xref: /dragonfly/sys/vfs/hammer/hammer_io.c (revision a68e0df0)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_io.c,v 1.55 2008/09/15 17:02:49 dillon Exp $
35  */
36 /*
37  * IO Primitives and buffer cache management
38  *
39  * All major data-tracking structures in HAMMER contain a struct hammer_io
40  * which is used to manage their backing store.  We use filesystem buffers
41  * for backing store and we leave them passively associated with their
42  * HAMMER structures.
43  *
44  * If the kernel tries to destroy a passively associated buf which we cannot
45  * yet let go we set B_LOCKED in the buffer and then actively released it
46  * later when we can.
47  */
48 
49 #include "hammer.h"
50 #include <sys/fcntl.h>
51 #include <sys/nlookup.h>
52 #include <sys/buf.h>
53 #include <sys/buf2.h>
54 
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 #if 0
58 static void hammer_io_direct_read_complete(struct bio *nbio);
59 #endif
60 static void hammer_io_direct_write_complete(struct bio *nbio);
61 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
62 static void hammer_io_set_modlist(struct hammer_io *io);
63 static void hammer_io_flush_mark(hammer_volume_t volume);
64 
65 
66 /*
67  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
68  * an existing hammer_io structure which may have switched to another type.
69  */
70 void
71 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type)
72 {
73 	io->volume = volume;
74 	io->hmp = volume->io.hmp;
75 	io->type = type;
76 }
77 
78 /*
79  * Helper routine to disassociate a buffer cache buffer from an I/O
80  * structure.  The buffer is unlocked and marked appropriate for reclamation.
81  *
82  * The io may have 0 or 1 references depending on who called us.  The
83  * caller is responsible for dealing with the refs.
84  *
85  * This call can only be made when no action is required on the buffer.
86  *
87  * The caller must own the buffer and the IO must indicate that the
88  * structure no longer owns it (io.released != 0).
89  */
90 static void
91 hammer_io_disassociate(hammer_io_structure_t iou)
92 {
93 	struct buf *bp = iou->io.bp;
94 
95 	KKASSERT(iou->io.released);
96 	KKASSERT(iou->io.modified == 0);
97 	KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou);
98 	buf_dep_init(bp);
99 	iou->io.bp = NULL;
100 
101 	/*
102 	 * If the buffer was locked someone wanted to get rid of it.
103 	 */
104 	if (bp->b_flags & B_LOCKED) {
105 		--hammer_count_io_locked;
106 		bp->b_flags &= ~B_LOCKED;
107 	}
108 	if (iou->io.reclaim) {
109 		bp->b_flags |= B_NOCACHE|B_RELBUF;
110 		iou->io.reclaim = 0;
111 	}
112 
113 	switch(iou->io.type) {
114 	case HAMMER_STRUCTURE_VOLUME:
115 		iou->volume.ondisk = NULL;
116 		break;
117 	case HAMMER_STRUCTURE_DATA_BUFFER:
118 	case HAMMER_STRUCTURE_META_BUFFER:
119 	case HAMMER_STRUCTURE_UNDO_BUFFER:
120 		iou->buffer.ondisk = NULL;
121 		break;
122 	case HAMMER_STRUCTURE_DUMMY:
123 		panic("hammer_io_disassociate: bad io type");
124 		break;
125 	}
126 }
127 
128 /*
129  * Wait for any physical IO to complete
130  *
131  * XXX we aren't interlocked against a spinlock or anything so there
132  *     is a small window in the interlock / io->running == 0 test.
133  */
134 void
135 hammer_io_wait(hammer_io_t io)
136 {
137 	if (io->running) {
138 		for (;;) {
139 			io->waiting = 1;
140 			tsleep_interlock(io, 0);
141 			if (io->running == 0)
142 				break;
143 			tsleep(io, PINTERLOCKED, "hmrflw", hz);
144 			if (io->running == 0)
145 				break;
146 		}
147 	}
148 }
149 
150 /*
151  * Wait for all currently queued HAMMER-initiated I/Os to complete.
152  *
153  * This is not supposed to count direct I/O's but some can leak
154  * through (for non-full-sized direct I/Os).
155  */
156 void
157 hammer_io_wait_all(hammer_mount_t hmp, const char *ident, int doflush)
158 {
159 	struct hammer_io iodummy;
160 	hammer_io_t io;
161 
162 	/*
163 	 * Degenerate case, no I/O is running
164 	 */
165 	crit_enter();
166 	if (TAILQ_EMPTY(&hmp->iorun_list)) {
167 		crit_exit();
168 		if (doflush)
169 			hammer_io_flush_sync(hmp);
170 		return;
171 	}
172 	bzero(&iodummy, sizeof(iodummy));
173 	iodummy.type = HAMMER_STRUCTURE_DUMMY;
174 
175 	/*
176 	 * Add placemarker and then wait until it becomes the head of
177 	 * the list.
178 	 */
179 	TAILQ_INSERT_TAIL(&hmp->iorun_list, &iodummy, iorun_entry);
180 	while (TAILQ_FIRST(&hmp->iorun_list) != &iodummy) {
181 		tsleep(&iodummy, 0, ident, 0);
182 	}
183 
184 	/*
185 	 * Chain in case several placemarkers are present.
186 	 */
187 	TAILQ_REMOVE(&hmp->iorun_list, &iodummy, iorun_entry);
188 	io = TAILQ_FIRST(&hmp->iorun_list);
189 	if (io && io->type == HAMMER_STRUCTURE_DUMMY)
190 		wakeup(io);
191 	crit_exit();
192 
193 	if (doflush)
194 		hammer_io_flush_sync(hmp);
195 }
196 
197 /*
198  * Clear a flagged error condition on a I/O buffer.  The caller must hold
199  * its own ref on the buffer.
200  */
201 void
202 hammer_io_clear_error(struct hammer_io *io)
203 {
204 	if (io->ioerror) {
205 		io->ioerror = 0;
206 		hammer_rel(&io->lock);
207 		KKASSERT(hammer_isactive(&io->lock));
208 	}
209 }
210 
211 /*
212  * This is an advisory function only which tells the buffer cache
213  * the bp is not a meta-data buffer, even though it is backed by
214  * a block device.
215  *
216  * This is used by HAMMER's reblocking code to avoid trying to
217  * swapcache the filesystem's data when it is read or written
218  * by the reblocking code.
219  */
220 void
221 hammer_io_notmeta(hammer_buffer_t buffer)
222 {
223 	buffer->io.bp->b_flags |= B_NOTMETA;
224 }
225 
226 
227 #define HAMMER_MAXRA	4
228 
229 /*
230  * Load bp for a HAMMER structure.  The io must be exclusively locked by
231  * the caller.
232  *
233  * This routine is mostly used on meta-data and small-data blocks.  Generally
234  * speaking HAMMER assumes some locality of reference and will cluster
235  * a 64K read.
236  *
237  * Note that clustering occurs at the device layer, not the logical layer.
238  * If the buffers do not apply to the current operation they may apply to
239  * some other.
240  */
241 int
242 hammer_io_read(struct vnode *devvp, struct hammer_io *io, hammer_off_t limit)
243 {
244 	struct buf *bp;
245 	int   error;
246 
247 	if ((bp = io->bp) == NULL) {
248 		hammer_count_io_running_read += io->bytes;
249 		if (hammer_cluster_enable) {
250 			error = cluster_read(devvp, limit,
251 					     io->offset, io->bytes,
252 					     HAMMER_CLUSTER_SIZE,
253 					     HAMMER_CLUSTER_BUFS, &io->bp);
254 		} else {
255 			error = bread(devvp, io->offset, io->bytes, &io->bp);
256 		}
257 		hammer_stats_disk_read += io->bytes;
258 		hammer_count_io_running_read -= io->bytes;
259 
260 		/*
261 		 * The code generally assumes b_ops/b_dep has been set-up,
262 		 * even if we error out here.
263 		 */
264 		bp = io->bp;
265 		bp->b_ops = &hammer_bioops;
266 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
267 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
268 		BUF_KERNPROC(bp);
269 		KKASSERT(io->modified == 0);
270 		KKASSERT(io->running == 0);
271 		KKASSERT(io->waiting == 0);
272 		io->released = 0;	/* we hold an active lock on bp */
273 	} else {
274 		error = 0;
275 	}
276 	return(error);
277 }
278 
279 /*
280  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
281  * Must be called with the IO exclusively locked.
282  *
283  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
284  * I/O by forcing the buffer to not be in a released state before calling
285  * it.
286  *
287  * This function will also mark the IO as modified but it will not
288  * increment the modify_refs count.
289  */
290 int
291 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
292 {
293 	struct buf *bp;
294 
295 	if ((bp = io->bp) == NULL) {
296 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
297 		bp = io->bp;
298 		bp->b_ops = &hammer_bioops;
299 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
300 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
301 		io->released = 0;
302 		KKASSERT(io->running == 0);
303 		io->waiting = 0;
304 		BUF_KERNPROC(bp);
305 	} else {
306 		if (io->released) {
307 			regetblk(bp);
308 			BUF_KERNPROC(bp);
309 			io->released = 0;
310 		}
311 	}
312 	hammer_io_modify(io, 0);
313 	vfs_bio_clrbuf(bp);
314 	return(0);
315 }
316 
317 /*
318  * Advance the activity count on the underlying buffer because
319  * HAMMER does not getblk/brelse on every access.
320  */
321 void
322 hammer_io_advance(struct hammer_io *io)
323 {
324 	if (io->bp)
325 		buf_act_advance(io->bp);
326 }
327 
328 /*
329  * Remove potential device level aliases against buffers managed by high level
330  * vnodes.  Aliases can also be created due to mixed buffer sizes or via
331  * direct access to the backing store device.
332  *
333  * This is nasty because the buffers are also VMIO-backed.  Even if a buffer
334  * does not exist its backing VM pages might, and we have to invalidate
335  * those as well or a getblk() will reinstate them.
336  *
337  * Buffer cache buffers associated with hammer_buffers cannot be
338  * invalidated.
339  */
340 int
341 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
342 {
343 	hammer_io_structure_t iou;
344 	hammer_off_t phys_offset;
345 	struct buf *bp;
346 	int error;
347 
348 	phys_offset = volume->ondisk->vol_buf_beg +
349 		      (zone2_offset & HAMMER_OFF_SHORT_MASK);
350 	crit_enter();
351 	if ((bp = findblk(volume->devvp, phys_offset, FINDBLK_TEST)) != NULL)
352 		bp = getblk(volume->devvp, phys_offset, bp->b_bufsize, 0, 0);
353 	else
354 		bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
355 	if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) {
356 #if 0
357 		hammer_ref(&iou->io.lock);
358 		hammer_io_clear_modify(&iou->io, 1);
359 		bundirty(bp);
360 		iou->io.released = 0;
361 		BUF_KERNPROC(bp);
362 		iou->io.reclaim = 1;
363 		iou->io.waitdep = 1;
364 		KKASSERT(hammer_isactive(&iou->io.lock) == 1);
365 		hammer_rel_buffer(&iou->buffer, 0);
366 		/*hammer_io_deallocate(bp);*/
367 #endif
368 		bqrelse(bp);
369 		error = EAGAIN;
370 	} else {
371 		KKASSERT((bp->b_flags & B_LOCKED) == 0);
372 		bundirty(bp);
373 		bp->b_flags |= B_NOCACHE|B_RELBUF;
374 		brelse(bp);
375 		error = 0;
376 	}
377 	crit_exit();
378 	return(error);
379 }
380 
381 /*
382  * This routine is called on the last reference to a hammer structure.
383  * The io must be interlocked with a refcount of zero.  The hammer structure
384  * will remain interlocked on return.
385  *
386  * This routine may return a non-NULL bp to the caller for dispoal.
387  * The caller typically brelse()'s the bp.
388  *
389  * The bp may or may not still be passively associated with the IO.  It
390  * will remain passively associated if it is unreleasable (e.g. a modified
391  * meta-data buffer).
392  *
393  * The only requirement here is that modified meta-data and volume-header
394  * buffer may NOT be disassociated from the IO structure, and consequently
395  * we also leave such buffers actively associated with the IO if they already
396  * are (since the kernel can't do anything with them anyway).  Only the
397  * flusher is allowed to write such buffers out.  Modified pure-data and
398  * undo buffers are returned to the kernel but left passively associated
399  * so we can track when the kernel writes the bp out.
400  */
401 struct buf *
402 hammer_io_release(struct hammer_io *io, int flush)
403 {
404 	union hammer_io_structure *iou = (void *)io;
405 	struct buf *bp;
406 
407 	if ((bp = io->bp) == NULL)
408 		return(NULL);
409 
410 	/*
411 	 * Try to flush a dirty IO to disk if asked to by the
412 	 * caller or if the kernel tried to flush the buffer in the past.
413 	 *
414 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
415 	 * meta-data and volume buffers can only be flushed explicitly
416 	 * by HAMMER.
417 	 */
418 	if (io->modified) {
419 		if (flush) {
420 			hammer_io_flush(io, 0);
421 		} else if (bp->b_flags & B_LOCKED) {
422 			switch(io->type) {
423 			case HAMMER_STRUCTURE_DATA_BUFFER:
424 				hammer_io_flush(io, 0);
425 				break;
426 			case HAMMER_STRUCTURE_UNDO_BUFFER:
427 				hammer_io_flush(io, hammer_undo_reclaim(io));
428 				break;
429 			default:
430 				break;
431 			}
432 		} /* else no explicit request to flush the buffer */
433 	}
434 
435 	/*
436 	 * Wait for the IO to complete if asked to.  This occurs when
437 	 * the buffer must be disposed of definitively during an umount
438 	 * or buffer invalidation.
439 	 */
440 	if (io->waitdep && io->running) {
441 		hammer_io_wait(io);
442 	}
443 
444 	/*
445 	 * Return control of the buffer to the kernel (with the provisio
446 	 * that our bioops can override kernel decisions with regards to
447 	 * the buffer).
448 	 */
449 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
450 		/*
451 		 * Always disassociate the bp if an explicit flush
452 		 * was requested and the IO completed with no error
453 		 * (so unmount can really clean up the structure).
454 		 */
455 		if (io->released) {
456 			regetblk(bp);
457 			BUF_KERNPROC(bp);
458 		} else {
459 			io->released = 1;
460 		}
461 		hammer_io_disassociate((hammer_io_structure_t)io);
462 		/* return the bp */
463 	} else if (io->modified) {
464 		/*
465 		 * Only certain IO types can be released to the kernel if
466 		 * the buffer has been modified.
467 		 *
468 		 * volume and meta-data IO types may only be explicitly
469 		 * flushed by HAMMER.
470 		 */
471 		switch(io->type) {
472 		case HAMMER_STRUCTURE_DATA_BUFFER:
473 		case HAMMER_STRUCTURE_UNDO_BUFFER:
474 			if (io->released == 0) {
475 				io->released = 1;
476 				bdwrite(bp);
477 			}
478 			break;
479 		default:
480 			break;
481 		}
482 		bp = NULL;	/* bp left associated */
483 	} else if (io->released == 0) {
484 		/*
485 		 * Clean buffers can be generally released to the kernel.
486 		 * We leave the bp passively associated with the HAMMER
487 		 * structure and use bioops to disconnect it later on
488 		 * if the kernel wants to discard the buffer.
489 		 *
490 		 * We can steal the structure's ownership of the bp.
491 		 */
492 		io->released = 1;
493 		if (bp->b_flags & B_LOCKED) {
494 			hammer_io_disassociate(iou);
495 			/* return the bp */
496 		} else {
497 			if (io->reclaim) {
498 				hammer_io_disassociate(iou);
499 				/* return the bp */
500 			} else {
501 				/* return the bp (bp passively associated) */
502 			}
503 		}
504 	} else {
505 		/*
506 		 * A released buffer is passively associate with our
507 		 * hammer_io structure.  The kernel cannot destroy it
508 		 * without making a bioops call.  If the kernel (B_LOCKED)
509 		 * or we (reclaim) requested that the buffer be destroyed
510 		 * we destroy it, otherwise we do a quick get/release to
511 		 * reset its position in the kernel's LRU list.
512 		 *
513 		 * Leaving the buffer passively associated allows us to
514 		 * use the kernel's LRU buffer flushing mechanisms rather
515 		 * then rolling our own.
516 		 *
517 		 * XXX there are two ways of doing this.  We can re-acquire
518 		 * and passively release to reset the LRU, or not.
519 		 */
520 		if (io->running == 0) {
521 			regetblk(bp);
522 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
523 				hammer_io_disassociate(iou);
524 				/* return the bp */
525 			} else {
526 				/* return the bp (bp passively associated) */
527 			}
528 		} else {
529 			/*
530 			 * bp is left passively associated but we do not
531 			 * try to reacquire it.  Interactions with the io
532 			 * structure will occur on completion of the bp's
533 			 * I/O.
534 			 */
535 			bp = NULL;
536 		}
537 	}
538 	return(bp);
539 }
540 
541 /*
542  * This routine is called with a locked IO when a flush is desired and
543  * no other references to the structure exists other then ours.  This
544  * routine is ONLY called when HAMMER believes it is safe to flush a
545  * potentially modified buffer out.
546  */
547 void
548 hammer_io_flush(struct hammer_io *io, int reclaim)
549 {
550 	struct buf *bp;
551 
552 	/*
553 	 * Degenerate case - nothing to flush if nothing is dirty.
554 	 */
555 	if (io->modified == 0) {
556 		return;
557 	}
558 
559 	KKASSERT(io->bp);
560 	KKASSERT(io->modify_refs <= 0);
561 
562 	/*
563 	 * Acquire ownership of the bp, particularly before we clear our
564 	 * modified flag.
565 	 *
566 	 * We are going to bawrite() this bp.  Don't leave a window where
567 	 * io->released is set, we actually own the bp rather then our
568 	 * buffer.
569 	 */
570 	bp = io->bp;
571 	if (io->released) {
572 		regetblk(bp);
573 		/* BUF_KERNPROC(io->bp); */
574 		/* io->released = 0; */
575 		KKASSERT(io->released);
576 		KKASSERT(io->bp == bp);
577 	}
578 	io->released = 1;
579 
580 	if (reclaim) {
581 		io->reclaim = 1;
582 		if ((bp->b_flags & B_LOCKED) == 0) {
583 			bp->b_flags |= B_LOCKED;
584 			++hammer_count_io_locked;
585 		}
586 	}
587 
588 	/*
589 	 * Acquire exclusive access to the bp and then clear the modified
590 	 * state of the buffer prior to issuing I/O to interlock any
591 	 * modifications made while the I/O is in progress.  This shouldn't
592 	 * happen anyway but losing data would be worse.  The modified bit
593 	 * will be rechecked after the IO completes.
594 	 *
595 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
596 	 *
597 	 * This is only legal when lock.refs == 1 (otherwise we might clear
598 	 * the modified bit while there are still users of the cluster
599 	 * modifying the data).
600 	 *
601 	 * Do this before potentially blocking so any attempt to modify the
602 	 * ondisk while we are blocked blocks waiting for us.
603 	 */
604 	hammer_ref(&io->lock);
605 	hammer_io_clear_modify(io, 0);
606 	hammer_rel(&io->lock);
607 
608 	if (hammer_debug_io & 0x0002)
609 		kprintf("hammer io_write %016jx\n", bp->b_bio1.bio_offset);
610 
611 	/*
612 	 * Transfer ownership to the kernel and initiate I/O.
613 	 */
614 	io->running = 1;
615 	io->hmp->io_running_space += io->bytes;
616 	TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry);
617 	hammer_count_io_running_write += io->bytes;
618 	bawrite(bp);
619 	hammer_io_flush_mark(io->volume);
620 }
621 
622 /************************************************************************
623  *				BUFFER DIRTYING				*
624  ************************************************************************
625  *
626  * These routines deal with dependancies created when IO buffers get
627  * modified.  The caller must call hammer_modify_*() on a referenced
628  * HAMMER structure prior to modifying its on-disk data.
629  *
630  * Any intent to modify an IO buffer acquires the related bp and imposes
631  * various write ordering dependancies.
632  */
633 
634 /*
635  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
636  * are locked until the flusher can deal with them, pure data buffers
637  * can be written out.
638  */
639 static
640 void
641 hammer_io_modify(hammer_io_t io, int count)
642 {
643 	/*
644 	 * io->modify_refs must be >= 0
645 	 */
646 	while (io->modify_refs < 0) {
647 		io->waitmod = 1;
648 		tsleep(io, 0, "hmrmod", 0);
649 	}
650 
651 	/*
652 	 * Shortcut if nothing to do.
653 	 */
654 	KKASSERT(hammer_isactive(&io->lock) && io->bp != NULL);
655 	io->modify_refs += count;
656 	if (io->modified && io->released == 0)
657 		return;
658 
659 	hammer_lock_ex(&io->lock);
660 	if (io->modified == 0) {
661 		hammer_io_set_modlist(io);
662 		io->modified = 1;
663 	}
664 	if (io->released) {
665 		regetblk(io->bp);
666 		BUF_KERNPROC(io->bp);
667 		io->released = 0;
668 		KKASSERT(io->modified != 0);
669 	}
670 	hammer_unlock(&io->lock);
671 }
672 
673 static __inline
674 void
675 hammer_io_modify_done(hammer_io_t io)
676 {
677 	KKASSERT(io->modify_refs > 0);
678 	--io->modify_refs;
679 	if (io->modify_refs == 0 && io->waitmod) {
680 		io->waitmod = 0;
681 		wakeup(io);
682 	}
683 }
684 
685 void
686 hammer_io_write_interlock(hammer_io_t io)
687 {
688 	while (io->modify_refs != 0) {
689 		io->waitmod = 1;
690 		tsleep(io, 0, "hmrmod", 0);
691 	}
692 	io->modify_refs = -1;
693 }
694 
695 void
696 hammer_io_done_interlock(hammer_io_t io)
697 {
698 	KKASSERT(io->modify_refs == -1);
699 	io->modify_refs = 0;
700 	if (io->waitmod) {
701 		io->waitmod = 0;
702 		wakeup(io);
703 	}
704 }
705 
706 /*
707  * Caller intends to modify a volume's ondisk structure.
708  *
709  * This is only allowed if we are the flusher or we have a ref on the
710  * sync_lock.
711  */
712 void
713 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
714 		     void *base, int len)
715 {
716 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
717 
718 	hammer_io_modify(&volume->io, 1);
719 	if (len) {
720 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
721 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
722 		hammer_generate_undo(trans,
723 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
724 			 base, len);
725 	}
726 }
727 
728 /*
729  * Caller intends to modify a buffer's ondisk structure.
730  *
731  * This is only allowed if we are the flusher or we have a ref on the
732  * sync_lock.
733  */
734 void
735 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
736 		     void *base, int len)
737 {
738 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
739 
740 	hammer_io_modify(&buffer->io, 1);
741 	if (len) {
742 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
743 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
744 		hammer_generate_undo(trans,
745 				     buffer->zone2_offset + rel_offset,
746 				     base, len);
747 	}
748 }
749 
750 void
751 hammer_modify_volume_done(hammer_volume_t volume)
752 {
753 	hammer_io_modify_done(&volume->io);
754 }
755 
756 void
757 hammer_modify_buffer_done(hammer_buffer_t buffer)
758 {
759 	hammer_io_modify_done(&buffer->io);
760 }
761 
762 /*
763  * Mark an entity as not being dirty any more and finalize any
764  * delayed adjustments to the buffer.
765  *
766  * Delayed adjustments are an important performance enhancement, allowing
767  * us to avoid recalculating B-Tree node CRCs over and over again when
768  * making bulk-modifications to the B-Tree.
769  *
770  * If inval is non-zero delayed adjustments are ignored.
771  *
772  * This routine may dereference related btree nodes and cause the
773  * buffer to be dereferenced.  The caller must own a reference on io.
774  */
775 void
776 hammer_io_clear_modify(struct hammer_io *io, int inval)
777 {
778 	if (io->modified == 0)
779 		return;
780 
781 	/*
782 	 * Take us off the mod-list and clear the modified bit.
783 	 */
784 	KKASSERT(io->mod_list != NULL);
785 	if (io->mod_list == &io->hmp->volu_list ||
786 	    io->mod_list == &io->hmp->meta_list) {
787 		io->hmp->locked_dirty_space -= io->bytes;
788 		hammer_count_dirtybufspace -= io->bytes;
789 	}
790 	TAILQ_REMOVE(io->mod_list, io, mod_entry);
791 	io->mod_list = NULL;
792 	io->modified = 0;
793 
794 	/*
795 	 * If this bit is not set there are no delayed adjustments.
796 	 */
797 	if (io->gencrc == 0)
798 		return;
799 	io->gencrc = 0;
800 
801 	/*
802 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
803 	 * on the node (& underlying buffer).  Release the node after clearing
804 	 * the flag.
805 	 */
806 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
807 		hammer_buffer_t buffer = (void *)io;
808 		hammer_node_t node;
809 
810 restart:
811 		TAILQ_FOREACH(node, &buffer->clist, entry) {
812 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
813 				continue;
814 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
815 			KKASSERT(node->ondisk);
816 			if (inval == 0)
817 				node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
818 			hammer_rel_node(node);
819 			goto restart;
820 		}
821 	}
822 	/* caller must still have ref on io */
823 	KKASSERT(hammer_isactive(&io->lock));
824 }
825 
826 /*
827  * Clear the IO's modify list.  Even though the IO is no longer modified
828  * it may still be on the lose_list.  This routine is called just before
829  * the governing hammer_buffer is destroyed.
830  */
831 void
832 hammer_io_clear_modlist(struct hammer_io *io)
833 {
834 	KKASSERT(io->modified == 0);
835 	if (io->mod_list) {
836 		crit_enter();	/* biodone race against list */
837 		KKASSERT(io->mod_list == &io->hmp->lose_list);
838 		TAILQ_REMOVE(io->mod_list, io, mod_entry);
839 		io->mod_list = NULL;
840 		crit_exit();
841 	}
842 }
843 
844 static void
845 hammer_io_set_modlist(struct hammer_io *io)
846 {
847 	struct hammer_mount *hmp = io->hmp;
848 
849 	KKASSERT(io->mod_list == NULL);
850 
851 	switch(io->type) {
852 	case HAMMER_STRUCTURE_VOLUME:
853 		io->mod_list = &hmp->volu_list;
854 		hmp->locked_dirty_space += io->bytes;
855 		hammer_count_dirtybufspace += io->bytes;
856 		break;
857 	case HAMMER_STRUCTURE_META_BUFFER:
858 		io->mod_list = &hmp->meta_list;
859 		hmp->locked_dirty_space += io->bytes;
860 		hammer_count_dirtybufspace += io->bytes;
861 		break;
862 	case HAMMER_STRUCTURE_UNDO_BUFFER:
863 		io->mod_list = &hmp->undo_list;
864 		break;
865 	case HAMMER_STRUCTURE_DATA_BUFFER:
866 		io->mod_list = &hmp->data_list;
867 		break;
868 	case HAMMER_STRUCTURE_DUMMY:
869 		panic("hammer_io_disassociate: bad io type");
870 		break;
871 	}
872 	TAILQ_INSERT_TAIL(io->mod_list, io, mod_entry);
873 }
874 
875 /************************************************************************
876  *				HAMMER_BIOOPS				*
877  ************************************************************************
878  *
879  */
880 
881 /*
882  * Pre-IO initiation kernel callback - cluster build only
883  */
884 static void
885 hammer_io_start(struct buf *bp)
886 {
887 }
888 
889 /*
890  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
891  *
892  * NOTE: HAMMER may modify a buffer after initiating I/O.  The modified bit
893  * may also be set if we were marking a cluster header open.  Only remove
894  * our dependancy if the modified bit is clear.
895  */
896 static void
897 hammer_io_complete(struct buf *bp)
898 {
899 	union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep);
900 	struct hammer_io *ionext;
901 
902 	KKASSERT(iou->io.released == 1);
903 
904 	/*
905 	 * Deal with people waiting for I/O to drain
906 	 */
907 	if (iou->io.running) {
908 		/*
909 		 * Deal with critical write errors.  Once a critical error
910 		 * has been flagged in hmp the UNDO FIFO will not be updated.
911 		 * That way crash recover will give us a consistent
912 		 * filesystem.
913 		 *
914 		 * Because of this we can throw away failed UNDO buffers.  If
915 		 * we throw away META or DATA buffers we risk corrupting
916 		 * the now read-only version of the filesystem visible to
917 		 * the user.  Clear B_ERROR so the buffer is not re-dirtied
918 		 * by the kernel and ref the io so it doesn't get thrown
919 		 * away.
920 		 */
921 		if (bp->b_flags & B_ERROR) {
922 			hammer_critical_error(iou->io.hmp, NULL, bp->b_error,
923 					      "while flushing meta-data");
924 			switch(iou->io.type) {
925 			case HAMMER_STRUCTURE_UNDO_BUFFER:
926 				break;
927 			default:
928 				if (iou->io.ioerror == 0) {
929 					iou->io.ioerror = 1;
930 					hammer_ref(&iou->io.lock);
931 				}
932 				break;
933 			}
934 			bp->b_flags &= ~B_ERROR;
935 			bundirty(bp);
936 #if 0
937 			hammer_io_set_modlist(&iou->io);
938 			iou->io.modified = 1;
939 #endif
940 		}
941 		hammer_stats_disk_write += iou->io.bytes;
942 		hammer_count_io_running_write -= iou->io.bytes;
943 		iou->io.hmp->io_running_space -= iou->io.bytes;
944 		KKASSERT(iou->io.hmp->io_running_space >= 0);
945 		iou->io.running = 0;
946 
947 		/*
948 		 * Remove from iorun list and wakeup any multi-io waiter(s).
949 		 */
950 		if (TAILQ_FIRST(&iou->io.hmp->iorun_list) == &iou->io) {
951 			ionext = TAILQ_NEXT(&iou->io, iorun_entry);
952 			if (ionext && ionext->type == HAMMER_STRUCTURE_DUMMY)
953 				wakeup(ionext);
954 		}
955 		TAILQ_REMOVE(&iou->io.hmp->iorun_list, &iou->io, iorun_entry);
956 	} else {
957 		hammer_stats_disk_read += iou->io.bytes;
958 	}
959 
960 	if (iou->io.waiting) {
961 		iou->io.waiting = 0;
962 		wakeup(iou);
963 	}
964 
965 	/*
966 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
967 	 * point, try to do it now.  The operation will fail if there are
968 	 * refs or if hammer_io_deallocate() is unable to gain the
969 	 * interlock.
970 	 */
971 	if (bp->b_flags & B_LOCKED) {
972 		--hammer_count_io_locked;
973 		bp->b_flags &= ~B_LOCKED;
974 		hammer_io_deallocate(bp);
975 		/* structure may be dead now */
976 	}
977 }
978 
979 /*
980  * Callback from kernel when it wishes to deallocate a passively
981  * associated structure.  This mostly occurs with clean buffers
982  * but it may be possible for a holding structure to be marked dirty
983  * while its buffer is passively associated.  The caller owns the bp.
984  *
985  * If we cannot disassociate we set B_LOCKED to prevent the buffer
986  * from getting reused.
987  *
988  * WARNING: Because this can be called directly by getnewbuf we cannot
989  * recurse into the tree.  If a bp cannot be immediately disassociated
990  * our only recourse is to set B_LOCKED.
991  *
992  * WARNING: This may be called from an interrupt via hammer_io_complete()
993  */
994 static void
995 hammer_io_deallocate(struct buf *bp)
996 {
997 	hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep);
998 
999 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0);
1000 	if (hammer_try_interlock_norefs(&iou->io.lock) == 0) {
1001 		/*
1002 		 * We cannot safely disassociate a bp from a referenced
1003 		 * or interlocked HAMMER structure.
1004 		 */
1005 		bp->b_flags |= B_LOCKED;
1006 		++hammer_count_io_locked;
1007 	} else if (iou->io.modified) {
1008 		/*
1009 		 * It is not legal to disassociate a modified buffer.  This
1010 		 * case really shouldn't ever occur.
1011 		 */
1012 		bp->b_flags |= B_LOCKED;
1013 		++hammer_count_io_locked;
1014 		hammer_put_interlock(&iou->io.lock, 0);
1015 	} else {
1016 		/*
1017 		 * Disassociate the BP.  If the io has no refs left we
1018 		 * have to add it to the loose list.
1019 		 */
1020 		hammer_io_disassociate(iou);
1021 		if (iou->io.type != HAMMER_STRUCTURE_VOLUME) {
1022 			KKASSERT(iou->io.bp == NULL);
1023 			KKASSERT(iou->io.mod_list == NULL);
1024 			crit_enter();	/* biodone race against list */
1025 			iou->io.mod_list = &iou->io.hmp->lose_list;
1026 			TAILQ_INSERT_TAIL(iou->io.mod_list, &iou->io, mod_entry);
1027 			crit_exit();
1028 		}
1029 		hammer_put_interlock(&iou->io.lock, 1);
1030 	}
1031 }
1032 
1033 static int
1034 hammer_io_fsync(struct vnode *vp)
1035 {
1036 	return(0);
1037 }
1038 
1039 /*
1040  * NOTE: will not be called unless we tell the kernel about the
1041  * bioops.  Unused... we use the mount's VFS_SYNC instead.
1042  */
1043 static int
1044 hammer_io_sync(struct mount *mp)
1045 {
1046 	return(0);
1047 }
1048 
1049 static void
1050 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
1051 {
1052 }
1053 
1054 /*
1055  * I/O pre-check for reading and writing.  HAMMER only uses this for
1056  * B_CACHE buffers so checkread just shouldn't happen, but if it does
1057  * allow it.
1058  *
1059  * Writing is a different case.  We don't want the kernel to try to write
1060  * out a buffer that HAMMER may be modifying passively or which has a
1061  * dependancy.  In addition, kernel-demanded writes can only proceed for
1062  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
1063  * buffer types can only be explicitly written by the flusher.
1064  *
1065  * checkwrite will only be called for bdwrite()n buffers.  If we return
1066  * success the kernel is guaranteed to initiate the buffer write.
1067  */
1068 static int
1069 hammer_io_checkread(struct buf *bp)
1070 {
1071 	return(0);
1072 }
1073 
1074 static int
1075 hammer_io_checkwrite(struct buf *bp)
1076 {
1077 	hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep);
1078 
1079 	/*
1080 	 * This shouldn't happen under normal operation.
1081 	 */
1082 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
1083 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
1084 		if (!panicstr)
1085 			panic("hammer_io_checkwrite: illegal buffer");
1086 		if ((bp->b_flags & B_LOCKED) == 0) {
1087 			bp->b_flags |= B_LOCKED;
1088 			++hammer_count_io_locked;
1089 		}
1090 		return(1);
1091 	}
1092 
1093 	/*
1094 	 * We can only clear the modified bit if the IO is not currently
1095 	 * undergoing modification.  Otherwise we may miss changes.
1096 	 *
1097 	 * Only data and undo buffers can reach here.  These buffers do
1098 	 * not have terminal crc functions but we temporarily reference
1099 	 * the IO anyway, just in case.
1100 	 */
1101 	if (io->modify_refs == 0 && io->modified) {
1102 		hammer_ref(&io->lock);
1103 		hammer_io_clear_modify(io, 0);
1104 		hammer_rel(&io->lock);
1105 	} else if (io->modified) {
1106 		KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
1107 	}
1108 
1109 	/*
1110 	 * The kernel is going to start the IO, set io->running.
1111 	 */
1112 	KKASSERT(io->running == 0);
1113 	io->running = 1;
1114 	io->hmp->io_running_space += io->bytes;
1115 	TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry);
1116 	hammer_count_io_running_write += io->bytes;
1117 	return(0);
1118 }
1119 
1120 /*
1121  * Return non-zero if we wish to delay the kernel's attempt to flush
1122  * this buffer to disk.
1123  */
1124 static int
1125 hammer_io_countdeps(struct buf *bp, int n)
1126 {
1127 	return(0);
1128 }
1129 
1130 struct bio_ops hammer_bioops = {
1131 	.io_start	= hammer_io_start,
1132 	.io_complete	= hammer_io_complete,
1133 	.io_deallocate	= hammer_io_deallocate,
1134 	.io_fsync	= hammer_io_fsync,
1135 	.io_sync	= hammer_io_sync,
1136 	.io_movedeps	= hammer_io_movedeps,
1137 	.io_countdeps	= hammer_io_countdeps,
1138 	.io_checkread	= hammer_io_checkread,
1139 	.io_checkwrite	= hammer_io_checkwrite,
1140 };
1141 
1142 /************************************************************************
1143  *				DIRECT IO OPS 				*
1144  ************************************************************************
1145  *
1146  * These functions operate directly on the buffer cache buffer associated
1147  * with a front-end vnode rather then a back-end device vnode.
1148  */
1149 
1150 /*
1151  * Read a buffer associated with a front-end vnode directly from the
1152  * disk media.  The bio may be issued asynchronously.  If leaf is non-NULL
1153  * we validate the CRC.
1154  *
1155  * We must check for the presence of a HAMMER buffer to handle the case
1156  * where the reblocker has rewritten the data (which it does via the HAMMER
1157  * buffer system, not via the high-level vnode buffer cache), but not yet
1158  * committed the buffer to the media.
1159  */
1160 int
1161 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1162 		      hammer_btree_leaf_elm_t leaf)
1163 {
1164 	hammer_off_t buf_offset;
1165 	hammer_off_t zone2_offset;
1166 	hammer_volume_t volume;
1167 	struct buf *bp;
1168 	struct bio *nbio;
1169 	int vol_no;
1170 	int error;
1171 
1172 	buf_offset = bio->bio_offset;
1173 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) ==
1174 		 HAMMER_ZONE_LARGE_DATA);
1175 
1176 	/*
1177 	 * The buffer cache may have an aliased buffer (the reblocker can
1178 	 * write them).  If it does we have to sync any dirty data before
1179 	 * we can build our direct-read.  This is a non-critical code path.
1180 	 */
1181 	bp = bio->bio_buf;
1182 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1183 
1184 	/*
1185 	 * Resolve to a zone-2 offset.  The conversion just requires
1186 	 * munging the top 4 bits but we want to abstract it anyway
1187 	 * so the blockmap code can verify the zone assignment.
1188 	 */
1189 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1190 	if (error)
1191 		goto done;
1192 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
1193 		 HAMMER_ZONE_RAW_BUFFER);
1194 
1195 	/*
1196 	 * Resolve volume and raw-offset for 3rd level bio.  The
1197 	 * offset will be specific to the volume.
1198 	 */
1199 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1200 	volume = hammer_get_volume(hmp, vol_no, &error);
1201 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1202 		error = EIO;
1203 
1204 	if (error == 0) {
1205 		/*
1206 		 * 3rd level bio
1207 		 */
1208 		nbio = push_bio(bio);
1209 		nbio->bio_offset = volume->ondisk->vol_buf_beg +
1210 				   (zone2_offset & HAMMER_OFF_SHORT_MASK);
1211 #if 0
1212 		/*
1213 		 * XXX disabled - our CRC check doesn't work if the OS
1214 		 * does bogus_page replacement on the direct-read.
1215 		 */
1216 		if (leaf && hammer_verify_data) {
1217 			nbio->bio_done = hammer_io_direct_read_complete;
1218 			nbio->bio_caller_info1.uvalue32 = leaf->data_crc;
1219 		}
1220 #endif
1221 		hammer_stats_disk_read += bp->b_bufsize;
1222 		vn_strategy(volume->devvp, nbio);
1223 	}
1224 	hammer_rel_volume(volume, 0);
1225 done:
1226 	if (error) {
1227 		kprintf("hammer_direct_read: failed @ %016llx\n",
1228 			(long long)zone2_offset);
1229 		bp->b_error = error;
1230 		bp->b_flags |= B_ERROR;
1231 		biodone(bio);
1232 	}
1233 	return(error);
1234 }
1235 
1236 #if 0
1237 /*
1238  * On completion of the BIO this callback must check the data CRC
1239  * and chain to the previous bio.
1240  */
1241 static
1242 void
1243 hammer_io_direct_read_complete(struct bio *nbio)
1244 {
1245 	struct bio *obio;
1246 	struct buf *bp;
1247 	u_int32_t rec_crc = nbio->bio_caller_info1.uvalue32;
1248 
1249 	bp = nbio->bio_buf;
1250 	if (crc32(bp->b_data, bp->b_bufsize) != rec_crc) {
1251 		kprintf("HAMMER: data_crc error @%016llx/%d\n",
1252 			nbio->bio_offset, bp->b_bufsize);
1253 		if (hammer_debug_critical)
1254 			Debugger("data_crc on read");
1255 		bp->b_flags |= B_ERROR;
1256 		bp->b_error = EIO;
1257 	}
1258 	obio = pop_bio(nbio);
1259 	biodone(obio);
1260 }
1261 #endif
1262 
1263 /*
1264  * Write a buffer associated with a front-end vnode directly to the
1265  * disk media.  The bio may be issued asynchronously.
1266  *
1267  * The BIO is associated with the specified record and RECF_DIRECT_IO
1268  * is set.  The recorded is added to its object.
1269  */
1270 int
1271 hammer_io_direct_write(hammer_mount_t hmp, struct bio *bio,
1272 		       hammer_record_t record)
1273 {
1274 	hammer_btree_leaf_elm_t leaf = &record->leaf;
1275 	hammer_off_t buf_offset;
1276 	hammer_off_t zone2_offset;
1277 	hammer_volume_t volume;
1278 	hammer_buffer_t buffer;
1279 	struct buf *bp;
1280 	struct bio *nbio;
1281 	char *ptr;
1282 	int vol_no;
1283 	int error;
1284 
1285 	buf_offset = leaf->data_offset;
1286 
1287 	KKASSERT(buf_offset > HAMMER_ZONE_BTREE);
1288 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1289 
1290 	/*
1291 	 * Issue or execute the I/O.  The new memory record must replace
1292 	 * the old one before the I/O completes, otherwise a reaquisition of
1293 	 * the buffer will load the old media data instead of the new.
1294 	 */
1295 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1296 	    leaf->data_len >= HAMMER_BUFSIZE) {
1297 		/*
1298 		 * We are using the vnode's bio to write directly to the
1299 		 * media, any hammer_buffer at the same zone-X offset will
1300 		 * now have stale data.
1301 		 */
1302 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1303 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1304 		volume = hammer_get_volume(hmp, vol_no, &error);
1305 
1306 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1307 			error = EIO;
1308 		if (error == 0) {
1309 			bp = bio->bio_buf;
1310 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1311 			/*
1312 			hammer_del_buffers(hmp, buf_offset,
1313 					   zone2_offset, bp->b_bufsize);
1314 			*/
1315 
1316 			/*
1317 			 * Second level bio - cached zone2 offset.
1318 			 *
1319 			 * (We can put our bio_done function in either the
1320 			 *  2nd or 3rd level).
1321 			 */
1322 			nbio = push_bio(bio);
1323 			nbio->bio_offset = zone2_offset;
1324 			nbio->bio_done = hammer_io_direct_write_complete;
1325 			nbio->bio_caller_info1.ptr = record;
1326 			record->zone2_offset = zone2_offset;
1327 			record->flags |= HAMMER_RECF_DIRECT_IO |
1328 					 HAMMER_RECF_DIRECT_INVAL;
1329 
1330 			/*
1331 			 * Third level bio - raw offset specific to the
1332 			 * correct volume.
1333 			 */
1334 			zone2_offset &= HAMMER_OFF_SHORT_MASK;
1335 			nbio = push_bio(nbio);
1336 			nbio->bio_offset = volume->ondisk->vol_buf_beg +
1337 					   zone2_offset;
1338 			hammer_stats_disk_write += bp->b_bufsize;
1339 			hammer_ip_replace_bulk(hmp, record);
1340 			vn_strategy(volume->devvp, nbio);
1341 			hammer_io_flush_mark(volume);
1342 		}
1343 		hammer_rel_volume(volume, 0);
1344 	} else {
1345 		/*
1346 		 * Must fit in a standard HAMMER buffer.  In this case all
1347 		 * consumers use the HAMMER buffer system and RECF_DIRECT_IO
1348 		 * does not need to be set-up.
1349 		 */
1350 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1351 		buffer = NULL;
1352 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1353 		if (error == 0) {
1354 			bp = bio->bio_buf;
1355 			bp->b_flags |= B_AGE;
1356 			hammer_io_modify(&buffer->io, 1);
1357 			bcopy(bp->b_data, ptr, leaf->data_len);
1358 			hammer_io_modify_done(&buffer->io);
1359 			hammer_rel_buffer(buffer, 0);
1360 			bp->b_resid = 0;
1361 			hammer_ip_replace_bulk(hmp, record);
1362 			biodone(bio);
1363 		}
1364 	}
1365 	if (error) {
1366 		/*
1367 		 * Major suckage occured.  Also note:  The record was
1368 		 * never added to the tree so we do not have to worry
1369 		 * about the backend.
1370 		 */
1371 		kprintf("hammer_direct_write: failed @ %016llx\n",
1372 			(long long)leaf->data_offset);
1373 		bp = bio->bio_buf;
1374 		bp->b_resid = 0;
1375 		bp->b_error = EIO;
1376 		bp->b_flags |= B_ERROR;
1377 		biodone(bio);
1378 		record->flags |= HAMMER_RECF_DELETED_FE;
1379 		hammer_rel_mem_record(record);
1380 	}
1381 	return(error);
1382 }
1383 
1384 /*
1385  * On completion of the BIO this callback must disconnect
1386  * it from the hammer_record and chain to the previous bio.
1387  *
1388  * An I/O error forces the mount to read-only.  Data buffers
1389  * are not B_LOCKED like meta-data buffers are, so we have to
1390  * throw the buffer away to prevent the kernel from retrying.
1391  */
1392 static
1393 void
1394 hammer_io_direct_write_complete(struct bio *nbio)
1395 {
1396 	struct bio *obio;
1397 	struct buf *bp;
1398 	hammer_record_t record = nbio->bio_caller_info1.ptr;
1399 
1400 	bp = nbio->bio_buf;
1401 	obio = pop_bio(nbio);
1402 	if (bp->b_flags & B_ERROR) {
1403 		hammer_critical_error(record->ip->hmp, record->ip,
1404 				      bp->b_error,
1405 				      "while writing bulk data");
1406 		bp->b_flags |= B_INVAL;
1407 	}
1408 	biodone(obio);
1409 
1410 	KKASSERT(record != NULL);
1411 	KKASSERT(record->flags & HAMMER_RECF_DIRECT_IO);
1412 	if (record->flags & HAMMER_RECF_DIRECT_WAIT) {
1413 		record->flags &= ~(HAMMER_RECF_DIRECT_IO |
1414 				   HAMMER_RECF_DIRECT_WAIT);
1415 		/* record can disappear once DIRECT_IO flag is cleared */
1416 		wakeup(&record->flags);
1417 	} else {
1418 		record->flags &= ~HAMMER_RECF_DIRECT_IO;
1419 		/* record can disappear once DIRECT_IO flag is cleared */
1420 	}
1421 }
1422 
1423 
1424 /*
1425  * This is called before a record is either committed to the B-Tree
1426  * or destroyed, to resolve any associated direct-IO.
1427  *
1428  * (1) We must wait for any direct-IO related to the record to complete.
1429  *
1430  * (2) We must remove any buffer cache aliases for data accessed via
1431  *     leaf->data_offset or zone2_offset so non-direct-IO consumers
1432  *     (the mirroring and reblocking code) do not see stale data.
1433  */
1434 void
1435 hammer_io_direct_wait(hammer_record_t record)
1436 {
1437 	/*
1438 	 * Wait for I/O to complete
1439 	 */
1440 	if (record->flags & HAMMER_RECF_DIRECT_IO) {
1441 		crit_enter();
1442 		while (record->flags & HAMMER_RECF_DIRECT_IO) {
1443 			record->flags |= HAMMER_RECF_DIRECT_WAIT;
1444 			tsleep(&record->flags, 0, "hmdiow", 0);
1445 		}
1446 		crit_exit();
1447 	}
1448 
1449 	/*
1450 	 * Invalidate any related buffer cache aliases associated with the
1451 	 * backing device.  This is needed because the buffer cache buffer
1452 	 * for file data is associated with the file vnode, not the backing
1453 	 * device vnode.
1454 	 *
1455 	 * XXX I do not think this case can occur any more now that
1456 	 * reservations ensure that all such buffers are removed before
1457 	 * an area can be reused.
1458 	 */
1459 	if (record->flags & HAMMER_RECF_DIRECT_INVAL) {
1460 		KKASSERT(record->leaf.data_offset);
1461 		hammer_del_buffers(record->ip->hmp, record->leaf.data_offset,
1462 				   record->zone2_offset, record->leaf.data_len,
1463 				   1);
1464 		record->flags &= ~HAMMER_RECF_DIRECT_INVAL;
1465 	}
1466 }
1467 
1468 /*
1469  * This is called to remove the second-level cached zone-2 offset from
1470  * frontend buffer cache buffers, now stale due to a data relocation.
1471  * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1472  * by hammer_vop_strategy_read().
1473  *
1474  * This is rather nasty because here we have something like the reblocker
1475  * scanning the raw B-Tree with no held references on anything, really,
1476  * other then a shared lock on the B-Tree node, and we have to access the
1477  * frontend's buffer cache to check for and clean out the association.
1478  * Specifically, if the reblocker is moving data on the disk, these cached
1479  * offsets will become invalid.
1480  *
1481  * Only data record types associated with the large-data zone are subject
1482  * to direct-io and need to be checked.
1483  *
1484  */
1485 void
1486 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1487 {
1488 	struct hammer_inode_info iinfo;
1489 	int zone;
1490 
1491 	if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1492 		return;
1493 	zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1494 	if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1495 		return;
1496 	iinfo.obj_id = leaf->base.obj_id;
1497 	iinfo.obj_asof = 0;	/* unused */
1498 	iinfo.obj_localization = leaf->base.localization &
1499 				 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1500 	iinfo.u.leaf = leaf;
1501 	hammer_scan_inode_snapshots(hmp, &iinfo,
1502 				    hammer_io_direct_uncache_callback,
1503 				    leaf);
1504 }
1505 
1506 static int
1507 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1508 {
1509 	hammer_inode_info_t iinfo = data;
1510 	hammer_off_t data_offset;
1511 	hammer_off_t file_offset;
1512 	struct vnode *vp;
1513 	struct buf *bp;
1514 	int blksize;
1515 
1516 	if (ip->vp == NULL)
1517 		return(0);
1518 	data_offset = iinfo->u.leaf->data_offset;
1519 	file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1520 	blksize = iinfo->u.leaf->data_len;
1521 	KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1522 
1523 	hammer_ref(&ip->lock);
1524 	if (hammer_get_vnode(ip, &vp) == 0) {
1525 		if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL &&
1526 		    bp->b_bio2.bio_offset != NOOFFSET) {
1527 			bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1528 			bp->b_bio2.bio_offset = NOOFFSET;
1529 			brelse(bp);
1530 		}
1531 		vput(vp);
1532 	}
1533 	hammer_rel_inode(ip, 0);
1534 	return(0);
1535 }
1536 
1537 
1538 /*
1539  * This function is called when writes may have occured on the volume,
1540  * indicating that the device may be holding cached writes.
1541  */
1542 static void
1543 hammer_io_flush_mark(hammer_volume_t volume)
1544 {
1545 	volume->vol_flags |= HAMMER_VOLF_NEEDFLUSH;
1546 }
1547 
1548 /*
1549  * This function ensures that the device has flushed any cached writes out.
1550  */
1551 void
1552 hammer_io_flush_sync(hammer_mount_t hmp)
1553 {
1554 	hammer_volume_t volume;
1555 	struct buf *bp_base = NULL;
1556 	struct buf *bp;
1557 
1558 	RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1559 		if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1560 			volume->vol_flags &= ~HAMMER_VOLF_NEEDFLUSH;
1561 			bp = getpbuf(NULL);
1562 			bp->b_bio1.bio_offset = 0;
1563 			bp->b_bufsize = 0;
1564 			bp->b_bcount = 0;
1565 			bp->b_cmd = BUF_CMD_FLUSH;
1566 			bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1567 			bp->b_bio1.bio_done = biodone_sync;
1568 			bp->b_bio1.bio_flags |= BIO_SYNC;
1569 			bp_base = bp;
1570 			vn_strategy(volume->devvp, &bp->b_bio1);
1571 		}
1572 	}
1573 	while ((bp = bp_base) != NULL) {
1574 		bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1575 		biowait(&bp->b_bio1, "hmrFLS");
1576 		relpbuf(bp, NULL);
1577 	}
1578 }
1579