) {
1897 		/*
1898 		 * If not in our flush group ask the parent to reflush
1899 		 * us as soon as possible.
1900 		 */
1901 		if (record->flush_group != flg) {
1902 			pip->flags |= HAMMER_INODE_REFLUSH;
1903 			record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1904 			return(-1);
1905 		}
1906 
1907 		/*
1908 		 * If in our flush group everything is already set up,
1909 		 * just return whether the record will improve our
1910 		 * visibility or not.
1911 		 */
1912 		if (record->type == HAMMER_MEM_RECORD_ADD)
1913 			return(1);
1914 		return(0);
1915 	}
1916 
1917 	/*
1918 	 * It must be a setup record.  Try to resolve the setup dependancies
1919 	 * by recursing upwards so we can place ip on the flush list.
1920 	 *
1921 	 * Limit ourselves to 20 levels of recursion to avoid blowing out
1922 	 * the kernel stack.  If we hit the recursion limit we can't flush
1923 	 * until the parent flushes.  The parent will flush independantly
1924 	 * on its own and ultimately a deep recursion will be resolved.
1925 	 */
1926 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1927 
1928 	good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1929 
1930 	/*
1931 	 * If good < 0 the parent has no connectivity and we cannot safely
1932 	 * flush the directory entry, which also means we can't flush our
1933 	 * ip.  Flag us for downward recursion once the parent's
1934 	 * connectivity is resolved.  Flag the parent for [re]flush or it
1935 	 * may not check for downward recursions.
1936 	 */
1937 	if (good < 0) {
1938 		pip->flags |= HAMMER_INODE_REFLUSH;
1939 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1940 		return(good);
1941 	}
1942 
1943 	/*
1944 	 * We are go, place the parent inode in a flushing state so we can
1945 	 * place its record in a flushing state.  Note that the parent
1946 	 * may already be flushing.  The record must be in the same flush
1947 	 * group as the parent.
1948 	 */
1949 	if (pip->flush_state != HAMMER_FST_FLUSH)
1950 		hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1951 	KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1952 
1953 	/*
1954 	 * It is possible for a rename to create a loop in the recursion
1955 	 * and revisit a record.  This will result in the record being
1956 	 * placed in a flush state unexpectedly.  This check deals with
1957 	 * the case.
1958 	 */
1959 	if (record->flush_state == HAMMER_FST_FLUSH) {
1960 		if (record->type == HAMMER_MEM_RECORD_ADD)
1961 			return(1);
1962 		return(0);
1963 	}
1964 
1965 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1966 
1967 #if 0
1968 	if (record->type == HAMMER_MEM_RECORD_DEL &&
1969 	    (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1970 		/*
1971 		 * Regardless of flushing state we cannot sync this path if the
1972 		 * record represents a delete-on-disk but the target inode
1973 		 * is not ready to sync its own deletion.
1974 		 *
1975 		 * XXX need to count effective nlinks to determine whether
1976 		 * the flush is ok, otherwise removing a hardlink will
1977 		 * just leave the DEL record to rot.
1978 		 */
1979 		record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1980 		return(-1);
1981 	} else
1982 #endif
1983 	if (pip->flush_group == flg) {
1984 		/*
1985 		 * Because we have not calculated nlinks yet we can just
1986 		 * set records to the flush state if the parent is in
1987 		 * the same flush group as we are.
1988 		 */
1989 		record->flush_state = HAMMER_FST_FLUSH;
1990 		record->flush_group = flg;
1991 		++record->flush_group->refs;
1992 		hammer_ref(&record->lock);
1993 
1994 		/*
1995 		 * A general directory-add contributes to our visibility.
1996 		 *
1997 		 * Otherwise it is probably a directory-delete or
1998 		 * delete-on-disk record and does not contribute to our
1999 		 * visbility (but we can still flush it).
2000 		 */
2001 		if (record->type == HAMMER_MEM_RECORD_ADD)
2002 			return(1);
2003 		return(0);
2004 	} else {
2005 		/*
2006 		 * If the parent is not in our flush group we cannot
2007 		 * flush this record yet, there is no visibility.
2008 		 * We tell the parent to reflush and mark ourselves
2009 		 * so the parent knows it should flush us too.
2010 		 */
2011 		pip->flags |= HAMMER_INODE_REFLUSH;
2012 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
2013 		return(-1);
2014 	}
2015 }
2016 
2017 /*
2018  * This is the core routine placing an inode into the FST_FLUSH state.
2019  */
2020 static void
2021 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
2022 {
2023 	hammer_mount_t hmp = ip->hmp;
2024 	int go_count;
2025 
2026 	/*
2027 	 * Set flush state and prevent the flusher from cycling into
2028 	 * the next flush group.  Do not place the ip on the list yet.
2029 	 * Inodes not in the idle state get an extra reference.
2030 	 */
2031 	KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
2032 	if (ip->flush_state == HAMMER_FST_IDLE)
2033 		hammer_ref(&ip->lock);
2034 	ip->flush_state = HAMMER_FST_FLUSH;
2035 	ip->flush_group = flg;
2036 	++hmp->flusher.group_lock;
2037 	++hmp->count_iqueued;
2038 	++hammer_count_iqueued;
2039 	++flg->total_count;
2040 	hammer_redo_fifo_start_flush(ip);
2041 
2042 #if 0
2043 	/*
2044 	 * We need to be able to vfsync/truncate from the backend.
2045 	 *
2046 	 * XXX Any truncation from the backend will acquire the vnode
2047 	 *     independently.
2048 	 */
2049 	KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
2050 	if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
2051 		ip->flags |= HAMMER_INODE_VHELD;
2052 		vref(ip->vp);
2053 	}
2054 #endif
2055 
2056 	/*
2057 	 * Figure out how many in-memory records we can actually flush
2058 	 * (not including inode meta-data, buffers, etc).
2059 	 */
2060 	KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
2061 	if (flags & HAMMER_FLUSH_RECURSION) {
2062 		/*
2063 		 * If this is a upwards recursion we do not want to
2064 		 * recurse down again!
2065 		 */
2066 		go_count = 1;
2067 #if 0
2068 	} else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2069 		/*
2070 		 * No new records are added if we must complete a flush
2071 		 * from a previous cycle, but we do have to move the records
2072 		 * from the previous cycle to the current one.
2073 		 */
2074 #if 0
2075 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2076 				   hammer_syncgrp_child_callback, NULL);
2077 #endif
2078 		go_count = 1;
2079 #endif
2080 	} else {
2081 		/*
2082 		 * Normal flush, scan records and bring them into the flush.
2083 		 * Directory adds and deletes are usually skipped (they are
2084 		 * grouped with the related inode rather then with the
2085 		 * directory).
2086 		 *
2087 		 * go_count can be negative, which means the scan aborted
2088 		 * due to the flush group being over-full and we should
2089 		 * flush what we have.
2090 		 */
2091 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2092 				   hammer_setup_child_callback, NULL);
2093 	}
2094 
2095 	/*
2096 	 * This is a more involved test that includes go_count.  If we
2097 	 * can't flush, flag the inode and return.  If go_count is 0 we
2098 	 * were are unable to flush any records in our rec_tree and
2099 	 * must ignore the XDIRTY flag.
2100 	 */
2101 	if (go_count == 0) {
2102 		if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
2103 			--hmp->count_iqueued;
2104 			--hammer_count_iqueued;
2105 
2106 			--flg->total_count;
2107 			ip->flush_state = HAMMER_FST_SETUP;
2108 			ip->flush_group = NULL;
2109 			if (flags & HAMMER_FLUSH_SIGNAL) {
2110 				ip->flags |= HAMMER_INODE_REFLUSH |
2111 					     HAMMER_INODE_RESIGNAL;
2112 			} else {
2113 				ip->flags |= HAMMER_INODE_REFLUSH;
2114 			}
2115 #if 0
2116 			if (ip->flags & HAMMER_INODE_VHELD) {
2117 				ip->flags &= ~HAMMER_INODE_VHELD;
2118 				vrele(ip->vp);
2119 			}
2120 #endif
2121 
2122 			/*
2123 			 * REFLUSH is needed to trigger dependancy wakeups
2124 			 * when an inode is in SETUP.
2125 			 */
2126 			ip->flags |= HAMMER_INODE_REFLUSH;
2127 			if (--hmp->flusher.group_lock == 0)
2128 				wakeup(&hmp->flusher.group_lock);
2129 			return;
2130 		}
2131 	}
2132 
2133 	/*
2134 	 * Snapshot the state of the inode for the backend flusher.
2135 	 *
2136 	 * We continue to retain save_trunc_off even when all truncations
2137 	 * have been resolved as an optimization to determine if we can
2138 	 * skip the B-Tree lookup for overwrite deletions.
2139 	 *
2140 	 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
2141 	 * and stays in ip->flags.  Once set, it stays set until the
2142 	 * inode is destroyed.
2143 	 */
2144 	if (ip->flags & HAMMER_INODE_TRUNCATED) {
2145 		KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2146 		ip->sync_trunc_off = ip->trunc_off;
2147 		ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2148 		ip->flags &= ~HAMMER_INODE_TRUNCATED;
2149 		ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2150 
2151 		/*
2152 		 * The save_trunc_off used to cache whether the B-Tree
2153 		 * holds any records past that point is not used until
2154 		 * after the truncation has succeeded, so we can safely
2155 		 * set it now.
2156 		 */
2157 		if (ip->save_trunc_off > ip->sync_trunc_off)
2158 			ip->save_trunc_off = ip->sync_trunc_off;
2159 	}
2160 	ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2161 			   ~HAMMER_INODE_TRUNCATED);
2162 	ip->sync_ino_leaf = ip->ino_leaf;
2163 	ip->sync_ino_data = ip->ino_data;
2164 	ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2165 #ifdef DEBUG_TRUNCATE
2166 	if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
2167 		kprintf("truncateS %016llx\n", ip->sync_trunc_off);
2168 #endif
2169 
2170 	/*
2171 	 * The flusher list inherits our inode and reference.
2172 	 */
2173 	KKASSERT(flg->running == 0);
2174 	RB_INSERT(hammer_fls_rb_tree, &flg->flush_tree, ip);
2175 	if (--hmp->flusher.group_lock == 0)
2176 		wakeup(&hmp->flusher.group_lock);
2177 
2178 	/*
2179 	 * Auto-flush the group if it grows too large.  Make sure the
2180 	 * inode reclaim wait pipeline continues to work.
2181 	 */
2182 	if (flg->total_count >= hammer_autoflush ||
2183 	    flg->total_count >= hammer_limit_reclaims / 4) {
2184 		if (hmp->fill_flush_group == flg)
2185 			hmp->fill_flush_group = TAILQ_NEXT(flg, flush_entry);
2186 		hammer_flusher_async(hmp, flg);
2187 	}
2188 }
2189 
2190 /*
2191  * Callback for scan of ip->rec_tree.  Try to include each record in our
2192  * flush.  ip->flush_group has been set but the inode has not yet been
2193  * moved into a flushing state.
2194  *
2195  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2196  * both inodes.
2197  *
2198  * We return 1 for any record placed or found in FST_FLUSH, which prevents
2199  * the caller from shortcutting the flush.
2200  */
2201 static int
2202 hammer_setup_child_callback(hammer_record_t rec, void *data)
2203 {
2204 	hammer_flush_group_t flg;
2205 	hammer_inode_t target_ip;
2206 	hammer_inode_t ip;
2207 	int r;
2208 
2209 	/*
2210 	 * Records deleted or committed by the backend are ignored.
2211 	 * Note that the flush detects deleted frontend records at
2212 	 * multiple points to deal with races.  This is just the first
2213 	 * line of defense.  The only time HAMMER_RECF_DELETED_FE cannot
2214 	 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2215 	 * messes up link-count calculations.
2216 	 *
2217 	 * NOTE: Don't get confused between record deletion and, say,
2218 	 * directory entry deletion.  The deletion of a directory entry
2219 	 * which is on-media has nothing to do with the record deletion
2220 	 * flags.
2221 	 */
2222 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2223 			  HAMMER_RECF_COMMITTED)) {
2224 		if (rec->flush_state == HAMMER_FST_FLUSH) {
2225 			KKASSERT(rec->flush_group == rec->ip->flush_group);
2226 			r = 1;
2227 		} else {
2228 			r = 0;
2229 		}
2230 		return(r);
2231 	}
2232 
2233 	/*
2234 	 * If the record is in an idle state it has no dependancies and
2235 	 * can be flushed.
2236 	 */
2237 	ip = rec->ip;
2238 	flg = ip->flush_group;
2239 	r = 0;
2240 
2241 	switch(rec->flush_state) {
2242 	case HAMMER_FST_IDLE:
2243 		/*
2244 		 * The record has no setup dependancy, we can flush it.
2245 		 */
2246 		KKASSERT(rec->target_ip == NULL);
2247 		rec->flush_state = HAMMER_FST_FLUSH;
2248 		rec->flush_group = flg;
2249 		++flg->refs;
2250 		hammer_ref(&rec->lock);
2251 		r = 1;
2252 		break;
2253 	case HAMMER_FST_SETUP:
2254 		/*
2255 		 * The record has a setup dependancy.  These are typically
2256 		 * directory entry adds and deletes.  Such entries will be
2257 		 * flushed when their inodes are flushed so we do not
2258 		 * usually have to add them to the flush here.  However,
2259 		 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2260 		 * it is asking us to flush this record (and it).
2261 		 */
2262 		target_ip = rec->target_ip;
2263 		KKASSERT(target_ip != NULL);
2264 		KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2265 
2266 		/*
2267 		 * If the target IP is already flushing in our group
2268 		 * we could associate the record, but target_ip has
2269 		 * already synced ino_data to sync_ino_data and we
2270 		 * would also have to adjust nlinks.   Plus there are
2271 		 * ordering issues for adds and deletes.
2272 		 *
2273 		 * Reflush downward if this is an ADD, and upward if
2274 		 * this is a DEL.
2275 		 */
2276 		if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2277 			if (rec->type == HAMMER_MEM_RECORD_ADD)
2278 				ip->flags |= HAMMER_INODE_REFLUSH;
2279 			else
2280 				target_ip->flags |= HAMMER_INODE_REFLUSH;
2281 			break;
2282 		}
2283 
2284 		/*
2285 		 * Target IP is not yet flushing.  This can get complex
2286 		 * because we have to be careful about the recursion.
2287 		 *
2288 		 * Directories create an issue for us in that if a flush
2289 		 * of a directory is requested the expectation is to flush
2290 		 * any pending directory entries, but this will cause the
2291 		 * related inodes to recursively flush as well.  We can't
2292 		 * really defer the operation so just get as many as we
2293 		 * can and
2294 		 */
2295 #if 0
2296 		if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2297 		    (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2298 			/*
2299 			 * We aren't reclaiming and the target ip was not
2300 			 * previously prevented from flushing due to this
2301 			 * record dependancy.  Do not flush this record.
2302 			 */
2303 			/*r = 0;*/
2304 		} else
2305 #endif
2306 		if (flg->total_count + flg->refs >
2307 			   ip->hmp->undo_rec_limit) {
2308 			/*
2309 			 * Our flush group is over-full and we risk blowing
2310 			 * out the UNDO FIFO.  Stop the scan, flush what we
2311 			 * have, then reflush the directory.
2312 			 *
2313 			 * The directory may be forced through multiple
2314 			 * flush groups before it can be completely
2315 			 * flushed.
2316 			 */
2317 			ip->flags |= HAMMER_INODE_RESIGNAL |
2318 				     HAMMER_INODE_REFLUSH;
2319 			r = -1;
2320 		} else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2321 			/*
2322 			 * If the target IP is not flushing we can force
2323 			 * it to flush, even if it is unable to write out
2324 			 * any of its own records we have at least one in
2325 			 * hand that we CAN deal with.
2326 			 */
2327 			rec->flush_state = HAMMER_FST_FLUSH;
2328 			rec->flush_group = flg;
2329 			++flg->refs;
2330 			hammer_ref(&rec->lock);
2331 			hammer_flush_inode_core(target_ip, flg,
2332 						HAMMER_FLUSH_RECURSION);
2333 			r = 1;
2334 		} else {
2335 			/*
2336 			 * General or delete-on-disk record.
2337 			 *
2338 			 * XXX this needs help.  If a delete-on-disk we could
2339 			 * disconnect the target.  If the target has its own
2340 			 * dependancies they really need to be flushed.
2341 			 *
2342 			 * XXX
2343 			 */
2344 			rec->flush_state = HAMMER_FST_FLUSH;
2345 			rec->flush_group = flg;
2346 			++flg->refs;
2347 			hammer_ref(&rec->lock);
2348 			hammer_flush_inode_core(target_ip, flg,
2349 						HAMMER_FLUSH_RECURSION);
2350 			r = 1;
2351 		}
2352 		break;
2353 	case HAMMER_FST_FLUSH:
2354 		/*
2355 		 * The record could be part of a previous flush group if the
2356 		 * inode is a directory (the record being a directory entry).
2357 		 * Once the flush group was closed a hammer_test_inode()
2358 		 * function can cause a new flush group to be setup, placing
2359 		 * the directory inode itself in a new flush group.
2360 		 *
2361 		 * When associated with a previous flush group we count it
2362 		 * as if it were in our current flush group, since it will
2363 		 * effectively be flushed by the time we flush our current
2364 		 * flush group.
2365 		 */
2366 		KKASSERT(
2367 		    rec->ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY ||
2368 		    rec->flush_group == flg);
2369 		r = 1;
2370 		break;
2371 	}
2372 	return(r);
2373 }
2374 
2375 #if 0
2376 /*
2377  * This version just moves records already in a flush state to the new
2378  * flush group and that is it.
2379  */
2380 static int
2381 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2382 {
2383 	hammer_inode_t ip = rec->ip;
2384 
2385 	switch(rec->flush_state) {
2386 	case HAMMER_FST_FLUSH:
2387 		KKASSERT(rec->flush_group == ip->flush_group);
2388 		break;
2389 	default:
2390 		break;
2391 	}
2392 	return(0);
2393 }
2394 #endif
2395 
2396 /*
2397  * Wait for a previously queued flush to complete.
2398  *
2399  * If a critical error occured we don't try to wait.
2400  */
2401 void
2402 hammer_wait_inode(hammer_inode_t ip)
2403 {
2404 	/*
2405 	 * The inode can be in a SETUP state in which case RESIGNAL
2406 	 * should be set.  If RESIGNAL is not set then the previous
2407 	 * flush completed and a later operation placed the inode
2408 	 * in a passive setup state again, so we're done.
2409 	 *
2410 	 * The inode can be in a FLUSH state in which case we
2411 	 * can just wait for completion.
2412 	 */
2413 	while (ip->flush_state == HAMMER_FST_FLUSH ||
2414 	    (ip->flush_state == HAMMER_FST_SETUP &&
2415 	     (ip->flags & HAMMER_INODE_RESIGNAL))) {
2416 		/*
2417 		 * Don't try to flush on a critical error
2418 		 */
2419 		if (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR)
2420 			break;
2421 
2422 		/*
2423 		 * If the inode was already being flushed its flg
2424 		 * may not have been queued to the backend.  We
2425 		 * have to make sure it gets queued or we can wind
2426 		 * up blocked or deadlocked (particularly if we are
2427 		 * the vnlru thread).
2428 		 */
2429 		if (ip->flush_state == HAMMER_FST_FLUSH) {
2430 			KKASSERT(ip->flush_group);
2431 			if (ip->flush_group->closed == 0) {
2432 				if (hammer_debug_inode) {
2433 					kprintf("hammer: debug: forcing "
2434 						"async flush ip %016jx\n",
2435 						(intmax_t)ip->obj_id);
2436 				}
2437 				hammer_flusher_async(ip->hmp,
2438 						     ip->flush_group);
2439 				continue; /* retest */
2440 			}
2441 		}
2442 
2443 		/*
2444 		 * In a flush state with the flg queued to the backend
2445 		 * or in a setup state with RESIGNAL set, we can safely
2446 		 * wait.
2447 		 */
2448 		ip->flags |= HAMMER_INODE_FLUSHW;
2449 		tsleep(&ip->flags, 0, "hmrwin", 0);
2450 	}
2451 
2452 #if 0
2453 	/*
2454 	 * The inode may have been in a passive setup state,
2455 	 * call flush to make sure we get signaled.
2456 	 */
2457 	if (ip->flush_state == HAMMER_FST_SETUP)
2458 		hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2459 #endif
2460 
2461 }
2462 
2463 /*
2464  * Called by the backend code when a flush has been completed.
2465  * The inode has already been removed from the flush list.
2466  *
2467  * A pipelined flush can occur, in which case we must re-enter the
2468  * inode on the list and re-copy its fields.
2469  */
2470 void
2471 hammer_flush_inode_done(hammer_inode_t ip, int error)
2472 {
2473 	hammer_mount_t hmp;
2474 	int dorel;
2475 
2476 	KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2477 
2478 	hmp = ip->hmp;
2479 
2480 	/*
2481 	 * Auto-reflush if the backend could not completely flush
2482 	 * the inode.  This fixes a case where a deferred buffer flush
2483 	 * could cause fsync to return early.
2484 	 */
2485 	if (ip->sync_flags & HAMMER_INODE_MODMASK)
2486 		ip->flags |= HAMMER_INODE_REFLUSH;
2487 
2488 	/*
2489 	 * Merge left-over flags back into the frontend and fix the state.
2490 	 * Incomplete truncations are retained by the backend.
2491 	 */
2492 	ip->error = error;
2493 	ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2494 	ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2495 
2496 	/*
2497 	 * The backend may have adjusted nlinks, so if the adjusted nlinks
2498 	 * does not match the fronttend set the frontend's DDIRTY flag again.
2499 	 */
2500 	if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2501 		ip->flags |= HAMMER_INODE_DDIRTY;
2502 
2503 	/*
2504 	 * Fix up the dirty buffer status.
2505 	 */
2506 	if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2507 		ip->flags |= HAMMER_INODE_BUFS;
2508 	}
2509 	hammer_redo_fifo_end_flush(ip);
2510 
2511 	/*
2512 	 * Re-set the XDIRTY flag if some of the inode's in-memory records
2513 	 * could not be flushed.
2514 	 */
2515 	KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2516 		  (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2517 		 (!RB_EMPTY(&ip->rec_tree) &&
2518 		  (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2519 
2520 	/*
2521 	 * Do not lose track of inodes which no longer have vnode
2522 	 * assocations, otherwise they may never get flushed again.
2523 	 *
2524 	 * The reflush flag can be set superfluously, causing extra pain
2525 	 * for no reason.  If the inode is no longer modified it no longer
2526 	 * needs to be flushed.
2527 	 */
2528 	if (ip->flags & HAMMER_INODE_MODMASK) {
2529 		if (ip->vp == NULL)
2530 			ip->flags |= HAMMER_INODE_REFLUSH;
2531 	} else {
2532 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2533 	}
2534 
2535 	/*
2536 	 * Adjust the flush state.
2537 	 */
2538 	if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2539 		/*
2540 		 * We were unable to flush out all our records, leave the
2541 		 * inode in a flush state and in the current flush group.
2542 		 * The flush group will be re-run.
2543 		 *
2544 		 * This occurs if the UNDO block gets too full or there is
2545 		 * too much dirty meta-data and allows the flusher to
2546 		 * finalize the UNDO block and then re-flush.
2547 		 */
2548 		ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2549 		dorel = 0;
2550 	} else {
2551 		/*
2552 		 * Remove from the flush_group
2553 		 */
2554 		RB_REMOVE(hammer_fls_rb_tree, &ip->flush_group->flush_tree, ip);
2555 		ip->flush_group = NULL;
2556 
2557 #if 0
2558 		/*
2559 		 * Clean up the vnode ref and tracking counts.
2560 		 */
2561 		if (ip->flags & HAMMER_INODE_VHELD) {
2562 			ip->flags &= ~HAMMER_INODE_VHELD;
2563 			vrele(ip->vp);
2564 		}
2565 #endif
2566 		--hmp->count_iqueued;
2567 		--hammer_count_iqueued;
2568 
2569 		/*
2570 		 * And adjust the state.
2571 		 */
2572 		if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2573 			ip->flush_state = HAMMER_FST_IDLE;
2574 			dorel = 1;
2575 		} else {
2576 			ip->flush_state = HAMMER_FST_SETUP;
2577 			dorel = 0;
2578 		}
2579 
2580 		/*
2581 		 * If the frontend is waiting for a flush to complete,
2582 		 * wake it up.
2583 		 */
2584 		if (ip->flags & HAMMER_INODE_FLUSHW) {
2585 			ip->flags &= ~HAMMER_INODE_FLUSHW;
2586 			wakeup(&ip->flags);
2587 		}
2588 
2589 		/*
2590 		 * If the frontend made more changes and requested another
2591 		 * flush, then try to get it running.
2592 		 *
2593 		 * Reflushes are aborted when the inode is errored out.
2594 		 */
2595 		if (ip->flags & HAMMER_INODE_REFLUSH) {
2596 			ip->flags &= ~HAMMER_INODE_REFLUSH;
2597 			if (ip->flags & HAMMER_INODE_RESIGNAL) {
2598 				ip->flags &= ~HAMMER_INODE_RESIGNAL;
2599 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2600 			} else {
2601 				hammer_flush_inode(ip, 0);
2602 			}
2603 		}
2604 	}
2605 
2606 	/*
2607 	 * If we have no parent dependancies we can clear CONN_DOWN
2608 	 */
2609 	if (TAILQ_EMPTY(&ip->target_list))
2610 		ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2611 
2612 	/*
2613 	 * If the inode is now clean drop the space reservation.
2614 	 */
2615 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2616 	    (ip->flags & HAMMER_INODE_RSV_INODES)) {
2617 		ip->flags &= ~HAMMER_INODE_RSV_INODES;
2618 		--hmp->rsv_inodes;
2619 	}
2620 
2621 	ip->flags &= ~HAMMER_INODE_SLAVEFLUSH;
2622 
2623 	if (dorel)
2624 		hammer_rel_inode(ip, 0);
2625 }
2626 
2627 /*
2628  * Called from hammer_sync_inode() to synchronize in-memory records
2629  * to the media.
2630  */
2631 static int
2632 hammer_sync_record_callback(hammer_record_t record, void *data)
2633 {
2634 	hammer_cursor_t cursor = data;
2635 	hammer_transaction_t trans = cursor->trans;
2636 	hammer_mount_t hmp = trans->hmp;
2637 	int error;
2638 
2639 	/*
2640 	 * Skip records that do not belong to the current flush.
2641 	 */
2642 	++hammer_stats_record_iterations;
2643 	if (record->flush_state != HAMMER_FST_FLUSH)
2644 		return(0);
2645 
2646 #if 1
2647 	if (record->flush_group != record->ip->flush_group) {
2648 		kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2649 		if (hammer_debug_critical)
2650 			Debugger("blah2");
2651 		return(0);
2652 	}
2653 #endif
2654 	KKASSERT(record->flush_group == record->ip->flush_group);
2655 
2656 	/*
2657 	 * Interlock the record using the BE flag.  Once BE is set the
2658 	 * frontend cannot change the state of FE.
2659 	 *
2660 	 * NOTE: If FE is set prior to us setting BE we still sync the
2661 	 * record out, but the flush completion code converts it to
2662 	 * a delete-on-disk record instead of destroying it.
2663 	 */
2664 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2665 	record->flags |= HAMMER_RECF_INTERLOCK_BE;
2666 
2667 	/*
2668 	 * The backend has already disposed of the record.
2669 	 */
2670 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2671 		error = 0;
2672 		goto done;
2673 	}
2674 
2675 	/*
2676 	 * If the whole inode is being deleted and all on-disk records will
2677 	 * be deleted very soon, we can't sync any new records to disk
2678 	 * because they will be deleted in the same transaction they were
2679 	 * created in (delete_tid == create_tid), which will assert.
2680 	 *
2681 	 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2682 	 * that we currently panic on.
2683 	 */
2684 	if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2685 		switch(record->type) {
2686 		case HAMMER_MEM_RECORD_DATA:
2687 			/*
2688 			 * We don't have to do anything, if the record was
2689 			 * committed the space will have been accounted for
2690 			 * in the blockmap.
2691 			 */
2692 			/* fall through */
2693 		case HAMMER_MEM_RECORD_GENERAL:
2694 			/*
2695 			 * Set deleted-by-backend flag.  Do not set the
2696 			 * backend committed flag, because we are throwing
2697 			 * the record away.
2698 			 */
2699 			record->flags |= HAMMER_RECF_DELETED_BE;
2700 			++record->ip->rec_generation;
2701 			error = 0;
2702 			goto done;
2703 		case HAMMER_MEM_RECORD_ADD:
2704 			panic("hammer_sync_record_callback: illegal add "
2705 			      "during inode deletion record %p", record);
2706 			break; /* NOT REACHED */
2707 		case HAMMER_MEM_RECORD_INODE:
2708 			panic("hammer_sync_record_callback: attempt to "
2709 			      "sync inode record %p?", record);
2710 			break; /* NOT REACHED */
2711 		case HAMMER_MEM_RECORD_DEL:
2712 			/*
2713 			 * Follow through and issue the on-disk deletion
2714 			 */
2715 			break;
2716 		}
2717 	}
2718 
2719 	/*
2720 	 * If DELETED_FE is set special handling is needed for directory
2721 	 * entries.  Dependant pieces related to the directory entry may
2722 	 * have already been synced to disk.  If this occurs we have to
2723 	 * sync the directory entry and then change the in-memory record
2724 	 * from an ADD to a DELETE to cover the fact that it's been
2725 	 * deleted by the frontend.
2726 	 *
2727 	 * A directory delete covering record (MEM_RECORD_DEL) can never
2728 	 * be deleted by the frontend.
2729 	 *
2730 	 * Any other record type (aka DATA) can be deleted by the frontend.
2731 	 * XXX At the moment the flusher must skip it because there may
2732 	 * be another data record in the flush group for the same block,
2733 	 * meaning that some frontend data changes can leak into the backend's
2734 	 * synchronization point.
2735 	 */
2736 	if (record->flags & HAMMER_RECF_DELETED_FE) {
2737 		if (record->type == HAMMER_MEM_RECORD_ADD) {
2738 			/*
2739 			 * Convert a front-end deleted directory-add to
2740 			 * a directory-delete entry later.
2741 			 */
2742 			record->flags |= HAMMER_RECF_CONVERT_DELETE;
2743 		} else {
2744 			/*
2745 			 * Dispose of the record (race case).  Mark as
2746 			 * deleted by backend (and not committed).
2747 			 */
2748 			KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2749 			record->flags |= HAMMER_RECF_DELETED_BE;
2750 			++record->ip->rec_generation;
2751 			error = 0;
2752 			goto done;
2753 		}
2754 	}
2755 
2756 	/*
2757 	 * Assign the create_tid for new records.  Deletions already
2758 	 * have the record's entire key properly set up.
2759 	 */
2760 	if (record->type != HAMMER_MEM_RECORD_DEL) {
2761 		record->leaf.base.create_tid = trans->tid;
2762 		record->leaf.create_ts = trans->time32;
2763 	}
2764 
2765 	/*
2766 	 * This actually moves the record to the on-media B-Tree.  We
2767 	 * must also generate REDO_TERM entries in the UNDO/REDO FIFO
2768 	 * indicating that the related REDO_WRITE(s) have been committed.
2769 	 *
2770 	 * During recovery any REDO_TERM's within the nominal recovery span
2771 	 * are ignored since the related meta-data is being undone, causing
2772 	 * any matching REDO_WRITEs to execute.  The REDO_TERMs outside
2773 	 * the nominal recovery span will match against REDO_WRITEs and
2774 	 * prevent them from being executed (because the meta-data has
2775 	 * already been synchronized).
2776 	 */
2777 	if (record->flags & HAMMER_RECF_REDO) {
2778 		KKASSERT(record->type == HAMMER_MEM_RECORD_DATA);
2779 		hammer_generate_redo(trans, record->ip,
2780 				     record->leaf.base.key -
2781 					 record->leaf.data_len,
2782 				     HAMMER_REDO_TERM_WRITE,
2783 				     NULL,
2784 				     record->leaf.data_len);
2785 	}
2786 
2787 	for (;;) {
2788 		error = hammer_ip_sync_record_cursor(cursor, record);
2789 		if (error != EDEADLK)
2790 			break;
2791 		hammer_done_cursor(cursor);
2792 		error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2793 					   record->ip);
2794 		if (error)
2795 			break;
2796 	}
2797 	record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2798 
2799 	if (error)
2800 		error = -error;
2801 done:
2802 	hammer_flush_record_done(record, error);
2803 
2804 	/*
2805 	 * Do partial finalization if we have built up too many dirty
2806 	 * buffers.  Otherwise a buffer cache deadlock can occur when
2807 	 * doing things like creating tens of thousands of tiny files.
2808 	 *
2809 	 * We must release our cursor lock to avoid a 3-way deadlock
2810 	 * due to the exclusive sync lock the finalizer must get.
2811 	 *
2812 	 * WARNING: See warnings in hammer_unlock_cursor() function.
2813 	 */
2814         if (hammer_flusher_meta_limit(hmp) ||
2815 	    vm_page_count_severe()) {
2816 		hammer_unlock_cursor(cursor);
2817                 hammer_flusher_finalize(trans, 0);
2818 		hammer_lock_cursor(cursor);
2819 	}
2820 	return(error);
2821 }
2822 
2823 /*
2824  * Backend function called by the flusher to sync an inode to media.
2825  */
2826 int
2827 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2828 {
2829 	struct hammer_cursor cursor;
2830 	hammer_node_t tmp_node;
2831 	hammer_record_t depend;
2832 	hammer_record_t next;
2833 	int error, tmp_error;
2834 	u_int64_t nlinks;
2835 
2836 	if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2837 		return(0);
2838 
2839 	error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2840 	if (error)
2841 		goto done;
2842 
2843 	/*
2844 	 * Any directory records referencing this inode which are not in
2845 	 * our current flush group must adjust our nlink count for the
2846 	 * purposes of synchronizating to disk.
2847 	 *
2848 	 * Records which are in our flush group can be unlinked from our
2849 	 * inode now, potentially allowing the inode to be physically
2850 	 * deleted.
2851 	 *
2852 	 * This cannot block.
2853 	 */
2854 	nlinks = ip->ino_data.nlinks;
2855 	next = TAILQ_FIRST(&ip->target_list);
2856 	while ((depend = next) != NULL) {
2857 		next = TAILQ_NEXT(depend, target_entry);
2858 		if (depend->flush_state == HAMMER_FST_FLUSH &&
2859 		    depend->flush_group == ip->flush_group) {
2860 			/*
2861 			 * If this is an ADD that was deleted by the frontend
2862 			 * the frontend nlinks count will have already been
2863 			 * decremented, but the backend is going to sync its
2864 			 * directory entry and must account for it.  The
2865 			 * record will be converted to a delete-on-disk when
2866 			 * it gets synced.
2867 			 *
2868 			 * If the ADD was not deleted by the frontend we
2869 			 * can remove the dependancy from our target_list.
2870 			 */
2871 			if (depend->flags & HAMMER_RECF_DELETED_FE) {
2872 				++nlinks;
2873 			} else {
2874 				TAILQ_REMOVE(&ip->target_list, depend,
2875 					     target_entry);
2876 				depend->target_ip = NULL;
2877 			}
2878 		} else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2879 			/*
2880 			 * Not part of our flush group and not deleted by
2881 			 * the front-end, adjust the link count synced to
2882 			 * the media (undo what the frontend did when it
2883 			 * queued the record).
2884 			 */
2885 			KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2886 			switch(depend->type) {
2887 			case HAMMER_MEM_RECORD_ADD:
2888 				--nlinks;
2889 				break;
2890 			case HAMMER_MEM_RECORD_DEL:
2891 				++nlinks;
2892 				break;
2893 			default:
2894 				break;
2895 			}
2896 		}
2897 	}
2898 
2899 	/*
2900 	 * Set dirty if we had to modify the link count.
2901 	 */
2902 	if (ip->sync_ino_data.nlinks != nlinks) {
2903 		KKASSERT((int64_t)nlinks >= 0);
2904 		ip->sync_ino_data.nlinks = nlinks;
2905 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2906 	}
2907 
2908 	/*
2909 	 * If there is a trunction queued destroy any data past the (aligned)
2910 	 * truncation point.  Userland will have dealt with the buffer
2911 	 * containing the truncation point for us.
2912 	 *
2913 	 * We don't flush pending frontend data buffers until after we've
2914 	 * dealt with the truncation.
2915 	 */
2916 	if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2917 		/*
2918 		 * Interlock trunc_off.  The VOP front-end may continue to
2919 		 * make adjustments to it while we are blocked.
2920 		 */
2921 		off_t trunc_off;
2922 		off_t aligned_trunc_off;
2923 		int blkmask;
2924 
2925 		trunc_off = ip->sync_trunc_off;
2926 		blkmask = hammer_blocksize(trunc_off) - 1;
2927 		aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2928 
2929 		/*
2930 		 * Delete any whole blocks on-media.  The front-end has
2931 		 * already cleaned out any partial block and made it
2932 		 * pending.  The front-end may have updated trunc_off
2933 		 * while we were blocked so we only use sync_trunc_off.
2934 		 *
2935 		 * This operation can blow out the buffer cache, EWOULDBLOCK
2936 		 * means we were unable to complete the deletion.  The
2937 		 * deletion will update sync_trunc_off in that case.
2938 		 */
2939 		error = hammer_ip_delete_range(&cursor, ip,
2940 						aligned_trunc_off,
2941 						0x7FFFFFFFFFFFFFFFLL, 2);
2942 		if (error == EWOULDBLOCK) {
2943 			ip->flags |= HAMMER_INODE_WOULDBLOCK;
2944 			error = 0;
2945 			goto defer_buffer_flush;
2946 		}
2947 
2948 		if (error)
2949 			goto done;
2950 
2951 		/*
2952 		 * Generate a REDO_TERM_TRUNC entry in the UNDO/REDO FIFO.
2953 		 *
2954 		 * XXX we do this even if we did not previously generate
2955 		 * a REDO_TRUNC record.  This operation may enclosed the
2956 		 * range for multiple prior truncation entries in the REDO
2957 		 * log.
2958 		 */
2959 		if (trans->hmp->version >= HAMMER_VOL_VERSION_FOUR &&
2960 		    (ip->flags & HAMMER_INODE_RDIRTY)) {
2961 			hammer_generate_redo(trans, ip, aligned_trunc_off,
2962 					     HAMMER_REDO_TERM_TRUNC,
2963 					     NULL, 0);
2964 		}
2965 
2966 		/*
2967 		 * Clear the truncation flag on the backend after we have
2968 		 * completed the deletions.  Backend data is now good again
2969 		 * (including new records we are about to sync, below).
2970 		 *
2971 		 * Leave sync_trunc_off intact.  As we write additional
2972 		 * records the backend will update sync_trunc_off.  This
2973 		 * tells the backend whether it can skip the overwrite
2974 		 * test.  This should work properly even when the backend
2975 		 * writes full blocks where the truncation point straddles
2976 		 * the block because the comparison is against the base
2977 		 * offset of the record.
2978 		 */
2979 		ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2980 		/* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2981 	} else {
2982 		error = 0;
2983 	}
2984 
2985 	/*
2986 	 * Now sync related records.  These will typically be directory
2987 	 * entries, records tracking direct-writes, or delete-on-disk records.
2988 	 */
2989 	if (error == 0) {
2990 		tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2991 				    hammer_sync_record_callback, &cursor);
2992 		if (tmp_error < 0)
2993 			tmp_error = -error;
2994 		if (tmp_error)
2995 			error = tmp_error;
2996 	}
2997 	hammer_cache_node(&ip->cache[1], cursor.node);
2998 
2999 	/*
3000 	 * Re-seek for inode update, assuming our cache hasn't been ripped
3001 	 * out from under us.
3002 	 */
3003 	if (error == 0) {
3004 		tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
3005 		if (tmp_node) {
3006 			hammer_cursor_downgrade(&cursor);
3007 			hammer_lock_sh(&tmp_node->lock);
3008 			if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
3009 				hammer_cursor_seek(&cursor, tmp_node, 0);
3010 			hammer_unlock(&tmp_node->lock);
3011 			hammer_rel_node(tmp_node);
3012 		}
3013 		error = 0;
3014 	}
3015 
3016 	/*
3017 	 * If we are deleting the inode the frontend had better not have
3018 	 * any active references on elements making up the inode.
3019 	 *
3020 	 * The call to hammer_ip_delete_clean() cleans up auxillary records
3021 	 * but not DB or DATA records.  Those must have already been deleted
3022 	 * by the normal truncation mechanic.
3023 	 */
3024 	if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
3025 		RB_EMPTY(&ip->rec_tree)  &&
3026 	    (ip->sync_flags & HAMMER_INODE_DELETING) &&
3027 	    (ip->flags & HAMMER_INODE_DELETED) == 0) {
3028 		int count1 = 0;
3029 
3030 		error = hammer_ip_delete_clean(&cursor, ip, &count1);
3031 		if (error == 0) {
3032 			ip->flags |= HAMMER_INODE_DELETED;
3033 			ip->sync_flags &= ~HAMMER_INODE_DELETING;
3034 			ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
3035 			KKASSERT(RB_EMPTY(&ip->rec_tree));
3036 
3037 			/*
3038 			 * Set delete_tid in both the frontend and backend
3039 			 * copy of the inode record.  The DELETED flag handles
3040 			 * this, do not set DDIRTY.
3041 			 */
3042 			ip->ino_leaf.base.delete_tid = trans->tid;
3043 			ip->sync_ino_leaf.base.delete_tid = trans->tid;
3044 			ip->ino_leaf.delete_ts = trans->time32;
3045 			ip->sync_ino_leaf.delete_ts = trans->time32;
3046 
3047 
3048 			/*
3049 			 * Adjust the inode count in the volume header
3050 			 */
3051 			hammer_sync_lock_sh(trans);
3052 			if (ip->flags & HAMMER_INODE_ONDISK) {
3053 				hammer_modify_volume_field(trans,
3054 							   trans->rootvol,
3055 							   vol0_stat_inodes);
3056 				--ip->hmp->rootvol->ondisk->vol0_stat_inodes;
3057 				hammer_modify_volume_done(trans->rootvol);
3058 			}
3059 			hammer_sync_unlock(trans);
3060 		}
3061 	}
3062 
3063 	if (error)
3064 		goto done;
3065 	ip->sync_flags &= ~HAMMER_INODE_BUFS;
3066 
3067 defer_buffer_flush:
3068 	/*
3069 	 * Now update the inode's on-disk inode-data and/or on-disk record.
3070 	 * DELETED and ONDISK are managed only in ip->flags.
3071 	 *
3072 	 * In the case of a defered buffer flush we still update the on-disk
3073 	 * inode to satisfy visibility requirements if there happen to be
3074 	 * directory dependancies.
3075 	 */
3076 	switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
3077 	case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
3078 		/*
3079 		 * If deleted and on-disk, don't set any additional flags.
3080 		 * the delete flag takes care of things.
3081 		 *
3082 		 * Clear flags which may have been set by the frontend.
3083 		 */
3084 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3085 				    HAMMER_INODE_SDIRTY |
3086 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3087 				    HAMMER_INODE_DELETING);
3088 		break;
3089 	case HAMMER_INODE_DELETED:
3090 		/*
3091 		 * Take care of the case where a deleted inode was never
3092 		 * flushed to the disk in the first place.
3093 		 *
3094 		 * Clear flags which may have been set by the frontend.
3095 		 */
3096 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
3097 				    HAMMER_INODE_SDIRTY |
3098 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
3099 				    HAMMER_INODE_DELETING);
3100 		while (RB_ROOT(&ip->rec_tree)) {
3101 			hammer_record_t record = RB_ROOT(&ip->rec_tree);
3102 			hammer_ref(&record->lock);
3103 			KKASSERT(hammer_oneref(&record->lock));
3104 			record->flags |= HAMMER_RECF_DELETED_BE;
3105 			++record->ip->rec_generation;
3106 			hammer_rel_mem_record(record);
3107 		}
3108 		break;
3109 	case HAMMER_INODE_ONDISK:
3110 		/*
3111 		 * If already on-disk, do not set any additional flags.
3112 		 */
3113 		break;
3114 	default:
3115 		/*
3116 		 * If not on-disk and not deleted, set DDIRTY to force
3117 		 * an initial record to be written.
3118 		 *
3119 		 * Also set the create_tid in both the frontend and backend
3120 		 * copy of the inode record.
3121 		 */
3122 		ip->ino_leaf.base.create_tid = trans->tid;
3123 		ip->ino_leaf.create_ts = trans->time32;
3124 		ip->sync_ino_leaf.base.create_tid = trans->tid;
3125 		ip->sync_ino_leaf.create_ts = trans->time32;
3126 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
3127 		break;
3128 	}
3129 
3130 	/*
3131 	 * If DDIRTY or SDIRTY is set, write out a new record.
3132 	 * If the inode is already on-disk the old record is marked as
3133 	 * deleted.
3134 	 *
3135 	 * If DELETED is set hammer_update_inode() will delete the existing
3136 	 * record without writing out a new one.
3137 	 *
3138 	 * If *ONLY* the ITIMES flag is set we can update the record in-place.
3139 	 */
3140 	if (ip->flags & HAMMER_INODE_DELETED) {
3141 		error = hammer_update_inode(&cursor, ip);
3142 	} else
3143 	if (!(ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY)) &&
3144 	    (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
3145 		error = hammer_update_itimes(&cursor, ip);
3146 	} else
3147 	if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_SDIRTY |
3148 			      HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
3149 		error = hammer_update_inode(&cursor, ip);
3150 	}
3151 done:
3152 	if (error) {
3153 		hammer_critical_error(ip->hmp, ip, error,
3154 				      "while syncing inode");
3155 	}
3156 	hammer_done_cursor(&cursor);
3157 	return(error);
3158 }
3159 
3160 /*
3161  * This routine is called when the OS is no longer actively referencing
3162  * the inode (but might still be keeping it cached), or when releasing
3163  * the last reference to an inode.
3164  *
3165  * At this point if the inode's nlinks count is zero we want to destroy
3166  * it, which may mean destroying it on-media too.
3167  */
3168 void
3169 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
3170 {
3171 	struct vnode *vp;
3172 
3173 	/*
3174 	 * Set the DELETING flag when the link count drops to 0 and the
3175 	 * OS no longer has any opens on the inode.
3176 	 *
3177 	 * The backend will clear DELETING (a mod flag) and set DELETED
3178 	 * (a state flag) when it is actually able to perform the
3179 	 * operation.
3180 	 *
3181 	 * Don't reflag the deletion if the flusher is currently syncing
3182 	 * one that was already flagged.  A previously set DELETING flag
3183 	 * may bounce around flags and sync_flags until the operation is
3184 	 * completely done.
3185 	 *
3186 	 * Do not attempt to modify a snapshot inode (one set to read-only).
3187 	 */
3188 	if (ip->ino_data.nlinks == 0 &&
3189 	    ((ip->flags | ip->sync_flags) & (HAMMER_INODE_RO|HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
3190 		ip->flags |= HAMMER_INODE_DELETING;
3191 		ip->flags |= HAMMER_INODE_TRUNCATED;
3192 		ip->trunc_off = 0;
3193 		vp = NULL;
3194 		if (getvp) {
3195 			if (hammer_get_vnode(ip, &vp) != 0)
3196 				return;
3197 		}
3198 
3199 		/*
3200 		 * Final cleanup
3201 		 */
3202 		if (ip->vp)
3203 			nvtruncbuf(ip->vp, 0, HAMMER_BUFSIZE, 0, 0);
3204 		if (getvp)
3205 			vput(vp);
3206 	}
3207 }
3208 
3209 /*
3210  * After potentially resolving a dependancy the inode is tested
3211  * to determine whether it needs to be reflushed.
3212  */
3213 void
3214 hammer_test_inode(hammer_inode_t ip)
3215 {
3216 	if (ip->flags & HAMMER_INODE_REFLUSH) {
3217 		ip->flags &= ~HAMMER_INODE_REFLUSH;
3218 		hammer_ref(&ip->lock);
3219 		if (ip->flags & HAMMER_INODE_RESIGNAL) {
3220 			ip->flags &= ~HAMMER_INODE_RESIGNAL;
3221 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
3222 		} else {
3223 			hammer_flush_inode(ip, 0);
3224 		}
3225 		hammer_rel_inode(ip, 0);
3226 	}
3227 }
3228 
3229 /*
3230  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
3231  * reassociated with a vp or just before it gets freed.
3232  *
3233  * Pipeline wakeups to threads blocked due to an excessive number of
3234  * detached inodes.  This typically occurs when atime updates accumulate
3235  * while scanning a directory tree.
3236  */
3237 static void
3238 hammer_inode_wakereclaims(hammer_inode_t ip)
3239 {
3240 	struct hammer_reclaim *reclaim;
3241 	hammer_mount_t hmp = ip->hmp;
3242 
3243 	if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
3244 		return;
3245 
3246 	--hammer_count_reclaims;
3247 	--hmp->count_reclaims;
3248 	ip->flags &= ~HAMMER_INODE_RECLAIM;
3249 
3250 	if ((reclaim = TAILQ_FIRST(&hmp->reclaim_list)) != NULL) {
3251 		KKASSERT(reclaim->count > 0);
3252 		if (--reclaim->count == 0) {
3253 			TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3254 			wakeup(reclaim);
3255 		}
3256 	}
3257 }
3258 
3259 /*
3260  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
3261  * inodes build up before we start blocking.  This routine is called
3262  * if a new inode is created or an inode is loaded from media.
3263  *
3264  * When we block we don't care *which* inode has finished reclaiming,
3265  * as long as one does.
3266  *
3267  * The reclaim pipeline is primarily governed by the auto-flush which is
3268  * 1/4 hammer_limit_reclaims.  We don't want to block if the count is
3269  * less than 1/2 hammer_limit_reclaims.  From 1/2 to full count is
3270  * dynamically governed.
3271  */
3272 void
3273 hammer_inode_waitreclaims(hammer_transaction_t trans)
3274 {
3275 	hammer_mount_t hmp = trans->hmp;
3276 	struct hammer_reclaim reclaim;
3277 	int lower_limit;
3278 
3279 	/*
3280 	 * Track inode load, delay if the number of reclaiming inodes is
3281 	 * between 2/4 and 4/4 hammer_limit_reclaims, depending.
3282 	 */
3283 	if (curthread->td_proc) {
3284 		struct hammer_inostats *stats;
3285 
3286 		stats = hammer_inode_inostats(hmp, curthread->td_proc->p_pid);
3287 		++stats->count;
3288 
3289 		if (stats->count > hammer_limit_reclaims / 2)
3290 			stats->count = hammer_limit_reclaims / 2;
3291 		lower_limit = hammer_limit_reclaims - stats->count;
3292 		if (hammer_debug_general & 0x10000) {
3293 			kprintf("pid %5d limit %d\n",
3294 				(int)curthread->td_proc->p_pid, lower_limit);
3295 		}
3296 	} else {
3297 		lower_limit = hammer_limit_reclaims * 3 / 4;
3298 	}
3299 	if (hmp->count_reclaims >= lower_limit) {
3300 		reclaim.count = 1;
3301 		TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3302 		tsleep(&reclaim, 0, "hmrrcm", hz);
3303 		if (reclaim.count > 0)
3304 			TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3305 	}
3306 }
3307 
3308 /*
3309  * Keep track of reclaim statistics on a per-pid basis using a loose
3310  * 4-way set associative hash table.  Collisions inherit the count of
3311  * the previous entry.
3312  *
3313  * NOTE: We want to be careful here to limit the chain size.  If the chain
3314  *	 size is too large a pid will spread its stats out over too many
3315  *	 entries under certain types of heavy filesystem activity and
3316  *	 wind up not delaying long enough.
3317  */
3318 static
3319 struct hammer_inostats *
3320 hammer_inode_inostats(hammer_mount_t hmp, pid_t pid)
3321 {
3322 	struct hammer_inostats *stats;
3323 	int delta;
3324 	int chain;
3325 	static volatile int iterator;	/* we don't care about MP races */
3326 
3327 	/*
3328 	 * Chain up to 4 times to find our entry.
3329 	 */
3330 	for (chain = 0; chain < 4; ++chain) {
3331 		stats = &hmp->inostats[(pid + chain) & HAMMER_INOSTATS_HMASK];
3332 		if (stats->pid == pid)
3333 			break;
3334 	}
3335 
3336 	/*
3337 	 * Replace one of the four chaining entries with our new entry.
3338 	 */
3339 	if (chain == 4) {
3340 		stats = &hmp->inostats[(pid + (iterator++ & 3)) &
3341 				       HAMMER_INOSTATS_HMASK];
3342 		stats->pid = pid;
3343 	}
3344 
3345 	/*
3346 	 * Decay the entry
3347 	 */
3348 	if (stats->count && stats->ltick != ticks) {
3349 		delta = ticks - stats->ltick;
3350 		stats->ltick = ticks;
3351 		if (delta <= 0 || delta > hz * 60)
3352 			stats->count = 0;
3353 		else
3354 			stats->count = stats->count * hz / (hz + delta);
3355 	}
3356 	if (hammer_debug_general & 0x10000)
3357 		kprintf("pid %5d stats %d\n", (int)pid, stats->count);
3358 	return (stats);
3359 }
3360 
3361 #if 0
3362 
3363 /*
3364  * XXX not used, doesn't work very well due to the large batching nature
3365  * of flushes.
3366  *
3367  * A larger then normal backlog of inodes is sitting in the flusher,
3368  * enforce a general slowdown to let it catch up.  This routine is only
3369  * called on completion of a non-flusher-related transaction which
3370  * performed B-Tree node I/O.
3371  *
3372  * It is possible for the flusher to stall in a continuous load.
3373  * blogbench -i1000 -o seems to do a good job generating this sort of load.
3374  * If the flusher is unable to catch up the inode count can bloat until
3375  * we run out of kvm.
3376  *
3377  * This is a bit of a hack.
3378  */
3379 void
3380 hammer_inode_waithard(hammer_mount_t hmp)
3381 {
3382 	/*
3383 	 * Hysteresis.
3384 	 */
3385 	if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3386 		if (hmp->count_reclaims < hammer_limit_reclaims / 2 &&
3387 		    hmp->count_iqueued < hmp->count_inodes / 20) {
3388 			hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3389 			return;
3390 		}
3391 	} else {
3392 		if (hmp->count_reclaims < hammer_limit_reclaims ||
3393 		    hmp->count_iqueued < hmp->count_inodes / 10) {
3394 			return;
3395 		}
3396 		hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3397 	}
3398 
3399 	/*
3400 	 * Block for one flush cycle.
3401 	 */
3402 	hammer_flusher_wait_next(hmp);
3403 }
3404 
3405 #endif
3406