xref: /dragonfly/sys/vfs/hammer/hammer_inode.c (revision 9f3fc534)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_inode.c,v 1.114 2008/09/24 00:53:51 dillon Exp $
35  */
36 
37 #include "hammer.h"
38 #include <vm/vm_extern.h>
39 #include <sys/buf.h>
40 #include <sys/buf2.h>
41 
42 static int	hammer_unload_inode(struct hammer_inode *ip);
43 static void	hammer_free_inode(hammer_inode_t ip);
44 static void	hammer_flush_inode_core(hammer_inode_t ip,
45 					hammer_flush_group_t flg, int flags);
46 static int	hammer_setup_child_callback(hammer_record_t rec, void *data);
47 #if 0
48 static int	hammer_syncgrp_child_callback(hammer_record_t rec, void *data);
49 #endif
50 static int	hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
51 					hammer_flush_group_t flg);
52 static int	hammer_setup_parent_inodes_helper(hammer_record_t record,
53 					int depth, hammer_flush_group_t flg);
54 static void	hammer_inode_wakereclaims(hammer_inode_t ip, int dowake);
55 
56 #ifdef DEBUG_TRUNCATE
57 extern struct hammer_inode *HammerTruncIp;
58 #endif
59 
60 /*
61  * RB-Tree support for inode structures
62  */
63 int
64 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
65 {
66 	if (ip1->obj_localization < ip2->obj_localization)
67 		return(-1);
68 	if (ip1->obj_localization > ip2->obj_localization)
69 		return(1);
70 	if (ip1->obj_id < ip2->obj_id)
71 		return(-1);
72 	if (ip1->obj_id > ip2->obj_id)
73 		return(1);
74 	if (ip1->obj_asof < ip2->obj_asof)
75 		return(-1);
76 	if (ip1->obj_asof > ip2->obj_asof)
77 		return(1);
78 	return(0);
79 }
80 
81 /*
82  * RB-Tree support for inode structures / special LOOKUP_INFO
83  */
84 static int
85 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
86 {
87 	if (info->obj_localization < ip->obj_localization)
88 		return(-1);
89 	if (info->obj_localization > ip->obj_localization)
90 		return(1);
91 	if (info->obj_id < ip->obj_id)
92 		return(-1);
93 	if (info->obj_id > ip->obj_id)
94 		return(1);
95 	if (info->obj_asof < ip->obj_asof)
96 		return(-1);
97 	if (info->obj_asof > ip->obj_asof)
98 		return(1);
99 	return(0);
100 }
101 
102 /*
103  * Used by hammer_scan_inode_snapshots() to locate all of an object's
104  * snapshots.  Note that the asof field is not tested, which we can get
105  * away with because it is the lowest-priority field.
106  */
107 static int
108 hammer_inode_info_cmp_all_history(hammer_inode_t ip, void *data)
109 {
110 	hammer_inode_info_t info = data;
111 
112 	if (ip->obj_localization > info->obj_localization)
113 		return(1);
114 	if (ip->obj_localization < info->obj_localization)
115 		return(-1);
116 	if (ip->obj_id > info->obj_id)
117 		return(1);
118 	if (ip->obj_id < info->obj_id)
119 		return(-1);
120 	return(0);
121 }
122 
123 /*
124  * Used by hammer_unload_pseudofs() to locate all inodes associated with
125  * a particular PFS.
126  */
127 static int
128 hammer_inode_pfs_cmp(hammer_inode_t ip, void *data)
129 {
130 	u_int32_t localization = *(u_int32_t *)data;
131 	if (ip->obj_localization > localization)
132 		return(1);
133 	if (ip->obj_localization < localization)
134 		return(-1);
135 	return(0);
136 }
137 
138 /*
139  * RB-Tree support for pseudofs structures
140  */
141 static int
142 hammer_pfs_rb_compare(hammer_pseudofs_inmem_t p1, hammer_pseudofs_inmem_t p2)
143 {
144 	if (p1->localization < p2->localization)
145 		return(-1);
146 	if (p1->localization > p2->localization)
147 		return(1);
148 	return(0);
149 }
150 
151 
152 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
153 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
154 		hammer_inode_info_cmp, hammer_inode_info_t);
155 RB_GENERATE2(hammer_pfs_rb_tree, hammer_pseudofs_inmem, rb_node,
156              hammer_pfs_rb_compare, u_int32_t, localization);
157 
158 /*
159  * The kernel is not actively referencing this vnode but is still holding
160  * it cached.
161  *
162  * This is called from the frontend.
163  */
164 int
165 hammer_vop_inactive(struct vop_inactive_args *ap)
166 {
167 	struct hammer_inode *ip = VTOI(ap->a_vp);
168 
169 	/*
170 	 * Degenerate case
171 	 */
172 	if (ip == NULL) {
173 		vrecycle(ap->a_vp);
174 		return(0);
175 	}
176 
177 	/*
178 	 * If the inode no longer has visibility in the filesystem try to
179 	 * recycle it immediately, even if the inode is dirty.  Recycling
180 	 * it quickly allows the system to reclaim buffer cache and VM
181 	 * resources which can matter a lot in a heavily loaded system.
182 	 *
183 	 * This can deadlock in vfsync() if we aren't careful.
184 	 *
185 	 * Do not queue the inode to the flusher if we still have visibility,
186 	 * otherwise namespace calls such as chmod will unnecessarily generate
187 	 * multiple inode updates.
188 	 */
189 	hammer_inode_unloadable_check(ip, 0);
190 	if (ip->ino_data.nlinks == 0) {
191 		if (ip->flags & HAMMER_INODE_MODMASK)
192 			hammer_flush_inode(ip, 0);
193 		vrecycle(ap->a_vp);
194 	}
195 	return(0);
196 }
197 
198 /*
199  * Release the vnode association.  This is typically (but not always)
200  * the last reference on the inode.
201  *
202  * Once the association is lost we are on our own with regards to
203  * flushing the inode.
204  */
205 int
206 hammer_vop_reclaim(struct vop_reclaim_args *ap)
207 {
208 	struct hammer_inode *ip;
209 	hammer_mount_t hmp;
210 	struct vnode *vp;
211 
212 	vp = ap->a_vp;
213 
214 	if ((ip = vp->v_data) != NULL) {
215 		hmp = ip->hmp;
216 		vp->v_data = NULL;
217 		ip->vp = NULL;
218 
219 		if ((ip->flags & HAMMER_INODE_RECLAIM) == 0) {
220 			++hammer_count_reclaiming;
221 			++hmp->inode_reclaims;
222 			ip->flags |= HAMMER_INODE_RECLAIM;
223 		}
224 		hammer_rel_inode(ip, 1);
225 	}
226 	return(0);
227 }
228 
229 /*
230  * Return a locked vnode for the specified inode.  The inode must be
231  * referenced but NOT LOCKED on entry and will remain referenced on
232  * return.
233  *
234  * Called from the frontend.
235  */
236 int
237 hammer_get_vnode(struct hammer_inode *ip, struct vnode **vpp)
238 {
239 	hammer_mount_t hmp;
240 	struct vnode *vp;
241 	int error = 0;
242 	u_int8_t obj_type;
243 
244 	hmp = ip->hmp;
245 
246 	for (;;) {
247 		if ((vp = ip->vp) == NULL) {
248 			error = getnewvnode(VT_HAMMER, hmp->mp, vpp, 0, 0);
249 			if (error)
250 				break;
251 			hammer_lock_ex(&ip->lock);
252 			if (ip->vp != NULL) {
253 				hammer_unlock(&ip->lock);
254 				vp = *vpp;
255 				vp->v_type = VBAD;
256 				vx_put(vp);
257 				continue;
258 			}
259 			hammer_ref(&ip->lock);
260 			vp = *vpp;
261 			ip->vp = vp;
262 
263 			obj_type = ip->ino_data.obj_type;
264 			vp->v_type = hammer_get_vnode_type(obj_type);
265 
266 			hammer_inode_wakereclaims(ip, 0);
267 
268 			switch(ip->ino_data.obj_type) {
269 			case HAMMER_OBJTYPE_CDEV:
270 			case HAMMER_OBJTYPE_BDEV:
271 				vp->v_ops = &hmp->mp->mnt_vn_spec_ops;
272 				addaliasu(vp, ip->ino_data.rmajor,
273 					  ip->ino_data.rminor);
274 				break;
275 			case HAMMER_OBJTYPE_FIFO:
276 				vp->v_ops = &hmp->mp->mnt_vn_fifo_ops;
277 				break;
278 			default:
279 				break;
280 			}
281 
282 			/*
283 			 * Only mark as the root vnode if the ip is not
284 			 * historical, otherwise the VFS cache will get
285 			 * confused.  The other half of the special handling
286 			 * is in hammer_vop_nlookupdotdot().
287 			 *
288 			 * Pseudo-filesystem roots can be accessed via
289 			 * non-root filesystem paths and setting VROOT may
290 			 * confuse the namecache.  Set VPFSROOT instead.
291 			 */
292 			if (ip->obj_id == HAMMER_OBJID_ROOT &&
293 			    ip->obj_asof == hmp->asof) {
294 				if (ip->obj_localization == 0)
295 					vp->v_flag |= VROOT;
296 				else
297 					vp->v_flag |= VPFSROOT;
298 			}
299 
300 			vp->v_data = (void *)ip;
301 			/* vnode locked by getnewvnode() */
302 			/* make related vnode dirty if inode dirty? */
303 			hammer_unlock(&ip->lock);
304 			if (vp->v_type == VREG)
305 				vinitvmio(vp, ip->ino_data.size);
306 			break;
307 		}
308 
309 		/*
310 		 * loop if the vget fails (aka races), or if the vp
311 		 * no longer matches ip->vp.
312 		 */
313 		if (vget(vp, LK_EXCLUSIVE) == 0) {
314 			if (vp == ip->vp)
315 				break;
316 			vput(vp);
317 		}
318 	}
319 	*vpp = vp;
320 	return(error);
321 }
322 
323 /*
324  * Locate all copies of the inode for obj_id compatible with the specified
325  * asof, reference, and issue the related call-back.  This routine is used
326  * for direct-io invalidation and does not create any new inodes.
327  */
328 void
329 hammer_scan_inode_snapshots(hammer_mount_t hmp, hammer_inode_info_t iinfo,
330 		            int (*callback)(hammer_inode_t ip, void *data),
331 			    void *data)
332 {
333 	hammer_ino_rb_tree_RB_SCAN(&hmp->rb_inos_root,
334 				   hammer_inode_info_cmp_all_history,
335 				   callback, iinfo);
336 }
337 
338 /*
339  * Acquire a HAMMER inode.  The returned inode is not locked.  These functions
340  * do not attach or detach the related vnode (use hammer_get_vnode() for
341  * that).
342  *
343  * The flags argument is only applied for newly created inodes, and only
344  * certain flags are inherited.
345  *
346  * Called from the frontend.
347  */
348 struct hammer_inode *
349 hammer_get_inode(hammer_transaction_t trans, hammer_inode_t dip,
350 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
351 		 int flags, int *errorp)
352 {
353 	hammer_mount_t hmp = trans->hmp;
354 	struct hammer_node_cache *cachep;
355 	struct hammer_inode_info iinfo;
356 	struct hammer_cursor cursor;
357 	struct hammer_inode *ip;
358 
359 
360 	/*
361 	 * Determine if we already have an inode cached.  If we do then
362 	 * we are golden.
363 	 *
364 	 * If we find an inode with no vnode we have to mark the
365 	 * transaction such that hammer_inode_waitreclaims() is
366 	 * called later on to avoid building up an infinite number
367 	 * of inodes.  Otherwise we can continue to * add new inodes
368 	 * faster then they can be disposed of, even with the tsleep
369 	 * delay.
370 	 *
371 	 * If we find a dummy inode we return a failure so dounlink
372 	 * (which does another lookup) doesn't try to mess with the
373 	 * link count.  hammer_vop_nresolve() uses hammer_get_dummy_inode()
374 	 * to ref dummy inodes.
375 	 */
376 	iinfo.obj_id = obj_id;
377 	iinfo.obj_asof = asof;
378 	iinfo.obj_localization = localization;
379 loop:
380 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
381 	if (ip) {
382 		if (ip->flags & HAMMER_INODE_DUMMY) {
383 			*errorp = ENOENT;
384 			return(NULL);
385 		}
386 		hammer_ref(&ip->lock);
387 		*errorp = 0;
388 		return(ip);
389 	}
390 
391 	/*
392 	 * Allocate a new inode structure and deal with races later.
393 	 */
394 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
395 	++hammer_count_inodes;
396 	++hmp->count_inodes;
397 	ip->obj_id = obj_id;
398 	ip->obj_asof = iinfo.obj_asof;
399 	ip->obj_localization = localization;
400 	ip->hmp = hmp;
401 	ip->flags = flags & HAMMER_INODE_RO;
402 	ip->cache[0].ip = ip;
403 	ip->cache[1].ip = ip;
404 	ip->cache[2].ip = ip;
405 	ip->cache[3].ip = ip;
406 	if (hmp->ronly)
407 		ip->flags |= HAMMER_INODE_RO;
408 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
409 		0x7FFFFFFFFFFFFFFFLL;
410 	RB_INIT(&ip->rec_tree);
411 	TAILQ_INIT(&ip->target_list);
412 	hammer_ref(&ip->lock);
413 
414 	/*
415 	 * Locate the on-disk inode.  If this is a PFS root we always
416 	 * access the current version of the root inode and (if it is not
417 	 * a master) always access information under it with a snapshot
418 	 * TID.
419 	 *
420 	 * We cache recent inode lookups in this directory in dip->cache[2].
421 	 * If we can't find it we assume the inode we are looking for is
422 	 * close to the directory inode.
423 	 */
424 retry:
425 	cachep = NULL;
426 	if (dip) {
427 		if (dip->cache[2].node)
428 			cachep = &dip->cache[2];
429 		else
430 			cachep = &dip->cache[0];
431 	}
432 	hammer_init_cursor(trans, &cursor, cachep, NULL);
433 	cursor.key_beg.localization = localization + HAMMER_LOCALIZE_INODE;
434 	cursor.key_beg.obj_id = ip->obj_id;
435 	cursor.key_beg.key = 0;
436 	cursor.key_beg.create_tid = 0;
437 	cursor.key_beg.delete_tid = 0;
438 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE;
439 	cursor.key_beg.obj_type = 0;
440 
441 	cursor.asof = iinfo.obj_asof;
442 	cursor.flags = HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_GET_DATA |
443 		       HAMMER_CURSOR_ASOF;
444 
445 	*errorp = hammer_btree_lookup(&cursor);
446 	if (*errorp == EDEADLK) {
447 		hammer_done_cursor(&cursor);
448 		goto retry;
449 	}
450 
451 	/*
452 	 * On success the B-Tree lookup will hold the appropriate
453 	 * buffer cache buffers and provide a pointer to the requested
454 	 * information.  Copy the information to the in-memory inode
455 	 * and cache the B-Tree node to improve future operations.
456 	 */
457 	if (*errorp == 0) {
458 		ip->ino_leaf = cursor.node->ondisk->elms[cursor.index].leaf;
459 		ip->ino_data = cursor.data->inode;
460 
461 		/*
462 		 * cache[0] tries to cache the location of the object inode.
463 		 * The assumption is that it is near the directory inode.
464 		 *
465 		 * cache[1] tries to cache the location of the object data.
466 		 * We might have something in the governing directory from
467 		 * scan optimizations (see the strategy code in
468 		 * hammer_vnops.c).
469 		 *
470 		 * We update dip->cache[2], if possible, with the location
471 		 * of the object inode for future directory shortcuts.
472 		 */
473 		hammer_cache_node(&ip->cache[0], cursor.node);
474 		if (dip) {
475 			if (dip->cache[3].node) {
476 				hammer_cache_node(&ip->cache[1],
477 						  dip->cache[3].node);
478 			}
479 			hammer_cache_node(&dip->cache[2], cursor.node);
480 		}
481 
482 		/*
483 		 * The file should not contain any data past the file size
484 		 * stored in the inode.  Setting save_trunc_off to the
485 		 * file size instead of max reduces B-Tree lookup overheads
486 		 * on append by allowing the flusher to avoid checking for
487 		 * record overwrites.
488 		 */
489 		ip->save_trunc_off = ip->ino_data.size;
490 
491 		/*
492 		 * Locate and assign the pseudofs management structure to
493 		 * the inode.
494 		 */
495 		if (dip && dip->obj_localization == ip->obj_localization) {
496 			ip->pfsm = dip->pfsm;
497 			hammer_ref(&ip->pfsm->lock);
498 		} else {
499 			ip->pfsm = hammer_load_pseudofs(trans,
500 							ip->obj_localization,
501 							errorp);
502 			*errorp = 0;	/* ignore ENOENT */
503 		}
504 	}
505 
506 	/*
507 	 * The inode is placed on the red-black tree and will be synced to
508 	 * the media when flushed or by the filesystem sync.  If this races
509 	 * another instantiation/lookup the insertion will fail.
510 	 */
511 	if (*errorp == 0) {
512 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
513 			hammer_free_inode(ip);
514 			hammer_done_cursor(&cursor);
515 			goto loop;
516 		}
517 		ip->flags |= HAMMER_INODE_ONDISK;
518 	} else {
519 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
520 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
521 			--hmp->rsv_inodes;
522 		}
523 
524 		hammer_free_inode(ip);
525 		ip = NULL;
526 	}
527 	hammer_done_cursor(&cursor);
528 	trans->flags |= HAMMER_TRANSF_NEWINODE;
529 	return (ip);
530 }
531 
532 /*
533  * Get a dummy inode to placemark a broken directory entry.
534  */
535 struct hammer_inode *
536 hammer_get_dummy_inode(hammer_transaction_t trans, hammer_inode_t dip,
537 		 int64_t obj_id, hammer_tid_t asof, u_int32_t localization,
538 		 int flags, int *errorp)
539 {
540 	hammer_mount_t hmp = trans->hmp;
541 	struct hammer_inode_info iinfo;
542 	struct hammer_inode *ip;
543 
544 	/*
545 	 * Determine if we already have an inode cached.  If we do then
546 	 * we are golden.
547 	 *
548 	 * If we find an inode with no vnode we have to mark the
549 	 * transaction such that hammer_inode_waitreclaims() is
550 	 * called later on to avoid building up an infinite number
551 	 * of inodes.  Otherwise we can continue to * add new inodes
552 	 * faster then they can be disposed of, even with the tsleep
553 	 * delay.
554 	 *
555 	 * If we find a non-fake inode we return an error.  Only fake
556 	 * inodes can be returned by this routine.
557 	 */
558 	iinfo.obj_id = obj_id;
559 	iinfo.obj_asof = asof;
560 	iinfo.obj_localization = localization;
561 loop:
562 	*errorp = 0;
563 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
564 	if (ip) {
565 		if ((ip->flags & HAMMER_INODE_DUMMY) == 0) {
566 			*errorp = ENOENT;
567 			return(NULL);
568 		}
569 		hammer_ref(&ip->lock);
570 		return(ip);
571 	}
572 
573 	/*
574 	 * Allocate a new inode structure and deal with races later.
575 	 */
576 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
577 	++hammer_count_inodes;
578 	++hmp->count_inodes;
579 	ip->obj_id = obj_id;
580 	ip->obj_asof = iinfo.obj_asof;
581 	ip->obj_localization = localization;
582 	ip->hmp = hmp;
583 	ip->flags = flags | HAMMER_INODE_RO | HAMMER_INODE_DUMMY;
584 	ip->cache[0].ip = ip;
585 	ip->cache[1].ip = ip;
586 	ip->cache[2].ip = ip;
587 	ip->cache[3].ip = ip;
588 	ip->sync_trunc_off = ip->trunc_off = ip->save_trunc_off =
589 		0x7FFFFFFFFFFFFFFFLL;
590 	RB_INIT(&ip->rec_tree);
591 	TAILQ_INIT(&ip->target_list);
592 	hammer_ref(&ip->lock);
593 
594 	/*
595 	 * Populate the dummy inode.  Leave everything zero'd out.
596 	 *
597 	 * (ip->ino_leaf and ip->ino_data)
598 	 *
599 	 * Make the dummy inode a FIFO object which most copy programs
600 	 * will properly ignore.
601 	 */
602 	ip->save_trunc_off = ip->ino_data.size;
603 	ip->ino_data.obj_type = HAMMER_OBJTYPE_FIFO;
604 
605 	/*
606 	 * Locate and assign the pseudofs management structure to
607 	 * the inode.
608 	 */
609 	if (dip && dip->obj_localization == ip->obj_localization) {
610 		ip->pfsm = dip->pfsm;
611 		hammer_ref(&ip->pfsm->lock);
612 	} else {
613 		ip->pfsm = hammer_load_pseudofs(trans, ip->obj_localization,
614 						errorp);
615 		*errorp = 0;	/* ignore ENOENT */
616 	}
617 
618 	/*
619 	 * The inode is placed on the red-black tree and will be synced to
620 	 * the media when flushed or by the filesystem sync.  If this races
621 	 * another instantiation/lookup the insertion will fail.
622 	 *
623 	 * NOTE: Do not set HAMMER_INODE_ONDISK.  The inode is a fake.
624 	 */
625 	if (*errorp == 0) {
626 		if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
627 			hammer_free_inode(ip);
628 			goto loop;
629 		}
630 	} else {
631 		if (ip->flags & HAMMER_INODE_RSV_INODES) {
632 			ip->flags &= ~HAMMER_INODE_RSV_INODES; /* sanity */
633 			--hmp->rsv_inodes;
634 		}
635 		hammer_free_inode(ip);
636 		ip = NULL;
637 	}
638 	trans->flags |= HAMMER_TRANSF_NEWINODE;
639 	return (ip);
640 }
641 
642 /*
643  * Return a referenced inode only if it is in our inode cache.
644  *
645  * Dummy inodes do not count.
646  */
647 struct hammer_inode *
648 hammer_find_inode(hammer_transaction_t trans, int64_t obj_id,
649 		  hammer_tid_t asof, u_int32_t localization)
650 {
651 	hammer_mount_t hmp = trans->hmp;
652 	struct hammer_inode_info iinfo;
653 	struct hammer_inode *ip;
654 
655 	iinfo.obj_id = obj_id;
656 	iinfo.obj_asof = asof;
657 	iinfo.obj_localization = localization;
658 
659 	ip = hammer_ino_rb_tree_RB_LOOKUP_INFO(&hmp->rb_inos_root, &iinfo);
660 	if (ip) {
661 		if (ip->flags & HAMMER_INODE_DUMMY)
662 			ip = NULL;
663 		else
664 			hammer_ref(&ip->lock);
665 	}
666 	return(ip);
667 }
668 
669 /*
670  * Create a new filesystem object, returning the inode in *ipp.  The
671  * returned inode will be referenced.  The inode is created in-memory.
672  *
673  * If pfsm is non-NULL the caller wishes to create the root inode for
674  * a master PFS.
675  */
676 int
677 hammer_create_inode(hammer_transaction_t trans, struct vattr *vap,
678 		    struct ucred *cred,
679 		    hammer_inode_t dip, const char *name, int namelen,
680 		    hammer_pseudofs_inmem_t pfsm, struct hammer_inode **ipp)
681 {
682 	hammer_mount_t hmp;
683 	hammer_inode_t ip;
684 	uid_t xuid;
685 	int error;
686 	int64_t namekey;
687 	u_int32_t dummy;
688 
689 	hmp = trans->hmp;
690 
691 	ip = kmalloc(sizeof(*ip), hmp->m_inodes, M_WAITOK|M_ZERO);
692 	++hammer_count_inodes;
693 	++hmp->count_inodes;
694 	trans->flags |= HAMMER_TRANSF_NEWINODE;
695 
696 	if (pfsm) {
697 		KKASSERT(pfsm->localization != 0);
698 		ip->obj_id = HAMMER_OBJID_ROOT;
699 		ip->obj_localization = pfsm->localization;
700 	} else {
701 		KKASSERT(dip != NULL);
702 		namekey = hammer_directory_namekey(dip, name, namelen, &dummy);
703 		ip->obj_id = hammer_alloc_objid(hmp, dip, namekey);
704 		ip->obj_localization = dip->obj_localization;
705 	}
706 
707 	KKASSERT(ip->obj_id != 0);
708 	ip->obj_asof = hmp->asof;
709 	ip->hmp = hmp;
710 	ip->flush_state = HAMMER_FST_IDLE;
711 	ip->flags = HAMMER_INODE_DDIRTY |
712 		    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME;
713 	ip->cache[0].ip = ip;
714 	ip->cache[1].ip = ip;
715 	ip->cache[2].ip = ip;
716 	ip->cache[3].ip = ip;
717 
718 	ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
719 	/* ip->save_trunc_off = 0; (already zero) */
720 	RB_INIT(&ip->rec_tree);
721 	TAILQ_INIT(&ip->target_list);
722 
723 	ip->ino_data.atime = trans->time;
724 	ip->ino_data.mtime = trans->time;
725 	ip->ino_data.size = 0;
726 	ip->ino_data.nlinks = 0;
727 
728 	/*
729 	 * A nohistory designator on the parent directory is inherited by
730 	 * the child.  We will do this even for pseudo-fs creation... the
731 	 * sysad can turn it off.
732 	 */
733 	if (dip) {
734 		ip->ino_data.uflags = dip->ino_data.uflags &
735 				      (SF_NOHISTORY|UF_NOHISTORY|UF_NODUMP);
736 	}
737 
738 	ip->ino_leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
739 	ip->ino_leaf.base.localization = ip->obj_localization +
740 					 HAMMER_LOCALIZE_INODE;
741 	ip->ino_leaf.base.obj_id = ip->obj_id;
742 	ip->ino_leaf.base.key = 0;
743 	ip->ino_leaf.base.create_tid = 0;
744 	ip->ino_leaf.base.delete_tid = 0;
745 	ip->ino_leaf.base.rec_type = HAMMER_RECTYPE_INODE;
746 	ip->ino_leaf.base.obj_type = hammer_get_obj_type(vap->va_type);
747 
748 	ip->ino_data.obj_type = ip->ino_leaf.base.obj_type;
749 	ip->ino_data.version = HAMMER_INODE_DATA_VERSION;
750 	ip->ino_data.mode = vap->va_mode;
751 	ip->ino_data.ctime = trans->time;
752 
753 	/*
754 	 * If we are running version 2 or greater we use dirhash algorithm #1
755 	 * which is semi-sorted.  Algorithm #0 was just a pure crc.
756 	 */
757 	if (trans->hmp->version >= HAMMER_VOL_VERSION_TWO) {
758 		if (ip->ino_leaf.base.obj_type == HAMMER_OBJTYPE_DIRECTORY) {
759 			ip->ino_data.cap_flags |= HAMMER_INODE_CAP_DIRHASH_ALG1;
760 		}
761 	}
762 
763 	/*
764 	 * Setup the ".." pointer.  This only needs to be done for directories
765 	 * but we do it for all objects as a recovery aid.
766 	 */
767 	if (dip)
768 		ip->ino_data.parent_obj_id = dip->ino_leaf.base.obj_id;
769 #if 0
770 	/*
771 	 * The parent_obj_localization field only applies to pseudo-fs roots.
772 	 * XXX this is no longer applicable, PFSs are no longer directly
773 	 * tied into the parent's directory structure.
774 	 */
775 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DIRECTORY &&
776 	    ip->obj_id == HAMMER_OBJID_ROOT) {
777 		ip->ino_data.ext.obj.parent_obj_localization =
778 						dip->obj_localization;
779 	}
780 #endif
781 
782 	switch(ip->ino_leaf.base.obj_type) {
783 	case HAMMER_OBJTYPE_CDEV:
784 	case HAMMER_OBJTYPE_BDEV:
785 		ip->ino_data.rmajor = vap->va_rmajor;
786 		ip->ino_data.rminor = vap->va_rminor;
787 		break;
788 	default:
789 		break;
790 	}
791 
792 	/*
793 	 * Calculate default uid/gid and overwrite with information from
794 	 * the vap.
795 	 */
796 	if (dip) {
797 		xuid = hammer_to_unix_xid(&dip->ino_data.uid);
798 		xuid = vop_helper_create_uid(hmp->mp, dip->ino_data.mode,
799 					     xuid, cred, &vap->va_mode);
800 	} else {
801 		xuid = 0;
802 	}
803 	ip->ino_data.mode = vap->va_mode;
804 
805 	if (vap->va_vaflags & VA_UID_UUID_VALID)
806 		ip->ino_data.uid = vap->va_uid_uuid;
807 	else if (vap->va_uid != (uid_t)VNOVAL)
808 		hammer_guid_to_uuid(&ip->ino_data.uid, vap->va_uid);
809 	else
810 		hammer_guid_to_uuid(&ip->ino_data.uid, xuid);
811 
812 	if (vap->va_vaflags & VA_GID_UUID_VALID)
813 		ip->ino_data.gid = vap->va_gid_uuid;
814 	else if (vap->va_gid != (gid_t)VNOVAL)
815 		hammer_guid_to_uuid(&ip->ino_data.gid, vap->va_gid);
816 	else if (dip)
817 		ip->ino_data.gid = dip->ino_data.gid;
818 
819 	hammer_ref(&ip->lock);
820 
821 	if (pfsm) {
822 		ip->pfsm = pfsm;
823 		hammer_ref(&pfsm->lock);
824 		error = 0;
825 	} else if (dip->obj_localization == ip->obj_localization) {
826 		ip->pfsm = dip->pfsm;
827 		hammer_ref(&ip->pfsm->lock);
828 		error = 0;
829 	} else {
830 		ip->pfsm = hammer_load_pseudofs(trans,
831 						ip->obj_localization,
832 						&error);
833 		error = 0;	/* ignore ENOENT */
834 	}
835 
836 	if (error) {
837 		hammer_free_inode(ip);
838 		ip = NULL;
839 	} else if (RB_INSERT(hammer_ino_rb_tree, &hmp->rb_inos_root, ip)) {
840 		panic("hammer_create_inode: duplicate obj_id %llx",
841 		      (long long)ip->obj_id);
842 		/* not reached */
843 		hammer_free_inode(ip);
844 	}
845 	*ipp = ip;
846 	return(error);
847 }
848 
849 /*
850  * Final cleanup / freeing of an inode structure
851  */
852 static void
853 hammer_free_inode(hammer_inode_t ip)
854 {
855 	struct hammer_mount *hmp;
856 
857 	hmp = ip->hmp;
858 	KKASSERT(ip->lock.refs == 1);
859 	hammer_uncache_node(&ip->cache[0]);
860 	hammer_uncache_node(&ip->cache[1]);
861 	hammer_uncache_node(&ip->cache[2]);
862 	hammer_uncache_node(&ip->cache[3]);
863 	hammer_inode_wakereclaims(ip, 1);
864 	if (ip->objid_cache)
865 		hammer_clear_objid(ip);
866 	--hammer_count_inodes;
867 	--hmp->count_inodes;
868 	if (ip->pfsm) {
869 		hammer_rel_pseudofs(hmp, ip->pfsm);
870 		ip->pfsm = NULL;
871 	}
872 	kfree(ip, hmp->m_inodes);
873 	ip = NULL;
874 }
875 
876 /*
877  * Retrieve pseudo-fs data.  NULL will never be returned.
878  *
879  * If an error occurs *errorp will be set and a default template is returned,
880  * otherwise *errorp is set to 0.  Typically when an error occurs it will
881  * be ENOENT.
882  */
883 hammer_pseudofs_inmem_t
884 hammer_load_pseudofs(hammer_transaction_t trans,
885 		     u_int32_t localization, int *errorp)
886 {
887 	hammer_mount_t hmp = trans->hmp;
888 	hammer_inode_t ip;
889 	hammer_pseudofs_inmem_t pfsm;
890 	struct hammer_cursor cursor;
891 	int bytes;
892 
893 retry:
894 	pfsm = RB_LOOKUP(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, localization);
895 	if (pfsm) {
896 		hammer_ref(&pfsm->lock);
897 		*errorp = 0;
898 		return(pfsm);
899 	}
900 
901 	/*
902 	 * PFS records are stored in the root inode (not the PFS root inode,
903 	 * but the real root).  Avoid an infinite recursion if loading
904 	 * the PFS for the real root.
905 	 */
906 	if (localization) {
907 		ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT,
908 				      HAMMER_MAX_TID,
909 				      HAMMER_DEF_LOCALIZATION, 0, errorp);
910 	} else {
911 		ip = NULL;
912 	}
913 
914 	pfsm = kmalloc(sizeof(*pfsm), hmp->m_misc, M_WAITOK | M_ZERO);
915 	pfsm->localization = localization;
916 	pfsm->pfsd.unique_uuid = trans->rootvol->ondisk->vol_fsid;
917 	pfsm->pfsd.shared_uuid = pfsm->pfsd.unique_uuid;
918 
919 	hammer_init_cursor(trans, &cursor, (ip ? &ip->cache[1] : NULL), ip);
920 	cursor.key_beg.localization = HAMMER_DEF_LOCALIZATION +
921 				      HAMMER_LOCALIZE_MISC;
922 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
923 	cursor.key_beg.create_tid = 0;
924 	cursor.key_beg.delete_tid = 0;
925 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
926 	cursor.key_beg.obj_type = 0;
927 	cursor.key_beg.key = localization;
928 	cursor.asof = HAMMER_MAX_TID;
929 	cursor.flags |= HAMMER_CURSOR_ASOF;
930 
931 	if (ip)
932 		*errorp = hammer_ip_lookup(&cursor);
933 	else
934 		*errorp = hammer_btree_lookup(&cursor);
935 	if (*errorp == 0) {
936 		*errorp = hammer_ip_resolve_data(&cursor);
937 		if (*errorp == 0) {
938 			if (cursor.data->pfsd.mirror_flags &
939 			    HAMMER_PFSD_DELETED) {
940 				*errorp = ENOENT;
941 			} else {
942 				bytes = cursor.leaf->data_len;
943 				if (bytes > sizeof(pfsm->pfsd))
944 					bytes = sizeof(pfsm->pfsd);
945 				bcopy(cursor.data, &pfsm->pfsd, bytes);
946 			}
947 		}
948 	}
949 	hammer_done_cursor(&cursor);
950 
951 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
952 	hammer_ref(&pfsm->lock);
953 	if (ip)
954 		hammer_rel_inode(ip, 0);
955 	if (RB_INSERT(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm)) {
956 		kfree(pfsm, hmp->m_misc);
957 		goto retry;
958 	}
959 	return(pfsm);
960 }
961 
962 /*
963  * Store pseudo-fs data.  The backend will automatically delete any prior
964  * on-disk pseudo-fs data but we have to delete in-memory versions.
965  */
966 int
967 hammer_save_pseudofs(hammer_transaction_t trans, hammer_pseudofs_inmem_t pfsm)
968 {
969 	struct hammer_cursor cursor;
970 	hammer_record_t record;
971 	hammer_inode_t ip;
972 	int error;
973 
974 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
975 			      HAMMER_DEF_LOCALIZATION, 0, &error);
976 retry:
977 	pfsm->fsid_udev = hammer_fsid_to_udev(&pfsm->pfsd.shared_uuid);
978 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
979 	cursor.key_beg.localization = ip->obj_localization +
980 				      HAMMER_LOCALIZE_MISC;
981 	cursor.key_beg.obj_id = HAMMER_OBJID_ROOT;
982 	cursor.key_beg.create_tid = 0;
983 	cursor.key_beg.delete_tid = 0;
984 	cursor.key_beg.rec_type = HAMMER_RECTYPE_PFS;
985 	cursor.key_beg.obj_type = 0;
986 	cursor.key_beg.key = pfsm->localization;
987 	cursor.asof = HAMMER_MAX_TID;
988 	cursor.flags |= HAMMER_CURSOR_ASOF;
989 
990 	/*
991 	 * Replace any in-memory version of the record.
992 	 */
993 	error = hammer_ip_lookup(&cursor);
994 	if (error == 0 && hammer_cursor_inmem(&cursor)) {
995 		record = cursor.iprec;
996 		if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
997 			KKASSERT(cursor.deadlk_rec == NULL);
998 			hammer_ref(&record->lock);
999 			cursor.deadlk_rec = record;
1000 			error = EDEADLK;
1001 		} else {
1002 			record->flags |= HAMMER_RECF_DELETED_FE;
1003 			error = 0;
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * Allocate replacement general record.  The backend flush will
1009 	 * delete any on-disk version of the record.
1010 	 */
1011 	if (error == 0 || error == ENOENT) {
1012 		record = hammer_alloc_mem_record(ip, sizeof(pfsm->pfsd));
1013 		record->type = HAMMER_MEM_RECORD_GENERAL;
1014 
1015 		record->leaf.base.localization = ip->obj_localization +
1016 						 HAMMER_LOCALIZE_MISC;
1017 		record->leaf.base.rec_type = HAMMER_RECTYPE_PFS;
1018 		record->leaf.base.key = pfsm->localization;
1019 		record->leaf.data_len = sizeof(pfsm->pfsd);
1020 		bcopy(&pfsm->pfsd, record->data, sizeof(pfsm->pfsd));
1021 		error = hammer_ip_add_record(trans, record);
1022 	}
1023 	hammer_done_cursor(&cursor);
1024 	if (error == EDEADLK)
1025 		goto retry;
1026 	hammer_rel_inode(ip, 0);
1027 	return(error);
1028 }
1029 
1030 /*
1031  * Create a root directory for a PFS if one does not alredy exist.
1032  *
1033  * The PFS root stands alone so we must also bump the nlinks count
1034  * to prevent it from being destroyed on release.
1035  */
1036 int
1037 hammer_mkroot_pseudofs(hammer_transaction_t trans, struct ucred *cred,
1038 		       hammer_pseudofs_inmem_t pfsm)
1039 {
1040 	hammer_inode_t ip;
1041 	struct vattr vap;
1042 	int error;
1043 
1044 	ip = hammer_get_inode(trans, NULL, HAMMER_OBJID_ROOT, HAMMER_MAX_TID,
1045 			      pfsm->localization, 0, &error);
1046 	if (ip == NULL) {
1047 		vattr_null(&vap);
1048 		vap.va_mode = 0755;
1049 		vap.va_type = VDIR;
1050 		error = hammer_create_inode(trans, &vap, cred,
1051 					    NULL, NULL, 0,
1052 					    pfsm, &ip);
1053 		if (error == 0) {
1054 			++ip->ino_data.nlinks;
1055 			hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
1056 		}
1057 	}
1058 	if (ip)
1059 		hammer_rel_inode(ip, 0);
1060 	return(error);
1061 }
1062 
1063 /*
1064  * Unload any vnodes & inodes associated with a PFS, return ENOTEMPTY
1065  * if we are unable to disassociate all the inodes.
1066  */
1067 static
1068 int
1069 hammer_unload_pseudofs_callback(hammer_inode_t ip, void *data)
1070 {
1071 	int res;
1072 
1073 	hammer_ref(&ip->lock);
1074 	if (ip->lock.refs == 2 && ip->vp)
1075 		vclean_unlocked(ip->vp);
1076 	if (ip->lock.refs == 1 && ip->vp == NULL)
1077 		res = 0;
1078 	else
1079 		res = -1;	/* stop, someone is using the inode */
1080 	hammer_rel_inode(ip, 0);
1081 	return(res);
1082 }
1083 
1084 int
1085 hammer_unload_pseudofs(hammer_transaction_t trans, u_int32_t localization)
1086 {
1087 	int res;
1088 	int try;
1089 
1090 	for (try = res = 0; try < 4; ++try) {
1091 		res = hammer_ino_rb_tree_RB_SCAN(&trans->hmp->rb_inos_root,
1092 					   hammer_inode_pfs_cmp,
1093 					   hammer_unload_pseudofs_callback,
1094 					   &localization);
1095 		if (res == 0 && try > 1)
1096 			break;
1097 		hammer_flusher_sync(trans->hmp);
1098 	}
1099 	if (res != 0)
1100 		res = ENOTEMPTY;
1101 	return(res);
1102 }
1103 
1104 
1105 /*
1106  * Release a reference on a PFS
1107  */
1108 void
1109 hammer_rel_pseudofs(hammer_mount_t hmp, hammer_pseudofs_inmem_t pfsm)
1110 {
1111 	hammer_unref(&pfsm->lock);
1112 	if (pfsm->lock.refs == 0) {
1113 		RB_REMOVE(hammer_pfs_rb_tree, &hmp->rb_pfsm_root, pfsm);
1114 		kfree(pfsm, hmp->m_misc);
1115 	}
1116 }
1117 
1118 /*
1119  * Called by hammer_sync_inode().
1120  */
1121 static int
1122 hammer_update_inode(hammer_cursor_t cursor, hammer_inode_t ip)
1123 {
1124 	hammer_transaction_t trans = cursor->trans;
1125 	hammer_record_t record;
1126 	int error;
1127 	int redirty;
1128 
1129 retry:
1130 	error = 0;
1131 
1132 	/*
1133 	 * If the inode has a presence on-disk then locate it and mark
1134 	 * it deleted, setting DELONDISK.
1135 	 *
1136 	 * The record may or may not be physically deleted, depending on
1137 	 * the retention policy.
1138 	 */
1139 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) ==
1140 	    HAMMER_INODE_ONDISK) {
1141 		hammer_normalize_cursor(cursor);
1142 		cursor->key_beg.localization = ip->obj_localization +
1143 					       HAMMER_LOCALIZE_INODE;
1144 		cursor->key_beg.obj_id = ip->obj_id;
1145 		cursor->key_beg.key = 0;
1146 		cursor->key_beg.create_tid = 0;
1147 		cursor->key_beg.delete_tid = 0;
1148 		cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1149 		cursor->key_beg.obj_type = 0;
1150 		cursor->asof = ip->obj_asof;
1151 		cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1152 		cursor->flags |= HAMMER_CURSOR_GET_LEAF | HAMMER_CURSOR_ASOF;
1153 		cursor->flags |= HAMMER_CURSOR_BACKEND;
1154 
1155 		error = hammer_btree_lookup(cursor);
1156 		if (hammer_debug_inode)
1157 			kprintf("IPDEL %p %08x %d", ip, ip->flags, error);
1158 
1159 		if (error == 0) {
1160 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
1161 			if (hammer_debug_inode)
1162 				kprintf(" error %d\n", error);
1163 			if (error == 0) {
1164 				ip->flags |= HAMMER_INODE_DELONDISK;
1165 			}
1166 			if (cursor->node)
1167 				hammer_cache_node(&ip->cache[0], cursor->node);
1168 		}
1169 		if (error == EDEADLK) {
1170 			hammer_done_cursor(cursor);
1171 			error = hammer_init_cursor(trans, cursor,
1172 						   &ip->cache[0], ip);
1173 			if (hammer_debug_inode)
1174 				kprintf("IPDED %p %d\n", ip, error);
1175 			if (error == 0)
1176 				goto retry;
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * Ok, write out the initial record or a new record (after deleting
1182 	 * the old one), unless the DELETED flag is set.  This routine will
1183 	 * clear DELONDISK if it writes out a record.
1184 	 *
1185 	 * Update our inode statistics if this is the first application of
1186 	 * the inode on-disk.
1187 	 */
1188 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED) == 0) {
1189 		/*
1190 		 * Generate a record and write it to the media.  We clean-up
1191 		 * the state before releasing so we do not have to set-up
1192 		 * a flush_group.
1193 		 */
1194 		record = hammer_alloc_mem_record(ip, 0);
1195 		record->type = HAMMER_MEM_RECORD_INODE;
1196 		record->flush_state = HAMMER_FST_FLUSH;
1197 		record->leaf = ip->sync_ino_leaf;
1198 		record->leaf.base.create_tid = trans->tid;
1199 		record->leaf.data_len = sizeof(ip->sync_ino_data);
1200 		record->leaf.create_ts = trans->time32;
1201 		record->data = (void *)&ip->sync_ino_data;
1202 		record->flags |= HAMMER_RECF_INTERLOCK_BE;
1203 
1204 		/*
1205 		 * If this flag is set we cannot sync the new file size
1206 		 * because we haven't finished related truncations.  The
1207 		 * inode will be flushed in another flush group to finish
1208 		 * the job.
1209 		 */
1210 		if ((ip->flags & HAMMER_INODE_WOULDBLOCK) &&
1211 		    ip->sync_ino_data.size != ip->ino_data.size) {
1212 			redirty = 1;
1213 			ip->sync_ino_data.size = ip->ino_data.size;
1214 		} else {
1215 			redirty = 0;
1216 		}
1217 
1218 		for (;;) {
1219 			error = hammer_ip_sync_record_cursor(cursor, record);
1220 			if (hammer_debug_inode)
1221 				kprintf("GENREC %p rec %08x %d\n",
1222 					ip, record->flags, error);
1223 			if (error != EDEADLK)
1224 				break;
1225 			hammer_done_cursor(cursor);
1226 			error = hammer_init_cursor(trans, cursor,
1227 						   &ip->cache[0], ip);
1228 			if (hammer_debug_inode)
1229 				kprintf("GENREC reinit %d\n", error);
1230 			if (error)
1231 				break;
1232 		}
1233 
1234 		/*
1235 		 * Note:  The record was never on the inode's record tree
1236 		 * so just wave our hands importantly and destroy it.
1237 		 */
1238 		record->flags |= HAMMER_RECF_COMMITTED;
1239 		record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
1240 		record->flush_state = HAMMER_FST_IDLE;
1241 		++ip->rec_generation;
1242 		hammer_rel_mem_record(record);
1243 
1244 		/*
1245 		 * Finish up.
1246 		 */
1247 		if (error == 0) {
1248 			if (hammer_debug_inode)
1249 				kprintf("CLEANDELOND %p %08x\n", ip, ip->flags);
1250 			ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1251 					    HAMMER_INODE_ATIME |
1252 					    HAMMER_INODE_MTIME);
1253 			ip->flags &= ~HAMMER_INODE_DELONDISK;
1254 			if (redirty)
1255 				ip->sync_flags |= HAMMER_INODE_DDIRTY;
1256 
1257 			/*
1258 			 * Root volume count of inodes
1259 			 */
1260 			hammer_sync_lock_sh(trans);
1261 			if ((ip->flags & HAMMER_INODE_ONDISK) == 0) {
1262 				hammer_modify_volume_field(trans,
1263 							   trans->rootvol,
1264 							   vol0_stat_inodes);
1265 				++ip->hmp->rootvol->ondisk->vol0_stat_inodes;
1266 				hammer_modify_volume_done(trans->rootvol);
1267 				ip->flags |= HAMMER_INODE_ONDISK;
1268 				if (hammer_debug_inode)
1269 					kprintf("NOWONDISK %p\n", ip);
1270 			}
1271 			hammer_sync_unlock(trans);
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * If the inode has been destroyed, clean out any left-over flags
1277 	 * that may have been set by the frontend.
1278 	 */
1279 	if (error == 0 && (ip->flags & HAMMER_INODE_DELETED)) {
1280 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY |
1281 				    HAMMER_INODE_ATIME |
1282 				    HAMMER_INODE_MTIME);
1283 	}
1284 	return(error);
1285 }
1286 
1287 /*
1288  * Update only the itimes fields.
1289  *
1290  * ATIME can be updated without generating any UNDO.  MTIME is updated
1291  * with UNDO so it is guaranteed to be synchronized properly in case of
1292  * a crash.
1293  *
1294  * Neither field is included in the B-Tree leaf element's CRC, which is how
1295  * we can get away with updating ATIME the way we do.
1296  */
1297 static int
1298 hammer_update_itimes(hammer_cursor_t cursor, hammer_inode_t ip)
1299 {
1300 	hammer_transaction_t trans = cursor->trans;
1301 	int error;
1302 
1303 retry:
1304 	if ((ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DELONDISK)) !=
1305 	    HAMMER_INODE_ONDISK) {
1306 		return(0);
1307 	}
1308 
1309 	hammer_normalize_cursor(cursor);
1310 	cursor->key_beg.localization = ip->obj_localization +
1311 				       HAMMER_LOCALIZE_INODE;
1312 	cursor->key_beg.obj_id = ip->obj_id;
1313 	cursor->key_beg.key = 0;
1314 	cursor->key_beg.create_tid = 0;
1315 	cursor->key_beg.delete_tid = 0;
1316 	cursor->key_beg.rec_type = HAMMER_RECTYPE_INODE;
1317 	cursor->key_beg.obj_type = 0;
1318 	cursor->asof = ip->obj_asof;
1319 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1320 	cursor->flags |= HAMMER_CURSOR_ASOF;
1321 	cursor->flags |= HAMMER_CURSOR_GET_LEAF;
1322 	cursor->flags |= HAMMER_CURSOR_GET_DATA;
1323 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1324 
1325 	error = hammer_btree_lookup(cursor);
1326 	if (error == 0) {
1327 		hammer_cache_node(&ip->cache[0], cursor->node);
1328 		if (ip->sync_flags & HAMMER_INODE_MTIME) {
1329 			/*
1330 			 * Updating MTIME requires an UNDO.  Just cover
1331 			 * both atime and mtime.
1332 			 */
1333 			hammer_sync_lock_sh(trans);
1334 			hammer_modify_buffer(trans, cursor->data_buffer,
1335 				     HAMMER_ITIMES_BASE(&cursor->data->inode),
1336 				     HAMMER_ITIMES_BYTES);
1337 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1338 			cursor->data->inode.mtime = ip->sync_ino_data.mtime;
1339 			hammer_modify_buffer_done(cursor->data_buffer);
1340 			hammer_sync_unlock(trans);
1341 		} else if (ip->sync_flags & HAMMER_INODE_ATIME) {
1342 			/*
1343 			 * Updating atime only can be done in-place with
1344 			 * no UNDO.
1345 			 */
1346 			hammer_sync_lock_sh(trans);
1347 			hammer_modify_buffer(trans, cursor->data_buffer,
1348 					     NULL, 0);
1349 			cursor->data->inode.atime = ip->sync_ino_data.atime;
1350 			hammer_modify_buffer_done(cursor->data_buffer);
1351 			hammer_sync_unlock(trans);
1352 		}
1353 		ip->sync_flags &= ~(HAMMER_INODE_ATIME | HAMMER_INODE_MTIME);
1354 	}
1355 	if (error == EDEADLK) {
1356 		hammer_done_cursor(cursor);
1357 		error = hammer_init_cursor(trans, cursor,
1358 					   &ip->cache[0], ip);
1359 		if (error == 0)
1360 			goto retry;
1361 	}
1362 	return(error);
1363 }
1364 
1365 /*
1366  * Release a reference on an inode, flush as requested.
1367  *
1368  * On the last reference we queue the inode to the flusher for its final
1369  * disposition.
1370  */
1371 void
1372 hammer_rel_inode(struct hammer_inode *ip, int flush)
1373 {
1374 	/*hammer_mount_t hmp = ip->hmp;*/
1375 
1376 	/*
1377 	 * Handle disposition when dropping the last ref.
1378 	 */
1379 	for (;;) {
1380 		if (ip->lock.refs == 1) {
1381 			/*
1382 			 * Determine whether on-disk action is needed for
1383 			 * the inode's final disposition.
1384 			 */
1385 			KKASSERT(ip->vp == NULL);
1386 			hammer_inode_unloadable_check(ip, 0);
1387 			if (ip->flags & HAMMER_INODE_MODMASK) {
1388 				hammer_flush_inode(ip, 0);
1389 			} else if (ip->lock.refs == 1) {
1390 				hammer_unload_inode(ip);
1391 				break;
1392 			}
1393 		} else {
1394 			if (flush)
1395 				hammer_flush_inode(ip, 0);
1396 
1397 			/*
1398 			 * The inode still has multiple refs, try to drop
1399 			 * one ref.
1400 			 */
1401 			KKASSERT(ip->lock.refs >= 1);
1402 			if (ip->lock.refs > 1) {
1403 				hammer_unref(&ip->lock);
1404 				break;
1405 			}
1406 		}
1407 	}
1408 }
1409 
1410 /*
1411  * Unload and destroy the specified inode.  Must be called with one remaining
1412  * reference.  The reference is disposed of.
1413  *
1414  * The inode must be completely clean.
1415  */
1416 static int
1417 hammer_unload_inode(struct hammer_inode *ip)
1418 {
1419 	hammer_mount_t hmp = ip->hmp;
1420 
1421 	KASSERT(ip->lock.refs == 1,
1422 		("hammer_unload_inode: %d refs\n", ip->lock.refs));
1423 	KKASSERT(ip->vp == NULL);
1424 	KKASSERT(ip->flush_state == HAMMER_FST_IDLE);
1425 	KKASSERT(ip->cursor_ip_refs == 0);
1426 	KKASSERT(ip->lock.lockcount == 0);
1427 	KKASSERT((ip->flags & HAMMER_INODE_MODMASK) == 0);
1428 
1429 	KKASSERT(RB_EMPTY(&ip->rec_tree));
1430 	KKASSERT(TAILQ_EMPTY(&ip->target_list));
1431 
1432 	RB_REMOVE(hammer_ino_rb_tree, &hmp->rb_inos_root, ip);
1433 
1434 	hammer_free_inode(ip);
1435 	return(0);
1436 }
1437 
1438 /*
1439  * Called during unmounting if a critical error occured.  The in-memory
1440  * inode and all related structures are destroyed.
1441  *
1442  * If a critical error did not occur the unmount code calls the standard
1443  * release and asserts that the inode is gone.
1444  */
1445 int
1446 hammer_destroy_inode_callback(struct hammer_inode *ip, void *data __unused)
1447 {
1448 	hammer_record_t rec;
1449 
1450 	/*
1451 	 * Get rid of the inodes in-memory records, regardless of their
1452 	 * state, and clear the mod-mask.
1453 	 */
1454 	while ((rec = TAILQ_FIRST(&ip->target_list)) != NULL) {
1455 		TAILQ_REMOVE(&ip->target_list, rec, target_entry);
1456 		rec->target_ip = NULL;
1457 		if (rec->flush_state == HAMMER_FST_SETUP)
1458 			rec->flush_state = HAMMER_FST_IDLE;
1459 	}
1460 	while ((rec = RB_ROOT(&ip->rec_tree)) != NULL) {
1461 		if (rec->flush_state == HAMMER_FST_FLUSH)
1462 			--rec->flush_group->refs;
1463 		else
1464 			hammer_ref(&rec->lock);
1465 		KKASSERT(rec->lock.refs == 1);
1466 		rec->flush_state = HAMMER_FST_IDLE;
1467 		rec->flush_group = NULL;
1468 		rec->flags |= HAMMER_RECF_DELETED_FE; /* wave hands */
1469 		rec->flags |= HAMMER_RECF_DELETED_BE; /* wave hands */
1470 		++ip->rec_generation;
1471 		hammer_rel_mem_record(rec);
1472 	}
1473 	ip->flags &= ~HAMMER_INODE_MODMASK;
1474 	ip->sync_flags &= ~HAMMER_INODE_MODMASK;
1475 	KKASSERT(ip->vp == NULL);
1476 
1477 	/*
1478 	 * Remove the inode from any flush group, force it idle.  FLUSH
1479 	 * and SETUP states have an inode ref.
1480 	 */
1481 	switch(ip->flush_state) {
1482 	case HAMMER_FST_FLUSH:
1483 		TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
1484 		--ip->flush_group->refs;
1485 		ip->flush_group = NULL;
1486 		/* fall through */
1487 	case HAMMER_FST_SETUP:
1488 		hammer_unref(&ip->lock);
1489 		ip->flush_state = HAMMER_FST_IDLE;
1490 		/* fall through */
1491 	case HAMMER_FST_IDLE:
1492 		break;
1493 	}
1494 
1495 	/*
1496 	 * There shouldn't be any associated vnode.  The unload needs at
1497 	 * least one ref, if we do have a vp steal its ip ref.
1498 	 */
1499 	if (ip->vp) {
1500 		kprintf("hammer_destroy_inode_callback: Unexpected "
1501 			"vnode association ip %p vp %p\n", ip, ip->vp);
1502 		ip->vp->v_data = NULL;
1503 		ip->vp = NULL;
1504 	} else {
1505 		hammer_ref(&ip->lock);
1506 	}
1507 	hammer_unload_inode(ip);
1508 	return(0);
1509 }
1510 
1511 /*
1512  * Called on mount -u when switching from RW to RO or vise-versa.  Adjust
1513  * the read-only flag for cached inodes.
1514  *
1515  * This routine is called from a RB_SCAN().
1516  */
1517 int
1518 hammer_reload_inode(hammer_inode_t ip, void *arg __unused)
1519 {
1520 	hammer_mount_t hmp = ip->hmp;
1521 
1522 	if (hmp->ronly || hmp->asof != HAMMER_MAX_TID)
1523 		ip->flags |= HAMMER_INODE_RO;
1524 	else
1525 		ip->flags &= ~HAMMER_INODE_RO;
1526 	return(0);
1527 }
1528 
1529 /*
1530  * A transaction has modified an inode, requiring updates as specified by
1531  * the passed flags.
1532  *
1533  * HAMMER_INODE_DDIRTY: Inode data has been updated
1534  * HAMMER_INODE_XDIRTY: Dirty in-memory records
1535  * HAMMER_INODE_BUFS:   Dirty buffer cache buffers
1536  * HAMMER_INODE_DELETED: Inode record/data must be deleted
1537  * HAMMER_INODE_ATIME/MTIME: mtime/atime has been updated
1538  */
1539 void
1540 hammer_modify_inode(hammer_inode_t ip, int flags)
1541 {
1542 	/*
1543 	 * ronly of 0 or 2 does not trigger assertion.
1544 	 * 2 is a special error state
1545 	 */
1546 	KKASSERT(ip->hmp->ronly != 1 ||
1547 		  (flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
1548 			    HAMMER_INODE_BUFS | HAMMER_INODE_DELETED |
1549 			    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) == 0);
1550 	if ((ip->flags & HAMMER_INODE_RSV_INODES) == 0) {
1551 		ip->flags |= HAMMER_INODE_RSV_INODES;
1552 		++ip->hmp->rsv_inodes;
1553 	}
1554 
1555 	ip->flags |= flags;
1556 }
1557 
1558 /*
1559  * Request that an inode be flushed.  This whole mess cannot block and may
1560  * recurse (if not synchronous).  Once requested HAMMER will attempt to
1561  * actively flush the inode until the flush can be done.
1562  *
1563  * The inode may already be flushing, or may be in a setup state.  We can
1564  * place the inode in a flushing state if it is currently idle and flag it
1565  * to reflush if it is currently flushing.
1566  *
1567  * Upon return if the inode could not be flushed due to a setup
1568  * dependancy, then it will be automatically flushed when the dependancy
1569  * is satisfied.
1570  */
1571 void
1572 hammer_flush_inode(hammer_inode_t ip, int flags)
1573 {
1574 	hammer_mount_t hmp;
1575 	hammer_flush_group_t flg;
1576 	int good;
1577 
1578 	/*
1579 	 * next_flush_group is the first flush group we can place the inode
1580 	 * in.  It may be NULL.  If it becomes full we append a new flush
1581 	 * group and make that the next_flush_group.
1582 	 */
1583 	hmp = ip->hmp;
1584 	while ((flg = hmp->next_flush_group) != NULL) {
1585 		KKASSERT(flg->running == 0);
1586 		if (flg->total_count + flg->refs <= ip->hmp->undo_rec_limit)
1587 			break;
1588 		hmp->next_flush_group = TAILQ_NEXT(flg, flush_entry);
1589 		hammer_flusher_async(ip->hmp, flg);
1590 	}
1591 	if (flg == NULL) {
1592 		flg = kmalloc(sizeof(*flg), hmp->m_misc, M_WAITOK|M_ZERO);
1593 		hmp->next_flush_group = flg;
1594 		TAILQ_INIT(&flg->flush_list);
1595 		TAILQ_INSERT_TAIL(&hmp->flush_group_list, flg, flush_entry);
1596 	}
1597 
1598 	/*
1599 	 * Trivial 'nothing to flush' case.  If the inode is in a SETUP
1600 	 * state we have to put it back into an IDLE state so we can
1601 	 * drop the extra ref.
1602 	 *
1603 	 * If we have a parent dependancy we must still fall through
1604 	 * so we can run it.
1605 	 */
1606 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0) {
1607 		if (ip->flush_state == HAMMER_FST_SETUP &&
1608 		    TAILQ_EMPTY(&ip->target_list)) {
1609 			ip->flush_state = HAMMER_FST_IDLE;
1610 			hammer_rel_inode(ip, 0);
1611 		}
1612 		if (ip->flush_state == HAMMER_FST_IDLE)
1613 			return;
1614 	}
1615 
1616 	/*
1617 	 * Our flush action will depend on the current state.
1618 	 */
1619 	switch(ip->flush_state) {
1620 	case HAMMER_FST_IDLE:
1621 		/*
1622 		 * We have no dependancies and can flush immediately.  Some
1623 		 * our children may not be flushable so we have to re-test
1624 		 * with that additional knowledge.
1625 		 */
1626 		hammer_flush_inode_core(ip, flg, flags);
1627 		break;
1628 	case HAMMER_FST_SETUP:
1629 		/*
1630 		 * Recurse upwards through dependancies via target_list
1631 		 * and start their flusher actions going if possible.
1632 		 *
1633 		 * 'good' is our connectivity.  -1 means we have none and
1634 		 * can't flush, 0 means there weren't any dependancies, and
1635 		 * 1 means we have good connectivity.
1636 		 */
1637 		good = hammer_setup_parent_inodes(ip, 0, flg);
1638 
1639 		if (good >= 0) {
1640 			/*
1641 			 * We can continue if good >= 0.  Determine how
1642 			 * many records under our inode can be flushed (and
1643 			 * mark them).
1644 			 */
1645 			hammer_flush_inode_core(ip, flg, flags);
1646 		} else {
1647 			/*
1648 			 * Parent has no connectivity, tell it to flush
1649 			 * us as soon as it does.
1650 			 *
1651 			 * The REFLUSH flag is also needed to trigger
1652 			 * dependancy wakeups.
1653 			 */
1654 			ip->flags |= HAMMER_INODE_CONN_DOWN |
1655 				     HAMMER_INODE_REFLUSH;
1656 			if (flags & HAMMER_FLUSH_SIGNAL) {
1657 				ip->flags |= HAMMER_INODE_RESIGNAL;
1658 				hammer_flusher_async(ip->hmp, flg);
1659 			}
1660 		}
1661 		break;
1662 	case HAMMER_FST_FLUSH:
1663 		/*
1664 		 * We are already flushing, flag the inode to reflush
1665 		 * if needed after it completes its current flush.
1666 		 *
1667 		 * The REFLUSH flag is also needed to trigger
1668 		 * dependancy wakeups.
1669 		 */
1670 		if ((ip->flags & HAMMER_INODE_REFLUSH) == 0)
1671 			ip->flags |= HAMMER_INODE_REFLUSH;
1672 		if (flags & HAMMER_FLUSH_SIGNAL) {
1673 			ip->flags |= HAMMER_INODE_RESIGNAL;
1674 			hammer_flusher_async(ip->hmp, flg);
1675 		}
1676 		break;
1677 	}
1678 }
1679 
1680 /*
1681  * Scan ip->target_list, which is a list of records owned by PARENTS to our
1682  * ip which reference our ip.
1683  *
1684  * XXX This is a huge mess of recursive code, but not one bit of it blocks
1685  *     so for now do not ref/deref the structures.  Note that if we use the
1686  *     ref/rel code later, the rel CAN block.
1687  */
1688 static int
1689 hammer_setup_parent_inodes(hammer_inode_t ip, int depth,
1690 			   hammer_flush_group_t flg)
1691 {
1692 	hammer_record_t depend;
1693 	int good;
1694 	int r;
1695 
1696 	/*
1697 	 * If we hit our recursion limit and we have parent dependencies
1698 	 * We cannot continue.  Returning < 0 will cause us to be flagged
1699 	 * for reflush.  Returning -2 cuts off additional dependency checks
1700 	 * because they are likely to also hit the depth limit.
1701 	 *
1702 	 * We cannot return < 0 if there are no dependencies or there might
1703 	 * not be anything to wakeup (ip).
1704 	 */
1705 	if (depth == 20 && TAILQ_FIRST(&ip->target_list)) {
1706 		kprintf("HAMMER Warning: depth limit reached on "
1707 			"setup recursion, inode %p %016llx\n",
1708 			ip, (long long)ip->obj_id);
1709 		return(-2);
1710 	}
1711 
1712 	/*
1713 	 * Scan dependencies
1714 	 */
1715 	good = 0;
1716 	TAILQ_FOREACH(depend, &ip->target_list, target_entry) {
1717 		r = hammer_setup_parent_inodes_helper(depend, depth, flg);
1718 		KKASSERT(depend->target_ip == ip);
1719 		if (r < 0 && good == 0)
1720 			good = -1;
1721 		if (r > 0)
1722 			good = 1;
1723 
1724 		/*
1725 		 * If we failed due to the recursion depth limit then stop
1726 		 * now.
1727 		 */
1728 		if (r == -2)
1729 			break;
1730 	}
1731 	return(good);
1732 }
1733 
1734 /*
1735  * This helper function takes a record representing the dependancy between
1736  * the parent inode and child inode.
1737  *
1738  * record->ip		= parent inode
1739  * record->target_ip	= child inode
1740  *
1741  * We are asked to recurse upwards and convert the record from SETUP
1742  * to FLUSH if possible.
1743  *
1744  * Return 1 if the record gives us connectivity
1745  *
1746  * Return 0 if the record is not relevant
1747  *
1748  * Return -1 if we can't resolve the dependancy and there is no connectivity.
1749  */
1750 static int
1751 hammer_setup_parent_inodes_helper(hammer_record_t record, int depth,
1752 				  hammer_flush_group_t flg)
1753 {
1754 	hammer_mount_t hmp;
1755 	hammer_inode_t pip;
1756 	int good;
1757 
1758 	KKASSERT(record->flush_state != HAMMER_FST_IDLE);
1759 	pip = record->ip;
1760 	hmp = pip->hmp;
1761 
1762 	/*
1763 	 * If the record is already flushing, is it in our flush group?
1764 	 *
1765 	 * If it is in our flush group but it is a general record or a
1766 	 * delete-on-disk, it does not improve our connectivity (return 0),
1767 	 * and if the target inode is not trying to destroy itself we can't
1768 	 * allow the operation yet anyway (the second return -1).
1769 	 */
1770 	if (record->flush_state == HAMMER_FST_FLUSH) {
1771 		/*
1772 		 * If not in our flush group ask the parent to reflush
1773 		 * us as soon as possible.
1774 		 */
1775 		if (record->flush_group != flg) {
1776 			pip->flags |= HAMMER_INODE_REFLUSH;
1777 			record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1778 			return(-1);
1779 		}
1780 
1781 		/*
1782 		 * If in our flush group everything is already set up,
1783 		 * just return whether the record will improve our
1784 		 * visibility or not.
1785 		 */
1786 		if (record->type == HAMMER_MEM_RECORD_ADD)
1787 			return(1);
1788 		return(0);
1789 	}
1790 
1791 	/*
1792 	 * It must be a setup record.  Try to resolve the setup dependancies
1793 	 * by recursing upwards so we can place ip on the flush list.
1794 	 *
1795 	 * Limit ourselves to 20 levels of recursion to avoid blowing out
1796 	 * the kernel stack.  If we hit the recursion limit we can't flush
1797 	 * until the parent flushes.  The parent will flush independantly
1798 	 * on its own and ultimately a deep recursion will be resolved.
1799 	 */
1800 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1801 
1802 	good = hammer_setup_parent_inodes(pip, depth + 1, flg);
1803 
1804 	/*
1805 	 * If good < 0 the parent has no connectivity and we cannot safely
1806 	 * flush the directory entry, which also means we can't flush our
1807 	 * ip.  Flag us for downward recursion once the parent's
1808 	 * connectivity is resolved.  Flag the parent for [re]flush or it
1809 	 * may not check for downward recursions.
1810 	 */
1811 	if (good < 0) {
1812 		pip->flags |= HAMMER_INODE_REFLUSH;
1813 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1814 		return(good);
1815 	}
1816 
1817 	/*
1818 	 * We are go, place the parent inode in a flushing state so we can
1819 	 * place its record in a flushing state.  Note that the parent
1820 	 * may already be flushing.  The record must be in the same flush
1821 	 * group as the parent.
1822 	 */
1823 	if (pip->flush_state != HAMMER_FST_FLUSH)
1824 		hammer_flush_inode_core(pip, flg, HAMMER_FLUSH_RECURSION);
1825 	KKASSERT(pip->flush_state == HAMMER_FST_FLUSH);
1826 	KKASSERT(record->flush_state == HAMMER_FST_SETUP);
1827 
1828 #if 0
1829 	if (record->type == HAMMER_MEM_RECORD_DEL &&
1830 	    (record->target_ip->flags & (HAMMER_INODE_DELETED|HAMMER_INODE_DELONDISK)) == 0) {
1831 		/*
1832 		 * Regardless of flushing state we cannot sync this path if the
1833 		 * record represents a delete-on-disk but the target inode
1834 		 * is not ready to sync its own deletion.
1835 		 *
1836 		 * XXX need to count effective nlinks to determine whether
1837 		 * the flush is ok, otherwise removing a hardlink will
1838 		 * just leave the DEL record to rot.
1839 		 */
1840 		record->target_ip->flags |= HAMMER_INODE_REFLUSH;
1841 		return(-1);
1842 	} else
1843 #endif
1844 	if (pip->flush_group == flg) {
1845 		/*
1846 		 * Because we have not calculated nlinks yet we can just
1847 		 * set records to the flush state if the parent is in
1848 		 * the same flush group as we are.
1849 		 */
1850 		record->flush_state = HAMMER_FST_FLUSH;
1851 		record->flush_group = flg;
1852 		++record->flush_group->refs;
1853 		hammer_ref(&record->lock);
1854 
1855 		/*
1856 		 * A general directory-add contributes to our visibility.
1857 		 *
1858 		 * Otherwise it is probably a directory-delete or
1859 		 * delete-on-disk record and does not contribute to our
1860 		 * visbility (but we can still flush it).
1861 		 */
1862 		if (record->type == HAMMER_MEM_RECORD_ADD)
1863 			return(1);
1864 		return(0);
1865 	} else {
1866 		/*
1867 		 * If the parent is not in our flush group we cannot
1868 		 * flush this record yet, there is no visibility.
1869 		 * We tell the parent to reflush and mark ourselves
1870 		 * so the parent knows it should flush us too.
1871 		 */
1872 		pip->flags |= HAMMER_INODE_REFLUSH;
1873 		record->target_ip->flags |= HAMMER_INODE_CONN_DOWN;
1874 		return(-1);
1875 	}
1876 }
1877 
1878 /*
1879  * This is the core routine placing an inode into the FST_FLUSH state.
1880  */
1881 static void
1882 hammer_flush_inode_core(hammer_inode_t ip, hammer_flush_group_t flg, int flags)
1883 {
1884 	int go_count;
1885 
1886 	/*
1887 	 * Set flush state and prevent the flusher from cycling into
1888 	 * the next flush group.  Do not place the ip on the list yet.
1889 	 * Inodes not in the idle state get an extra reference.
1890 	 */
1891 	KKASSERT(ip->flush_state != HAMMER_FST_FLUSH);
1892 	if (ip->flush_state == HAMMER_FST_IDLE)
1893 		hammer_ref(&ip->lock);
1894 	ip->flush_state = HAMMER_FST_FLUSH;
1895 	ip->flush_group = flg;
1896 	++ip->hmp->flusher.group_lock;
1897 	++ip->hmp->count_iqueued;
1898 	++hammer_count_iqueued;
1899 	++flg->total_count;
1900 
1901 	/*
1902 	 * If the flush group reaches the autoflush limit we want to signal
1903 	 * the flusher.  This is particularly important for remove()s.
1904 	 */
1905 	if (flg->total_count == hammer_autoflush)
1906 		flags |= HAMMER_FLUSH_SIGNAL;
1907 
1908 	/*
1909 	 * We need to be able to vfsync/truncate from the backend.
1910 	 */
1911 	KKASSERT((ip->flags & HAMMER_INODE_VHELD) == 0);
1912 	if (ip->vp && (ip->vp->v_flag & VINACTIVE) == 0) {
1913 		ip->flags |= HAMMER_INODE_VHELD;
1914 		vref(ip->vp);
1915 	}
1916 
1917 	/*
1918 	 * Figure out how many in-memory records we can actually flush
1919 	 * (not including inode meta-data, buffers, etc).
1920 	 */
1921 	KKASSERT((ip->flags & HAMMER_INODE_WOULDBLOCK) == 0);
1922 	if (flags & HAMMER_FLUSH_RECURSION) {
1923 		/*
1924 		 * If this is a upwards recursion we do not want to
1925 		 * recurse down again!
1926 		 */
1927 		go_count = 1;
1928 #if 0
1929 	} else if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
1930 		/*
1931 		 * No new records are added if we must complete a flush
1932 		 * from a previous cycle, but we do have to move the records
1933 		 * from the previous cycle to the current one.
1934 		 */
1935 #if 0
1936 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1937 				   hammer_syncgrp_child_callback, NULL);
1938 #endif
1939 		go_count = 1;
1940 #endif
1941 	} else {
1942 		/*
1943 		 * Normal flush, scan records and bring them into the flush.
1944 		 * Directory adds and deletes are usually skipped (they are
1945 		 * grouped with the related inode rather then with the
1946 		 * directory).
1947 		 *
1948 		 * go_count can be negative, which means the scan aborted
1949 		 * due to the flush group being over-full and we should
1950 		 * flush what we have.
1951 		 */
1952 		go_count = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
1953 				   hammer_setup_child_callback, NULL);
1954 	}
1955 
1956 	/*
1957 	 * This is a more involved test that includes go_count.  If we
1958 	 * can't flush, flag the inode and return.  If go_count is 0 we
1959 	 * were are unable to flush any records in our rec_tree and
1960 	 * must ignore the XDIRTY flag.
1961 	 */
1962 	if (go_count == 0) {
1963 		if ((ip->flags & HAMMER_INODE_MODMASK_NOXDIRTY) == 0) {
1964 			--ip->hmp->count_iqueued;
1965 			--hammer_count_iqueued;
1966 
1967 			--flg->total_count;
1968 			ip->flush_state = HAMMER_FST_SETUP;
1969 			ip->flush_group = NULL;
1970 			if (ip->flags & HAMMER_INODE_VHELD) {
1971 				ip->flags &= ~HAMMER_INODE_VHELD;
1972 				vrele(ip->vp);
1973 			}
1974 
1975 			/*
1976 			 * REFLUSH is needed to trigger dependancy wakeups
1977 			 * when an inode is in SETUP.
1978 			 */
1979 			ip->flags |= HAMMER_INODE_REFLUSH;
1980 			if (flags & HAMMER_FLUSH_SIGNAL) {
1981 				ip->flags |= HAMMER_INODE_RESIGNAL;
1982 				hammer_flusher_async(ip->hmp, flg);
1983 			}
1984 			if (--ip->hmp->flusher.group_lock == 0)
1985 				wakeup(&ip->hmp->flusher.group_lock);
1986 			return;
1987 		}
1988 	}
1989 
1990 	/*
1991 	 * Snapshot the state of the inode for the backend flusher.
1992 	 *
1993 	 * We continue to retain save_trunc_off even when all truncations
1994 	 * have been resolved as an optimization to determine if we can
1995 	 * skip the B-Tree lookup for overwrite deletions.
1996 	 *
1997 	 * NOTE: The DELETING flag is a mod flag, but it is also sticky,
1998 	 * and stays in ip->flags.  Once set, it stays set until the
1999 	 * inode is destroyed.
2000 	 */
2001 	if (ip->flags & HAMMER_INODE_TRUNCATED) {
2002 		KKASSERT((ip->sync_flags & HAMMER_INODE_TRUNCATED) == 0);
2003 		ip->sync_trunc_off = ip->trunc_off;
2004 		ip->trunc_off = 0x7FFFFFFFFFFFFFFFLL;
2005 		ip->flags &= ~HAMMER_INODE_TRUNCATED;
2006 		ip->sync_flags |= HAMMER_INODE_TRUNCATED;
2007 
2008 		/*
2009 		 * The save_trunc_off used to cache whether the B-Tree
2010 		 * holds any records past that point is not used until
2011 		 * after the truncation has succeeded, so we can safely
2012 		 * set it now.
2013 		 */
2014 		if (ip->save_trunc_off > ip->sync_trunc_off)
2015 			ip->save_trunc_off = ip->sync_trunc_off;
2016 	}
2017 	ip->sync_flags |= (ip->flags & HAMMER_INODE_MODMASK &
2018 			   ~HAMMER_INODE_TRUNCATED);
2019 	ip->sync_ino_leaf = ip->ino_leaf;
2020 	ip->sync_ino_data = ip->ino_data;
2021 	ip->flags &= ~HAMMER_INODE_MODMASK | HAMMER_INODE_TRUNCATED;
2022 #ifdef DEBUG_TRUNCATE
2023 	if ((ip->sync_flags & HAMMER_INODE_TRUNCATED) && ip == HammerTruncIp)
2024 		kprintf("truncateS %016llx\n", ip->sync_trunc_off);
2025 #endif
2026 
2027 	/*
2028 	 * The flusher list inherits our inode and reference.
2029 	 */
2030 	KKASSERT(flg->running == 0);
2031 	TAILQ_INSERT_TAIL(&flg->flush_list, ip, flush_entry);
2032 	if (--ip->hmp->flusher.group_lock == 0)
2033 		wakeup(&ip->hmp->flusher.group_lock);
2034 
2035 	if (flags & HAMMER_FLUSH_SIGNAL) {
2036 		hammer_flusher_async(ip->hmp, flg);
2037 	}
2038 }
2039 
2040 /*
2041  * Callback for scan of ip->rec_tree.  Try to include each record in our
2042  * flush.  ip->flush_group has been set but the inode has not yet been
2043  * moved into a flushing state.
2044  *
2045  * If we get stuck on a record we have to set HAMMER_INODE_REFLUSH on
2046  * both inodes.
2047  *
2048  * We return 1 for any record placed or found in FST_FLUSH, which prevents
2049  * the caller from shortcutting the flush.
2050  */
2051 static int
2052 hammer_setup_child_callback(hammer_record_t rec, void *data)
2053 {
2054 	hammer_flush_group_t flg;
2055 	hammer_inode_t target_ip;
2056 	hammer_inode_t ip;
2057 	int r;
2058 
2059 	/*
2060 	 * Records deleted or committed by the backend are ignored.
2061 	 * Note that the flush detects deleted frontend records at
2062 	 * multiple points to deal with races.  This is just the first
2063 	 * line of defense.  The only time HAMMER_RECF_DELETED_FE cannot
2064 	 * be set is when HAMMER_RECF_INTERLOCK_BE is set, because it
2065 	 * messes up link-count calculations.
2066 	 *
2067 	 * NOTE: Don't get confused between record deletion and, say,
2068 	 * directory entry deletion.  The deletion of a directory entry
2069 	 * which is on-media has nothing to do with the record deletion
2070 	 * flags.
2071 	 */
2072 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
2073 			  HAMMER_RECF_COMMITTED)) {
2074 		if (rec->flush_state == HAMMER_FST_FLUSH) {
2075 			KKASSERT(rec->flush_group == rec->ip->flush_group);
2076 			r = 1;
2077 		} else {
2078 			r = 0;
2079 		}
2080 		return(r);
2081 	}
2082 
2083 	/*
2084 	 * If the record is in an idle state it has no dependancies and
2085 	 * can be flushed.
2086 	 */
2087 	ip = rec->ip;
2088 	flg = ip->flush_group;
2089 	r = 0;
2090 
2091 	switch(rec->flush_state) {
2092 	case HAMMER_FST_IDLE:
2093 		/*
2094 		 * The record has no setup dependancy, we can flush it.
2095 		 */
2096 		KKASSERT(rec->target_ip == NULL);
2097 		rec->flush_state = HAMMER_FST_FLUSH;
2098 		rec->flush_group = flg;
2099 		++flg->refs;
2100 		hammer_ref(&rec->lock);
2101 		r = 1;
2102 		break;
2103 	case HAMMER_FST_SETUP:
2104 		/*
2105 		 * The record has a setup dependancy.  These are typically
2106 		 * directory entry adds and deletes.  Such entries will be
2107 		 * flushed when their inodes are flushed so we do not
2108 		 * usually have to add them to the flush here.  However,
2109 		 * if the target_ip has set HAMMER_INODE_CONN_DOWN then
2110 		 * it is asking us to flush this record (and it).
2111 		 */
2112 		target_ip = rec->target_ip;
2113 		KKASSERT(target_ip != NULL);
2114 		KKASSERT(target_ip->flush_state != HAMMER_FST_IDLE);
2115 
2116 		/*
2117 		 * If the target IP is already flushing in our group
2118 		 * we could associate the record, but target_ip has
2119 		 * already synced ino_data to sync_ino_data and we
2120 		 * would also have to adjust nlinks.   Plus there are
2121 		 * ordering issues for adds and deletes.
2122 		 *
2123 		 * Reflush downward if this is an ADD, and upward if
2124 		 * this is a DEL.
2125 		 */
2126 		if (target_ip->flush_state == HAMMER_FST_FLUSH) {
2127 			if (rec->flush_state == HAMMER_MEM_RECORD_ADD)
2128 				ip->flags |= HAMMER_INODE_REFLUSH;
2129 			else
2130 				target_ip->flags |= HAMMER_INODE_REFLUSH;
2131 			break;
2132 		}
2133 
2134 		/*
2135 		 * Target IP is not yet flushing.  This can get complex
2136 		 * because we have to be careful about the recursion.
2137 		 *
2138 		 * Directories create an issue for us in that if a flush
2139 		 * of a directory is requested the expectation is to flush
2140 		 * any pending directory entries, but this will cause the
2141 		 * related inodes to recursively flush as well.  We can't
2142 		 * really defer the operation so just get as many as we
2143 		 * can and
2144 		 */
2145 #if 0
2146 		if ((target_ip->flags & HAMMER_INODE_RECLAIM) == 0 &&
2147 		    (target_ip->flags & HAMMER_INODE_CONN_DOWN) == 0) {
2148 			/*
2149 			 * We aren't reclaiming and the target ip was not
2150 			 * previously prevented from flushing due to this
2151 			 * record dependancy.  Do not flush this record.
2152 			 */
2153 			/*r = 0;*/
2154 		} else
2155 #endif
2156 		if (flg->total_count + flg->refs >
2157 			   ip->hmp->undo_rec_limit) {
2158 			/*
2159 			 * Our flush group is over-full and we risk blowing
2160 			 * out the UNDO FIFO.  Stop the scan, flush what we
2161 			 * have, then reflush the directory.
2162 			 *
2163 			 * The directory may be forced through multiple
2164 			 * flush groups before it can be completely
2165 			 * flushed.
2166 			 */
2167 			ip->flags |= HAMMER_INODE_RESIGNAL |
2168 				     HAMMER_INODE_REFLUSH;
2169 			r = -1;
2170 		} else if (rec->type == HAMMER_MEM_RECORD_ADD) {
2171 			/*
2172 			 * If the target IP is not flushing we can force
2173 			 * it to flush, even if it is unable to write out
2174 			 * any of its own records we have at least one in
2175 			 * hand that we CAN deal with.
2176 			 */
2177 			rec->flush_state = HAMMER_FST_FLUSH;
2178 			rec->flush_group = flg;
2179 			++flg->refs;
2180 			hammer_ref(&rec->lock);
2181 			hammer_flush_inode_core(target_ip, flg,
2182 						HAMMER_FLUSH_RECURSION);
2183 			r = 1;
2184 		} else {
2185 			/*
2186 			 * General or delete-on-disk record.
2187 			 *
2188 			 * XXX this needs help.  If a delete-on-disk we could
2189 			 * disconnect the target.  If the target has its own
2190 			 * dependancies they really need to be flushed.
2191 			 *
2192 			 * XXX
2193 			 */
2194 			rec->flush_state = HAMMER_FST_FLUSH;
2195 			rec->flush_group = flg;
2196 			++flg->refs;
2197 			hammer_ref(&rec->lock);
2198 			hammer_flush_inode_core(target_ip, flg,
2199 						HAMMER_FLUSH_RECURSION);
2200 			r = 1;
2201 		}
2202 		break;
2203 	case HAMMER_FST_FLUSH:
2204 		/*
2205 		 * The flush_group should already match.
2206 		 */
2207 		KKASSERT(rec->flush_group == flg);
2208 		r = 1;
2209 		break;
2210 	}
2211 	return(r);
2212 }
2213 
2214 #if 0
2215 /*
2216  * This version just moves records already in a flush state to the new
2217  * flush group and that is it.
2218  */
2219 static int
2220 hammer_syncgrp_child_callback(hammer_record_t rec, void *data)
2221 {
2222 	hammer_inode_t ip = rec->ip;
2223 
2224 	switch(rec->flush_state) {
2225 	case HAMMER_FST_FLUSH:
2226 		KKASSERT(rec->flush_group == ip->flush_group);
2227 		break;
2228 	default:
2229 		break;
2230 	}
2231 	return(0);
2232 }
2233 #endif
2234 
2235 /*
2236  * Wait for a previously queued flush to complete.
2237  *
2238  * If a critical error occured we don't try to wait.
2239  */
2240 void
2241 hammer_wait_inode(hammer_inode_t ip)
2242 {
2243 	hammer_flush_group_t flg;
2244 
2245 	flg = NULL;
2246 	if ((ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2247 		while (ip->flush_state != HAMMER_FST_IDLE &&
2248 		       (ip->hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) == 0) {
2249 			if (ip->flush_state == HAMMER_FST_SETUP)
2250 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2251 			if (ip->flush_state != HAMMER_FST_IDLE) {
2252 				ip->flags |= HAMMER_INODE_FLUSHW;
2253 				tsleep(&ip->flags, 0, "hmrwin", 0);
2254 			}
2255 		}
2256 	}
2257 }
2258 
2259 /*
2260  * Called by the backend code when a flush has been completed.
2261  * The inode has already been removed from the flush list.
2262  *
2263  * A pipelined flush can occur, in which case we must re-enter the
2264  * inode on the list and re-copy its fields.
2265  */
2266 void
2267 hammer_flush_inode_done(hammer_inode_t ip, int error)
2268 {
2269 	hammer_mount_t hmp;
2270 	int dorel;
2271 
2272 	KKASSERT(ip->flush_state == HAMMER_FST_FLUSH);
2273 
2274 	hmp = ip->hmp;
2275 
2276 	/*
2277 	 * Auto-reflush if the backend could not completely flush
2278 	 * the inode.  This fixes a case where a deferred buffer flush
2279 	 * could cause fsync to return early.
2280 	 */
2281 	if (ip->sync_flags & HAMMER_INODE_MODMASK)
2282 		ip->flags |= HAMMER_INODE_REFLUSH;
2283 
2284 	/*
2285 	 * Merge left-over flags back into the frontend and fix the state.
2286 	 * Incomplete truncations are retained by the backend.
2287 	 */
2288 	ip->error = error;
2289 	ip->flags |= ip->sync_flags & ~HAMMER_INODE_TRUNCATED;
2290 	ip->sync_flags &= HAMMER_INODE_TRUNCATED;
2291 
2292 	/*
2293 	 * The backend may have adjusted nlinks, so if the adjusted nlinks
2294 	 * does not match the fronttend set the frontend's RDIRTY flag again.
2295 	 */
2296 	if (ip->ino_data.nlinks != ip->sync_ino_data.nlinks)
2297 		ip->flags |= HAMMER_INODE_DDIRTY;
2298 
2299 	/*
2300 	 * Fix up the dirty buffer status.
2301 	 */
2302 	if (ip->vp && RB_ROOT(&ip->vp->v_rbdirty_tree)) {
2303 		ip->flags |= HAMMER_INODE_BUFS;
2304 	}
2305 
2306 	/*
2307 	 * Re-set the XDIRTY flag if some of the inode's in-memory records
2308 	 * could not be flushed.
2309 	 */
2310 	KKASSERT((RB_EMPTY(&ip->rec_tree) &&
2311 		  (ip->flags & HAMMER_INODE_XDIRTY) == 0) ||
2312 		 (!RB_EMPTY(&ip->rec_tree) &&
2313 		  (ip->flags & HAMMER_INODE_XDIRTY) != 0));
2314 
2315 	/*
2316 	 * Do not lose track of inodes which no longer have vnode
2317 	 * assocations, otherwise they may never get flushed again.
2318 	 *
2319 	 * The reflush flag can be set superfluously, causing extra pain
2320 	 * for no reason.  If the inode is no longer modified it no longer
2321 	 * needs to be flushed.
2322 	 */
2323 	if (ip->flags & HAMMER_INODE_MODMASK) {
2324 		if (ip->vp == NULL)
2325 			ip->flags |= HAMMER_INODE_REFLUSH;
2326 	} else {
2327 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2328 	}
2329 
2330 	/*
2331 	 * Adjust the flush state.
2332 	 */
2333 	if (ip->flags & HAMMER_INODE_WOULDBLOCK) {
2334 		/*
2335 		 * We were unable to flush out all our records, leave the
2336 		 * inode in a flush state and in the current flush group.
2337 		 * The flush group will be re-run.
2338 		 *
2339 		 * This occurs if the UNDO block gets too full or there is
2340 		 * too much dirty meta-data and allows the flusher to
2341 		 * finalize the UNDO block and then re-flush.
2342 		 */
2343 		ip->flags &= ~HAMMER_INODE_WOULDBLOCK;
2344 		dorel = 0;
2345 	} else {
2346 		/*
2347 		 * Remove from the flush_group
2348 		 */
2349 		TAILQ_REMOVE(&ip->flush_group->flush_list, ip, flush_entry);
2350 		ip->flush_group = NULL;
2351 
2352 		/*
2353 		 * Clean up the vnode ref and tracking counts.
2354 		 */
2355 		if (ip->flags & HAMMER_INODE_VHELD) {
2356 			ip->flags &= ~HAMMER_INODE_VHELD;
2357 			vrele(ip->vp);
2358 		}
2359 		--hmp->count_iqueued;
2360 		--hammer_count_iqueued;
2361 
2362 		/*
2363 		 * And adjust the state.
2364 		 */
2365 		if (TAILQ_EMPTY(&ip->target_list) && RB_EMPTY(&ip->rec_tree)) {
2366 			ip->flush_state = HAMMER_FST_IDLE;
2367 			dorel = 1;
2368 		} else {
2369 			ip->flush_state = HAMMER_FST_SETUP;
2370 			dorel = 0;
2371 		}
2372 
2373 		/*
2374 		 * If the frontend is waiting for a flush to complete,
2375 		 * wake it up.
2376 		 */
2377 		if (ip->flags & HAMMER_INODE_FLUSHW) {
2378 			ip->flags &= ~HAMMER_INODE_FLUSHW;
2379 			wakeup(&ip->flags);
2380 		}
2381 
2382 		/*
2383 		 * If the frontend made more changes and requested another
2384 		 * flush, then try to get it running.
2385 		 *
2386 		 * Reflushes are aborted when the inode is errored out.
2387 		 */
2388 		if (ip->flags & HAMMER_INODE_REFLUSH) {
2389 			ip->flags &= ~HAMMER_INODE_REFLUSH;
2390 			if (ip->flags & HAMMER_INODE_RESIGNAL) {
2391 				ip->flags &= ~HAMMER_INODE_RESIGNAL;
2392 				hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2393 			} else {
2394 				hammer_flush_inode(ip, 0);
2395 			}
2396 		}
2397 	}
2398 
2399 	/*
2400 	 * If we have no parent dependancies we can clear CONN_DOWN
2401 	 */
2402 	if (TAILQ_EMPTY(&ip->target_list))
2403 		ip->flags &= ~HAMMER_INODE_CONN_DOWN;
2404 
2405 	/*
2406 	 * If the inode is now clean drop the space reservation.
2407 	 */
2408 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
2409 	    (ip->flags & HAMMER_INODE_RSV_INODES)) {
2410 		ip->flags &= ~HAMMER_INODE_RSV_INODES;
2411 		--hmp->rsv_inodes;
2412 	}
2413 
2414 	if (dorel)
2415 		hammer_rel_inode(ip, 0);
2416 }
2417 
2418 /*
2419  * Called from hammer_sync_inode() to synchronize in-memory records
2420  * to the media.
2421  */
2422 static int
2423 hammer_sync_record_callback(hammer_record_t record, void *data)
2424 {
2425 	hammer_cursor_t cursor = data;
2426 	hammer_transaction_t trans = cursor->trans;
2427 	hammer_mount_t hmp = trans->hmp;
2428 	int error;
2429 
2430 	/*
2431 	 * Skip records that do not belong to the current flush.
2432 	 */
2433 	++hammer_stats_record_iterations;
2434 	if (record->flush_state != HAMMER_FST_FLUSH)
2435 		return(0);
2436 
2437 #if 1
2438 	if (record->flush_group != record->ip->flush_group) {
2439 		kprintf("sync_record %p ip %p bad flush group %p %p\n", record, record->ip, record->flush_group ,record->ip->flush_group);
2440 		Debugger("blah2");
2441 		return(0);
2442 	}
2443 #endif
2444 	KKASSERT(record->flush_group == record->ip->flush_group);
2445 
2446 	/*
2447 	 * Interlock the record using the BE flag.  Once BE is set the
2448 	 * frontend cannot change the state of FE.
2449 	 *
2450 	 * NOTE: If FE is set prior to us setting BE we still sync the
2451 	 * record out, but the flush completion code converts it to
2452 	 * a delete-on-disk record instead of destroying it.
2453 	 */
2454 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
2455 	record->flags |= HAMMER_RECF_INTERLOCK_BE;
2456 
2457 	/*
2458 	 * The backend has already disposed of the record.
2459 	 */
2460 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
2461 		error = 0;
2462 		goto done;
2463 	}
2464 
2465 	/*
2466 	 * If the whole inode is being deleting all on-disk records will
2467 	 * be deleted very soon, we can't sync any new records to disk
2468 	 * because they will be deleted in the same transaction they were
2469 	 * created in (delete_tid == create_tid), which will assert.
2470 	 *
2471 	 * XXX There may be a case with RECORD_ADD with DELETED_FE set
2472 	 * that we currently panic on.
2473 	 */
2474 	if (record->ip->sync_flags & HAMMER_INODE_DELETING) {
2475 		switch(record->type) {
2476 		case HAMMER_MEM_RECORD_DATA:
2477 			/*
2478 			 * We don't have to do anything, if the record was
2479 			 * committed the space will have been accounted for
2480 			 * in the blockmap.
2481 			 */
2482 			/* fall through */
2483 		case HAMMER_MEM_RECORD_GENERAL:
2484 			/*
2485 			 * Set deleted-by-backend flag.  Do not set the
2486 			 * backend committed flag, because we are throwing
2487 			 * the record away.
2488 			 */
2489 			record->flags |= HAMMER_RECF_DELETED_BE;
2490 			++record->ip->rec_generation;
2491 			error = 0;
2492 			goto done;
2493 		case HAMMER_MEM_RECORD_ADD:
2494 			panic("hammer_sync_record_callback: illegal add "
2495 			      "during inode deletion record %p", record);
2496 			break; /* NOT REACHED */
2497 		case HAMMER_MEM_RECORD_INODE:
2498 			panic("hammer_sync_record_callback: attempt to "
2499 			      "sync inode record %p?", record);
2500 			break; /* NOT REACHED */
2501 		case HAMMER_MEM_RECORD_DEL:
2502 			/*
2503 			 * Follow through and issue the on-disk deletion
2504 			 */
2505 			break;
2506 		}
2507 	}
2508 
2509 	/*
2510 	 * If DELETED_FE is set special handling is needed for directory
2511 	 * entries.  Dependant pieces related to the directory entry may
2512 	 * have already been synced to disk.  If this occurs we have to
2513 	 * sync the directory entry and then change the in-memory record
2514 	 * from an ADD to a DELETE to cover the fact that it's been
2515 	 * deleted by the frontend.
2516 	 *
2517 	 * A directory delete covering record (MEM_RECORD_DEL) can never
2518 	 * be deleted by the frontend.
2519 	 *
2520 	 * Any other record type (aka DATA) can be deleted by the frontend.
2521 	 * XXX At the moment the flusher must skip it because there may
2522 	 * be another data record in the flush group for the same block,
2523 	 * meaning that some frontend data changes can leak into the backend's
2524 	 * synchronization point.
2525 	 */
2526 	if (record->flags & HAMMER_RECF_DELETED_FE) {
2527 		if (record->type == HAMMER_MEM_RECORD_ADD) {
2528 			/*
2529 			 * Convert a front-end deleted directory-add to
2530 			 * a directory-delete entry later.
2531 			 */
2532 			record->flags |= HAMMER_RECF_CONVERT_DELETE;
2533 		} else {
2534 			/*
2535 			 * Dispose of the record (race case).  Mark as
2536 			 * deleted by backend (and not committed).
2537 			 */
2538 			KKASSERT(record->type != HAMMER_MEM_RECORD_DEL);
2539 			record->flags |= HAMMER_RECF_DELETED_BE;
2540 			++record->ip->rec_generation;
2541 			error = 0;
2542 			goto done;
2543 		}
2544 	}
2545 
2546 	/*
2547 	 * Assign the create_tid for new records.  Deletions already
2548 	 * have the record's entire key properly set up.
2549 	 */
2550 	if (record->type != HAMMER_MEM_RECORD_DEL) {
2551 		record->leaf.base.create_tid = trans->tid;
2552 		record->leaf.create_ts = trans->time32;
2553 	}
2554 	for (;;) {
2555 		error = hammer_ip_sync_record_cursor(cursor, record);
2556 		if (error != EDEADLK)
2557 			break;
2558 		hammer_done_cursor(cursor);
2559 		error = hammer_init_cursor(trans, cursor, &record->ip->cache[0],
2560 					   record->ip);
2561 		if (error)
2562 			break;
2563 	}
2564 	record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
2565 
2566 	if (error)
2567 		error = -error;
2568 done:
2569 	hammer_flush_record_done(record, error);
2570 
2571 	/*
2572 	 * Do partial finalization if we have built up too many dirty
2573 	 * buffers.  Otherwise a buffer cache deadlock can occur when
2574 	 * doing things like creating tens of thousands of tiny files.
2575 	 *
2576 	 * We must release our cursor lock to avoid a 3-way deadlock
2577 	 * due to the exclusive sync lock the finalizer must get.
2578 	 */
2579         if (hammer_flusher_meta_limit(hmp)) {
2580 		hammer_unlock_cursor(cursor);
2581                 hammer_flusher_finalize(trans, 0);
2582 		hammer_lock_cursor(cursor);
2583 	}
2584 
2585 	return(error);
2586 }
2587 
2588 /*
2589  * Backend function called by the flusher to sync an inode to media.
2590  */
2591 int
2592 hammer_sync_inode(hammer_transaction_t trans, hammer_inode_t ip)
2593 {
2594 	struct hammer_cursor cursor;
2595 	hammer_node_t tmp_node;
2596 	hammer_record_t depend;
2597 	hammer_record_t next;
2598 	int error, tmp_error;
2599 	u_int64_t nlinks;
2600 
2601 	if ((ip->sync_flags & HAMMER_INODE_MODMASK) == 0)
2602 		return(0);
2603 
2604 	error = hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2605 	if (error)
2606 		goto done;
2607 
2608 	/*
2609 	 * Any directory records referencing this inode which are not in
2610 	 * our current flush group must adjust our nlink count for the
2611 	 * purposes of synchronization to disk.
2612 	 *
2613 	 * Records which are in our flush group can be unlinked from our
2614 	 * inode now, potentially allowing the inode to be physically
2615 	 * deleted.
2616 	 *
2617 	 * This cannot block.
2618 	 */
2619 	nlinks = ip->ino_data.nlinks;
2620 	next = TAILQ_FIRST(&ip->target_list);
2621 	while ((depend = next) != NULL) {
2622 		next = TAILQ_NEXT(depend, target_entry);
2623 		if (depend->flush_state == HAMMER_FST_FLUSH &&
2624 		    depend->flush_group == ip->flush_group) {
2625 			/*
2626 			 * If this is an ADD that was deleted by the frontend
2627 			 * the frontend nlinks count will have already been
2628 			 * decremented, but the backend is going to sync its
2629 			 * directory entry and must account for it.  The
2630 			 * record will be converted to a delete-on-disk when
2631 			 * it gets synced.
2632 			 *
2633 			 * If the ADD was not deleted by the frontend we
2634 			 * can remove the dependancy from our target_list.
2635 			 */
2636 			if (depend->flags & HAMMER_RECF_DELETED_FE) {
2637 				++nlinks;
2638 			} else {
2639 				TAILQ_REMOVE(&ip->target_list, depend,
2640 					     target_entry);
2641 				depend->target_ip = NULL;
2642 			}
2643 		} else if ((depend->flags & HAMMER_RECF_DELETED_FE) == 0) {
2644 			/*
2645 			 * Not part of our flush group and not deleted by
2646 			 * the front-end, adjust the link count synced to
2647 			 * the media (undo what the frontend did when it
2648 			 * queued the record).
2649 			 */
2650 			KKASSERT((depend->flags & HAMMER_RECF_DELETED_BE) == 0);
2651 			switch(depend->type) {
2652 			case HAMMER_MEM_RECORD_ADD:
2653 				--nlinks;
2654 				break;
2655 			case HAMMER_MEM_RECORD_DEL:
2656 				++nlinks;
2657 				break;
2658 			default:
2659 				break;
2660 			}
2661 		}
2662 	}
2663 
2664 	/*
2665 	 * Set dirty if we had to modify the link count.
2666 	 */
2667 	if (ip->sync_ino_data.nlinks != nlinks) {
2668 		KKASSERT((int64_t)nlinks >= 0);
2669 		ip->sync_ino_data.nlinks = nlinks;
2670 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2671 	}
2672 
2673 	/*
2674 	 * If there is a trunction queued destroy any data past the (aligned)
2675 	 * truncation point.  Userland will have dealt with the buffer
2676 	 * containing the truncation point for us.
2677 	 *
2678 	 * We don't flush pending frontend data buffers until after we've
2679 	 * dealt with the truncation.
2680 	 */
2681 	if (ip->sync_flags & HAMMER_INODE_TRUNCATED) {
2682 		/*
2683 		 * Interlock trunc_off.  The VOP front-end may continue to
2684 		 * make adjustments to it while we are blocked.
2685 		 */
2686 		off_t trunc_off;
2687 		off_t aligned_trunc_off;
2688 		int blkmask;
2689 
2690 		trunc_off = ip->sync_trunc_off;
2691 		blkmask = hammer_blocksize(trunc_off) - 1;
2692 		aligned_trunc_off = (trunc_off + blkmask) & ~(int64_t)blkmask;
2693 
2694 		/*
2695 		 * Delete any whole blocks on-media.  The front-end has
2696 		 * already cleaned out any partial block and made it
2697 		 * pending.  The front-end may have updated trunc_off
2698 		 * while we were blocked so we only use sync_trunc_off.
2699 		 *
2700 		 * This operation can blow out the buffer cache, EWOULDBLOCK
2701 		 * means we were unable to complete the deletion.  The
2702 		 * deletion will update sync_trunc_off in that case.
2703 		 */
2704 		error = hammer_ip_delete_range(&cursor, ip,
2705 						aligned_trunc_off,
2706 						0x7FFFFFFFFFFFFFFFLL, 2);
2707 		if (error == EWOULDBLOCK) {
2708 			ip->flags |= HAMMER_INODE_WOULDBLOCK;
2709 			error = 0;
2710 			goto defer_buffer_flush;
2711 		}
2712 
2713 		if (error)
2714 			goto done;
2715 
2716 		/*
2717 		 * Clear the truncation flag on the backend after we have
2718 		 * complete the deletions.  Backend data is now good again
2719 		 * (including new records we are about to sync, below).
2720 		 *
2721 		 * Leave sync_trunc_off intact.  As we write additional
2722 		 * records the backend will update sync_trunc_off.  This
2723 		 * tells the backend whether it can skip the overwrite
2724 		 * test.  This should work properly even when the backend
2725 		 * writes full blocks where the truncation point straddles
2726 		 * the block because the comparison is against the base
2727 		 * offset of the record.
2728 		 */
2729 		ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2730 		/* ip->sync_trunc_off = 0x7FFFFFFFFFFFFFFFLL; */
2731 	} else {
2732 		error = 0;
2733 	}
2734 
2735 	/*
2736 	 * Now sync related records.  These will typically be directory
2737 	 * entries, records tracking direct-writes, or delete-on-disk records.
2738 	 */
2739 	if (error == 0) {
2740 		tmp_error = RB_SCAN(hammer_rec_rb_tree, &ip->rec_tree, NULL,
2741 				    hammer_sync_record_callback, &cursor);
2742 		if (tmp_error < 0)
2743 			tmp_error = -error;
2744 		if (tmp_error)
2745 			error = tmp_error;
2746 	}
2747 	hammer_cache_node(&ip->cache[1], cursor.node);
2748 
2749 	/*
2750 	 * Re-seek for inode update, assuming our cache hasn't been ripped
2751 	 * out from under us.
2752 	 */
2753 	if (error == 0) {
2754 		tmp_node = hammer_ref_node_safe(trans, &ip->cache[0], &error);
2755 		if (tmp_node) {
2756 			hammer_cursor_downgrade(&cursor);
2757 			hammer_lock_sh(&tmp_node->lock);
2758 			if ((tmp_node->flags & HAMMER_NODE_DELETED) == 0)
2759 				hammer_cursor_seek(&cursor, tmp_node, 0);
2760 			hammer_unlock(&tmp_node->lock);
2761 			hammer_rel_node(tmp_node);
2762 		}
2763 		error = 0;
2764 	}
2765 
2766 	/*
2767 	 * If we are deleting the inode the frontend had better not have
2768 	 * any active references on elements making up the inode.
2769 	 *
2770 	 * The call to hammer_ip_delete_clean() cleans up auxillary records
2771 	 * but not DB or DATA records.  Those must have already been deleted
2772 	 * by the normal truncation mechanic.
2773 	 */
2774 	if (error == 0 && ip->sync_ino_data.nlinks == 0 &&
2775 		RB_EMPTY(&ip->rec_tree)  &&
2776 	    (ip->sync_flags & HAMMER_INODE_DELETING) &&
2777 	    (ip->flags & HAMMER_INODE_DELETED) == 0) {
2778 		int count1 = 0;
2779 
2780 		error = hammer_ip_delete_clean(&cursor, ip, &count1);
2781 		if (error == 0) {
2782 			ip->flags |= HAMMER_INODE_DELETED;
2783 			ip->sync_flags &= ~HAMMER_INODE_DELETING;
2784 			ip->sync_flags &= ~HAMMER_INODE_TRUNCATED;
2785 			KKASSERT(RB_EMPTY(&ip->rec_tree));
2786 
2787 			/*
2788 			 * Set delete_tid in both the frontend and backend
2789 			 * copy of the inode record.  The DELETED flag handles
2790 			 * this, do not set RDIRTY.
2791 			 */
2792 			ip->ino_leaf.base.delete_tid = trans->tid;
2793 			ip->sync_ino_leaf.base.delete_tid = trans->tid;
2794 			ip->ino_leaf.delete_ts = trans->time32;
2795 			ip->sync_ino_leaf.delete_ts = trans->time32;
2796 
2797 
2798 			/*
2799 			 * Adjust the inode count in the volume header
2800 			 */
2801 			hammer_sync_lock_sh(trans);
2802 			if (ip->flags & HAMMER_INODE_ONDISK) {
2803 				hammer_modify_volume_field(trans,
2804 							   trans->rootvol,
2805 							   vol0_stat_inodes);
2806 				--ip->hmp->rootvol->ondisk->vol0_stat_inodes;
2807 				hammer_modify_volume_done(trans->rootvol);
2808 			}
2809 			hammer_sync_unlock(trans);
2810 		}
2811 	}
2812 
2813 	if (error)
2814 		goto done;
2815 	ip->sync_flags &= ~HAMMER_INODE_BUFS;
2816 
2817 defer_buffer_flush:
2818 	/*
2819 	 * Now update the inode's on-disk inode-data and/or on-disk record.
2820 	 * DELETED and ONDISK are managed only in ip->flags.
2821 	 *
2822 	 * In the case of a defered buffer flush we still update the on-disk
2823 	 * inode to satisfy visibility requirements if there happen to be
2824 	 * directory dependancies.
2825 	 */
2826 	switch(ip->flags & (HAMMER_INODE_DELETED | HAMMER_INODE_ONDISK)) {
2827 	case HAMMER_INODE_DELETED|HAMMER_INODE_ONDISK:
2828 		/*
2829 		 * If deleted and on-disk, don't set any additional flags.
2830 		 * the delete flag takes care of things.
2831 		 *
2832 		 * Clear flags which may have been set by the frontend.
2833 		 */
2834 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2835 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2836 				    HAMMER_INODE_DELETING);
2837 		break;
2838 	case HAMMER_INODE_DELETED:
2839 		/*
2840 		 * Take care of the case where a deleted inode was never
2841 		 * flushed to the disk in the first place.
2842 		 *
2843 		 * Clear flags which may have been set by the frontend.
2844 		 */
2845 		ip->sync_flags &= ~(HAMMER_INODE_DDIRTY | HAMMER_INODE_XDIRTY |
2846 				    HAMMER_INODE_ATIME | HAMMER_INODE_MTIME |
2847 				    HAMMER_INODE_DELETING);
2848 		while (RB_ROOT(&ip->rec_tree)) {
2849 			hammer_record_t record = RB_ROOT(&ip->rec_tree);
2850 			hammer_ref(&record->lock);
2851 			KKASSERT(record->lock.refs == 1);
2852 			record->flags |= HAMMER_RECF_DELETED_BE;
2853 			++record->ip->rec_generation;
2854 			hammer_rel_mem_record(record);
2855 		}
2856 		break;
2857 	case HAMMER_INODE_ONDISK:
2858 		/*
2859 		 * If already on-disk, do not set any additional flags.
2860 		 */
2861 		break;
2862 	default:
2863 		/*
2864 		 * If not on-disk and not deleted, set DDIRTY to force
2865 		 * an initial record to be written.
2866 		 *
2867 		 * Also set the create_tid in both the frontend and backend
2868 		 * copy of the inode record.
2869 		 */
2870 		ip->ino_leaf.base.create_tid = trans->tid;
2871 		ip->ino_leaf.create_ts = trans->time32;
2872 		ip->sync_ino_leaf.base.create_tid = trans->tid;
2873 		ip->sync_ino_leaf.create_ts = trans->time32;
2874 		ip->sync_flags |= HAMMER_INODE_DDIRTY;
2875 		break;
2876 	}
2877 
2878 	/*
2879 	 * If RDIRTY or DDIRTY is set, write out a new record.  If the inode
2880 	 * is already on-disk the old record is marked as deleted.
2881 	 *
2882 	 * If DELETED is set hammer_update_inode() will delete the existing
2883 	 * record without writing out a new one.
2884 	 *
2885 	 * If *ONLY* the ITIMES flag is set we can update the record in-place.
2886 	 */
2887 	if (ip->flags & HAMMER_INODE_DELETED) {
2888 		error = hammer_update_inode(&cursor, ip);
2889 	} else
2890 	if ((ip->sync_flags & HAMMER_INODE_DDIRTY) == 0 &&
2891 	    (ip->sync_flags & (HAMMER_INODE_ATIME | HAMMER_INODE_MTIME))) {
2892 		error = hammer_update_itimes(&cursor, ip);
2893 	} else
2894 	if (ip->sync_flags & (HAMMER_INODE_DDIRTY | HAMMER_INODE_ATIME | HAMMER_INODE_MTIME)) {
2895 		error = hammer_update_inode(&cursor, ip);
2896 	}
2897 done:
2898 	if (error) {
2899 		hammer_critical_error(ip->hmp, ip, error,
2900 				      "while syncing inode");
2901 	}
2902 	hammer_done_cursor(&cursor);
2903 	return(error);
2904 }
2905 
2906 /*
2907  * This routine is called when the OS is no longer actively referencing
2908  * the inode (but might still be keeping it cached), or when releasing
2909  * the last reference to an inode.
2910  *
2911  * At this point if the inode's nlinks count is zero we want to destroy
2912  * it, which may mean destroying it on-media too.
2913  */
2914 void
2915 hammer_inode_unloadable_check(hammer_inode_t ip, int getvp)
2916 {
2917 	struct vnode *vp;
2918 
2919 	/*
2920 	 * Set the DELETING flag when the link count drops to 0 and the
2921 	 * OS no longer has any opens on the inode.
2922 	 *
2923 	 * The backend will clear DELETING (a mod flag) and set DELETED
2924 	 * (a state flag) when it is actually able to perform the
2925 	 * operation.
2926 	 *
2927 	 * Don't reflag the deletion if the flusher is currently syncing
2928 	 * one that was already flagged.  A previously set DELETING flag
2929 	 * may bounce around flags and sync_flags until the operation is
2930 	 * completely done.
2931 	 */
2932 	if (ip->ino_data.nlinks == 0 &&
2933 	    ((ip->flags | ip->sync_flags) & (HAMMER_INODE_DELETING|HAMMER_INODE_DELETED)) == 0) {
2934 		ip->flags |= HAMMER_INODE_DELETING;
2935 		ip->flags |= HAMMER_INODE_TRUNCATED;
2936 		ip->trunc_off = 0;
2937 		vp = NULL;
2938 		if (getvp) {
2939 			if (hammer_get_vnode(ip, &vp) != 0)
2940 				return;
2941 		}
2942 
2943 		/*
2944 		 * Final cleanup
2945 		 */
2946 		if (ip->vp) {
2947 			vtruncbuf(ip->vp, 0, HAMMER_BUFSIZE);
2948 			vnode_pager_setsize(ip->vp, 0);
2949 		}
2950 		if (getvp) {
2951 			vput(vp);
2952 		}
2953 	}
2954 }
2955 
2956 /*
2957  * After potentially resolving a dependancy the inode is tested
2958  * to determine whether it needs to be reflushed.
2959  */
2960 void
2961 hammer_test_inode(hammer_inode_t ip)
2962 {
2963 	if (ip->flags & HAMMER_INODE_REFLUSH) {
2964 		ip->flags &= ~HAMMER_INODE_REFLUSH;
2965 		hammer_ref(&ip->lock);
2966 		if (ip->flags & HAMMER_INODE_RESIGNAL) {
2967 			ip->flags &= ~HAMMER_INODE_RESIGNAL;
2968 			hammer_flush_inode(ip, HAMMER_FLUSH_SIGNAL);
2969 		} else {
2970 			hammer_flush_inode(ip, 0);
2971 		}
2972 		hammer_rel_inode(ip, 0);
2973 	}
2974 }
2975 
2976 /*
2977  * Clear the RECLAIM flag on an inode.  This occurs when the inode is
2978  * reassociated with a vp or just before it gets freed.
2979  *
2980  * Pipeline wakeups to threads blocked due to an excessive number of
2981  * detached inodes.  The reclaim count generates a bit of negative
2982  * feedback.
2983  */
2984 static void
2985 hammer_inode_wakereclaims(hammer_inode_t ip, int dowake)
2986 {
2987 	struct hammer_reclaim *reclaim;
2988 	hammer_mount_t hmp = ip->hmp;
2989 
2990 	if ((ip->flags & HAMMER_INODE_RECLAIM) == 0)
2991 		return;
2992 
2993 	--hammer_count_reclaiming;
2994 	--hmp->inode_reclaims;
2995 	ip->flags &= ~HAMMER_INODE_RECLAIM;
2996 
2997 	if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT || dowake) {
2998 		reclaim = TAILQ_FIRST(&hmp->reclaim_list);
2999 		if (reclaim && reclaim->count > 0 && --reclaim->count == 0) {
3000 			TAILQ_REMOVE(&hmp->reclaim_list, reclaim, entry);
3001 			wakeup(reclaim);
3002 		}
3003 	}
3004 }
3005 
3006 /*
3007  * Setup our reclaim pipeline.  We only let so many detached (and dirty)
3008  * inodes build up before we start blocking.
3009  *
3010  * When we block we don't care *which* inode has finished reclaiming,
3011  * as lone as one does.  This is somewhat heuristical... we also put a
3012  * cap on how long we are willing to wait.
3013  */
3014 void
3015 hammer_inode_waitreclaims(hammer_mount_t hmp)
3016 {
3017 	struct hammer_reclaim reclaim;
3018 	int delay;
3019 
3020 	if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT)
3021 		return;
3022 	delay = (hmp->inode_reclaims - HAMMER_RECLAIM_WAIT) * hz /
3023 		(HAMMER_RECLAIM_WAIT * 3) + 1;
3024 	if (delay > 0) {
3025 		reclaim.count = 2;
3026 		TAILQ_INSERT_TAIL(&hmp->reclaim_list, &reclaim, entry);
3027 		tsleep(&reclaim, 0, "hmrrcm", delay);
3028 		if (reclaim.count > 0)
3029 			TAILQ_REMOVE(&hmp->reclaim_list, &reclaim, entry);
3030 	}
3031 }
3032 
3033 /*
3034  * A larger then normal backlog of inodes is sitting in the flusher,
3035  * enforce a general slowdown to let it catch up.  This routine is only
3036  * called on completion of a non-flusher-related transaction which
3037  * performed B-Tree node I/O.
3038  *
3039  * It is possible for the flusher to stall in a continuous load.
3040  * blogbench -i1000 -o seems to do a good job generating this sort of load.
3041  * If the flusher is unable to catch up the inode count can bloat until
3042  * we run out of kvm.
3043  *
3044  * This is a bit of a hack.
3045  */
3046 void
3047 hammer_inode_waithard(hammer_mount_t hmp)
3048 {
3049 	/*
3050 	 * Hysteresis.
3051 	 */
3052 	if (hmp->flags & HAMMER_MOUNT_FLUSH_RECOVERY) {
3053 		if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT / 2 &&
3054 		    hmp->count_iqueued < hmp->count_inodes / 20) {
3055 			hmp->flags &= ~HAMMER_MOUNT_FLUSH_RECOVERY;
3056 			return;
3057 		}
3058 	} else {
3059 		if (hmp->inode_reclaims < HAMMER_RECLAIM_WAIT ||
3060 		    hmp->count_iqueued < hmp->count_inodes / 10) {
3061 			return;
3062 		}
3063 		hmp->flags |= HAMMER_MOUNT_FLUSH_RECOVERY;
3064 	}
3065 
3066 	/*
3067 	 * Block for one flush cycle.
3068 	 */
3069 	hammer_flusher_wait_next(hmp);
3070 }
3071 
3072