xref: /dragonfly/sys/vfs/hammer/hammer_inode.c (revision 7e840528)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.114 2008/09/24 00:53:51 dillon Exp $
35  */
36 
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
41 
42 static int	hammer_unload_inode(struct hammer_inode *ip);
43 static void	hammer_free_inode(hammer_inode_t ip);
44 static void	hammer_flush_inode_core(hammer_inode_t ip,
45 					hammer_flush_group_t flg, int flags);
46 static int	hammer_setup_child_callback(hammer_record_t rec, void *data);
47 #if 0
48 static int	hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
49 #endif
50 static int	hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
51 					hammer_flush_group_t flg);
52 static int	hammer_setup_parent_inodes_helper(hammer_record_t record,
53 					int depth, hammer_flush_group_t flg);
54 static void	hammer_inode_wakereclaims(hammer_inode_t ip, int dowake);
55 
56 #ifdef DEBUG_TRUNCATE
57 extern struct hammer_inode *HammerTruncIp;
58 #endif
59 
60 /*
61  * RB-Tree support for inode structures
62  */
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
65 {
66 	if (ip1->obj_localization < ip2->obj_localization)
67 		return(-1);
68 	if (ip1->obj_localization > ip2->obj_localization)
69 		return(1);
70 	if (ip1->obj_id < ip2->obj_id)
71 		return(-1);
72 	if (ip1->obj_id > ip2->obj_id)
73 		return(1);
74 	if (ip1->obj_asof < ip2->obj_asof)
75 		return(-1);
76 	if (ip1->obj_asof > ip2->obj_asof)
77 		return(1);
78 	return(0);
79 }
80 
81 /*
82  * RB-Tree support for inode structures / special LOOKUP_INFO
83  */
84 static int
85 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
86 {
87 	if (info->obj_localization < ip->obj_localization)
88 		return(-1);
89 	if (info->obj_localization > ip->obj_localization)
90 		return(1);
91 	if (info->obj_id < ip->obj_id)
92 		return(-1);
93 	if (info->obj_id > ip->obj_id)
94 		return(1);
95 	if (info->obj_asof < ip->obj_asof)
96 		return(-1);
97 	if (info->obj_asof > ip->obj_asof)
98 		return(1);
99 	return(0);
100 }
101 
102 /*
103  * Used by hammer_scan_inode_snapshots() to locate all of an object's
104  * snapshots.  Note that the asof field is not tested, which we can get
105  * away with because it is the lowest-priority field.
106  */
107 static int
108 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
109 {
110 	hammer_inode_info_t info = data;
111 
112 	if (ip->obj_localization > info->obj_localization)
113 		return(1);
114 	if (ip->obj_localization < info->obj_localization)
115 		return(-1);
116 	if (ip->obj_id > info->obj_id)
117 		return(1);
118 	if (ip->obj_id < info->obj_id)
119 		return(-1);
120 	return(0);
121 }
122 
123 /*
124  * Used by hammer_unload_pseudofs() to locate all inodes associated with
125  * a particular PFS.
126  */
127 static int
128 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
129 {
130 	u_int32_t localization = *(u_int32_t *)data;
131 	if (ip->obj_localization > localization)
132 		return(1);
133 	if (ip->obj_localization < localization)
134 		return(-1);
135 	return(0);
136 }
137 
138 /*
139  * RB-Tree support for pseudofs structures
140  */
141 static int
142 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
143 {
144 	if (p1->localization < p2->localization)
145 		return(-1);
146 	if (p1->localization > p2->localization)
147 		return(1);
148 	return(0);
149 }
150 
151 
152 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
153 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
154 		hammer_inode_info_cmp, hammer_inode_info_t);
155 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
156              hammer_pfs_rb_compare, u_int32_t, localization);
157 
158 /*
159  * The kernel is not actively referencing this vnode but is still holding
160  * it cached.
161  *
162  * This is called from the frontend.
163  */
164 int
165 hammer_vop_inactive(struct vop_inactive_args *ap)
166 {
167 	struct hammer_inode *ip = VTOI(ap->a_vp);
168 
169 	/*
170 	 * Degenerate case
171 	 */
172 	if (ip == NULL) {
173 		vrecycle(ap->a_vp);
174 		return(0);
175 	}
176 
177 	/*
178 	 * If the inode no longer has visibility in the filesystem try to
179 	 * recycle it immediately, even if the inode is dirty.  Recycling
180 	 * it quickly allows the system to reclaim buffer cache and VM
181 	 * resources which can matter a lot in a heavily loaded system.
182 	 *
183 	 * This can deadlock in vfsync() if we aren't careful.
184 	 *
185 	 * Do not queue the inode to the flusher if we still have visibility,
186 	 * otherwise namespace calls such as chmod will unnecessarily generate
187 	 * multiple inode updates.
188 	 */
189 	hammer_inode_unloadable_check(ip, 0);
190 	if (ip->ino_data.nlinks == 0) {
191 		if (ip->flags & HAMMER_INODE_MODMASK)
192 			hammer_flush_inode(ip, 0);
193 		vrecycle(ap->a_vp);
194 	}
195 	return(0);
196 }
197 
198 /*
199  * Release the vnode association.  This is typically (but not always)
200  * the last reference on the inode.
201  *
202  * Once the association is lost we are on our own with regards to
203  * flushing the inode.
204  */
205 int
206 hammer_vop_reclaim(struct vop_reclaim_args *ap)
207 {
208 	struct hammer_inode *ip;
209 	hammer_mount_t hmp;
210 	struct vnode *vp;
211 
212 	vp = ap->a_vp;
213 
214 	if ((ip = vp->v_data) != NULL) {
215 		hmp = ip->hmp;
216 		vp->v_data = NULL;
217 		ip->vp = NULL;
218 
219 		if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
220 			++hammer_count_reclaiming;
221 			++hmp->inode_reclaims;
222 			ip->flags |= HAMMER_INODE_RECLAIM;
223 		}
224 		hammer_rel_inode(ip, 1);
225 	}
226 	return(0);
227 }
228 
229 /*
230  * Return a locked vnode for the specified inode.  The inode must be
231  * referenced but NOT LOCKED on entry and will remain referenced on
232  * return.
233  *
234  * Called from the frontend.
235  */
236 int
237 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
238 {
239 	hammer_mount_t hmp;
240 	struct vnode *vp;
241 	int error = 0;
242 	u_int8_t obj_type;
243 
244 	hmp = ip->hmp;
245 
246 	for (;;) {
247 		if ((vp = ip->vp) == NULL) {
248 			error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
249 			if (error)
250 				break;
251 			hammer_lock_ex(&ip->lock);
252 			if (ip->vp != NULL) {
253 				hammer_unlock(&ip->lock);
254 				vp->v_type = VBAD;
255 				vx_put(vp);
256 				continue;
257 			}
258 			hammer_ref(&ip->lock);
259 			vp = *vpp;
260 			ip->vp = vp;
261 
262 			obj_type = ip->ino_data.obj_type;
263 			vp->v_type = hammer_get_vnode_type(obj_type);
264 
265 			hammer_inode_wakereclaims(ip, 0);
266 
267 			switch(ip->ino_data.obj_type) {
268 			case HAMMER_OBJTYPE_CDEV:
269 			case HAMMER_OBJTYPE_BDEV:
270 				vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
271 				addaliasu(vp, ip->ino_data.rmajor,
272 					  ip->ino_data.rminor);
273 				break;
274 			case HAMMER_OBJTYPE_FIFO:
275 				vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
276 				break;
277 			default:
278 				break;
279 			}
280 
281 			/*
282 			 * Only mark as the root vnode if the ip is not
283 			 * historical, otherwise the VFS cache will get
284 			 * confused.  The other half of the special handling
285 			 * is in hammer_vop_nlookupdotdot().
286 			 *
287 			 * Pseudo-filesystem roots can be accessed via
288 			 * non-root filesystem paths and setting VROOT may
289 			 * confuse the namecache.  Set VPFSROOT instead.
290 			 */
291 			if (ip->obj_id == HAMMER_OBJID_ROOT &&
292 			    ip->obj_asof == hmp->asof) {
293 				if (ip->obj_localization == 0)
294 					vp->v_flag |= VROOT;
295 				else
296 					vp->v_flag |= VPFSROOT;
297 			}
298 
299 			vp->v_data = (void *)ip;
300 			/* vnode locked by getnewvnode() */
301 			/* make related vnode dirty if inode dirty? */
302 			hammer_unlock(&ip->lock);
303 			if (vp->v_type == VREG)
304 				vinitvmio(vp, ip->ino_data.size);
305 			break;
306 		}
307 
308 		/*
309 		 * loop if the vget fails (aka races), or if the vp
310 		 * no longer matches ip->vp.
311 		 */
312 		if (vget(vp, LK_EXCLUSIVE) == 0) {
313 			if (vp == ip->vp)
314 				break;
315 			vput(vp);
316 		}
317 	}
318 	*vpp = vp;
319 	return(error);
320 }
321 
322 /*
323  * Locate all copies of the inode for obj_id compatible with the specified
324  * asof, reference, and issue the related call-back.  This routine is used
325  * for direct-io invalidation and does not create any new inodes.
326  */
327 void
328 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
329 		            int (*callback)(hammer_inode_t ip, void *data),
330 			    void *data)
331 {
332 	hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
333 				   hammer_inode_info_cmp_all_history,
334 				   callback, iinfo);
335 }
336 
337 /*
338  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
339  * do not attach or detach the related vnode (use hammer_get_vnode() for
340  * that).
341  *
342  * The flags argument is only applied for newly created inodes, and only
343  * certain flags are inherited.
344  *
345  * Called from the frontend.
346  */
347 struct hammer_inode *
348 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
349 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
350 		 int flags, int *errorp)
351 {
352 	hammer_mount_t hmp = trans->hmp;
353 	struct hammer_inode_info iinfo;
354 	struct hammer_cursor cursor;
355 	struct hammer_inode *ip;
356 
357 
358 	/*
359 	 * Determine if we already have an inode cached.  If we do then
360 	 * we are golden.
361 	 *
362 	 * If we find an inode with no vnode we have to mark the
363 	 * transaction such that hammer_inode_waitreclaims() is
364 	 * called later on to avoid building up an infinite number
365 	 * of inodes.  Otherwise we can continue to * add new inodes
366 	 * faster then they can be disposed of, even with the tsleep
367 	 * delay.
368 	 *
369 	 * If we find a dummy inode we return a failure so dounlink
370 	 * (which does another lookup) doesn't try to mess with the
371 	 * link count.  hammer_vop_nresolve() uses hammer_get_dummy_inode()
372 	 * to ref dummy inodes.
373 	 */
374 	iinfo.obj_id = obj_id;
375 	iinfo.obj_asof = asof;
376 	iinfo.obj_localization = localization;
377 loop:
378 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
379 	if (ip) {
380 		if (ip->flags & HAMMER_INODE_DUMMY) {
381 			*errorp = ENOENT;
382 			return(NULL);
383 		}
384 		hammer_ref(&ip->lock);
385 		*errorp = 0;
386 		return(ip);
387 	}
388 
389 	/*
390 	 * Allocate a new inode structure and deal with races later.
391 	 */
392 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
393 	++hammer_count_inodes;
394 	++hmp->count_inodes;
395 	ip->obj_id = obj_id;
396 	ip->obj_asof = iinfo.obj_asof;
397 	ip->obj_localization = localization;
398 	ip->hmp = hmp;
399 	ip->flags = flags & HAMMER_INODE_RO;
400 	ip->cache[0].ip = ip;
401 	ip->cache[1].ip = ip;
402 	if (hmp->ronly)
403 		ip->flags |= HAMMER_INODE_RO;
404 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
405 		0x7FFFFFFFFFFFFFFFLL;
406 	RB_INIT(&ip->rec_tree);
407 	TAILQ_INIT(&ip->target_list);
408 	hammer_ref(&ip->lock);
409 
410 	/*
411 	 * Locate the on-disk inode.  If this is a PFS root we always
412 	 * access the current version of the root inode and (if it is not
413 	 * a master) always access information under it with a snapshot
414 	 * TID.
415 	 */
416 retry:
417 	hammer_init_cursor(trans, &cursor, (dip ? &dip->cache[0] : NULL), NULL);
418 	cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
419 	cursor.key_beg.obj_id = ip->obj_id;
420 	cursor.key_beg.key = 0;
421 	cursor.key_beg.create_tid = 0;
422 	cursor.key_beg.delete_tid = 0;
423 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
424 	cursor.key_beg.obj_type = 0;
425 
426 	cursor.asof = iinfo.obj_asof;
427 	cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
428 		       HAMMER_CURSOR_ASOF;
429 
430 	*errorp = hammer_btree_lookup(&cursor);
431 	if (*errorp == EDEADLK) {
432 		hammer_done_cursor(&cursor);
433 		goto retry;
434 	}
435 
436 	/*
437 	 * On success the B-Tree lookup will hold the appropriate
438 	 * buffer cache buffers and provide a pointer to the requested
439 	 * information.  Copy the information to the in-memory inode
440 	 * and cache the B-Tree node to improve future operations.
441 	 */
442 	if (*errorp == 0) {
443 		ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
444 		ip->ino_data = cursor.data->inode;
445 
446 		/*
447 		 * cache[0] tries to cache the location of the object inode.
448 		 * The assumption is that it is near the directory inode.
449 		 *
450 		 * cache[1] tries to cache the location of the object data.
451 		 * The assumption is that it is near the directory data.
452 		 */
453 		hammer_cache_node(&ip->cache[0], cursor.node);
454 		if (dip && dip->cache[1].node)
455 			hammer_cache_node(&ip->cache[1], dip->cache[1].node);
456 
457 		/*
458 		 * The file should not contain any data past the file size
459 		 * stored in the inode.  Setting save_trunc_off to the
460 		 * file size instead of max reduces B-Tree lookup overheads
461 		 * on append by allowing the flusher to avoid checking for
462 		 * record overwrites.
463 		 */
464 		ip->save_trunc_off = ip->ino_data.size;
465 
466 		/*
467 		 * Locate and assign the pseudofs management structure to
468 		 * the inode.
469 		 */
470 		if (dip && dip->obj_localization == ip->obj_localization) {
471 			ip->pfsm = dip->pfsm;
472 			hammer_ref(&ip->pfsm->lock);
473 		} else {
474 			ip->pfsm = hammer_load_pseudofs(trans,
475 							ip->obj_localization,
476 							errorp);
477 			*errorp = 0;	/* ignore ENOENT */
478 		}
479 	}
480 
481 	/*
482 	 * The inode is placed on the red-black tree and will be synced to
483 	 * the media when flushed or by the filesystem sync.  If this races
484 	 * another instantiation/lookup the insertion will fail.
485 	 */
486 	if (*errorp == 0) {
487 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
488 			hammer_free_inode(ip);
489 			hammer_done_cursor(&cursor);
490 			goto loop;
491 		}
492 		ip->flags |= HAMMER_INODE_ONDISK;
493 	} else {
494 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
495 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
496 			--hmp->rsv_inodes;
497 		}
498 
499 		hammer_free_inode(ip);
500 		ip = NULL;
501 	}
502 	hammer_done_cursor(&cursor);
503 	trans->flags |= HAMMER_TRANSF_NEWINODE;
504 	return (ip);
505 }
506 
507 /*
508  * Get a dummy inode to placemark a broken directory entry.
509  */
510 struct hammer_inode *
511 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
512 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
513 		 int flags, int *errorp)
514 {
515 	hammer_mount_t hmp = trans->hmp;
516 	struct hammer_inode_info iinfo;
517 	struct hammer_inode *ip;
518 
519 	/*
520 	 * Determine if we already have an inode cached.  If we do then
521 	 * we are golden.
522 	 *
523 	 * If we find an inode with no vnode we have to mark the
524 	 * transaction such that hammer_inode_waitreclaims() is
525 	 * called later on to avoid building up an infinite number
526 	 * of inodes.  Otherwise we can continue to * add new inodes
527 	 * faster then they can be disposed of, even with the tsleep
528 	 * delay.
529 	 *
530 	 * If we find a non-fake inode we return an error.  Only fake
531 	 * inodes can be returned by this routine.
532 	 */
533 	iinfo.obj_id = obj_id;
534 	iinfo.obj_asof = asof;
535 	iinfo.obj_localization = localization;
536 loop:
537 	*errorp = 0;
538 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
539 	if (ip) {
540 		if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
541 			*errorp = ENOENT;
542 			return(NULL);
543 		}
544 		hammer_ref(&ip->lock);
545 		return(ip);
546 	}
547 
548 	/*
549 	 * Allocate a new inode structure and deal with races later.
550 	 */
551 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
552 	++hammer_count_inodes;
553 	++hmp->count_inodes;
554 	ip->obj_id = obj_id;
555 	ip->obj_asof = iinfo.obj_asof;
556 	ip->obj_localization = localization;
557 	ip->hmp = hmp;
558 	ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
559 	ip->cache[0].ip = ip;
560 	ip->cache[1].ip = ip;
561 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
562 		0x7FFFFFFFFFFFFFFFLL;
563 	RB_INIT(&ip->rec_tree);
564 	TAILQ_INIT(&ip->target_list);
565 	hammer_ref(&ip->lock);
566 
567 	/*
568 	 * Populate the dummy inode.  Leave everything zero'd out.
569 	 *
570 	 * (ip->ino_leaf and ip->ino_data)
571 	 *
572 	 * Make the dummy inode a FIFO object which most copy programs
573 	 * will properly ignore.
574 	 */
575 	ip->save_trunc_off = ip->ino_data.size;
576 	ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
577 
578 	/*
579 	 * Locate and assign the pseudofs management structure to
580 	 * the inode.
581 	 */
582 	if (dip && dip->obj_localization == ip->obj_localization) {
583 		ip->pfsm = dip->pfsm;
584 		hammer_ref(&ip->pfsm->lock);
585 	} else {
586 		ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
587 						errorp);
588 		*errorp = 0;	/* ignore ENOENT */
589 	}
590 
591 	/*
592 	 * The inode is placed on the red-black tree and will be synced to
593 	 * the media when flushed or by the filesystem sync.  If this races
594 	 * another instantiation/lookup the insertion will fail.
595 	 *
596 	 * NOTE: Do not set HAMMER_INODE_ONDISK.  The inode is a fake.
597 	 */
598 	if (*errorp == 0) {
599 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
600 			hammer_free_inode(ip);
601 			goto loop;
602 		}
603 	} else {
604 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
605 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
606 			--hmp->rsv_inodes;
607 		}
608 		hammer_free_inode(ip);
609 		ip = NULL;
610 	}
611 	trans->flags |= HAMMER_TRANSF_NEWINODE;
612 	return (ip);
613 }
614 
615 /*
616  * Create a new filesystem object, returning the inode in *ipp.  The
617  * returned inode will be referenced.  The inode is created in-memory.
618  *
619  * If pfsm is non-NULL the caller wishes to create the root inode for
620  * a master PFS.
621  */
622 int
623 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
624 		    struct ucred *cred, hammer_inode_t dip,
625 		    hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
626 {
627 	hammer_mount_t hmp;
628 	hammer_inode_t ip;
629 	uid_t xuid;
630 	int error;
631 
632 	hmp = trans->hmp;
633 
634 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
635 	++hammer_count_inodes;
636 	++hmp->count_inodes;
637 	trans->flags |= HAMMER_TRANSF_NEWINODE;
638 
639 	if (pfsm) {
640 		KKASSERT(pfsm->localization != 0);
641 		ip->obj_id = HAMMER_OBJID_ROOT;
642 		ip->obj_localization = pfsm->localization;
643 	} else {
644 		KKASSERT(dip != NULL);
645 		ip->obj_id = hammer_alloc_objid(hmp, dip);
646 		ip->obj_localization = dip->obj_localization;
647 	}
648 
649 	KKASSERT(ip->obj_id != 0);
650 	ip->obj_asof = hmp->asof;
651 	ip->hmp = hmp;
652 	ip->flush_state = HAMMER_FST_IDLE;
653 	ip->flags = HAMMER_INODE_DDIRTY |
654 		    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
655 	ip->cache[0].ip = ip;
656 	ip->cache[1].ip = ip;
657 
658 	ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
659 	/* ip->save_trunc_off = 0; (already zero) */
660 	RB_INIT(&ip->rec_tree);
661 	TAILQ_INIT(&ip->target_list);
662 
663 	ip->ino_data.atime = trans->time;
664 	ip->ino_data.mtime = trans->time;
665 	ip->ino_data.size = 0;
666 	ip->ino_data.nlinks = 0;
667 
668 	/*
669 	 * A nohistory designator on the parent directory is inherited by
670 	 * the child.  We will do this even for pseudo-fs creation... the
671 	 * sysad can turn it off.
672 	 */
673 	if (dip) {
674 		ip->ino_data.uflags = dip->ino_data.uflags &
675 				      (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
676 	}
677 
678 	ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
679 	ip->ino_leaf.base.localization = ip->obj_localization +
680 					 HAMMER_LOCALIZE_INODE;
681 	ip->ino_leaf.base.obj_id = ip->obj_id;
682 	ip->ino_leaf.base.key = 0;
683 	ip->ino_leaf.base.create_tid = 0;
684 	ip->ino_leaf.base.delete_tid = 0;
685 	ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
686 	ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
687 
688 	ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
689 	ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
690 	ip->ino_data.mode = vap->va_mode;
691 	ip->ino_data.ctime = trans->time;
692 
693 	/*
694 	 * If we are running version 2 or greater we use dirhash algorithm #1
695 	 * which is semi-sorted.  Algorithm #0 was just a pure crc.
696 	 */
697 	if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
698 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
699 			ip->ino_data.cap_flags |= HAMMER_INODE_CAP_DIRHASH_ALG1;
700 		}
701 	}
702 
703 	/*
704 	 * Setup the ".." pointer.  This only needs to be done for directories
705 	 * but we do it for all objects as a recovery aid.
706 	 */
707 	if (dip)
708 		ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
709 #if 0
710 	/*
711 	 * The parent_obj_localization field only applies to pseudo-fs roots.
712 	 * XXX this is no longer applicable, PFSs are no longer directly
713 	 * tied into the parent's directory structure.
714 	 */
715 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
716 	    ip->obj_id == HAMMER_OBJID_ROOT) {
717 		ip->ino_data.ext.obj.parent_obj_localization =
718 						dip->obj_localization;
719 	}
720 #endif
721 
722 	switch(ip->ino_leaf.base.obj_type) {
723 	case HAMMER_OBJTYPE_CDEV:
724 	case HAMMER_OBJTYPE_BDEV:
725 		ip->ino_data.rmajor = vap->va_rmajor;
726 		ip->ino_data.rminor = vap->va_rminor;
727 		break;
728 	default:
729 		break;
730 	}
731 
732 	/*
733 	 * Calculate default uid/gid and overwrite with information from
734 	 * the vap.
735 	 */
736 	if (dip) {
737 		xuid = hammer_to_unix_xid(&dip->ino_data.uid);
738 		xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
739 					     xuid, cred, &vap->va_mode);
740 	} else {
741 		xuid = 0;
742 	}
743 	ip->ino_data.mode = vap->va_mode;
744 
745 	if (vap->va_vaflags & VA_UID_UUID_VALID)
746 		ip->ino_data.uid = vap->va_uid_uuid;
747 	else if (vap->va_uid != (uid_t)VNOVAL)
748 		hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
749 	else
750 		hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
751 
752 	if (vap->va_vaflags & VA_GID_UUID_VALID)
753 		ip->ino_data.gid = vap->va_gid_uuid;
754 	else if (vap->va_gid != (gid_t)VNOVAL)
755 		hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
756 	else if (dip)
757 		ip->ino_data.gid = dip->ino_data.gid;
758 
759 	hammer_ref(&ip->lock);
760 
761 	if (pfsm) {
762 		ip->pfsm = pfsm;
763 		hammer_ref(&pfsm->lock);
764 		error = 0;
765 	} else if (dip->obj_localization == ip->obj_localization) {
766 		ip->pfsm = dip->pfsm;
767 		hammer_ref(&ip->pfsm->lock);
768 		error = 0;
769 	} else {
770 		ip->pfsm = hammer_load_pseudofs(trans,
771 						ip->obj_localization,
772 						&error);
773 		error = 0;	/* ignore ENOENT */
774 	}
775 
776 	if (error) {
777 		hammer_free_inode(ip);
778 		ip = NULL;
779 	} else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
780 		panic("hammer_create_inode: duplicate obj_id %llx", ip->obj_id);
781 		/* not reached */
782 		hammer_free_inode(ip);
783 	}
784 	*ipp = ip;
785 	return(error);
786 }
787 
788 /*
789  * Final cleanup / freeing of an inode structure
790  */
791 static void
792 hammer_free_inode(hammer_inode_t ip)
793 {
794 	struct hammer_mount *hmp;
795 
796 	hmp = ip->hmp;
797 	KKASSERT(ip->lock.refs == 1);
798 	hammer_uncache_node(&ip->cache[0]);
799 	hammer_uncache_node(&ip->cache[1]);
800 	hammer_inode_wakereclaims(ip, 1);
801 	if (ip->objid_cache)
802 		hammer_clear_objid(ip);
803 	--hammer_count_inodes;
804 	--hmp->count_inodes;
805 	if (ip->pfsm) {
806 		hammer_rel_pseudofs(hmp, ip->pfsm);
807 		ip->pfsm = NULL;
808 	}
809 	kfree(ip, hmp->m_inodes);
810 	ip = NULL;
811 }
812 
813 /*
814  * Retrieve pseudo-fs data.  NULL will never be returned.
815  *
816  * If an error occurs *errorp will be set and a default template is returned,
817  * otherwise *errorp is set to 0.  Typically when an error occurs it will
818  * be ENOENT.
819  */
820 hammer_pseudofs_inmem_t
821 hammer_load_pseudofs(hammer_transaction_t trans,
822 		     u_int32_t localization, int *errorp)
823 {
824 	hammer_mount_t hmp = trans->hmp;
825 	hammer_inode_t ip;
826 	hammer_pseudofs_inmem_t pfsm;
827 	struct hammer_cursor cursor;
828 	int bytes;
829 
830 retry:
831 	pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
832 	if (pfsm) {
833 		hammer_ref(&pfsm->lock);
834 		*errorp = 0;
835 		return(pfsm);
836 	}
837 
838 	/*
839 	 * PFS records are stored in the root inode (not the PFS root inode,
840 	 * but the real root).  Avoid an infinite recursion if loading
841 	 * the PFS for the real root.
842 	 */
843 	if (localization) {
844 		ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
845 				      HAMMER_MAX_TID,
846 				      HAMMER_DEF_LOCALIZATION, 0, errorp);
847 	} else {
848 		ip = NULL;
849 	}
850 
851 	pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
852 	pfsm->localization = localization;
853 	pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
854 	pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
855 
856 	hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
857 	cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
858 				      HAMMER_LOCALIZE_MISC;
859 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
860 	cursor.key_beg.create_tid = 0;
861 	cursor.key_beg.delete_tid = 0;
862 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
863 	cursor.key_beg.obj_type = 0;
864 	cursor.key_beg.key = localization;
865 	cursor.asof = HAMMER_MAX_TID;
866 	cursor.flags |= HAMMER_CURSOR_ASOF;
867 
868 	if (ip)
869 		*errorp = hammer_ip_lookup(&cursor);
870 	else
871 		*errorp = hammer_btree_lookup(&cursor);
872 	if (*errorp == 0) {
873 		*errorp = hammer_ip_resolve_data(&cursor);
874 		if (*errorp == 0) {
875 			if (cursor.data->pfsd.mirror_flags &
876 			    HAMMER_PFSD_DELETED) {
877 				*errorp = ENOENT;
878 			} else {
879 				bytes = cursor.leaf->data_len;
880 				if (bytes > sizeof(pfsm->pfsd))
881 					bytes = sizeof(pfsm->pfsd);
882 				bcopy(cursor.data, &pfsm->pfsd, bytes);
883 			}
884 		}
885 	}
886 	hammer_done_cursor(&cursor);
887 
888 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
889 	hammer_ref(&pfsm->lock);
890 	if (ip)
891 		hammer_rel_inode(ip, 0);
892 	if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
893 		kfree(pfsm, hmp->m_misc);
894 		goto retry;
895 	}
896 	return(pfsm);
897 }
898 
899 /*
900  * Store pseudo-fs data.  The backend will automatically delete any prior
901  * on-disk pseudo-fs data but we have to delete in-memory versions.
902  */
903 int
904 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
905 {
906 	struct hammer_cursor cursor;
907 	hammer_record_t record;
908 	hammer_inode_t ip;
909 	int error;
910 
911 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
912 			      HAMMER_DEF_LOCALIZATION, 0, &error);
913 retry:
914 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
915 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
916 	cursor.key_beg.localization = ip->obj_localization +
917 				      HAMMER_LOCALIZE_MISC;
918 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
919 	cursor.key_beg.create_tid = 0;
920 	cursor.key_beg.delete_tid = 0;
921 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
922 	cursor.key_beg.obj_type = 0;
923 	cursor.key_beg.key = pfsm->localization;
924 	cursor.asof = HAMMER_MAX_TID;
925 	cursor.flags |= HAMMER_CURSOR_ASOF;
926 
927 	/*
928 	 * Replace any in-memory version of the record.
929 	 */
930 	error = hammer_ip_lookup(&cursor);
931 	if (error == 0 && hammer_cursor_inmem(&cursor)) {
932 		record = cursor.iprec;
933 		if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
934 			KKASSERT(cursor.deadlk_rec == NULL);
935 			hammer_ref(&record->lock);
936 			cursor.deadlk_rec = record;
937 			error = EDEADLK;
938 		} else {
939 			record->flags |= HAMMER_RECF_DELETED_FE;
940 			error = 0;
941 		}
942 	}
943 
944 	/*
945 	 * Allocate replacement general record.  The backend flush will
946 	 * delete any on-disk version of the record.
947 	 */
948 	if (error == 0 || error == ENOENT) {
949 		record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
950 		record->type = HAMMER_MEM_RECORD_GENERAL;
951 
952 		record->leaf.base.localization = ip->obj_localization +
953 						 HAMMER_LOCALIZE_MISC;
954 		record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
955 		record->leaf.base.key = pfsm->localization;
956 		record->leaf.data_len = sizeof(pfsm->pfsd);
957 		bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
958 		error = hammer_ip_add_record(trans, record);
959 	}
960 	hammer_done_cursor(&cursor);
961 	if (error == EDEADLK)
962 		goto retry;
963 	hammer_rel_inode(ip, 0);
964 	return(error);
965 }
966 
967 /*
968  * Create a root directory for a PFS if one does not alredy exist.
969  *
970  * The PFS root stands alone so we must also bump the nlinks count
971  * to prevent it from being destroyed on release.
972  */
973 int
974 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
975 		       hammer_pseudofs_inmem_t pfsm)
976 {
977 	hammer_inode_t ip;
978 	struct vattr vap;
979 	int error;
980 
981 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
982 			      pfsm->localization, 0, &error);
983 	if (ip == NULL) {
984 		vattr_null(&vap);
985 		vap.va_mode = 0755;
986 		vap.va_type = VDIR;
987 		error = hammer_create_inode(trans, &vap, cred, NULL, pfsm, &ip);
988 		if (error == 0) {
989 			++ip->ino_data.nlinks;
990 			hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
991 		}
992 	}
993 	if (ip)
994 		hammer_rel_inode(ip, 0);
995 	return(error);
996 }
997 
998 /*
999  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1000  * if we are unable to disassociate all the inodes.
1001  */
1002 static
1003 int
1004 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1005 {
1006 	int res;
1007 
1008 	hammer_ref(&ip->lock);
1009 	if (ip->lock.refs == 2 && ip->vp)
1010 		vclean_unlocked(ip->vp);
1011 	if (ip->lock.refs == 1 && ip->vp == NULL)
1012 		res = 0;
1013 	else
1014 		res = -1;	/* stop, someone is using the inode */
1015 	hammer_rel_inode(ip, 0);
1016 	return(res);
1017 }
1018 
1019 int
1020 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1021 {
1022 	int res;
1023 	int try;
1024 
1025 	for (try = res = 0; try < 4; ++try) {
1026 		res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1027 					   hammer_inode_pfs_cmp,
1028 					   hammer_unload_pseudofs_callback,
1029 					   &localization);
1030 		if (res == 0 && try > 1)
1031 			break;
1032 		hammer_flusher_sync(trans->hmp);
1033 	}
1034 	if (res != 0)
1035 		res = ENOTEMPTY;
1036 	return(res);
1037 }
1038 
1039 
1040 /*
1041  * Release a reference on a PFS
1042  */
1043 void
1044 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1045 {
1046 	hammer_unref(&pfsm->lock);
1047 	if (pfsm->lock.refs == 0) {
1048 		RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1049 		kfree(pfsm, hmp->m_misc);
1050 	}
1051 }
1052 
1053 /*
1054  * Called by hammer_sync_inode().
1055  */
1056 static int
1057 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1058 {
1059 	hammer_transaction_t trans = cursor->trans;
1060 	hammer_record_t record;
1061 	int error;
1062 	int redirty;
1063 
1064 retry:
1065 	error = 0;
1066 
1067 	/*
1068 	 * If the inode has a presence on-disk then locate it and mark
1069 	 * it deleted, setting DELONDISK.
1070 	 *
1071 	 * The record may or may not be physically deleted, depending on
1072 	 * the retention policy.
1073 	 */
1074 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1075 	    HAMMER_INODE_ONDISK) {
1076 		hammer_normalize_cursor(cursor);
1077 		cursor->key_beg.localization = ip->obj_localization +
1078 					       HAMMER_LOCALIZE_INODE;
1079 		cursor->key_beg.obj_id = ip->obj_id;
1080 		cursor->key_beg.key = 0;
1081 		cursor->key_beg.create_tid = 0;
1082 		cursor->key_beg.delete_tid = 0;
1083 		cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1084 		cursor->key_beg.obj_type = 0;
1085 		cursor->asof = ip->obj_asof;
1086 		cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1087 		cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1088 		cursor->flags |= HAMMER_CURSOR_BACKEND;
1089 
1090 		error = hammer_btree_lookup(cursor);
1091 		if (hammer_debug_inode)
1092 			kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1093 
1094 		if (error == 0) {
1095 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
1096 			if (hammer_debug_inode)
1097 				kprintf(" error %d\n", error);
1098 			if (error == 0) {
1099 				ip->flags |= HAMMER_INODE_DELONDISK;
1100 			}
1101 			if (cursor->node)
1102 				hammer_cache_node(&ip->cache[0], cursor->node);
1103 		}
1104 		if (error == EDEADLK) {
1105 			hammer_done_cursor(cursor);
1106 			error = hammer_init_cursor(trans, cursor,
1107 						   &ip->cache[0], ip);
1108 			if (hammer_debug_inode)
1109 				kprintf("IPDED %p %d\n", ip, error);
1110 			if (error == 0)
1111 				goto retry;
1112 		}
1113 	}
1114 
1115 	/*
1116 	 * Ok, write out the initial record or a new record (after deleting
1117 	 * the old one), unless the DELETED flag is set.  This routine will
1118 	 * clear DELONDISK if it writes out a record.
1119 	 *
1120 	 * Update our inode statistics if this is the first application of
1121 	 * the inode on-disk.
1122 	 */
1123 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1124 		/*
1125 		 * Generate a record and write it to the media.  We clean-up
1126 		 * the state before releasing so we do not have to set-up
1127 		 * a flush_group.
1128 		 */
1129 		record = hammer_alloc_mem_record(ip, 0);
1130 		record->type = HAMMER_MEM_RECORD_INODE;
1131 		record->flush_state = HAMMER_FST_FLUSH;
1132 		record->leaf = ip->sync_ino_leaf;
1133 		record->leaf.base.create_tid = trans->tid;
1134 		record->leaf.data_len = sizeof(ip->sync_ino_data);
1135 		record->leaf.create_ts = trans->time32;
1136 		record->data = (void *)&ip->sync_ino_data;
1137 		record->flags |= HAMMER_RECF_INTERLOCK_BE;
1138 
1139 		/*
1140 		 * If this flag is set we cannot sync the new file size
1141 		 * because we haven't finished related truncations.  The
1142 		 * inode will be flushed in another flush group to finish
1143 		 * the job.
1144 		 */
1145 		if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1146 		    ip->sync_ino_data.size != ip->ino_data.size) {
1147 			redirty = 1;
1148 			ip->sync_ino_data.size = ip->ino_data.size;
1149 		} else {
1150 			redirty = 0;
1151 		}
1152 
1153 		for (;;) {
1154 			error = hammer_ip_sync_record_cursor(cursor, record);
1155 			if (hammer_debug_inode)
1156 				kprintf("GENREC %p rec %08x %d\n",
1157 					ip, record->flags, error);
1158 			if (error != EDEADLK)
1159 				break;
1160 			hammer_done_cursor(cursor);
1161 			error = hammer_init_cursor(trans, cursor,
1162 						   &ip->cache[0], ip);
1163 			if (hammer_debug_inode)
1164 				kprintf("GENREC reinit %d\n", error);
1165 			if (error)
1166 				break;
1167 		}
1168 
1169 		/*
1170 		 * Note:  The record was never on the inode's record tree
1171 		 * so just wave our hands importantly and destroy it.
1172 		 */
1173 		record->flags |= HAMMER_RECF_COMMITTED;
1174 		record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1175 		record->flush_state = HAMMER_FST_IDLE;
1176 		++ip->rec_generation;
1177 		hammer_rel_mem_record(record);
1178 
1179 		/*
1180 		 * Finish up.
1181 		 */
1182 		if (error == 0) {
1183 			if (hammer_debug_inode)
1184 				kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1185 			ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1186 					    HAMMER_INODE_ATIME |
1187 					    HAMMER_INODE_MTIME);
1188 			ip->flags &= ~HAMMER_INODE_DELONDISK;
1189 			if (redirty)
1190 				ip->sync_flags |= HAMMER_INODE_DDIRTY;
1191 
1192 			/*
1193 			 * Root volume count of inodes
1194 			 */
1195 			hammer_sync_lock_sh(trans);
1196 			if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1197 				hammer_modify_volume_field(trans,
1198 							   trans->rootvol,
1199 							   vol0_stat_inodes);
1200 				++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1201 				hammer_modify_volume_done(trans->rootvol);
1202 				ip->flags |= HAMMER_INODE_ONDISK;
1203 				if (hammer_debug_inode)
1204 					kprintf("NOWONDISK %p\n", ip);
1205 			}
1206 			hammer_sync_unlock(trans);
1207 		}
1208 	}
1209 
1210 	/*
1211 	 * If the inode has been destroyed, clean out any left-over flags
1212 	 * that may have been set by the frontend.
1213 	 */
1214 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1215 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1216 				    HAMMER_INODE_ATIME |
1217 				    HAMMER_INODE_MTIME);
1218 	}
1219 	return(error);
1220 }
1221 
1222 /*
1223  * Update only the itimes fields.
1224  *
1225  * ATIME can be updated without generating any UNDO.  MTIME is updated
1226  * with UNDO so it is guaranteed to be synchronized properly in case of
1227  * a crash.
1228  *
1229  * Neither field is included in the B-Tree leaf element's CRC, which is how
1230  * we can get away with updating ATIME the way we do.
1231  */
1232 static int
1233 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1234 {
1235 	hammer_transaction_t trans = cursor->trans;
1236 	int error;
1237 
1238 retry:
1239 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1240 	    HAMMER_INODE_ONDISK) {
1241 		return(0);
1242 	}
1243 
1244 	hammer_normalize_cursor(cursor);
1245 	cursor->key_beg.localization = ip->obj_localization +
1246 				       HAMMER_LOCALIZE_INODE;
1247 	cursor->key_beg.obj_id = ip->obj_id;
1248 	cursor->key_beg.key = 0;
1249 	cursor->key_beg.create_tid = 0;
1250 	cursor->key_beg.delete_tid = 0;
1251 	cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1252 	cursor->key_beg.obj_type = 0;
1253 	cursor->asof = ip->obj_asof;
1254 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1255 	cursor->flags |= HAMMER_CURSOR_ASOF;
1256 	cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1257 	cursor->flags |= HAMMER_CURSOR_GET_DATA;
1258 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1259 
1260 	error = hammer_btree_lookup(cursor);
1261 	if (error == 0) {
1262 		hammer_cache_node(&ip->cache[0], cursor->node);
1263 		if (ip->sync_flags & HAMMER_INODE_MTIME) {
1264 			/*
1265 			 * Updating MTIME requires an UNDO.  Just cover
1266 			 * both atime and mtime.
1267 			 */
1268 			hammer_sync_lock_sh(trans);
1269 			hammer_modify_buffer(trans, cursor->data_buffer,
1270 				     HAMMER_ITIMES_BASE(&cursor->data->inode),
1271 				     HAMMER_ITIMES_BYTES);
1272 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1273 			cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1274 			hammer_modify_buffer_done(cursor->data_buffer);
1275 			hammer_sync_unlock(trans);
1276 		} else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1277 			/*
1278 			 * Updating atime only can be done in-place with
1279 			 * no UNDO.
1280 			 */
1281 			hammer_sync_lock_sh(trans);
1282 			hammer_modify_buffer(trans, cursor->data_buffer,
1283 					     NULL, 0);
1284 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1285 			hammer_modify_buffer_done(cursor->data_buffer);
1286 			hammer_sync_unlock(trans);
1287 		}
1288 		ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1289 	}
1290 	if (error == EDEADLK) {
1291 		hammer_done_cursor(cursor);
1292 		error = hammer_init_cursor(trans, cursor,
1293 					   &ip->cache[0], ip);
1294 		if (error == 0)
1295 			goto retry;
1296 	}
1297 	return(error);
1298 }
1299 
1300 /*
1301  * Release a reference on an inode, flush as requested.
1302  *
1303  * On the last reference we queue the inode to the flusher for its final
1304  * disposition.
1305  */
1306 void
1307 hammer_rel_inode(struct hammer_inode *ip, int flush)
1308 {
1309 	/*hammer_mount_t hmp = ip->hmp;*/
1310 
1311 	/*
1312 	 * Handle disposition when dropping the last ref.
1313 	 */
1314 	for (;;) {
1315 		if (ip->lock.refs == 1) {
1316 			/*
1317 			 * Determine whether on-disk action is needed for
1318 			 * the inode's final disposition.
1319 			 */
1320 			KKASSERT(ip->vp == NULL);
1321 			hammer_inode_unloadable_check(ip, 0);
1322 			if (ip->flags & HAMMER_INODE_MODMASK) {
1323 				hammer_flush_inode(ip, 0);
1324 			} else if (ip->lock.refs == 1) {
1325 				hammer_unload_inode(ip);
1326 				break;
1327 			}
1328 		} else {
1329 			if (flush)
1330 				hammer_flush_inode(ip, 0);
1331 
1332 			/*
1333 			 * The inode still has multiple refs, try to drop
1334 			 * one ref.
1335 			 */
1336 			KKASSERT(ip->lock.refs >= 1);
1337 			if (ip->lock.refs > 1) {
1338 				hammer_unref(&ip->lock);
1339 				break;
1340 			}
1341 		}
1342 	}
1343 }
1344 
1345 /*
1346  * Unload and destroy the specified inode.  Must be called with one remaining
1347  * reference.  The reference is disposed of.
1348  *
1349  * The inode must be completely clean.
1350  */
1351 static int
1352 hammer_unload_inode(struct hammer_inode *ip)
1353 {
1354 	hammer_mount_t hmp = ip->hmp;
1355 
1356 	KASSERT(ip->lock.refs == 1,
1357 		("hammer_unload_inode: %d refs\n", ip->lock.refs));
1358 	KKASSERT(ip->vp == NULL);
1359 	KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1360 	KKASSERT(ip->cursor_ip_refs == 0);
1361 	KKASSERT(ip->lock.lockcount == 0);
1362 	KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1363 
1364 	KKASSERT(RB_EMPTY(&ip->rec_tree));
1365 	KKASSERT(TAILQ_EMPTY(&ip->target_list));
1366 
1367 	RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1368 
1369 	hammer_free_inode(ip);
1370 	return(0);
1371 }
1372 
1373 /*
1374  * Called during unmounting if a critical error occured.  The in-memory
1375  * inode and all related structures are destroyed.
1376  *
1377  * If a critical error did not occur the unmount code calls the standard
1378  * release and asserts that the inode is gone.
1379  */
1380 int
1381 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1382 {
1383 	hammer_record_t rec;
1384 
1385 	/*
1386 	 * Get rid of the inodes in-memory records, regardless of their
1387 	 * state, and clear the mod-mask.
1388 	 */
1389 	while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1390 		TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1391 		rec->target_ip = NULL;
1392 		if (rec->flush_state == HAMMER_FST_SETUP)
1393 			rec->flush_state = HAMMER_FST_IDLE;
1394 	}
1395 	while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1396 		if (rec->flush_state == HAMMER_FST_FLUSH)
1397 			--rec->flush_group->refs;
1398 		else
1399 			hammer_ref(&rec->lock);
1400 		KKASSERT(rec->lock.refs == 1);
1401 		rec->flush_state = HAMMER_FST_IDLE;
1402 		rec->flush_group = NULL;
1403 		rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1404 		rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1405 		++ip->rec_generation;
1406 		hammer_rel_mem_record(rec);
1407 	}
1408 	ip->flags &= ~HAMMER_INODE_MODMASK;
1409 	ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1410 	KKASSERT(ip->vp == NULL);
1411 
1412 	/*
1413 	 * Remove the inode from any flush group, force it idle.  FLUSH
1414 	 * and SETUP states have an inode ref.
1415 	 */
1416 	switch(ip->flush_state) {
1417 	case HAMMER_FST_FLUSH:
1418 		TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
1419 		--ip->flush_group->refs;
1420 		ip->flush_group = NULL;
1421 		/* fall through */
1422 	case HAMMER_FST_SETUP:
1423 		hammer_unref(&ip->lock);
1424 		ip->flush_state = HAMMER_FST_IDLE;
1425 		/* fall through */
1426 	case HAMMER_FST_IDLE:
1427 		break;
1428 	}
1429 
1430 	/*
1431 	 * There shouldn't be any associated vnode.  The unload needs at
1432 	 * least one ref, if we do have a vp steal its ip ref.
1433 	 */
1434 	if (ip->vp) {
1435 		kprintf("hammer_destroy_inode_callback: Unexpected "
1436 			"vnode association ip %p vp %p\n", ip, ip->vp);
1437 		ip->vp->v_data = NULL;
1438 		ip->vp = NULL;
1439 	} else {
1440 		hammer_ref(&ip->lock);
1441 	}
1442 	hammer_unload_inode(ip);
1443 	return(0);
1444 }
1445 
1446 /*
1447  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1448  * the read-only flag for cached inodes.
1449  *
1450  * This routine is called from a RB_SCAN().
1451  */
1452 int
1453 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1454 {
1455 	hammer_mount_t hmp = ip->hmp;
1456 
1457 	if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1458 		ip->flags |= HAMMER_INODE_RO;
1459 	else
1460 		ip->flags &= ~HAMMER_INODE_RO;
1461 	return(0);
1462 }
1463 
1464 /*
1465  * A transaction has modified an inode, requiring updates as specified by
1466  * the passed flags.
1467  *
1468  * HAMMER_INODE_DDIRTY: Inode data has been updated
1469  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1470  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1471  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1472  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1473  */
1474 void
1475 hammer_modify_inode(hammer_inode_t ip, int flags)
1476 {
1477 	/*
1478 	 * ronly of 0 or 2 does not trigger assertion.
1479 	 * 2 is a special error state
1480 	 */
1481 	KKASSERT(ip->hmp->ronly != 1 ||
1482 		  (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1483 			    HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1484 			    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1485 	if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1486 		ip->flags |= HAMMER_INODE_RSV_INODES;
1487 		++ip->hmp->rsv_inodes;
1488 	}
1489 
1490 	ip->flags |= flags;
1491 }
1492 
1493 /*
1494  * Request that an inode be flushed.  This whole mess cannot block and may
1495  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1496  * actively flush the inode until the flush can be done.
1497  *
1498  * The inode may already be flushing, or may be in a setup state.  We can
1499  * place the inode in a flushing state if it is currently idle and flag it
1500  * to reflush if it is currently flushing.
1501  *
1502  * Upon return if the inode could not be flushed due to a setup
1503  * dependancy, then it will be automatically flushed when the dependancy
1504  * is satisfied.
1505  */
1506 void
1507 hammer_flush_inode(hammer_inode_t ip, int flags)
1508 {
1509 	hammer_mount_t hmp;
1510 	hammer_flush_group_t flg;
1511 	int good;
1512 
1513 	/*
1514 	 * next_flush_group is the first flush group we can place the inode
1515 	 * in.  It may be NULL.  If it becomes full we append a new flush
1516 	 * group and make that the next_flush_group.
1517 	 */
1518 	hmp = ip->hmp;
1519 	while ((flg = hmp->next_flush_group) != NULL) {
1520 		KKASSERT(flg->running == 0);
1521 		if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit)
1522 			break;
1523 		hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
1524 		hammer_flusher_async(ip->hmp, flg);
1525 	}
1526 	if (flg == NULL) {
1527 		flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1528 		hmp->next_flush_group = flg;
1529 		TAILQ_INIT(&flg->flush_list);
1530 		TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1531 	}
1532 
1533 	/*
1534 	 * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1535 	 * state we have to put it back into an IDLE state so we can
1536 	 * drop the extra ref.
1537 	 *
1538 	 * If we have a parent dependancy we must still fall through
1539 	 * so we can run it.
1540 	 */
1541 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1542 		if (ip->flush_state == HAMMER_FST_SETUP &&
1543 		    TAILQ_EMPTY(&ip->target_list)) {
1544 			ip->flush_state = HAMMER_FST_IDLE;
1545 			hammer_rel_inode(ip, 0);
1546 		}
1547 		if (ip->flush_state == HAMMER_FST_IDLE)
1548 			return;
1549 	}
1550 
1551 	/*
1552 	 * Our flush action will depend on the current state.
1553 	 */
1554 	switch(ip->flush_state) {
1555 	case HAMMER_FST_IDLE:
1556 		/*
1557 		 * We have no dependancies and can flush immediately.  Some
1558 		 * our children may not be flushable so we have to re-test
1559 		 * with that additional knowledge.
1560 		 */
1561 		hammer_flush_inode_core(ip, flg, flags);
1562 		break;
1563 	case HAMMER_FST_SETUP:
1564 		/*
1565 		 * Recurse upwards through dependancies via target_list
1566 		 * and start their flusher actions going if possible.
1567 		 *
1568 		 * 'good' is our connectivity.  -1 means we have none and
1569 		 * can't flush, 0 means there weren't any dependancies, and
1570 		 * 1 means we have good connectivity.
1571 		 */
1572 		good = hammer_setup_parent_inodes(ip, 0, flg);
1573 
1574 		if (good >= 0) {
1575 			/*
1576 			 * We can continue if good >= 0.  Determine how
1577 			 * many records under our inode can be flushed (and
1578 			 * mark them).
1579 			 */
1580 			hammer_flush_inode_core(ip, flg, flags);
1581 		} else {
1582 			/*
1583 			 * Parent has no connectivity, tell it to flush
1584 			 * us as soon as it does.
1585 			 *
1586 			 * The REFLUSH flag is also needed to trigger
1587 			 * dependancy wakeups.
1588 			 */
1589 			ip->flags |= HAMMER_INODE_CONN_DOWN |
1590 				     HAMMER_INODE_REFLUSH;
1591 			if (flags & HAMMER_FLUSH_SIGNAL) {
1592 				ip->flags |= HAMMER_INODE_RESIGNAL;
1593 				hammer_flusher_async(ip->hmp, flg);
1594 			}
1595 		}
1596 		break;
1597 	case HAMMER_FST_FLUSH:
1598 		/*
1599 		 * We are already flushing, flag the inode to reflush
1600 		 * if needed after it completes its current flush.
1601 		 *
1602 		 * The REFLUSH flag is also needed to trigger
1603 		 * dependancy wakeups.
1604 		 */
1605 		if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1606 			ip->flags |= HAMMER_INODE_REFLUSH;
1607 		if (flags & HAMMER_FLUSH_SIGNAL) {
1608 			ip->flags |= HAMMER_INODE_RESIGNAL;
1609 			hammer_flusher_async(ip->hmp, flg);
1610 		}
1611 		break;
1612 	}
1613 }
1614 
1615 /*
1616  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1617  * ip which reference our ip.
1618  *
1619  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1620  *     so for now do not ref/deref the structures.  Note that if we use the
1621  *     ref/rel code later, the rel CAN block.
1622  */
1623 static int
1624 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1625 			   hammer_flush_group_t flg)
1626 {
1627 	hammer_record_t depend;
1628 	int good;
1629 	int r;
1630 
1631 	/*
1632 	 * If we hit our recursion limit and we have parent dependencies
1633 	 * We cannot continue.  Returning < 0 will cause us to be flagged
1634 	 * for reflush.  Returning -2 cuts off additional dependency checks
1635 	 * because they are likely to also hit the depth limit.
1636 	 *
1637 	 * We cannot return < 0 if there are no dependencies or there might
1638 	 * not be anything to wakeup (ip).
1639 	 */
1640 	if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1641 		kprintf("HAMMER Warning: depth limit reached on "
1642 			"setup recursion, inode %p %016llx\n",
1643 			ip, (long long)ip->obj_id);
1644 		return(-2);
1645 	}
1646 
1647 	/*
1648 	 * Scan dependencies
1649 	 */
1650 	good = 0;
1651 	TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1652 		r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1653 		KKASSERT(depend->target_ip == ip);
1654 		if (r < 0 && good == 0)
1655 			good = -1;
1656 		if (r > 0)
1657 			good = 1;
1658 
1659 		/*
1660 		 * If we failed due to the recursion depth limit then stop
1661 		 * now.
1662 		 */
1663 		if (r == -2)
1664 			break;
1665 	}
1666 	return(good);
1667 }
1668 
1669 /*
1670  * This helper function takes a record representing the dependancy between
1671  * the parent inode and child inode.
1672  *
1673  * record->ip		= parent inode
1674  * record->target_ip	= child inode
1675  *
1676  * We are asked to recurse upwards and convert the record from SETUP
1677  * to FLUSH if possible.
1678  *
1679  * Return 1 if the record gives us connectivity
1680  *
1681  * Return 0 if the record is not relevant
1682  *
1683  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1684  */
1685 static int
1686 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1687 				  hammer_flush_group_t flg)
1688 {
1689 	hammer_mount_t hmp;
1690 	hammer_inode_t pip;
1691 	int good;
1692 
1693 	KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1694 	pip = record->ip;
1695 	hmp = pip->hmp;
1696 
1697 	/*
1698 	 * If the record is already flushing, is it in our flush group?
1699 	 *
1700 	 * If it is in our flush group but it is a general record or a
1701 	 * delete-on-disk, it does not improve our connectivity (return 0),
1702 	 * and if the target inode is not trying to destroy itself we can't
1703 	 * allow the operation yet anyway (the second return -1).
1704 	 */
1705 	if (record->flush_state == HAMMER_FST_FLUSH) {
1706 		/*
1707 		 * If not in our flush group ask the parent to reflush
1708 		 * us as soon as possible.
1709 		 */
1710 		if (record->flush_group != flg) {
1711 			pip->flags |= HAMMER_INODE_REFLUSH;
1712 			record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1713 			return(-1);
1714 		}
1715 
1716 		/*
1717 		 * If in our flush group everything is already set up,
1718 		 * just return whether the record will improve our
1719 		 * visibility or not.
1720 		 */
1721 		if (record->type == HAMMER_MEM_RECORD_ADD)
1722 			return(1);
1723 		return(0);
1724 	}
1725 
1726 	/*
1727 	 * It must be a setup record.  Try to resolve the setup dependancies
1728 	 * by recursing upwards so we can place ip on the flush list.
1729 	 *
1730 	 * Limit ourselves to 20 levels of recursion to avoid blowing out
1731 	 * the kernel stack.  If we hit the recursion limit we can't flush
1732 	 * until the parent flushes.  The parent will flush independantly
1733 	 * on its own and ultimately a deep recursion will be resolved.
1734 	 */
1735 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1736 
1737 	good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1738 
1739 	/*
1740 	 * If good < 0 the parent has no connectivity and we cannot safely
1741 	 * flush the directory entry, which also means we can't flush our
1742 	 * ip.  Flag us for downward recursion once the parent's
1743 	 * connectivity is resolved.  Flag the parent for [re]flush or it
1744 	 * may not check for downward recursions.
1745 	 */
1746 	if (good < 0) {
1747 		pip->flags |= HAMMER_INODE_REFLUSH;
1748 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1749 		return(good);
1750 	}
1751 
1752 	/*
1753 	 * We are go, place the parent inode in a flushing state so we can
1754 	 * place its record in a flushing state.  Note that the parent
1755 	 * may already be flushing.  The record must be in the same flush
1756 	 * group as the parent.
1757 	 */
1758 	if (pip->flush_state != HAMMER_FST_FLUSH)
1759 		hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1760 	KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1761 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1762 
1763 #if 0
1764 	if (record->type == HAMMER_MEM_RECORD_DEL &&
1765 	    (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1766 		/*
1767 		 * Regardless of flushing state we cannot sync this path if the
1768 		 * record represents a delete-on-disk but the target inode
1769 		 * is not ready to sync its own deletion.
1770 		 *
1771 		 * XXX need to count effective nlinks to determine whether
1772 		 * the flush is ok, otherwise removing a hardlink will
1773 		 * just leave the DEL record to rot.
1774 		 */
1775 		record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1776 		return(-1);
1777 	} else
1778 #endif
1779 	if (pip->flush_group == flg) {
1780 		/*
1781 		 * Because we have not calculated nlinks yet we can just
1782 		 * set records to the flush state if the parent is in
1783 		 * the same flush group as we are.
1784 		 */
1785 		record->flush_state = HAMMER_FST_FLUSH;
1786 		record->flush_group = flg;
1787 		++record->flush_group->refs;
1788 		hammer_ref(&record->lock);
1789 
1790 		/*
1791 		 * A general directory-add contributes to our visibility.
1792 		 *
1793 		 * Otherwise it is probably a directory-delete or
1794 		 * delete-on-disk record and does not contribute to our
1795 		 * visbility (but we can still flush it).
1796 		 */
1797 		if (record->type == HAMMER_MEM_RECORD_ADD)
1798 			return(1);
1799 		return(0);
1800 	} else {
1801 		/*
1802 		 * If the parent is not in our flush group we cannot
1803 		 * flush this record yet, there is no visibility.
1804 		 * We tell the parent to reflush and mark ourselves
1805 		 * so the parent knows it should flush us too.
1806 		 */
1807 		pip->flags |= HAMMER_INODE_REFLUSH;
1808 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1809 		return(-1);
1810 	}
1811 }
1812 
1813 /*
1814  * This is the core routine placing an inode into the FST_FLUSH state.
1815  */
1816 static void
1817 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
1818 {
1819 	int go_count;
1820 
1821 	/*
1822 	 * Set flush state and prevent the flusher from cycling into
1823 	 * the next flush group.  Do not place the ip on the list yet.
1824 	 * Inodes not in the idle state get an extra reference.
1825 	 */
1826 	KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1827 	if (ip->flush_state == HAMMER_FST_IDLE)
1828 		hammer_ref(&ip->lock);
1829 	ip->flush_state = HAMMER_FST_FLUSH;
1830 	ip->flush_group = flg;
1831 	++ip->hmp->flusher.group_lock;
1832 	++ip->hmp->count_iqueued;
1833 	++hammer_count_iqueued;
1834 	++flg->total_count;
1835 
1836 	/*
1837 	 * If the flush group reaches the autoflush limit we want to signal
1838 	 * the flusher.  This is particularly important for remove()s.
1839 	 */
1840 	if (flg->total_count == hammer_autoflush)
1841 		flags |= HAMMER_FLUSH_SIGNAL;
1842 
1843 	/*
1844 	 * We need to be able to vfsync/truncate from the backend.
1845 	 */
1846 	KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1847 	if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1848 		ip->flags |= HAMMER_INODE_VHELD;
1849 		vref(ip->vp);
1850 	}
1851 
1852 	/*
1853 	 * Figure out how many in-memory records we can actually flush
1854 	 * (not including inode meta-data, buffers, etc).
1855 	 */
1856 	KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
1857 	if (flags & HAMMER_FLUSH_RECURSION) {
1858 		/*
1859 		 * If this is a upwards recursion we do not want to
1860 		 * recurse down again!
1861 		 */
1862 		go_count = 1;
1863 #if 0
1864 	} else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1865 		/*
1866 		 * No new records are added if we must complete a flush
1867 		 * from a previous cycle, but we do have to move the records
1868 		 * from the previous cycle to the current one.
1869 		 */
1870 #if 0
1871 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1872 				   hammer_syncgrp_child_callback, NULL);
1873 #endif
1874 		go_count = 1;
1875 #endif
1876 	} else {
1877 		/*
1878 		 * Normal flush, scan records and bring them into the flush.
1879 		 * Directory adds and deletes are usually skipped (they are
1880 		 * grouped with the related inode rather then with the
1881 		 * directory).
1882 		 *
1883 		 * go_count can be negative, which means the scan aborted
1884 		 * due to the flush group being over-full and we should
1885 		 * flush what we have.
1886 		 */
1887 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1888 				   hammer_setup_child_callback, NULL);
1889 	}
1890 
1891 	/*
1892 	 * This is a more involved test that includes go_count.  If we
1893 	 * can't flush, flag the inode and return.  If go_count is 0 we
1894 	 * were are unable to flush any records in our rec_tree and
1895 	 * must ignore the XDIRTY flag.
1896 	 */
1897 	if (go_count == 0) {
1898 		if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1899 			--ip->hmp->count_iqueued;
1900 			--hammer_count_iqueued;
1901 
1902 			--flg->total_count;
1903 			ip->flush_state = HAMMER_FST_SETUP;
1904 			ip->flush_group = NULL;
1905 			if (ip->flags & HAMMER_INODE_VHELD) {
1906 				ip->flags &= ~HAMMER_INODE_VHELD;
1907 				vrele(ip->vp);
1908 			}
1909 
1910 			/*
1911 			 * REFLUSH is needed to trigger dependancy wakeups
1912 			 * when an inode is in SETUP.
1913 			 */
1914 			ip->flags |= HAMMER_INODE_REFLUSH;
1915 			if (flags & HAMMER_FLUSH_SIGNAL) {
1916 				ip->flags |= HAMMER_INODE_RESIGNAL;
1917 				hammer_flusher_async(ip->hmp, flg);
1918 			}
1919 			if (--ip->hmp->flusher.group_lock == 0)
1920 				wakeup(&ip->hmp->flusher.group_lock);
1921 			return;
1922 		}
1923 	}
1924 
1925 	/*
1926 	 * Snapshot the state of the inode for the backend flusher.
1927 	 *
1928 	 * We continue to retain save_trunc_off even when all truncations
1929 	 * have been resolved as an optimization to determine if we can
1930 	 * skip the B-Tree lookup for overwrite deletions.
1931 	 *
1932 	 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1933 	 * and stays in ip->flags.  Once set, it stays set until the
1934 	 * inode is destroyed.
1935 	 */
1936 	if (ip->flags & HAMMER_INODE_TRUNCATED) {
1937 		KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
1938 		ip->sync_trunc_off = ip->trunc_off;
1939 		ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
1940 		ip->flags &= ~HAMMER_INODE_TRUNCATED;
1941 		ip->sync_flags |= HAMMER_INODE_TRUNCATED;
1942 
1943 		/*
1944 		 * The save_trunc_off used to cache whether the B-Tree
1945 		 * holds any records past that point is not used until
1946 		 * after the truncation has succeeded, so we can safely
1947 		 * set it now.
1948 		 */
1949 		if (ip->save_trunc_off > ip->sync_trunc_off)
1950 			ip->save_trunc_off = ip->sync_trunc_off;
1951 	}
1952 	ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
1953 			   ~HAMMER_INODE_TRUNCATED);
1954 	ip->sync_ino_leaf = ip->ino_leaf;
1955 	ip->sync_ino_data = ip->ino_data;
1956 	ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
1957 #ifdef DEBUG_TRUNCATE
1958 	if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
1959 		kprintf("truncateS %016llx\n", ip->sync_trunc_off);
1960 #endif
1961 
1962 	/*
1963 	 * The flusher list inherits our inode and reference.
1964 	 */
1965 	KKASSERT(flg->running == 0);
1966 	TAILQ_INSERT_TAIL(&flg->flush_list, ip, flush_entry);
1967 	if (--ip->hmp->flusher.group_lock == 0)
1968 		wakeup(&ip->hmp->flusher.group_lock);
1969 
1970 	if (flags & HAMMER_FLUSH_SIGNAL) {
1971 		hammer_flusher_async(ip->hmp, flg);
1972 	}
1973 }
1974 
1975 /*
1976  * Callback for scan of ip->rec_tree.  Try to include each record in our
1977  * flush.  ip->flush_group has been set but the inode has not yet been
1978  * moved into a flushing state.
1979  *
1980  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
1981  * both inodes.
1982  *
1983  * We return 1 for any record placed or found in FST_FLUSH, which prevents
1984  * the caller from shortcutting the flush.
1985  */
1986 static int
1987 hammer_setup_child_callback(hammer_record_t rec, void *data)
1988 {
1989 	hammer_flush_group_t flg;
1990 	hammer_inode_t target_ip;
1991 	hammer_inode_t ip;
1992 	int r;
1993 
1994 	/*
1995 	 * Records deleted or committed by the backend are ignored.
1996 	 * Note that the flush detects deleted frontend records at
1997 	 * multiple points to deal with races.  This is just the first
1998 	 * line of defense.  The only time HAMMER_RECF_DELETED_FE cannot
1999 	 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2000 	 * messes up link-count calculations.
2001 	 *
2002 	 * NOTE: Don't get confused between record deletion and, say,
2003 	 * directory entry deletion.  The deletion of a directory entry
2004 	 * which is on-media has nothing to do with the record deletion
2005 	 * flags.
2006 	 */
2007 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2008 			  HAMMER_RECF_COMMITTED)) {
2009 		if (rec->flush_state == HAMMER_FST_FLUSH) {
2010 			KKASSERT(rec->flush_group == rec->ip->flush_group);
2011 			r = 1;
2012 		} else {
2013 			r = 0;
2014 		}
2015 		return(r);
2016 	}
2017 
2018 	/*
2019 	 * If the record is in an idle state it has no dependancies and
2020 	 * can be flushed.
2021 	 */
2022 	ip = rec->ip;
2023 	flg = ip->flush_group;
2024 	r = 0;
2025 
2026 	switch(rec->flush_state) {
2027 	case HAMMER_FST_IDLE:
2028 		/*
2029 		 * The record has no setup dependancy, we can flush it.
2030 		 */
2031 		KKASSERT(rec->target_ip == NULL);
2032 		rec->flush_state = HAMMER_FST_FLUSH;
2033 		rec->flush_group = flg;
2034 		++flg->refs;
2035 		hammer_ref(&rec->lock);
2036 		r = 1;
2037 		break;
2038 	case HAMMER_FST_SETUP:
2039 		/*
2040 		 * The record has a setup dependancy.  These are typically
2041 		 * directory entry adds and deletes.  Such entries will be
2042 		 * flushed when their inodes are flushed so we do not
2043 		 * usually have to add them to the flush here.  However,
2044 		 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2045 		 * it is asking us to flush this record (and it).
2046 		 */
2047 		target_ip = rec->target_ip;
2048 		KKASSERT(target_ip != NULL);
2049 		KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2050 
2051 		/*
2052 		 * If the target IP is already flushing in our group
2053 		 * we could associate the record, but target_ip has
2054 		 * already synced ino_data to sync_ino_data and we
2055 		 * would also have to adjust nlinks.   Plus there are
2056 		 * ordering issues for adds and deletes.
2057 		 *
2058 		 * Reflush downward if this is an ADD, and upward if
2059 		 * this is a DEL.
2060 		 */
2061 		if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2062 			if (rec->flush_state == HAMMER_MEM_RECORD_ADD)
2063 				ip->flags |= HAMMER_INODE_REFLUSH;
2064 			else
2065 				target_ip->flags |= HAMMER_INODE_REFLUSH;
2066 			break;
2067 		}
2068 
2069 		/*
2070 		 * Target IP is not yet flushing.  This can get complex
2071 		 * because we have to be careful about the recursion.
2072 		 *
2073 		 * Directories create an issue for us in that if a flush
2074 		 * of a directory is requested the expectation is to flush
2075 		 * any pending directory entries, but this will cause the
2076 		 * related inodes to recursively flush as well.  We can't
2077 		 * really defer the operation so just get as many as we
2078 		 * can and
2079 		 */
2080 #if 0
2081 		if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2082 		    (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2083 			/*
2084 			 * We aren't reclaiming and the target ip was not
2085 			 * previously prevented from flushing due to this
2086 			 * record dependancy.  Do not flush this record.
2087 			 */
2088 			/*r = 0;*/
2089 		} else
2090 #endif
2091 		if (flg->total_count + flg->refs >
2092 			   ip->hmp->undo_rec_limit) {
2093 			/*
2094 			 * Our flush group is over-full and we risk blowing
2095 			 * out the UNDO FIFO.  Stop the scan, flush what we
2096 			 * have, then reflush the directory.
2097 			 *
2098 			 * The directory may be forced through multiple
2099 			 * flush groups before it can be completely
2100 			 * flushed.
2101 			 */
2102 			ip->flags |= HAMMER_INODE_RESIGNAL |
2103 				     HAMMER_INODE_REFLUSH;
2104 			r = -1;
2105 		} else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2106 			/*
2107 			 * If the target IP is not flushing we can force
2108 			 * it to flush, even if it is unable to write out
2109 			 * any of its own records we have at least one in
2110 			 * hand that we CAN deal with.
2111 			 */
2112 			rec->flush_state = HAMMER_FST_FLUSH;
2113 			rec->flush_group = flg;
2114 			++flg->refs;
2115 			hammer_ref(&rec->lock);
2116 			hammer_flush_inode_core(target_ip, flg,
2117 						HAMMER_FLUSH_RECURSION);
2118 			r = 1;
2119 		} else {
2120 			/*
2121 			 * General or delete-on-disk record.
2122 			 *
2123 			 * XXX this needs help.  If a delete-on-disk we could
2124 			 * disconnect the target.  If the target has its own
2125 			 * dependancies they really need to be flushed.
2126 			 *
2127 			 * XXX
2128 			 */
2129 			rec->flush_state = HAMMER_FST_FLUSH;
2130 			rec->flush_group = flg;
2131 			++flg->refs;
2132 			hammer_ref(&rec->lock);
2133 			hammer_flush_inode_core(target_ip, flg,
2134 						HAMMER_FLUSH_RECURSION);
2135 			r = 1;
2136 		}
2137 		break;
2138 	case HAMMER_FST_FLUSH:
2139 		/*
2140 		 * The flush_group should already match.
2141 		 */
2142 		KKASSERT(rec->flush_group == flg);
2143 		r = 1;
2144 		break;
2145 	}
2146 	return(r);
2147 }
2148 
2149 #if 0
2150 /*
2151  * This version just moves records already in a flush state to the new
2152  * flush group and that is it.
2153  */
2154 static int
2155 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2156 {
2157 	hammer_inode_t ip = rec->ip;
2158 
2159 	switch(rec->flush_state) {
2160 	case HAMMER_FST_FLUSH:
2161 		KKASSERT(rec->flush_group == ip->flush_group);
2162 		break;
2163 	default:
2164 		break;
2165 	}
2166 	return(0);
2167 }
2168 #endif
2169 
2170 /*
2171  * Wait for a previously queued flush to complete.
2172  *
2173  * If a critical error occured we don't try to wait.
2174  */
2175 void
2176 hammer_wait_inode(hammer_inode_t ip)
2177 {
2178 	hammer_flush_group_t flg;
2179 
2180 	flg = NULL;
2181 	if ((ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2182 		while (ip->flush_state != HAMMER_FST_IDLE &&
2183 		       (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2184 			if (ip->flush_state == HAMMER_FST_SETUP)
2185 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2186 			if (ip->flush_state != HAMMER_FST_IDLE) {
2187 				ip->flags |= HAMMER_INODE_FLUSHW;
2188 				tsleep(&ip->flags, 0, "hmrwin", 0);
2189 			}
2190 		}
2191 	}
2192 }
2193 
2194 /*
2195  * Called by the backend code when a flush has been completed.
2196  * The inode has already been removed from the flush list.
2197  *
2198  * A pipelined flush can occur, in which case we must re-enter the
2199  * inode on the list and re-copy its fields.
2200  */
2201 void
2202 hammer_flush_inode_done(hammer_inode_t ip, int error)
2203 {
2204 	hammer_mount_t hmp;
2205 	int dorel;
2206 
2207 	KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2208 
2209 	hmp = ip->hmp;
2210 
2211 	/*
2212 	 * Auto-reflush if the backend could not completely flush
2213 	 * the inode.  This fixes a case where a deferred buffer flush
2214 	 * could cause fsync to return early.
2215 	 */
2216 	if (ip->sync_flags & HAMMER_INODE_MODMASK)
2217 		ip->flags |= HAMMER_INODE_REFLUSH;
2218 
2219 	/*
2220 	 * Merge left-over flags back into the frontend and fix the state.
2221 	 * Incomplete truncations are retained by the backend.
2222 	 */
2223 	ip->error = error;
2224 	ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2225 	ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2226 
2227 	/*
2228 	 * The backend may have adjusted nlinks, so if the adjusted nlinks
2229 	 * does not match the fronttend set the frontend's RDIRTY flag again.
2230 	 */
2231 	if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2232 		ip->flags |= HAMMER_INODE_DDIRTY;
2233 
2234 	/*
2235 	 * Fix up the dirty buffer status.
2236 	 */
2237 	if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2238 		ip->flags |= HAMMER_INODE_BUFS;
2239 	}
2240 
2241 	/*
2242 	 * Re-set the XDIRTY flag if some of the inode's in-memory records
2243 	 * could not be flushed.
2244 	 */
2245 	KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2246 		  (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2247 		 (!RB_EMPTY(&ip->rec_tree) &&
2248 		  (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2249 
2250 	/*
2251 	 * Do not lose track of inodes which no longer have vnode
2252 	 * assocations, otherwise they may never get flushed again.
2253 	 *
2254 	 * The reflush flag can be set superfluously, causing extra pain
2255 	 * for no reason.  If the inode is no longer modified it no longer
2256 	 * needs to be flushed.
2257 	 */
2258 	if (ip->flags & HAMMER_INODE_MODMASK) {
2259 		if (ip->vp == NULL)
2260 			ip->flags |= HAMMER_INODE_REFLUSH;
2261 	} else {
2262 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2263 	}
2264 
2265 	/*
2266 	 * Adjust the flush state.
2267 	 */
2268 	if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2269 		/*
2270 		 * We were unable to flush out all our records, leave the
2271 		 * inode in a flush state and in the current flush group.
2272 		 * The flush group will be re-run.
2273 		 *
2274 		 * This occurs if the UNDO block gets too full or there is
2275 		 * too much dirty meta-data and allows the flusher to
2276 		 * finalize the UNDO block and then re-flush.
2277 		 */
2278 		ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2279 		dorel = 0;
2280 	} else {
2281 		/*
2282 		 * Remove from the flush_group
2283 		 */
2284 		TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
2285 		ip->flush_group = NULL;
2286 
2287 		/*
2288 		 * Clean up the vnode ref and tracking counts.
2289 		 */
2290 		if (ip->flags & HAMMER_INODE_VHELD) {
2291 			ip->flags &= ~HAMMER_INODE_VHELD;
2292 			vrele(ip->vp);
2293 		}
2294 		--hmp->count_iqueued;
2295 		--hammer_count_iqueued;
2296 
2297 		/*
2298 		 * And adjust the state.
2299 		 */
2300 		if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2301 			ip->flush_state = HAMMER_FST_IDLE;
2302 			dorel = 1;
2303 		} else {
2304 			ip->flush_state = HAMMER_FST_SETUP;
2305 			dorel = 0;
2306 		}
2307 
2308 		/*
2309 		 * If the frontend is waiting for a flush to complete,
2310 		 * wake it up.
2311 		 */
2312 		if (ip->flags & HAMMER_INODE_FLUSHW) {
2313 			ip->flags &= ~HAMMER_INODE_FLUSHW;
2314 			wakeup(&ip->flags);
2315 		}
2316 
2317 		/*
2318 		 * If the frontend made more changes and requested another
2319 		 * flush, then try to get it running.
2320 		 *
2321 		 * Reflushes are aborted when the inode is errored out.
2322 		 */
2323 		if (ip->flags & HAMMER_INODE_REFLUSH) {
2324 			ip->flags &= ~HAMMER_INODE_REFLUSH;
2325 			if (ip->flags & HAMMER_INODE_RESIGNAL) {
2326 				ip->flags &= ~HAMMER_INODE_RESIGNAL;
2327 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2328 			} else {
2329 				hammer_flush_inode(ip, 0);
2330 			}
2331 		}
2332 	}
2333 
2334 	/*
2335 	 * If we have no parent dependancies we can clear CONN_DOWN
2336 	 */
2337 	if (TAILQ_EMPTY(&ip->target_list))
2338 		ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2339 
2340 	/*
2341 	 * If the inode is now clean drop the space reservation.
2342 	 */
2343 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2344 	    (ip->flags & HAMMER_INODE_RSV_INODES)) {
2345 		ip->flags &= ~HAMMER_INODE_RSV_INODES;
2346 		--hmp->rsv_inodes;
2347 	}
2348 
2349 	if (dorel)
2350 		hammer_rel_inode(ip, 0);
2351 }
2352 
2353 /*
2354  * Called from hammer_sync_inode() to synchronize in-memory records
2355  * to the media.
2356  */
2357 static int
2358 hammer_sync_record_callback(hammer_record_t record, void *data)
2359 {
2360 	hammer_cursor_t cursor = data;
2361 	hammer_transaction_t trans = cursor->trans;
2362 	hammer_mount_t hmp = trans->hmp;
2363 	int error;
2364 
2365 	/*
2366 	 * Skip records that do not belong to the current flush.
2367 	 */
2368 	++hammer_stats_record_iterations;
2369 	if (record->flush_state != HAMMER_FST_FLUSH)
2370 		return(0);
2371 
2372 #if 1
2373 	if (record->flush_group != record->ip->flush_group) {
2374 		kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2375 		Debugger("blah2");
2376 		return(0);
2377 	}
2378 #endif
2379 	KKASSERT(record->flush_group == record->ip->flush_group);
2380 
2381 	/*
2382 	 * Interlock the record using the BE flag.  Once BE is set the
2383 	 * frontend cannot change the state of FE.
2384 	 *
2385 	 * NOTE: If FE is set prior to us setting BE we still sync the
2386 	 * record out, but the flush completion code converts it to
2387 	 * a delete-on-disk record instead of destroying it.
2388 	 */
2389 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2390 	record->flags |= HAMMER_RECF_INTERLOCK_BE;
2391 
2392 	/*
2393 	 * The backend has already disposed of the record.
2394 	 */
2395 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2396 		error = 0;
2397 		goto done;
2398 	}
2399 
2400 	/*
2401 	 * If the whole inode is being deleting all on-disk records will
2402 	 * be deleted very soon, we can't sync any new records to disk
2403 	 * because they will be deleted in the same transaction they were
2404 	 * created in (delete_tid == create_tid), which will assert.
2405 	 *
2406 	 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2407 	 * that we currently panic on.
2408 	 */
2409 	if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2410 		switch(record->type) {
2411 		case HAMMER_MEM_RECORD_DATA:
2412 			/*
2413 			 * We don't have to do anything, if the record was
2414 			 * committed the space will have been accounted for
2415 			 * in the blockmap.
2416 			 */
2417 			/* fall through */
2418 		case HAMMER_MEM_RECORD_GENERAL:
2419 			/*
2420 			 * Set deleted-by-backend flag.  Do not set the
2421 			 * backend committed flag, because we are throwing
2422 			 * the record away.
2423 			 */
2424 			record->flags |= HAMMER_RECF_DELETED_BE;
2425 			++record->ip->rec_generation;
2426 			error = 0;
2427 			goto done;
2428 		case HAMMER_MEM_RECORD_ADD:
2429 			panic("hammer_sync_record_callback: illegal add "
2430 			      "during inode deletion record %p", record);
2431 			break; /* NOT REACHED */
2432 		case HAMMER_MEM_RECORD_INODE:
2433 			panic("hammer_sync_record_callback: attempt to "
2434 			      "sync inode record %p?", record);
2435 			break; /* NOT REACHED */
2436 		case HAMMER_MEM_RECORD_DEL:
2437 			/*
2438 			 * Follow through and issue the on-disk deletion
2439 			 */
2440 			break;
2441 		}
2442 	}
2443 
2444 	/*
2445 	 * If DELETED_FE is set special handling is needed for directory
2446 	 * entries.  Dependant pieces related to the directory entry may
2447 	 * have already been synced to disk.  If this occurs we have to
2448 	 * sync the directory entry and then change the in-memory record
2449 	 * from an ADD to a DELETE to cover the fact that it's been
2450 	 * deleted by the frontend.
2451 	 *
2452 	 * A directory delete covering record (MEM_RECORD_DEL) can never
2453 	 * be deleted by the frontend.
2454 	 *
2455 	 * Any other record type (aka DATA) can be deleted by the frontend.
2456 	 * XXX At the moment the flusher must skip it because there may
2457 	 * be another data record in the flush group for the same block,
2458 	 * meaning that some frontend data changes can leak into the backend's
2459 	 * synchronization point.
2460 	 */
2461 	if (record->flags & HAMMER_RECF_DELETED_FE) {
2462 		if (record->type == HAMMER_MEM_RECORD_ADD) {
2463 			/*
2464 			 * Convert a front-end deleted directory-add to
2465 			 * a directory-delete entry later.
2466 			 */
2467 			record->flags |= HAMMER_RECF_CONVERT_DELETE;
2468 		} else {
2469 			/*
2470 			 * Dispose of the record (race case).  Mark as
2471 			 * deleted by backend (and not committed).
2472 			 */
2473 			KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2474 			record->flags |= HAMMER_RECF_DELETED_BE;
2475 			++record->ip->rec_generation;
2476 			error = 0;
2477 			goto done;
2478 		}
2479 	}
2480 
2481 	/*
2482 	 * Assign the create_tid for new records.  Deletions already
2483 	 * have the record's entire key properly set up.
2484 	 */
2485 	if (record->type != HAMMER_MEM_RECORD_DEL) {
2486 		record->leaf.base.create_tid = trans->tid;
2487 		record->leaf.create_ts = trans->time32;
2488 	}
2489 	for (;;) {
2490 		error = hammer_ip_sync_record_cursor(cursor, record);
2491 		if (error != EDEADLK)
2492 			break;
2493 		hammer_done_cursor(cursor);
2494 		error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2495 					   record->ip);
2496 		if (error)
2497 			break;
2498 	}
2499 	record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2500 
2501 	if (error)
2502 		error = -error;
2503 done:
2504 	hammer_flush_record_done(record, error);
2505 
2506 	/*
2507 	 * Do partial finalization if we have built up too many dirty
2508 	 * buffers.  Otherwise a buffer cache deadlock can occur when
2509 	 * doing things like creating tens of thousands of tiny files.
2510 	 *
2511 	 * We must release our cursor lock to avoid a 3-way deadlock
2512 	 * due to the exclusive sync lock the finalizer must get.
2513 	 */
2514         if (hammer_flusher_meta_limit(hmp)) {
2515 		hammer_unlock_cursor(cursor);
2516                 hammer_flusher_finalize(trans, 0);
2517 		hammer_lock_cursor(cursor);
2518 	}
2519 
2520 	return(error);
2521 }
2522 
2523 /*
2524  * Backend function called by the flusher to sync an inode to media.
2525  */
2526 int
2527 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2528 {
2529 	struct hammer_cursor cursor;
2530 	hammer_node_t tmp_node;
2531 	hammer_record_t depend;
2532 	hammer_record_t next;
2533 	int error, tmp_error;
2534 	u_int64_t nlinks;
2535 
2536 	if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2537 		return(0);
2538 
2539 	error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2540 	if (error)
2541 		goto done;
2542 
2543 	/*
2544 	 * Any directory records referencing this inode which are not in
2545 	 * our current flush group must adjust our nlink count for the
2546 	 * purposes of synchronization to disk.
2547 	 *
2548 	 * Records which are in our flush group can be unlinked from our
2549 	 * inode now, potentially allowing the inode to be physically
2550 	 * deleted.
2551 	 *
2552 	 * This cannot block.
2553 	 */
2554 	nlinks = ip->ino_data.nlinks;
2555 	next = TAILQ_FIRST(&ip->target_list);
2556 	while ((depend = next) != NULL) {
2557 		next = TAILQ_NEXT(depend, target_entry);
2558 		if (depend->flush_state == HAMMER_FST_FLUSH &&
2559 		    depend->flush_group == ip->flush_group) {
2560 			/*
2561 			 * If this is an ADD that was deleted by the frontend
2562 			 * the frontend nlinks count will have already been
2563 			 * decremented, but the backend is going to sync its
2564 			 * directory entry and must account for it.  The
2565 			 * record will be converted to a delete-on-disk when
2566 			 * it gets synced.
2567 			 *
2568 			 * If the ADD was not deleted by the frontend we
2569 			 * can remove the dependancy from our target_list.
2570 			 */
2571 			if (depend->flags & HAMMER_RECF_DELETED_FE) {
2572 				++nlinks;
2573 			} else {
2574 				TAILQ_REMOVE(&ip->target_list, depend,
2575 					     target_entry);
2576 				depend->target_ip = NULL;
2577 			}
2578 		} else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2579 			/*
2580 			 * Not part of our flush group and not deleted by
2581 			 * the front-end, adjust the link count synced to
2582 			 * the media (undo what the frontend did when it
2583 			 * queued the record).
2584 			 */
2585 			KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2586 			switch(depend->type) {
2587 			case HAMMER_MEM_RECORD_ADD:
2588 				--nlinks;
2589 				break;
2590 			case HAMMER_MEM_RECORD_DEL:
2591 				++nlinks;
2592 				break;
2593 			default:
2594 				break;
2595 			}
2596 		}
2597 	}
2598 
2599 	/*
2600 	 * Set dirty if we had to modify the link count.
2601 	 */
2602 	if (ip->sync_ino_data.nlinks != nlinks) {
2603 		KKASSERT((int64_t)nlinks >= 0);
2604 		ip->sync_ino_data.nlinks = nlinks;
2605 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2606 	}
2607 
2608 	/*
2609 	 * If there is a trunction queued destroy any data past the (aligned)
2610 	 * truncation point.  Userland will have dealt with the buffer
2611 	 * containing the truncation point for us.
2612 	 *
2613 	 * We don't flush pending frontend data buffers until after we've
2614 	 * dealt with the truncation.
2615 	 */
2616 	if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2617 		/*
2618 		 * Interlock trunc_off.  The VOP front-end may continue to
2619 		 * make adjustments to it while we are blocked.
2620 		 */
2621 		off_t trunc_off;
2622 		off_t aligned_trunc_off;
2623 		int blkmask;
2624 
2625 		trunc_off = ip->sync_trunc_off;
2626 		blkmask = hammer_blocksize(trunc_off) - 1;
2627 		aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2628 
2629 		/*
2630 		 * Delete any whole blocks on-media.  The front-end has
2631 		 * already cleaned out any partial block and made it
2632 		 * pending.  The front-end may have updated trunc_off
2633 		 * while we were blocked so we only use sync_trunc_off.
2634 		 *
2635 		 * This operation can blow out the buffer cache, EWOULDBLOCK
2636 		 * means we were unable to complete the deletion.  The
2637 		 * deletion will update sync_trunc_off in that case.
2638 		 */
2639 		error = hammer_ip_delete_range(&cursor, ip,
2640 						aligned_trunc_off,
2641 						0x7FFFFFFFFFFFFFFFLL, 2);
2642 		if (error == EWOULDBLOCK) {
2643 			ip->flags |= HAMMER_INODE_WOULDBLOCK;
2644 			error = 0;
2645 			goto defer_buffer_flush;
2646 		}
2647 
2648 		if (error)
2649 			goto done;
2650 
2651 		/*
2652 		 * Clear the truncation flag on the backend after we have
2653 		 * complete the deletions.  Backend data is now good again
2654 		 * (including new records we are about to sync, below).
2655 		 *
2656 		 * Leave sync_trunc_off intact.  As we write additional
2657 		 * records the backend will update sync_trunc_off.  This
2658 		 * tells the backend whether it can skip the overwrite
2659 		 * test.  This should work properly even when the backend
2660 		 * writes full blocks where the truncation point straddles
2661 		 * the block because the comparison is against the base
2662 		 * offset of the record.
2663 		 */
2664 		ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2665 		/* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2666 	} else {
2667 		error = 0;
2668 	}
2669 
2670 	/*
2671 	 * Now sync related records.  These will typically be directory
2672 	 * entries, records tracking direct-writes, or delete-on-disk records.
2673 	 */
2674 	if (error == 0) {
2675 		tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2676 				    hammer_sync_record_callback, &cursor);
2677 		if (tmp_error < 0)
2678 			tmp_error = -error;
2679 		if (tmp_error)
2680 			error = tmp_error;
2681 	}
2682 	hammer_cache_node(&ip->cache[1], cursor.node);
2683 
2684 	/*
2685 	 * Re-seek for inode update, assuming our cache hasn't been ripped
2686 	 * out from under us.
2687 	 */
2688 	if (error == 0) {
2689 		tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
2690 		if (tmp_node) {
2691 			hammer_cursor_downgrade(&cursor);
2692 			hammer_lock_sh(&tmp_node->lock);
2693 			if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2694 				hammer_cursor_seek(&cursor, tmp_node, 0);
2695 			hammer_unlock(&tmp_node->lock);
2696 			hammer_rel_node(tmp_node);
2697 		}
2698 		error = 0;
2699 	}
2700 
2701 	/*
2702 	 * If we are deleting the inode the frontend had better not have
2703 	 * any active references on elements making up the inode.
2704 	 *
2705 	 * The call to hammer_ip_delete_clean() cleans up auxillary records
2706 	 * but not DB or DATA records.  Those must have already been deleted
2707 	 * by the normal truncation mechanic.
2708 	 */
2709 	if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2710 		RB_EMPTY(&ip->rec_tree)  &&
2711 	    (ip->sync_flags & HAMMER_INODE_DELETING) &&
2712 	    (ip->flags & HAMMER_INODE_DELETED) == 0) {
2713 		int count1 = 0;
2714 
2715 		error = hammer_ip_delete_clean(&cursor, ip, &count1);
2716 		if (error == 0) {
2717 			ip->flags |= HAMMER_INODE_DELETED;
2718 			ip->sync_flags &= ~HAMMER_INODE_DELETING;
2719 			ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2720 			KKASSERT(RB_EMPTY(&ip->rec_tree));
2721 
2722 			/*
2723 			 * Set delete_tid in both the frontend and backend
2724 			 * copy of the inode record.  The DELETED flag handles
2725 			 * this, do not set RDIRTY.
2726 			 */
2727 			ip->ino_leaf.base.delete_tid = trans->tid;
2728 			ip->sync_ino_leaf.base.delete_tid = trans->tid;
2729 			ip->ino_leaf.delete_ts = trans->time32;
2730 			ip->sync_ino_leaf.delete_ts = trans->time32;
2731 
2732 
2733 			/*
2734 			 * Adjust the inode count in the volume header
2735 			 */
2736 			hammer_sync_lock_sh(trans);
2737 			if (ip->flags & HAMMER_INODE_ONDISK) {
2738 				hammer_modify_volume_field(trans,
2739 							   trans->rootvol,
2740 							   vol0_stat_inodes);
2741 				--ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2742 				hammer_modify_volume_done(trans->rootvol);
2743 			}
2744 			hammer_sync_unlock(trans);
2745 		}
2746 	}
2747 
2748 	if (error)
2749 		goto done;
2750 	ip->sync_flags &= ~HAMMER_INODE_BUFS;
2751 
2752 defer_buffer_flush:
2753 	/*
2754 	 * Now update the inode's on-disk inode-data and/or on-disk record.
2755 	 * DELETED and ONDISK are managed only in ip->flags.
2756 	 *
2757 	 * In the case of a defered buffer flush we still update the on-disk
2758 	 * inode to satisfy visibility requirements if there happen to be
2759 	 * directory dependancies.
2760 	 */
2761 	switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2762 	case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2763 		/*
2764 		 * If deleted and on-disk, don't set any additional flags.
2765 		 * the delete flag takes care of things.
2766 		 *
2767 		 * Clear flags which may have been set by the frontend.
2768 		 */
2769 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2770 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2771 				    HAMMER_INODE_DELETING);
2772 		break;
2773 	case HAMMER_INODE_DELETED:
2774 		/*
2775 		 * Take care of the case where a deleted inode was never
2776 		 * flushed to the disk in the first place.
2777 		 *
2778 		 * Clear flags which may have been set by the frontend.
2779 		 */
2780 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2781 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2782 				    HAMMER_INODE_DELETING);
2783 		while (RB_ROOT(&ip->rec_tree)) {
2784 			hammer_record_t record = RB_ROOT(&ip->rec_tree);
2785 			hammer_ref(&record->lock);
2786 			KKASSERT(record->lock.refs == 1);
2787 			record->flags |= HAMMER_RECF_DELETED_BE;
2788 			++record->ip->rec_generation;
2789 			hammer_rel_mem_record(record);
2790 		}
2791 		break;
2792 	case HAMMER_INODE_ONDISK:
2793 		/*
2794 		 * If already on-disk, do not set any additional flags.
2795 		 */
2796 		break;
2797 	default:
2798 		/*
2799 		 * If not on-disk and not deleted, set DDIRTY to force
2800 		 * an initial record to be written.
2801 		 *
2802 		 * Also set the create_tid in both the frontend and backend
2803 		 * copy of the inode record.
2804 		 */
2805 		ip->ino_leaf.base.create_tid = trans->tid;
2806 		ip->ino_leaf.create_ts = trans->time32;
2807 		ip->sync_ino_leaf.base.create_tid = trans->tid;
2808 		ip->sync_ino_leaf.create_ts = trans->time32;
2809 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2810 		break;
2811 	}
2812 
2813 	/*
2814 	 * If RDIRTY or DDIRTY is set, write out a new record.  If the inode
2815 	 * is already on-disk the old record is marked as deleted.
2816 	 *
2817 	 * If DELETED is set hammer_update_inode() will delete the existing
2818 	 * record without writing out a new one.
2819 	 *
2820 	 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2821 	 */
2822 	if (ip->flags & HAMMER_INODE_DELETED) {
2823 		error = hammer_update_inode(&cursor, ip);
2824 	} else
2825 	if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2826 	    (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2827 		error = hammer_update_itimes(&cursor, ip);
2828 	} else
2829 	if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2830 		error = hammer_update_inode(&cursor, ip);
2831 	}
2832 done:
2833 	if (error) {
2834 		hammer_critical_error(ip->hmp, ip, error,
2835 				      "while syncing inode");
2836 	}
2837 	hammer_done_cursor(&cursor);
2838 	return(error);
2839 }
2840 
2841 /*
2842  * This routine is called when the OS is no longer actively referencing
2843  * the inode (but might still be keeping it cached), or when releasing
2844  * the last reference to an inode.
2845  *
2846  * At this point if the inode's nlinks count is zero we want to destroy
2847  * it, which may mean destroying it on-media too.
2848  */
2849 void
2850 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2851 {
2852 	struct vnode *vp;
2853 
2854 	/*
2855 	 * Set the DELETING flag when the link count drops to 0 and the
2856 	 * OS no longer has any opens on the inode.
2857 	 *
2858 	 * The backend will clear DELETING (a mod flag) and set DELETED
2859 	 * (a state flag) when it is actually able to perform the
2860 	 * operation.
2861 	 *
2862 	 * Don't reflag the deletion if the flusher is currently syncing
2863 	 * one that was already flagged.  A previously set DELETING flag
2864 	 * may bounce around flags and sync_flags until the operation is
2865 	 * completely done.
2866 	 */
2867 	if (ip->ino_data.nlinks == 0 &&
2868 	    ((ip->flags | ip->sync_flags) & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2869 		ip->flags |= HAMMER_INODE_DELETING;
2870 		ip->flags |= HAMMER_INODE_TRUNCATED;
2871 		ip->trunc_off = 0;
2872 		vp = NULL;
2873 		if (getvp) {
2874 			if (hammer_get_vnode(ip, &vp) != 0)
2875 				return;
2876 		}
2877 
2878 		/*
2879 		 * Final cleanup
2880 		 */
2881 		if (ip->vp) {
2882 			vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2883 			vnode_pager_setsize(ip->vp, 0);
2884 		}
2885 		if (getvp) {
2886 			vput(vp);
2887 		}
2888 	}
2889 }
2890 
2891 /*
2892  * After potentially resolving a dependancy the inode is tested
2893  * to determine whether it needs to be reflushed.
2894  */
2895 void
2896 hammer_test_inode(hammer_inode_t ip)
2897 {
2898 	if (ip->flags & HAMMER_INODE_REFLUSH) {
2899 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2900 		hammer_ref(&ip->lock);
2901 		if (ip->flags & HAMMER_INODE_RESIGNAL) {
2902 			ip->flags &= ~HAMMER_INODE_RESIGNAL;
2903 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2904 		} else {
2905 			hammer_flush_inode(ip, 0);
2906 		}
2907 		hammer_rel_inode(ip, 0);
2908 	}
2909 }
2910 
2911 /*
2912  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
2913  * reassociated with a vp or just before it gets freed.
2914  *
2915  * Pipeline wakeups to threads blocked due to an excessive number of
2916  * detached inodes.  The reclaim count generates a bit of negative
2917  * feedback.
2918  */
2919 static void
2920 hammer_inode_wakereclaims(hammer_inode_t ip, int dowake)
2921 {
2922 	struct hammer_reclaim *reclaim;
2923 	hammer_mount_t hmp = ip->hmp;
2924 
2925 	if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2926 		return;
2927 
2928 	--hammer_count_reclaiming;
2929 	--hmp->inode_reclaims;
2930 	ip->flags &= ~HAMMER_INODE_RECLAIM;
2931 
2932 	if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT || dowake) {
2933 		reclaim = TAILQ_FIRST(&hmp->reclaim_list);
2934 		if (reclaim && reclaim->count > 0 && --reclaim->count == 0) {
2935 			TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
2936 			wakeup(reclaim);
2937 		}
2938 	}
2939 }
2940 
2941 /*
2942  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
2943  * inodes build up before we start blocking.
2944  *
2945  * When we block we don't care *which* inode has finished reclaiming,
2946  * as lone as one does.  This is somewhat heuristical... we also put a
2947  * cap on how long we are willing to wait.
2948  */
2949 void
2950 hammer_inode_waitreclaims(hammer_mount_t hmp)
2951 {
2952 	struct hammer_reclaim reclaim;
2953 	int delay;
2954 
2955 	if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT)
2956 		return;
2957 	delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
2958 		(HAMMER_RECLAIM_WAIT * 3) + 1;
2959 	if (delay > 0) {
2960 		reclaim.count = 2;
2961 		TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
2962 		tsleep(&reclaim, 0, "hmrrcm", delay);
2963 		if (reclaim.count > 0)
2964 			TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
2965 	}
2966 }
2967 
2968 /*
2969  * A larger then normal backlog of inodes is sitting in the flusher,
2970  * enforce a general slowdown to let it catch up.  This routine is only
2971  * called on completion of a non-flusher-related transaction which
2972  * performed B-Tree node I/O.
2973  *
2974  * It is possible for the flusher to stall in a continuous load.
2975  * blogbench -i1000 -o seems to do a good job generating this sort of load.
2976  * If the flusher is unable to catch up the inode count can bloat until
2977  * we run out of kvm.
2978  *
2979  * This is a bit of a hack.
2980  */
2981 void
2982 hammer_inode_waithard(hammer_mount_t hmp)
2983 {
2984 	/*
2985 	 * Hysteresis.
2986 	 */
2987 	if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
2988 		if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT / 2 &&
2989 		    hmp->count_iqueued < hmp->count_inodes / 20) {
2990 			hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
2991 			return;
2992 		}
2993 	} else {
2994 		if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT ||
2995 		    hmp->count_iqueued < hmp->count_inodes / 10) {
2996 			return;
2997 		}
2998 		hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
2999 	}
3000 
3001 	/*
3002 	 * Block for one flush cycle.
3003 	 */
3004 	hammer_flusher_wait_next(hmp);
3005 }
3006 
3007