1 /* 2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 /* 35 * IO Primitives and buffer cache management 36 * 37 * All major data-tracking structures in HAMMER contain a struct hammer_io 38 * which is used to manage their backing store. We use filesystem buffers 39 * for backing store and we leave them passively associated with their 40 * HAMMER structures. 41 * 42 * If the kernel tries to destroy a passively associated buf which we cannot 43 * yet let go we set B_LOCKED in the buffer and then actively released it 44 * later when we can. 45 * 46 * The io_token is required for anything which might race bioops and bio_done 47 * callbacks, with one exception: A successful hammer_try_interlock_norefs(). 48 * the fs_token will be held in all other cases. 49 */ 50 51 #include "hammer.h" 52 #include <sys/fcntl.h> 53 #include <sys/nlookup.h> 54 #include <sys/buf.h> 55 56 #include <sys/buf2.h> 57 58 static void hammer_io_modify(hammer_io_t io, int count); 59 static void hammer_io_deallocate(struct buf *bp); 60 static void hammer_indirect_callback(struct bio *bio); 61 static void hammer_io_direct_write_complete(struct bio *nbio); 62 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data); 63 static void hammer_io_set_modlist(struct hammer_io *io); 64 static void hammer_io_flush_mark(hammer_volume_t volume); 65 66 static int 67 hammer_mod_rb_compare(hammer_io_t io1, hammer_io_t io2) 68 { 69 hammer_off_t io1_offset; 70 hammer_off_t io2_offset; 71 72 io1_offset = ((io1->offset & HAMMER_OFF_SHORT_MASK) << 8) | 73 io1->volume->vol_no; 74 io2_offset = ((io2->offset & HAMMER_OFF_SHORT_MASK) << 8) | 75 io2->volume->vol_no; 76 77 if (io1_offset < io2_offset) 78 return(-1); 79 if (io1_offset > io2_offset) 80 return(1); 81 return(0); 82 } 83 84 RB_GENERATE(hammer_mod_rb_tree, hammer_io, rb_node, hammer_mod_rb_compare); 85 86 /* 87 * Initialize a new, already-zero'd hammer_io structure, or reinitialize 88 * an existing hammer_io structure which may have switched to another type. 89 */ 90 void 91 hammer_io_init(hammer_io_t io, hammer_volume_t volume, enum hammer_io_type type) 92 { 93 io->volume = volume; 94 io->hmp = volume->io.hmp; 95 io->type = type; 96 } 97 98 /* 99 * Helper routine to disassociate a buffer cache buffer from an I/O 100 * structure. The io must be interlocked and marked appropriately for 101 * reclamation. 102 * 103 * The io must be in a released state with the io->bp owned and 104 * locked by the caller of this function. When not called from an 105 * io_deallocate() this cannot race an io_deallocate() since the 106 * kernel would be unable to get the buffer lock in that case. 107 * (The released state in this case means we own the bp, not the 108 * hammer_io structure). 109 * 110 * The io may have 0 or 1 references depending on who called us. The 111 * caller is responsible for dealing with the refs. 112 * 113 * This call can only be made when no action is required on the buffer. 114 * 115 * This function is guaranteed not to race against anything because we 116 * own both the io lock and the bp lock and are interlocked with no 117 * references. 118 */ 119 static void 120 hammer_io_disassociate(hammer_io_structure_t iou) 121 { 122 struct buf *bp = iou->io.bp; 123 124 KKASSERT(iou->io.released); 125 KKASSERT(iou->io.modified == 0); 126 KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou); 127 buf_dep_init(bp); 128 iou->io.bp = NULL; 129 130 /* 131 * If the buffer was locked someone wanted to get rid of it. 132 */ 133 if (bp->b_flags & B_LOCKED) { 134 atomic_add_int(&hammer_count_io_locked, -1); 135 bp->b_flags &= ~B_LOCKED; 136 } 137 if (iou->io.reclaim) { 138 bp->b_flags |= B_NOCACHE|B_RELBUF; 139 iou->io.reclaim = 0; 140 } 141 142 switch(iou->io.type) { 143 case HAMMER_STRUCTURE_VOLUME: 144 iou->volume.ondisk = NULL; 145 break; 146 case HAMMER_STRUCTURE_DATA_BUFFER: 147 case HAMMER_STRUCTURE_META_BUFFER: 148 case HAMMER_STRUCTURE_UNDO_BUFFER: 149 iou->buffer.ondisk = NULL; 150 break; 151 case HAMMER_STRUCTURE_DUMMY: 152 panic("hammer_io_disassociate: bad io type"); 153 break; 154 } 155 } 156 157 /* 158 * Wait for any physical IO to complete 159 * 160 * XXX we aren't interlocked against a spinlock or anything so there 161 * is a small window in the interlock / io->running == 0 test. 162 */ 163 void 164 hammer_io_wait(hammer_io_t io) 165 { 166 if (io->running) { 167 hammer_mount_t hmp = io->hmp; 168 169 lwkt_gettoken(&hmp->io_token); 170 while (io->running) { 171 io->waiting = 1; 172 tsleep_interlock(io, 0); 173 if (io->running) 174 tsleep(io, PINTERLOCKED, "hmrflw", hz); 175 } 176 lwkt_reltoken(&hmp->io_token); 177 } 178 } 179 180 /* 181 * Wait for all currently queued HAMMER-initiated I/Os to complete. 182 * 183 * This is not supposed to count direct I/O's but some can leak 184 * through (for non-full-sized direct I/Os). 185 */ 186 void 187 hammer_io_wait_all(hammer_mount_t hmp, const char *ident, int doflush) 188 { 189 struct hammer_io iodummy; 190 hammer_io_t io; 191 192 /* 193 * Degenerate case, no I/O is running 194 */ 195 lwkt_gettoken(&hmp->io_token); 196 if (TAILQ_EMPTY(&hmp->iorun_list)) { 197 lwkt_reltoken(&hmp->io_token); 198 if (doflush) 199 hammer_io_flush_sync(hmp); 200 return; 201 } 202 bzero(&iodummy, sizeof(iodummy)); 203 iodummy.type = HAMMER_STRUCTURE_DUMMY; 204 205 /* 206 * Add placemarker and then wait until it becomes the head of 207 * the list. 208 */ 209 TAILQ_INSERT_TAIL(&hmp->iorun_list, &iodummy, iorun_entry); 210 while (TAILQ_FIRST(&hmp->iorun_list) != &iodummy) { 211 tsleep(&iodummy, 0, ident, 0); 212 } 213 214 /* 215 * Chain in case several placemarkers are present. 216 */ 217 TAILQ_REMOVE(&hmp->iorun_list, &iodummy, iorun_entry); 218 io = TAILQ_FIRST(&hmp->iorun_list); 219 if (io && io->type == HAMMER_STRUCTURE_DUMMY) 220 wakeup(io); 221 lwkt_reltoken(&hmp->io_token); 222 223 if (doflush) 224 hammer_io_flush_sync(hmp); 225 } 226 227 /* 228 * Clear a flagged error condition on a I/O buffer. The caller must hold 229 * its own ref on the buffer. 230 */ 231 void 232 hammer_io_clear_error(struct hammer_io *io) 233 { 234 hammer_mount_t hmp = io->hmp; 235 236 lwkt_gettoken(&hmp->io_token); 237 if (io->ioerror) { 238 io->ioerror = 0; 239 hammer_rel(&io->lock); 240 KKASSERT(hammer_isactive(&io->lock)); 241 } 242 lwkt_reltoken(&hmp->io_token); 243 } 244 245 void 246 hammer_io_clear_error_noassert(struct hammer_io *io) 247 { 248 hammer_mount_t hmp = io->hmp; 249 250 lwkt_gettoken(&hmp->io_token); 251 if (io->ioerror) { 252 io->ioerror = 0; 253 hammer_rel(&io->lock); 254 } 255 lwkt_reltoken(&hmp->io_token); 256 } 257 258 /* 259 * This is an advisory function only which tells the buffer cache 260 * the bp is not a meta-data buffer, even though it is backed by 261 * a block device. 262 * 263 * This is used by HAMMER's reblocking code to avoid trying to 264 * swapcache the filesystem's data when it is read or written 265 * by the reblocking code. 266 * 267 * The caller has a ref on the buffer preventing the bp from 268 * being disassociated from it. 269 */ 270 void 271 hammer_io_notmeta(hammer_buffer_t buffer) 272 { 273 if ((buffer->io.bp->b_flags & B_NOTMETA) == 0) { 274 hammer_mount_t hmp = buffer->io.hmp; 275 276 lwkt_gettoken(&hmp->io_token); 277 buffer->io.bp->b_flags |= B_NOTMETA; 278 lwkt_reltoken(&hmp->io_token); 279 } 280 } 281 282 /* 283 * Load bp for a HAMMER structure. The io must be exclusively locked by 284 * the caller. 285 * 286 * This routine is mostly used on meta-data and small-data blocks. Generally 287 * speaking HAMMER assumes some locality of reference and will cluster. 288 * 289 * Note that the caller (hammer_ondisk.c) may place further restrictions 290 * on clusterability via the limit (in bytes). Typically large-data 291 * zones cannot be clustered due to their mixed buffer sizes. This is 292 * not an issue since such clustering occurs in hammer_vnops at the 293 * regular file layer, whereas this is the buffered block device layer. 294 * 295 * No I/O callbacks can occur while we hold the buffer locked. 296 */ 297 int 298 hammer_io_read(struct vnode *devvp, struct hammer_io *io, int limit) 299 { 300 struct buf *bp; 301 int error; 302 303 if ((bp = io->bp) == NULL) { 304 atomic_add_long(&hammer_count_io_running_read, io->bytes); 305 if (hammer_cluster_enable && limit > io->bytes) { 306 error = cluster_read(devvp, io->offset + limit, 307 io->offset, io->bytes, 308 HAMMER_CLUSTER_SIZE, 309 HAMMER_CLUSTER_SIZE, 310 &io->bp); 311 } else { 312 error = bread(devvp, io->offset, io->bytes, &io->bp); 313 } 314 hammer_stats_disk_read += io->bytes; 315 atomic_add_long(&hammer_count_io_running_read, -io->bytes); 316 317 /* 318 * The code generally assumes b_ops/b_dep has been set-up, 319 * even if we error out here. 320 */ 321 bp = io->bp; 322 if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IODEBUG)) { 323 const char *metatype; 324 325 switch(io->type) { 326 case HAMMER_STRUCTURE_VOLUME: 327 metatype = "volume"; 328 break; 329 case HAMMER_STRUCTURE_META_BUFFER: 330 switch(((struct hammer_buffer *)io)-> 331 zoneX_offset & HAMMER_OFF_ZONE_MASK) { 332 case HAMMER_ZONE_BTREE: 333 metatype = "btree"; 334 break; 335 case HAMMER_ZONE_META: 336 metatype = "meta"; 337 break; 338 case HAMMER_ZONE_FREEMAP: 339 metatype = "freemap"; 340 break; 341 default: 342 metatype = "meta?"; 343 break; 344 } 345 break; 346 case HAMMER_STRUCTURE_DATA_BUFFER: 347 metatype = "data"; 348 break; 349 case HAMMER_STRUCTURE_UNDO_BUFFER: 350 metatype = "undo"; 351 break; 352 default: 353 metatype = "unknown"; 354 break; 355 } 356 kprintf("doff %016jx %s\n", 357 (intmax_t)bp->b_bio2.bio_offset, 358 metatype); 359 } 360 bp->b_flags &= ~B_IODEBUG; 361 bp->b_ops = &hammer_bioops; 362 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 363 364 /* io->worklist is locked by the io lock */ 365 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node); 366 BUF_KERNPROC(bp); 367 KKASSERT(io->modified == 0); 368 KKASSERT(io->running == 0); 369 KKASSERT(io->waiting == 0); 370 io->released = 0; /* we hold an active lock on bp */ 371 } else { 372 error = 0; 373 } 374 return(error); 375 } 376 377 /* 378 * Similar to hammer_io_read() but returns a zero'd out buffer instead. 379 * Must be called with the IO exclusively locked. 380 * 381 * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background 382 * I/O by forcing the buffer to not be in a released state before calling 383 * it. 384 * 385 * This function will also mark the IO as modified but it will not 386 * increment the modify_refs count. 387 * 388 * No I/O callbacks can occur while we hold the buffer locked. 389 */ 390 int 391 hammer_io_new(struct vnode *devvp, struct hammer_io *io) 392 { 393 struct buf *bp; 394 395 if ((bp = io->bp) == NULL) { 396 io->bp = getblk(devvp, io->offset, io->bytes, 0, 0); 397 bp = io->bp; 398 bp->b_ops = &hammer_bioops; 399 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 400 401 /* io->worklist is locked by the io lock */ 402 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node); 403 io->released = 0; 404 KKASSERT(io->running == 0); 405 io->waiting = 0; 406 BUF_KERNPROC(bp); 407 } else { 408 if (io->released) { 409 regetblk(bp); 410 BUF_KERNPROC(bp); 411 io->released = 0; 412 } 413 } 414 hammer_io_modify(io, 0); 415 vfs_bio_clrbuf(bp); 416 return(0); 417 } 418 419 /* 420 * Advance the activity count on the underlying buffer because 421 * HAMMER does not getblk/brelse on every access. 422 * 423 * The io->bp cannot go away while the buffer is referenced. 424 */ 425 void 426 hammer_io_advance(struct hammer_io *io) 427 { 428 if (io->bp) 429 buf_act_advance(io->bp); 430 } 431 432 /* 433 * Remove potential device level aliases against buffers managed by high level 434 * vnodes. Aliases can also be created due to mixed buffer sizes or via 435 * direct access to the backing store device. 436 * 437 * This is nasty because the buffers are also VMIO-backed. Even if a buffer 438 * does not exist its backing VM pages might, and we have to invalidate 439 * those as well or a getblk() will reinstate them. 440 * 441 * Buffer cache buffers associated with hammer_buffers cannot be 442 * invalidated. 443 */ 444 int 445 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset) 446 { 447 hammer_io_structure_t iou; 448 hammer_mount_t hmp; 449 hammer_off_t phys_offset; 450 struct buf *bp; 451 int error; 452 453 hmp = volume->io.hmp; 454 lwkt_gettoken(&hmp->io_token); 455 456 /* 457 * If a device buffer already exists for the specified physical 458 * offset use that, otherwise instantiate a buffer to cover any 459 * related VM pages, set BNOCACHE, and brelse(). 460 */ 461 phys_offset = volume->ondisk->vol_buf_beg + 462 (zone2_offset & HAMMER_OFF_SHORT_MASK); 463 if ((bp = findblk(volume->devvp, phys_offset, 0)) != NULL) 464 bremfree(bp); 465 else 466 bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0); 467 468 if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) { 469 #if 0 470 hammer_ref(&iou->io.lock); 471 hammer_io_clear_modify(&iou->io, 1); 472 bundirty(bp); 473 iou->io.released = 0; 474 BUF_KERNPROC(bp); 475 iou->io.reclaim = 1; 476 iou->io.waitdep = 1; /* XXX this is a fs_token field */ 477 KKASSERT(hammer_isactive(&iou->io.lock) == 1); 478 hammer_rel_buffer(&iou->buffer, 0); 479 /*hammer_io_deallocate(bp);*/ 480 #endif 481 bqrelse(bp); 482 error = EAGAIN; 483 } else { 484 KKASSERT((bp->b_flags & B_LOCKED) == 0); 485 bundirty(bp); 486 bp->b_flags |= B_NOCACHE|B_RELBUF; 487 brelse(bp); 488 error = 0; 489 } 490 lwkt_reltoken(&hmp->io_token); 491 return(error); 492 } 493 494 /* 495 * This routine is called on the last reference to a hammer structure. 496 * The io must be interlocked with a refcount of zero. The hammer structure 497 * will remain interlocked on return. 498 * 499 * This routine may return a non-NULL bp to the caller for dispoal. 500 * The caller typically brelse()'s the bp. 501 * 502 * The bp may or may not still be passively associated with the IO. It 503 * will remain passively associated if it is unreleasable (e.g. a modified 504 * meta-data buffer). 505 * 506 * The only requirement here is that modified meta-data and volume-header 507 * buffer may NOT be disassociated from the IO structure, and consequently 508 * we also leave such buffers actively associated with the IO if they already 509 * are (since the kernel can't do anything with them anyway). Only the 510 * flusher is allowed to write such buffers out. Modified pure-data and 511 * undo buffers are returned to the kernel but left passively associated 512 * so we can track when the kernel writes the bp out. 513 */ 514 struct buf * 515 hammer_io_release(struct hammer_io *io, int flush) 516 { 517 union hammer_io_structure *iou = (void *)io; 518 struct buf *bp; 519 520 if ((bp = io->bp) == NULL) 521 return(NULL); 522 523 /* 524 * Try to flush a dirty IO to disk if asked to by the 525 * caller or if the kernel tried to flush the buffer in the past. 526 * 527 * Kernel-initiated flushes are only allowed for pure-data buffers. 528 * meta-data and volume buffers can only be flushed explicitly 529 * by HAMMER. 530 */ 531 if (io->modified) { 532 if (flush) { 533 hammer_io_flush(io, 0); 534 } else if (bp->b_flags & B_LOCKED) { 535 switch(io->type) { 536 case HAMMER_STRUCTURE_DATA_BUFFER: 537 hammer_io_flush(io, 0); 538 break; 539 case HAMMER_STRUCTURE_UNDO_BUFFER: 540 hammer_io_flush(io, hammer_undo_reclaim(io)); 541 break; 542 default: 543 break; 544 } 545 } /* else no explicit request to flush the buffer */ 546 } 547 548 /* 549 * Wait for the IO to complete if asked to. This occurs when 550 * the buffer must be disposed of definitively during an umount 551 * or buffer invalidation. 552 */ 553 if (io->waitdep && io->running) { 554 hammer_io_wait(io); 555 } 556 557 /* 558 * Return control of the buffer to the kernel (with the provisio 559 * that our bioops can override kernel decisions with regards to 560 * the buffer). 561 */ 562 if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) { 563 /* 564 * Always disassociate the bp if an explicit flush 565 * was requested and the IO completed with no error 566 * (so unmount can really clean up the structure). 567 */ 568 if (io->released) { 569 regetblk(bp); 570 BUF_KERNPROC(bp); 571 } else { 572 io->released = 1; 573 } 574 hammer_io_disassociate((hammer_io_structure_t)io); 575 /* return the bp */ 576 } else if (io->modified) { 577 /* 578 * Only certain IO types can be released to the kernel if 579 * the buffer has been modified. 580 * 581 * volume and meta-data IO types may only be explicitly 582 * flushed by HAMMER. 583 */ 584 switch(io->type) { 585 case HAMMER_STRUCTURE_DATA_BUFFER: 586 case HAMMER_STRUCTURE_UNDO_BUFFER: 587 if (io->released == 0) { 588 io->released = 1; 589 bp->b_flags |= B_CLUSTEROK; 590 bdwrite(bp); 591 } 592 break; 593 default: 594 break; 595 } 596 bp = NULL; /* bp left associated */ 597 } else if (io->released == 0) { 598 /* 599 * Clean buffers can be generally released to the kernel. 600 * We leave the bp passively associated with the HAMMER 601 * structure and use bioops to disconnect it later on 602 * if the kernel wants to discard the buffer. 603 * 604 * We can steal the structure's ownership of the bp. 605 */ 606 io->released = 1; 607 if (bp->b_flags & B_LOCKED) { 608 hammer_io_disassociate(iou); 609 /* return the bp */ 610 } else { 611 if (io->reclaim) { 612 hammer_io_disassociate(iou); 613 /* return the bp */ 614 } else { 615 /* return the bp (bp passively associated) */ 616 } 617 } 618 } else { 619 /* 620 * A released buffer is passively associate with our 621 * hammer_io structure. The kernel cannot destroy it 622 * without making a bioops call. If the kernel (B_LOCKED) 623 * or we (reclaim) requested that the buffer be destroyed 624 * we destroy it, otherwise we do a quick get/release to 625 * reset its position in the kernel's LRU list. 626 * 627 * Leaving the buffer passively associated allows us to 628 * use the kernel's LRU buffer flushing mechanisms rather 629 * then rolling our own. 630 * 631 * XXX there are two ways of doing this. We can re-acquire 632 * and passively release to reset the LRU, or not. 633 */ 634 if (io->running == 0) { 635 regetblk(bp); 636 if ((bp->b_flags & B_LOCKED) || io->reclaim) { 637 hammer_io_disassociate(iou); 638 /* return the bp */ 639 } else { 640 /* return the bp (bp passively associated) */ 641 } 642 } else { 643 /* 644 * bp is left passively associated but we do not 645 * try to reacquire it. Interactions with the io 646 * structure will occur on completion of the bp's 647 * I/O. 648 */ 649 bp = NULL; 650 } 651 } 652 return(bp); 653 } 654 655 /* 656 * This routine is called with a locked IO when a flush is desired and 657 * no other references to the structure exists other then ours. This 658 * routine is ONLY called when HAMMER believes it is safe to flush a 659 * potentially modified buffer out. 660 * 661 * The locked io or io reference prevents a flush from being initiated 662 * by the kernel. 663 */ 664 void 665 hammer_io_flush(struct hammer_io *io, int reclaim) 666 { 667 struct buf *bp; 668 hammer_mount_t hmp; 669 670 /* 671 * Degenerate case - nothing to flush if nothing is dirty. 672 */ 673 if (io->modified == 0) 674 return; 675 676 KKASSERT(io->bp); 677 KKASSERT(io->modify_refs <= 0); 678 679 /* 680 * Acquire ownership of the bp, particularly before we clear our 681 * modified flag. 682 * 683 * We are going to bawrite() this bp. Don't leave a window where 684 * io->released is set, we actually own the bp rather then our 685 * buffer. 686 * 687 * The io_token should not be required here as only 688 */ 689 hmp = io->hmp; 690 bp = io->bp; 691 if (io->released) { 692 regetblk(bp); 693 /* BUF_KERNPROC(io->bp); */ 694 /* io->released = 0; */ 695 KKASSERT(io->released); 696 KKASSERT(io->bp == bp); 697 } else { 698 io->released = 1; 699 } 700 701 if (reclaim) { 702 io->reclaim = 1; 703 if ((bp->b_flags & B_LOCKED) == 0) { 704 bp->b_flags |= B_LOCKED; 705 atomic_add_int(&hammer_count_io_locked, 1); 706 } 707 } 708 709 /* 710 * Acquire exclusive access to the bp and then clear the modified 711 * state of the buffer prior to issuing I/O to interlock any 712 * modifications made while the I/O is in progress. This shouldn't 713 * happen anyway but losing data would be worse. The modified bit 714 * will be rechecked after the IO completes. 715 * 716 * NOTE: This call also finalizes the buffer's content (inval == 0). 717 * 718 * This is only legal when lock.refs == 1 (otherwise we might clear 719 * the modified bit while there are still users of the cluster 720 * modifying the data). 721 * 722 * Do this before potentially blocking so any attempt to modify the 723 * ondisk while we are blocked blocks waiting for us. 724 */ 725 hammer_ref(&io->lock); 726 hammer_io_clear_modify(io, 0); 727 hammer_rel(&io->lock); 728 729 if (hammer_debug_io & 0x0002) 730 kprintf("hammer io_write %016jx\n", bp->b_bio1.bio_offset); 731 732 /* 733 * Transfer ownership to the kernel and initiate I/O. 734 * 735 * NOTE: We do not hold io_token so an atomic op is required to 736 * update io_running_space. 737 */ 738 io->running = 1; 739 atomic_add_long(&hmp->io_running_space, io->bytes); 740 atomic_add_long(&hammer_count_io_running_write, io->bytes); 741 lwkt_gettoken(&hmp->io_token); 742 TAILQ_INSERT_TAIL(&hmp->iorun_list, io, iorun_entry); 743 lwkt_reltoken(&hmp->io_token); 744 cluster_awrite(bp); 745 hammer_io_flush_mark(io->volume); 746 } 747 748 /************************************************************************ 749 * BUFFER DIRTYING * 750 ************************************************************************ 751 * 752 * These routines deal with dependancies created when IO buffers get 753 * modified. The caller must call hammer_modify_*() on a referenced 754 * HAMMER structure prior to modifying its on-disk data. 755 * 756 * Any intent to modify an IO buffer acquires the related bp and imposes 757 * various write ordering dependancies. 758 */ 759 760 /* 761 * Mark a HAMMER structure as undergoing modification. Meta-data buffers 762 * are locked until the flusher can deal with them, pure data buffers 763 * can be written out. 764 * 765 * The referenced io prevents races. 766 */ 767 static 768 void 769 hammer_io_modify(hammer_io_t io, int count) 770 { 771 /* 772 * io->modify_refs must be >= 0 773 */ 774 while (io->modify_refs < 0) { 775 io->waitmod = 1; 776 tsleep(io, 0, "hmrmod", 0); 777 } 778 779 /* 780 * Shortcut if nothing to do. 781 */ 782 KKASSERT(hammer_isactive(&io->lock) && io->bp != NULL); 783 io->modify_refs += count; 784 if (io->modified && io->released == 0) 785 return; 786 787 /* 788 * NOTE: It is important not to set the modified bit 789 * until after we have acquired the bp or we risk 790 * racing against checkwrite. 791 */ 792 hammer_lock_ex(&io->lock); 793 if (io->released) { 794 regetblk(io->bp); 795 BUF_KERNPROC(io->bp); 796 io->released = 0; 797 } 798 if (io->modified == 0) { 799 hammer_io_set_modlist(io); 800 io->modified = 1; 801 } 802 hammer_unlock(&io->lock); 803 } 804 805 static __inline 806 void 807 hammer_io_modify_done(hammer_io_t io) 808 { 809 KKASSERT(io->modify_refs > 0); 810 --io->modify_refs; 811 if (io->modify_refs == 0 && io->waitmod) { 812 io->waitmod = 0; 813 wakeup(io); 814 } 815 } 816 817 /* 818 * The write interlock blocks other threads trying to modify a buffer 819 * (they block in hammer_io_modify()) after us, or blocks us while other 820 * threads are in the middle of modifying a buffer. 821 * 822 * The caller also has a ref on the io, however if we are not careful 823 * we will race bioops callbacks (checkwrite). To deal with this 824 * we must at least acquire and release the io_token, and it is probably 825 * better to hold it through the setting of modify_refs. 826 */ 827 void 828 hammer_io_write_interlock(hammer_io_t io) 829 { 830 hammer_mount_t hmp = io->hmp; 831 832 lwkt_gettoken(&hmp->io_token); 833 while (io->modify_refs != 0) { 834 io->waitmod = 1; 835 tsleep(io, 0, "hmrmod", 0); 836 } 837 io->modify_refs = -1; 838 lwkt_reltoken(&hmp->io_token); 839 } 840 841 void 842 hammer_io_done_interlock(hammer_io_t io) 843 { 844 KKASSERT(io->modify_refs == -1); 845 io->modify_refs = 0; 846 if (io->waitmod) { 847 io->waitmod = 0; 848 wakeup(io); 849 } 850 } 851 852 /* 853 * Caller intends to modify a volume's ondisk structure. 854 * 855 * This is only allowed if we are the flusher or we have a ref on the 856 * sync_lock. 857 */ 858 void 859 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume, 860 void *base, int len) 861 { 862 KKASSERT (trans == NULL || trans->sync_lock_refs > 0); 863 864 hammer_io_modify(&volume->io, 1); 865 if (len) { 866 intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk; 867 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0); 868 hammer_generate_undo(trans, 869 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset), 870 base, len); 871 } 872 } 873 874 /* 875 * Caller intends to modify a buffer's ondisk structure. 876 * 877 * This is only allowed if we are the flusher or we have a ref on the 878 * sync_lock. 879 */ 880 void 881 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer, 882 void *base, int len) 883 { 884 KKASSERT (trans == NULL || trans->sync_lock_refs > 0); 885 886 hammer_io_modify(&buffer->io, 1); 887 if (len) { 888 intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk; 889 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0); 890 hammer_generate_undo(trans, 891 buffer->zone2_offset + rel_offset, 892 base, len); 893 } 894 } 895 896 void 897 hammer_modify_volume_done(hammer_volume_t volume) 898 { 899 hammer_io_modify_done(&volume->io); 900 } 901 902 void 903 hammer_modify_buffer_done(hammer_buffer_t buffer) 904 { 905 hammer_io_modify_done(&buffer->io); 906 } 907 908 /* 909 * Mark an entity as not being dirty any more and finalize any 910 * delayed adjustments to the buffer. 911 * 912 * Delayed adjustments are an important performance enhancement, allowing 913 * us to avoid recalculating B-Tree node CRCs over and over again when 914 * making bulk-modifications to the B-Tree. 915 * 916 * If inval is non-zero delayed adjustments are ignored. 917 * 918 * This routine may dereference related btree nodes and cause the 919 * buffer to be dereferenced. The caller must own a reference on io. 920 */ 921 void 922 hammer_io_clear_modify(struct hammer_io *io, int inval) 923 { 924 hammer_mount_t hmp; 925 926 /* 927 * io_token is needed to avoid races on mod_root 928 */ 929 if (io->modified == 0) 930 return; 931 hmp = io->hmp; 932 lwkt_gettoken(&hmp->io_token); 933 if (io->modified == 0) { 934 lwkt_reltoken(&hmp->io_token); 935 return; 936 } 937 938 /* 939 * Take us off the mod-list and clear the modified bit. 940 */ 941 KKASSERT(io->mod_root != NULL); 942 if (io->mod_root == &io->hmp->volu_root || 943 io->mod_root == &io->hmp->meta_root) { 944 io->hmp->locked_dirty_space -= io->bytes; 945 atomic_add_long(&hammer_count_dirtybufspace, -io->bytes); 946 } 947 RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io); 948 io->mod_root = NULL; 949 io->modified = 0; 950 951 lwkt_reltoken(&hmp->io_token); 952 953 /* 954 * If this bit is not set there are no delayed adjustments. 955 */ 956 if (io->gencrc == 0) 957 return; 958 io->gencrc = 0; 959 960 /* 961 * Finalize requested CRCs. The NEEDSCRC flag also holds a reference 962 * on the node (& underlying buffer). Release the node after clearing 963 * the flag. 964 */ 965 if (io->type == HAMMER_STRUCTURE_META_BUFFER) { 966 hammer_buffer_t buffer = (void *)io; 967 hammer_node_t node; 968 969 restart: 970 TAILQ_FOREACH(node, &buffer->clist, entry) { 971 if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0) 972 continue; 973 node->flags &= ~HAMMER_NODE_NEEDSCRC; 974 KKASSERT(node->ondisk); 975 if (inval == 0) 976 node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE); 977 hammer_rel_node(node); 978 goto restart; 979 } 980 } 981 /* caller must still have ref on io */ 982 KKASSERT(hammer_isactive(&io->lock)); 983 } 984 985 /* 986 * Clear the IO's modify list. Even though the IO is no longer modified 987 * it may still be on the lose_root. This routine is called just before 988 * the governing hammer_buffer is destroyed. 989 * 990 * mod_root requires io_token protection. 991 */ 992 void 993 hammer_io_clear_modlist(struct hammer_io *io) 994 { 995 hammer_mount_t hmp = io->hmp; 996 997 KKASSERT(io->modified == 0); 998 if (io->mod_root) { 999 lwkt_gettoken(&hmp->io_token); 1000 if (io->mod_root) { 1001 KKASSERT(io->mod_root == &io->hmp->lose_root); 1002 RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io); 1003 io->mod_root = NULL; 1004 } 1005 lwkt_reltoken(&hmp->io_token); 1006 } 1007 } 1008 1009 static void 1010 hammer_io_set_modlist(struct hammer_io *io) 1011 { 1012 struct hammer_mount *hmp = io->hmp; 1013 1014 lwkt_gettoken(&hmp->io_token); 1015 KKASSERT(io->mod_root == NULL); 1016 1017 switch(io->type) { 1018 case HAMMER_STRUCTURE_VOLUME: 1019 io->mod_root = &hmp->volu_root; 1020 hmp->locked_dirty_space += io->bytes; 1021 atomic_add_long(&hammer_count_dirtybufspace, io->bytes); 1022 break; 1023 case HAMMER_STRUCTURE_META_BUFFER: 1024 io->mod_root = &hmp->meta_root; 1025 hmp->locked_dirty_space += io->bytes; 1026 atomic_add_long(&hammer_count_dirtybufspace, io->bytes); 1027 break; 1028 case HAMMER_STRUCTURE_UNDO_BUFFER: 1029 io->mod_root = &hmp->undo_root; 1030 break; 1031 case HAMMER_STRUCTURE_DATA_BUFFER: 1032 io->mod_root = &hmp->data_root; 1033 break; 1034 case HAMMER_STRUCTURE_DUMMY: 1035 panic("hammer_io_set_modlist: bad io type"); 1036 break; /* NOT REACHED */ 1037 } 1038 if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) { 1039 panic("hammer_io_set_modlist: duplicate entry"); 1040 /* NOT REACHED */ 1041 } 1042 lwkt_reltoken(&hmp->io_token); 1043 } 1044 1045 /************************************************************************ 1046 * HAMMER_BIOOPS * 1047 ************************************************************************ 1048 * 1049 */ 1050 1051 /* 1052 * Pre-IO initiation kernel callback - cluster build only 1053 * 1054 * bioops callback - hold io_token 1055 */ 1056 static void 1057 hammer_io_start(struct buf *bp) 1058 { 1059 /* nothing to do, so io_token not needed */ 1060 } 1061 1062 /* 1063 * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT! 1064 * 1065 * NOTE: HAMMER may modify a data buffer after we have initiated write 1066 * I/O. 1067 * 1068 * NOTE: MPSAFE callback 1069 * 1070 * bioops callback - hold io_token 1071 */ 1072 static void 1073 hammer_io_complete(struct buf *bp) 1074 { 1075 union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep); 1076 struct hammer_mount *hmp = iou->io.hmp; 1077 struct hammer_io *ionext; 1078 1079 lwkt_gettoken(&hmp->io_token); 1080 1081 KKASSERT(iou->io.released == 1); 1082 1083 /* 1084 * Deal with people waiting for I/O to drain 1085 */ 1086 if (iou->io.running) { 1087 /* 1088 * Deal with critical write errors. Once a critical error 1089 * has been flagged in hmp the UNDO FIFO will not be updated. 1090 * That way crash recover will give us a consistent 1091 * filesystem. 1092 * 1093 * Because of this we can throw away failed UNDO buffers. If 1094 * we throw away META or DATA buffers we risk corrupting 1095 * the now read-only version of the filesystem visible to 1096 * the user. Clear B_ERROR so the buffer is not re-dirtied 1097 * by the kernel and ref the io so it doesn't get thrown 1098 * away. 1099 */ 1100 if (bp->b_flags & B_ERROR) { 1101 lwkt_gettoken(&hmp->fs_token); 1102 hammer_critical_error(hmp, NULL, bp->b_error, 1103 "while flushing meta-data"); 1104 lwkt_reltoken(&hmp->fs_token); 1105 1106 switch(iou->io.type) { 1107 case HAMMER_STRUCTURE_UNDO_BUFFER: 1108 break; 1109 default: 1110 if (iou->io.ioerror == 0) { 1111 iou->io.ioerror = 1; 1112 hammer_ref(&iou->io.lock); 1113 } 1114 break; 1115 } 1116 bp->b_flags &= ~B_ERROR; 1117 bundirty(bp); 1118 #if 0 1119 hammer_io_set_modlist(&iou->io); 1120 iou->io.modified = 1; 1121 #endif 1122 } 1123 hammer_stats_disk_write += iou->io.bytes; 1124 atomic_add_long(&hammer_count_io_running_write, -iou->io.bytes); 1125 atomic_add_long(&hmp->io_running_space, -iou->io.bytes); 1126 KKASSERT(hmp->io_running_space >= 0); 1127 iou->io.running = 0; 1128 1129 /* 1130 * Remove from iorun list and wakeup any multi-io waiter(s). 1131 */ 1132 if (TAILQ_FIRST(&hmp->iorun_list) == &iou->io) { 1133 ionext = TAILQ_NEXT(&iou->io, iorun_entry); 1134 if (ionext && ionext->type == HAMMER_STRUCTURE_DUMMY) 1135 wakeup(ionext); 1136 } 1137 TAILQ_REMOVE(&hmp->iorun_list, &iou->io, iorun_entry); 1138 } else { 1139 hammer_stats_disk_read += iou->io.bytes; 1140 } 1141 1142 if (iou->io.waiting) { 1143 iou->io.waiting = 0; 1144 wakeup(iou); 1145 } 1146 1147 /* 1148 * If B_LOCKED is set someone wanted to deallocate the bp at some 1149 * point, try to do it now. The operation will fail if there are 1150 * refs or if hammer_io_deallocate() is unable to gain the 1151 * interlock. 1152 */ 1153 if (bp->b_flags & B_LOCKED) { 1154 atomic_add_int(&hammer_count_io_locked, -1); 1155 bp->b_flags &= ~B_LOCKED; 1156 hammer_io_deallocate(bp); 1157 /* structure may be dead now */ 1158 } 1159 lwkt_reltoken(&hmp->io_token); 1160 } 1161 1162 /* 1163 * Callback from kernel when it wishes to deallocate a passively 1164 * associated structure. This mostly occurs with clean buffers 1165 * but it may be possible for a holding structure to be marked dirty 1166 * while its buffer is passively associated. The caller owns the bp. 1167 * 1168 * If we cannot disassociate we set B_LOCKED to prevent the buffer 1169 * from getting reused. 1170 * 1171 * WARNING: Because this can be called directly by getnewbuf we cannot 1172 * recurse into the tree. If a bp cannot be immediately disassociated 1173 * our only recourse is to set B_LOCKED. 1174 * 1175 * WARNING: This may be called from an interrupt via hammer_io_complete() 1176 * 1177 * bioops callback - hold io_token 1178 */ 1179 static void 1180 hammer_io_deallocate(struct buf *bp) 1181 { 1182 hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep); 1183 hammer_mount_t hmp; 1184 1185 hmp = iou->io.hmp; 1186 1187 lwkt_gettoken(&hmp->io_token); 1188 1189 KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0); 1190 if (hammer_try_interlock_norefs(&iou->io.lock) == 0) { 1191 /* 1192 * We cannot safely disassociate a bp from a referenced 1193 * or interlocked HAMMER structure. 1194 */ 1195 bp->b_flags |= B_LOCKED; 1196 atomic_add_int(&hammer_count_io_locked, 1); 1197 } else if (iou->io.modified) { 1198 /* 1199 * It is not legal to disassociate a modified buffer. This 1200 * case really shouldn't ever occur. 1201 */ 1202 bp->b_flags |= B_LOCKED; 1203 atomic_add_int(&hammer_count_io_locked, 1); 1204 hammer_put_interlock(&iou->io.lock, 0); 1205 } else { 1206 /* 1207 * Disassociate the BP. If the io has no refs left we 1208 * have to add it to the loose list. The kernel has 1209 * locked the buffer and therefore our io must be 1210 * in a released state. 1211 */ 1212 hammer_io_disassociate(iou); 1213 if (iou->io.type != HAMMER_STRUCTURE_VOLUME) { 1214 KKASSERT(iou->io.bp == NULL); 1215 KKASSERT(iou->io.mod_root == NULL); 1216 iou->io.mod_root = &hmp->lose_root; 1217 if (RB_INSERT(hammer_mod_rb_tree, iou->io.mod_root, 1218 &iou->io)) { 1219 panic("hammer_io_deallocate: duplicate entry"); 1220 } 1221 } 1222 hammer_put_interlock(&iou->io.lock, 1); 1223 } 1224 lwkt_reltoken(&hmp->io_token); 1225 } 1226 1227 /* 1228 * bioops callback - hold io_token 1229 */ 1230 static int 1231 hammer_io_fsync(struct vnode *vp) 1232 { 1233 /* nothing to do, so io_token not needed */ 1234 return(0); 1235 } 1236 1237 /* 1238 * NOTE: will not be called unless we tell the kernel about the 1239 * bioops. Unused... we use the mount's VFS_SYNC instead. 1240 * 1241 * bioops callback - hold io_token 1242 */ 1243 static int 1244 hammer_io_sync(struct mount *mp) 1245 { 1246 /* nothing to do, so io_token not needed */ 1247 return(0); 1248 } 1249 1250 /* 1251 * bioops callback - hold io_token 1252 */ 1253 static void 1254 hammer_io_movedeps(struct buf *bp1, struct buf *bp2) 1255 { 1256 /* nothing to do, so io_token not needed */ 1257 } 1258 1259 /* 1260 * I/O pre-check for reading and writing. HAMMER only uses this for 1261 * B_CACHE buffers so checkread just shouldn't happen, but if it does 1262 * allow it. 1263 * 1264 * Writing is a different case. We don't want the kernel to try to write 1265 * out a buffer that HAMMER may be modifying passively or which has a 1266 * dependancy. In addition, kernel-demanded writes can only proceed for 1267 * certain types of buffers (i.e. UNDO and DATA types). Other dirty 1268 * buffer types can only be explicitly written by the flusher. 1269 * 1270 * checkwrite will only be called for bdwrite()n buffers. If we return 1271 * success the kernel is guaranteed to initiate the buffer write. 1272 * 1273 * bioops callback - hold io_token 1274 */ 1275 static int 1276 hammer_io_checkread(struct buf *bp) 1277 { 1278 /* nothing to do, so io_token not needed */ 1279 return(0); 1280 } 1281 1282 /* 1283 * The kernel is asking us whether it can write out a dirty buffer or not. 1284 * 1285 * bioops callback - hold io_token 1286 */ 1287 static int 1288 hammer_io_checkwrite(struct buf *bp) 1289 { 1290 hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep); 1291 hammer_mount_t hmp = io->hmp; 1292 1293 /* 1294 * This shouldn't happen under normal operation. 1295 */ 1296 lwkt_gettoken(&hmp->io_token); 1297 if (io->type == HAMMER_STRUCTURE_VOLUME || 1298 io->type == HAMMER_STRUCTURE_META_BUFFER) { 1299 if (!panicstr) 1300 panic("hammer_io_checkwrite: illegal buffer"); 1301 if ((bp->b_flags & B_LOCKED) == 0) { 1302 bp->b_flags |= B_LOCKED; 1303 atomic_add_int(&hammer_count_io_locked, 1); 1304 } 1305 lwkt_reltoken(&hmp->io_token); 1306 return(1); 1307 } 1308 1309 /* 1310 * We have to be able to interlock the IO to safely modify any 1311 * of its fields without holding the fs_token. If we can't lock 1312 * it then we are racing someone. 1313 * 1314 * Our ownership of the bp lock prevents the io from being ripped 1315 * out from under us. 1316 */ 1317 if (hammer_try_interlock_norefs(&io->lock) == 0) { 1318 bp->b_flags |= B_LOCKED; 1319 atomic_add_int(&hammer_count_io_locked, 1); 1320 lwkt_reltoken(&hmp->io_token); 1321 return(1); 1322 } 1323 1324 /* 1325 * The modified bit must be cleared prior to the initiation of 1326 * any IO (returning 0 initiates the IO). Because this is a 1327 * normal data buffer hammer_io_clear_modify() runs through a 1328 * simple degenerate case. 1329 * 1330 * Return 0 will cause the kernel to initiate the IO, and we 1331 * must normally clear the modified bit before we begin. If 1332 * the io has modify_refs we do not clear the modified bit, 1333 * otherwise we may miss changes. 1334 * 1335 * Only data and undo buffers can reach here. These buffers do 1336 * not have terminal crc functions but we temporarily reference 1337 * the IO anyway, just in case. 1338 */ 1339 if (io->modify_refs == 0 && io->modified) { 1340 hammer_ref(&io->lock); 1341 hammer_io_clear_modify(io, 0); 1342 hammer_rel(&io->lock); 1343 } else if (io->modified) { 1344 KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER); 1345 } 1346 1347 /* 1348 * The kernel is going to start the IO, set io->running. 1349 */ 1350 KKASSERT(io->running == 0); 1351 io->running = 1; 1352 atomic_add_long(&io->hmp->io_running_space, io->bytes); 1353 atomic_add_long(&hammer_count_io_running_write, io->bytes); 1354 TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry); 1355 1356 hammer_put_interlock(&io->lock, 1); 1357 lwkt_reltoken(&hmp->io_token); 1358 1359 return(0); 1360 } 1361 1362 /* 1363 * Return non-zero if we wish to delay the kernel's attempt to flush 1364 * this buffer to disk. 1365 * 1366 * bioops callback - hold io_token 1367 */ 1368 static int 1369 hammer_io_countdeps(struct buf *bp, int n) 1370 { 1371 /* nothing to do, so io_token not needed */ 1372 return(0); 1373 } 1374 1375 struct bio_ops hammer_bioops = { 1376 .io_start = hammer_io_start, 1377 .io_complete = hammer_io_complete, 1378 .io_deallocate = hammer_io_deallocate, 1379 .io_fsync = hammer_io_fsync, 1380 .io_sync = hammer_io_sync, 1381 .io_movedeps = hammer_io_movedeps, 1382 .io_countdeps = hammer_io_countdeps, 1383 .io_checkread = hammer_io_checkread, 1384 .io_checkwrite = hammer_io_checkwrite, 1385 }; 1386 1387 /************************************************************************ 1388 * DIRECT IO OPS * 1389 ************************************************************************ 1390 * 1391 * These functions operate directly on the buffer cache buffer associated 1392 * with a front-end vnode rather then a back-end device vnode. 1393 */ 1394 1395 /* 1396 * Read a buffer associated with a front-end vnode directly from the 1397 * disk media. The bio may be issued asynchronously. If leaf is non-NULL 1398 * we validate the CRC. 1399 * 1400 * We must check for the presence of a HAMMER buffer to handle the case 1401 * where the reblocker has rewritten the data (which it does via the HAMMER 1402 * buffer system, not via the high-level vnode buffer cache), but not yet 1403 * committed the buffer to the media. 1404 */ 1405 int 1406 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio, 1407 hammer_btree_leaf_elm_t leaf) 1408 { 1409 hammer_off_t buf_offset; 1410 hammer_off_t zone2_offset; 1411 hammer_volume_t volume; 1412 struct buf *bp; 1413 struct bio *nbio; 1414 int vol_no; 1415 int error; 1416 1417 buf_offset = bio->bio_offset; 1418 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) == 1419 HAMMER_ZONE_LARGE_DATA); 1420 1421 /* 1422 * The buffer cache may have an aliased buffer (the reblocker can 1423 * write them). If it does we have to sync any dirty data before 1424 * we can build our direct-read. This is a non-critical code path. 1425 */ 1426 bp = bio->bio_buf; 1427 hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize); 1428 1429 /* 1430 * Resolve to a zone-2 offset. The conversion just requires 1431 * munging the top 4 bits but we want to abstract it anyway 1432 * so the blockmap code can verify the zone assignment. 1433 */ 1434 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1435 if (error) 1436 goto done; 1437 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) == 1438 HAMMER_ZONE_RAW_BUFFER); 1439 1440 /* 1441 * Resolve volume and raw-offset for 3rd level bio. The 1442 * offset will be specific to the volume. 1443 */ 1444 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1445 volume = hammer_get_volume(hmp, vol_no, &error); 1446 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1447 error = EIO; 1448 1449 if (error == 0) { 1450 /* 1451 * 3rd level bio 1452 */ 1453 nbio = push_bio(bio); 1454 nbio->bio_offset = volume->ondisk->vol_buf_beg + 1455 (zone2_offset & HAMMER_OFF_SHORT_MASK); 1456 hammer_stats_disk_read += bp->b_bufsize; 1457 vn_strategy(volume->devvp, nbio); 1458 } 1459 hammer_rel_volume(volume, 0); 1460 done: 1461 if (error) { 1462 kprintf("hammer_direct_read: failed @ %016llx\n", 1463 (long long)zone2_offset); 1464 bp->b_error = error; 1465 bp->b_flags |= B_ERROR; 1466 biodone(bio); 1467 } 1468 return(error); 1469 } 1470 1471 /* 1472 * This works similarly to hammer_io_direct_read() except instead of 1473 * directly reading from the device into the bio we instead indirectly 1474 * read through the device's buffer cache and then copy the data into 1475 * the bio. 1476 * 1477 * If leaf is non-NULL and validation is enabled, the CRC will be checked. 1478 * 1479 * This routine also executes asynchronously. It allows hammer strategy 1480 * calls to operate asynchronously when in double_buffer mode (in addition 1481 * to operating asynchronously when in normal mode). 1482 */ 1483 int 1484 hammer_io_indirect_read(hammer_mount_t hmp, struct bio *bio, 1485 hammer_btree_leaf_elm_t leaf) 1486 { 1487 hammer_off_t buf_offset; 1488 hammer_off_t zone2_offset; 1489 hammer_volume_t volume; 1490 struct buf *bp; 1491 int vol_no; 1492 int error; 1493 1494 buf_offset = bio->bio_offset; 1495 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) == 1496 HAMMER_ZONE_LARGE_DATA); 1497 1498 /* 1499 * The buffer cache may have an aliased buffer (the reblocker can 1500 * write them). If it does we have to sync any dirty data before 1501 * we can build our direct-read. This is a non-critical code path. 1502 */ 1503 bp = bio->bio_buf; 1504 hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize); 1505 1506 /* 1507 * Resolve to a zone-2 offset. The conversion just requires 1508 * munging the top 4 bits but we want to abstract it anyway 1509 * so the blockmap code can verify the zone assignment. 1510 */ 1511 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1512 if (error) 1513 goto done; 1514 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) == 1515 HAMMER_ZONE_RAW_BUFFER); 1516 1517 /* 1518 * Resolve volume and raw-offset for 3rd level bio. The 1519 * offset will be specific to the volume. 1520 */ 1521 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1522 volume = hammer_get_volume(hmp, vol_no, &error); 1523 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1524 error = EIO; 1525 1526 if (error == 0) { 1527 /* 1528 * Convert to the raw volume->devvp offset and acquire 1529 * the buf, issuing async I/O if necessary. 1530 */ 1531 buf_offset = volume->ondisk->vol_buf_beg + 1532 (zone2_offset & HAMMER_OFF_SHORT_MASK); 1533 1534 if (leaf && hammer_verify_data) { 1535 bio->bio_caller_info1.uvalue32 = leaf->data_crc; 1536 bio->bio_caller_info2.index = 1; 1537 } else { 1538 bio->bio_caller_info2.index = 0; 1539 } 1540 breadcb(volume->devvp, buf_offset, bp->b_bufsize, 1541 hammer_indirect_callback, bio); 1542 } 1543 hammer_rel_volume(volume, 0); 1544 done: 1545 if (error) { 1546 kprintf("hammer_direct_read: failed @ %016llx\n", 1547 (long long)zone2_offset); 1548 bp->b_error = error; 1549 bp->b_flags |= B_ERROR; 1550 biodone(bio); 1551 } 1552 return(error); 1553 } 1554 1555 /* 1556 * Indirect callback on completion. bio/bp specify the device-backed 1557 * buffer. bio->bio_caller_info1.ptr holds obio. 1558 * 1559 * obio/obp is the original regular file buffer. obio->bio_caller_info* 1560 * contains the crc specification. 1561 * 1562 * We are responsible for calling bpdone() and bqrelse() on bio/bp, and 1563 * for calling biodone() on obio. 1564 */ 1565 static void 1566 hammer_indirect_callback(struct bio *bio) 1567 { 1568 struct buf *bp = bio->bio_buf; 1569 struct buf *obp; 1570 struct bio *obio; 1571 1572 /* 1573 * If BIO_DONE is already set the device buffer was already 1574 * fully valid (B_CACHE). If it is not set then I/O was issued 1575 * and we have to run I/O completion as the last bio. 1576 * 1577 * Nobody is waiting for our device I/O to complete, we are 1578 * responsible for bqrelse()ing it which means we also have to do 1579 * the equivalent of biowait() and clear BIO_DONE (which breadcb() 1580 * may have set). 1581 * 1582 * Any preexisting device buffer should match the requested size, 1583 * but due to bigblock recycling and other factors there is some 1584 * fragility there, so we assert that the device buffer covers 1585 * the request. 1586 */ 1587 if ((bio->bio_flags & BIO_DONE) == 0) 1588 bpdone(bp, 0); 1589 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 1590 1591 obio = bio->bio_caller_info1.ptr; 1592 obp = obio->bio_buf; 1593 1594 if (bp->b_flags & B_ERROR) { 1595 obp->b_flags |= B_ERROR; 1596 obp->b_error = bp->b_error; 1597 } else if (obio->bio_caller_info2.index && 1598 obio->bio_caller_info1.uvalue32 != 1599 crc32(bp->b_data, bp->b_bufsize)) { 1600 obp->b_flags |= B_ERROR; 1601 obp->b_error = EIO; 1602 } else { 1603 KKASSERT(bp->b_bufsize >= obp->b_bufsize); 1604 bcopy(bp->b_data, obp->b_data, obp->b_bufsize); 1605 obp->b_resid = 0; 1606 obp->b_flags |= B_AGE; 1607 } 1608 biodone(obio); 1609 bqrelse(bp); 1610 } 1611 1612 /* 1613 * Write a buffer associated with a front-end vnode directly to the 1614 * disk media. The bio may be issued asynchronously. 1615 * 1616 * The BIO is associated with the specified record and RECG_DIRECT_IO 1617 * is set. The recorded is added to its object. 1618 */ 1619 int 1620 hammer_io_direct_write(hammer_mount_t hmp, struct bio *bio, 1621 hammer_record_t record) 1622 { 1623 hammer_btree_leaf_elm_t leaf = &record->leaf; 1624 hammer_off_t buf_offset; 1625 hammer_off_t zone2_offset; 1626 hammer_volume_t volume; 1627 hammer_buffer_t buffer; 1628 struct buf *bp; 1629 struct bio *nbio; 1630 char *ptr; 1631 int vol_no; 1632 int error; 1633 1634 buf_offset = leaf->data_offset; 1635 1636 KKASSERT(buf_offset > HAMMER_ZONE_BTREE); 1637 KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE); 1638 1639 /* 1640 * Issue or execute the I/O. The new memory record must replace 1641 * the old one before the I/O completes, otherwise a reaquisition of 1642 * the buffer will load the old media data instead of the new. 1643 */ 1644 if ((buf_offset & HAMMER_BUFMASK) == 0 && 1645 leaf->data_len >= HAMMER_BUFSIZE) { 1646 /* 1647 * We are using the vnode's bio to write directly to the 1648 * media, any hammer_buffer at the same zone-X offset will 1649 * now have stale data. 1650 */ 1651 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1652 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1653 volume = hammer_get_volume(hmp, vol_no, &error); 1654 1655 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1656 error = EIO; 1657 if (error == 0) { 1658 bp = bio->bio_buf; 1659 KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0); 1660 /* 1661 hammer_del_buffers(hmp, buf_offset, 1662 zone2_offset, bp->b_bufsize); 1663 */ 1664 1665 /* 1666 * Second level bio - cached zone2 offset. 1667 * 1668 * (We can put our bio_done function in either the 1669 * 2nd or 3rd level). 1670 */ 1671 nbio = push_bio(bio); 1672 nbio->bio_offset = zone2_offset; 1673 nbio->bio_done = hammer_io_direct_write_complete; 1674 nbio->bio_caller_info1.ptr = record; 1675 record->zone2_offset = zone2_offset; 1676 record->gflags |= HAMMER_RECG_DIRECT_IO | 1677 HAMMER_RECG_DIRECT_INVAL; 1678 1679 /* 1680 * Third level bio - raw offset specific to the 1681 * correct volume. 1682 */ 1683 zone2_offset &= HAMMER_OFF_SHORT_MASK; 1684 nbio = push_bio(nbio); 1685 nbio->bio_offset = volume->ondisk->vol_buf_beg + 1686 zone2_offset; 1687 hammer_stats_disk_write += bp->b_bufsize; 1688 hammer_ip_replace_bulk(hmp, record); 1689 vn_strategy(volume->devvp, nbio); 1690 hammer_io_flush_mark(volume); 1691 } 1692 hammer_rel_volume(volume, 0); 1693 } else { 1694 /* 1695 * Must fit in a standard HAMMER buffer. In this case all 1696 * consumers use the HAMMER buffer system and RECG_DIRECT_IO 1697 * does not need to be set-up. 1698 */ 1699 KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0); 1700 buffer = NULL; 1701 ptr = hammer_bread(hmp, buf_offset, &error, &buffer); 1702 if (error == 0) { 1703 bp = bio->bio_buf; 1704 bp->b_flags |= B_AGE; 1705 hammer_io_modify(&buffer->io, 1); 1706 bcopy(bp->b_data, ptr, leaf->data_len); 1707 hammer_io_modify_done(&buffer->io); 1708 hammer_rel_buffer(buffer, 0); 1709 bp->b_resid = 0; 1710 hammer_ip_replace_bulk(hmp, record); 1711 biodone(bio); 1712 } 1713 } 1714 if (error) { 1715 /* 1716 * Major suckage occured. Also note: The record was 1717 * never added to the tree so we do not have to worry 1718 * about the backend. 1719 */ 1720 kprintf("hammer_direct_write: failed @ %016llx\n", 1721 (long long)leaf->data_offset); 1722 bp = bio->bio_buf; 1723 bp->b_resid = 0; 1724 bp->b_error = EIO; 1725 bp->b_flags |= B_ERROR; 1726 biodone(bio); 1727 record->flags |= HAMMER_RECF_DELETED_FE; 1728 hammer_rel_mem_record(record); 1729 } 1730 return(error); 1731 } 1732 1733 /* 1734 * On completion of the BIO this callback must disconnect 1735 * it from the hammer_record and chain to the previous bio. 1736 * 1737 * An I/O error forces the mount to read-only. Data buffers 1738 * are not B_LOCKED like meta-data buffers are, so we have to 1739 * throw the buffer away to prevent the kernel from retrying. 1740 * 1741 * NOTE: MPSAFE callback, only modify fields we have explicit 1742 * access to (the bp and the record->gflags). 1743 */ 1744 static 1745 void 1746 hammer_io_direct_write_complete(struct bio *nbio) 1747 { 1748 struct bio *obio; 1749 struct buf *bp; 1750 hammer_record_t record; 1751 hammer_mount_t hmp; 1752 1753 record = nbio->bio_caller_info1.ptr; 1754 KKASSERT(record != NULL); 1755 hmp = record->ip->hmp; 1756 1757 lwkt_gettoken(&hmp->io_token); 1758 1759 bp = nbio->bio_buf; 1760 obio = pop_bio(nbio); 1761 if (bp->b_flags & B_ERROR) { 1762 lwkt_gettoken(&hmp->fs_token); 1763 hammer_critical_error(hmp, record->ip, 1764 bp->b_error, 1765 "while writing bulk data"); 1766 lwkt_reltoken(&hmp->fs_token); 1767 bp->b_flags |= B_INVAL; 1768 } 1769 biodone(obio); 1770 1771 KKASSERT(record->gflags & HAMMER_RECG_DIRECT_IO); 1772 if (record->gflags & HAMMER_RECG_DIRECT_WAIT) { 1773 record->gflags &= ~(HAMMER_RECG_DIRECT_IO | 1774 HAMMER_RECG_DIRECT_WAIT); 1775 /* record can disappear once DIRECT_IO flag is cleared */ 1776 wakeup(&record->flags); 1777 } else { 1778 record->gflags &= ~HAMMER_RECG_DIRECT_IO; 1779 /* record can disappear once DIRECT_IO flag is cleared */ 1780 } 1781 lwkt_reltoken(&hmp->io_token); 1782 } 1783 1784 1785 /* 1786 * This is called before a record is either committed to the B-Tree 1787 * or destroyed, to resolve any associated direct-IO. 1788 * 1789 * (1) We must wait for any direct-IO related to the record to complete. 1790 * 1791 * (2) We must remove any buffer cache aliases for data accessed via 1792 * leaf->data_offset or zone2_offset so non-direct-IO consumers 1793 * (the mirroring and reblocking code) do not see stale data. 1794 */ 1795 void 1796 hammer_io_direct_wait(hammer_record_t record) 1797 { 1798 hammer_mount_t hmp = record->ip->hmp; 1799 1800 /* 1801 * Wait for I/O to complete 1802 */ 1803 if (record->gflags & HAMMER_RECG_DIRECT_IO) { 1804 lwkt_gettoken(&hmp->io_token); 1805 while (record->gflags & HAMMER_RECG_DIRECT_IO) { 1806 record->gflags |= HAMMER_RECG_DIRECT_WAIT; 1807 tsleep(&record->flags, 0, "hmdiow", 0); 1808 } 1809 lwkt_reltoken(&hmp->io_token); 1810 } 1811 1812 /* 1813 * Invalidate any related buffer cache aliases associated with the 1814 * backing device. This is needed because the buffer cache buffer 1815 * for file data is associated with the file vnode, not the backing 1816 * device vnode. 1817 * 1818 * XXX I do not think this case can occur any more now that 1819 * reservations ensure that all such buffers are removed before 1820 * an area can be reused. 1821 */ 1822 if (record->gflags & HAMMER_RECG_DIRECT_INVAL) { 1823 KKASSERT(record->leaf.data_offset); 1824 hammer_del_buffers(hmp, record->leaf.data_offset, 1825 record->zone2_offset, record->leaf.data_len, 1826 1); 1827 record->gflags &= ~HAMMER_RECG_DIRECT_INVAL; 1828 } 1829 } 1830 1831 /* 1832 * This is called to remove the second-level cached zone-2 offset from 1833 * frontend buffer cache buffers, now stale due to a data relocation. 1834 * These offsets are generated by cluster_read() via VOP_BMAP, or directly 1835 * by hammer_vop_strategy_read(). 1836 * 1837 * This is rather nasty because here we have something like the reblocker 1838 * scanning the raw B-Tree with no held references on anything, really, 1839 * other then a shared lock on the B-Tree node, and we have to access the 1840 * frontend's buffer cache to check for and clean out the association. 1841 * Specifically, if the reblocker is moving data on the disk, these cached 1842 * offsets will become invalid. 1843 * 1844 * Only data record types associated with the large-data zone are subject 1845 * to direct-io and need to be checked. 1846 * 1847 */ 1848 void 1849 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf) 1850 { 1851 struct hammer_inode_info iinfo; 1852 int zone; 1853 1854 if (leaf->base.rec_type != HAMMER_RECTYPE_DATA) 1855 return; 1856 zone = HAMMER_ZONE_DECODE(leaf->data_offset); 1857 if (zone != HAMMER_ZONE_LARGE_DATA_INDEX) 1858 return; 1859 iinfo.obj_id = leaf->base.obj_id; 1860 iinfo.obj_asof = 0; /* unused */ 1861 iinfo.obj_localization = leaf->base.localization & 1862 HAMMER_LOCALIZE_PSEUDOFS_MASK; 1863 iinfo.u.leaf = leaf; 1864 hammer_scan_inode_snapshots(hmp, &iinfo, 1865 hammer_io_direct_uncache_callback, 1866 leaf); 1867 } 1868 1869 static int 1870 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data) 1871 { 1872 hammer_inode_info_t iinfo = data; 1873 hammer_off_t file_offset; 1874 struct vnode *vp; 1875 struct buf *bp; 1876 int blksize; 1877 1878 if (ip->vp == NULL) 1879 return(0); 1880 file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len; 1881 blksize = iinfo->u.leaf->data_len; 1882 KKASSERT((blksize & HAMMER_BUFMASK) == 0); 1883 1884 /* 1885 * Warning: FINDBLK_TEST return stable storage but not stable 1886 * contents. It happens to be ok in this case. 1887 */ 1888 hammer_ref(&ip->lock); 1889 if (hammer_get_vnode(ip, &vp) == 0) { 1890 if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL && 1891 bp->b_bio2.bio_offset != NOOFFSET) { 1892 bp = getblk(ip->vp, file_offset, blksize, 0, 0); 1893 bp->b_bio2.bio_offset = NOOFFSET; 1894 brelse(bp); 1895 } 1896 vput(vp); 1897 } 1898 hammer_rel_inode(ip, 0); 1899 return(0); 1900 } 1901 1902 1903 /* 1904 * This function is called when writes may have occured on the volume, 1905 * indicating that the device may be holding cached writes. 1906 */ 1907 static void 1908 hammer_io_flush_mark(hammer_volume_t volume) 1909 { 1910 atomic_set_int(&volume->vol_flags, HAMMER_VOLF_NEEDFLUSH); 1911 } 1912 1913 /* 1914 * This function ensures that the device has flushed any cached writes out. 1915 */ 1916 void 1917 hammer_io_flush_sync(hammer_mount_t hmp) 1918 { 1919 hammer_volume_t volume; 1920 struct buf *bp_base = NULL; 1921 struct buf *bp; 1922 1923 RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) { 1924 if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) { 1925 atomic_clear_int(&volume->vol_flags, 1926 HAMMER_VOLF_NEEDFLUSH); 1927 bp = getpbuf(NULL); 1928 bp->b_bio1.bio_offset = 0; 1929 bp->b_bufsize = 0; 1930 bp->b_bcount = 0; 1931 bp->b_cmd = BUF_CMD_FLUSH; 1932 bp->b_bio1.bio_caller_info1.cluster_head = bp_base; 1933 bp->b_bio1.bio_done = biodone_sync; 1934 bp->b_bio1.bio_flags |= BIO_SYNC; 1935 bp_base = bp; 1936 vn_strategy(volume->devvp, &bp->b_bio1); 1937 } 1938 } 1939 while ((bp = bp_base) != NULL) { 1940 bp_base = bp->b_bio1.bio_caller_info1.cluster_head; 1941 biowait(&bp->b_bio1, "hmrFLS"); 1942 relpbuf(bp, NULL); 1943 } 1944 } 1945 1946 /* 1947 * Limit the amount of backlog which we allow to build up 1948 */ 1949 void 1950 hammer_io_limit_backlog(hammer_mount_t hmp) 1951 { 1952 waitrunningbufspace(); 1953 } 1954