1 /* 2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 /* 35 * IO Primitives and buffer cache management 36 * 37 * All major data-tracking structures in HAMMER contain a struct hammer_io 38 * which is used to manage their backing store. We use filesystem buffers 39 * for backing store and we leave them passively associated with their 40 * HAMMER structures. 41 * 42 * If the kernel tries to destroy a passively associated buf which we cannot 43 * yet let go we set B_LOCKED in the buffer and then actively released it 44 * later when we can. 45 * 46 * The io_token is required for anything which might race bioops and bio_done 47 * callbacks, with one exception: A successful hammer_try_interlock_norefs(). 48 * the fs_token will be held in all other cases. 49 */ 50 51 #include <sys/buf2.h> 52 53 #include "hammer.h" 54 55 static void hammer_io_modify(hammer_io_t io, int count); 56 static void hammer_io_deallocate(struct buf *bp); 57 static void hammer_indirect_callback(struct bio *bio); 58 static void hammer_io_direct_write_complete(struct bio *nbio); 59 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data); 60 static void hammer_io_set_modlist(hammer_io_t io); 61 static __inline void hammer_io_flush_mark(hammer_volume_t volume); 62 static struct bio_ops hammer_bioops; 63 64 static int 65 hammer_mod_rb_compare(hammer_io_t io1, hammer_io_t io2) 66 { 67 hammer_off_t io1_offset; 68 hammer_off_t io2_offset; 69 70 /* 71 * Encoded offsets are neither valid block device offsets 72 * nor valid zone-X offsets. 73 */ 74 io1_offset = HAMMER_ENCODE(0, io1->volume->vol_no, io1->offset); 75 io2_offset = HAMMER_ENCODE(0, io2->volume->vol_no, io2->offset); 76 77 if (io1_offset < io2_offset) 78 return(-1); 79 if (io1_offset > io2_offset) 80 return(1); 81 return(0); 82 } 83 84 RB_GENERATE(hammer_mod_rb_tree, hammer_io, rb_node, hammer_mod_rb_compare); 85 86 /* 87 * Initialize a new, already-zero'd hammer_io structure, or reinitialize 88 * an existing hammer_io structure which may have switched to another type. 89 */ 90 void 91 hammer_io_init(hammer_io_t io, hammer_volume_t volume, hammer_io_type_t type) 92 { 93 io->volume = volume; 94 io->hmp = volume->io.hmp; 95 io->type = type; 96 } 97 98 /* 99 * Helper routine to disassociate a buffer cache buffer from an I/O 100 * structure. The io must be interlocked and marked appropriately for 101 * reclamation. 102 * 103 * The io must be in a released state with the io->bp owned and 104 * locked by the caller of this function. When not called from an 105 * io_deallocate() this cannot race an io_deallocate() since the 106 * kernel would be unable to get the buffer lock in that case. 107 * (The released state in this case means we own the bp, not the 108 * hammer_io structure). 109 * 110 * The io may have 0 or 1 references depending on who called us. The 111 * caller is responsible for dealing with the refs. 112 * 113 * This call can only be made when no action is required on the buffer. 114 * 115 * This function is guaranteed not to race against anything because we 116 * own both the io lock and the bp lock and are interlocked with no 117 * references. 118 */ 119 static void 120 hammer_io_disassociate(hammer_io_t io) 121 { 122 struct buf *bp = io->bp; 123 124 KKASSERT(io->released); 125 KKASSERT(io->modified == 0); 126 KKASSERT(hammer_buf_peek_io(bp) == io); 127 buf_dep_init(bp); 128 io->bp = NULL; 129 130 /* 131 * If the buffer was locked someone wanted to get rid of it. 132 */ 133 if (bp->b_flags & B_LOCKED) { 134 atomic_add_int(&hammer_count_io_locked, -1); 135 bp->b_flags &= ~B_LOCKED; 136 } 137 if (io->reclaim) { 138 bp->b_flags |= B_NOCACHE|B_RELBUF; 139 io->reclaim = 0; 140 } 141 142 switch(io->type) { 143 case HAMMER_STRUCTURE_VOLUME: 144 HAMMER_ITOV(io)->ondisk = NULL; 145 break; 146 case HAMMER_STRUCTURE_DATA_BUFFER: 147 case HAMMER_STRUCTURE_META_BUFFER: 148 case HAMMER_STRUCTURE_UNDO_BUFFER: 149 HAMMER_ITOB(io)->ondisk = NULL; 150 break; 151 case HAMMER_STRUCTURE_DUMMY: 152 hpanic("bad io type"); 153 break; 154 } 155 } 156 157 /* 158 * Wait for any physical IO to complete 159 * 160 * XXX we aren't interlocked against a spinlock or anything so there 161 * is a small window in the interlock / io->running == 0 test. 162 */ 163 void 164 hammer_io_wait(hammer_io_t io) 165 { 166 if (io->running) { 167 hammer_mount_t hmp = io->hmp; 168 169 lwkt_gettoken(&hmp->io_token); 170 while (io->running) { 171 io->waiting = 1; 172 tsleep_interlock(io, 0); 173 if (io->running) 174 tsleep(io, PINTERLOCKED, "hmrflw", hz); 175 } 176 lwkt_reltoken(&hmp->io_token); 177 } 178 } 179 180 /* 181 * Wait for all currently queued HAMMER-initiated I/Os to complete. 182 * 183 * This is not supposed to count direct I/O's but some can leak 184 * through (for non-full-sized direct I/Os). 185 */ 186 void 187 hammer_io_wait_all(hammer_mount_t hmp, const char *ident, int doflush) 188 { 189 struct hammer_io iodummy; 190 hammer_io_t io; 191 192 /* 193 * Degenerate case, no I/O is running 194 */ 195 lwkt_gettoken(&hmp->io_token); 196 if (TAILQ_EMPTY(&hmp->iorun_list)) { 197 lwkt_reltoken(&hmp->io_token); 198 if (doflush) 199 hammer_io_flush_sync(hmp); 200 return; 201 } 202 bzero(&iodummy, sizeof(iodummy)); 203 iodummy.type = HAMMER_STRUCTURE_DUMMY; 204 205 /* 206 * Add placemarker and then wait until it becomes the head of 207 * the list. 208 */ 209 TAILQ_INSERT_TAIL(&hmp->iorun_list, &iodummy, iorun_entry); 210 while (TAILQ_FIRST(&hmp->iorun_list) != &iodummy) { 211 tsleep(&iodummy, 0, ident, 0); 212 } 213 214 /* 215 * Chain in case several placemarkers are present. 216 */ 217 TAILQ_REMOVE(&hmp->iorun_list, &iodummy, iorun_entry); 218 io = TAILQ_FIRST(&hmp->iorun_list); 219 if (io && io->type == HAMMER_STRUCTURE_DUMMY) 220 wakeup(io); 221 lwkt_reltoken(&hmp->io_token); 222 223 if (doflush) 224 hammer_io_flush_sync(hmp); 225 } 226 227 /* 228 * Clear a flagged error condition on a I/O buffer. The caller must hold 229 * its own ref on the buffer. 230 */ 231 void 232 hammer_io_clear_error(hammer_io_t io) 233 { 234 hammer_mount_t hmp = io->hmp; 235 236 lwkt_gettoken(&hmp->io_token); 237 if (io->ioerror) { 238 io->ioerror = 0; 239 hammer_rel(&io->lock); 240 KKASSERT(hammer_isactive(&io->lock)); 241 } 242 lwkt_reltoken(&hmp->io_token); 243 } 244 245 void 246 hammer_io_clear_error_noassert(hammer_io_t io) 247 { 248 hammer_mount_t hmp = io->hmp; 249 250 lwkt_gettoken(&hmp->io_token); 251 if (io->ioerror) { 252 io->ioerror = 0; 253 hammer_rel(&io->lock); 254 } 255 lwkt_reltoken(&hmp->io_token); 256 } 257 258 /* 259 * This is an advisory function only which tells the buffer cache 260 * the bp is not a meta-data buffer, even though it is backed by 261 * a block device. 262 * 263 * This is used by HAMMER's reblocking code to avoid trying to 264 * swapcache the filesystem's data when it is read or written 265 * by the reblocking code. 266 * 267 * The caller has a ref on the buffer preventing the bp from 268 * being disassociated from it. 269 */ 270 void 271 hammer_io_notmeta(hammer_buffer_t buffer) 272 { 273 if ((buffer->io.bp->b_flags & B_NOTMETA) == 0) { 274 hammer_mount_t hmp = buffer->io.hmp; 275 276 lwkt_gettoken(&hmp->io_token); 277 buffer->io.bp->b_flags |= B_NOTMETA; 278 lwkt_reltoken(&hmp->io_token); 279 } 280 } 281 282 /* 283 * Load bp for a HAMMER structure. The io must be exclusively locked by 284 * the caller. 285 * 286 * This routine is mostly used on meta-data and small-data blocks. Generally 287 * speaking HAMMER assumes some locality of reference and will cluster. 288 * 289 * Note that the caller (hammer_ondisk.c) may place further restrictions 290 * on clusterability via the limit (in bytes). Typically large-data 291 * zones cannot be clustered due to their mixed buffer sizes. This is 292 * not an issue since such clustering occurs in hammer_vnops at the 293 * regular file layer, whereas this is the buffered block device layer. 294 * 295 * No I/O callbacks can occur while we hold the buffer locked. 296 */ 297 int 298 hammer_io_read(struct vnode *devvp, hammer_io_t io, int limit) 299 { 300 struct buf *bp; 301 int error; 302 303 if ((bp = io->bp) == NULL) { 304 int hce = hammer_cluster_enable; 305 306 atomic_add_long(&hammer_count_io_running_read, io->bytes); 307 if (hce && limit > io->bytes) { 308 error = cluster_read(devvp, io->offset + limit, 309 io->offset, io->bytes, 310 HAMMER_CLUSTER_SIZE, 311 HAMMER_CLUSTER_SIZE * hce, 312 &io->bp); 313 } else { 314 error = bread(devvp, io->offset, io->bytes, &io->bp); 315 } 316 hammer_stats_disk_read += io->bytes; 317 atomic_add_long(&hammer_count_io_running_read, -io->bytes); 318 319 /* 320 * The code generally assumes b_ops/b_dep has been set-up, 321 * even if we error out here. 322 */ 323 bp = io->bp; 324 if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IOISSUED)) { 325 const char *metatype; 326 327 switch(io->type) { 328 case HAMMER_STRUCTURE_VOLUME: 329 metatype = "volume"; 330 break; 331 case HAMMER_STRUCTURE_META_BUFFER: 332 switch(HAMMER_ZONE(HAMMER_ITOB(io)->zoneX_offset)) { 333 case HAMMER_ZONE_BTREE: 334 metatype = "btree"; 335 break; 336 case HAMMER_ZONE_META: 337 metatype = "meta"; 338 break; 339 case HAMMER_ZONE_FREEMAP: 340 metatype = "freemap"; 341 break; 342 default: 343 metatype = "meta?"; 344 break; 345 } 346 break; 347 case HAMMER_STRUCTURE_DATA_BUFFER: 348 metatype = "data"; 349 break; 350 case HAMMER_STRUCTURE_UNDO_BUFFER: 351 metatype = "undo"; 352 break; 353 default: 354 metatype = "unknown"; 355 break; 356 } 357 hdkprintf("zone2_offset %016jx %s\n", 358 (intmax_t)bp->b_bio2.bio_offset, 359 metatype); 360 } 361 bp->b_flags &= ~B_IOISSUED; 362 bp->b_ops = &hammer_bioops; 363 364 hammer_buf_attach_io(bp, io); /* locked by the io lock */ 365 BUF_KERNPROC(bp); 366 KKASSERT(io->modified == 0); 367 KKASSERT(io->running == 0); 368 KKASSERT(io->waiting == 0); 369 io->released = 0; /* we hold an active lock on bp */ 370 } else { 371 error = 0; 372 } 373 return(error); 374 } 375 376 /* 377 * Similar to hammer_io_read() but returns a zero'd out buffer instead. 378 * Must be called with the IO exclusively locked. 379 * 380 * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background 381 * I/O by forcing the buffer to not be in a released state before calling 382 * it. 383 * 384 * This function will also mark the IO as modified but it will not 385 * increment the modify_refs count. 386 * 387 * No I/O callbacks can occur while we hold the buffer locked. 388 */ 389 int 390 hammer_io_new(struct vnode *devvp, hammer_io_t io) 391 { 392 struct buf *bp; 393 394 if ((bp = io->bp) == NULL) { 395 io->bp = getblk(devvp, io->offset, io->bytes, 0, 0); 396 bp = io->bp; 397 bp->b_ops = &hammer_bioops; 398 399 hammer_buf_attach_io(bp, io); /* locked by the io lock */ 400 io->released = 0; 401 KKASSERT(io->running == 0); 402 io->waiting = 0; 403 BUF_KERNPROC(bp); 404 } else { 405 if (io->released) { 406 regetblk(bp); 407 BUF_KERNPROC(bp); 408 io->released = 0; 409 } 410 } 411 hammer_io_modify(io, 0); 412 vfs_bio_clrbuf(bp); 413 return(0); 414 } 415 416 /* 417 * Advance the activity count on the underlying buffer because 418 * HAMMER does not getblk/brelse on every access. 419 * 420 * The io->bp cannot go away while the buffer is referenced. 421 */ 422 void 423 hammer_io_advance(hammer_io_t io) 424 { 425 if (io->bp) 426 buf_act_advance(io->bp); 427 } 428 429 /* 430 * Remove potential device level aliases against buffers managed by high level 431 * vnodes. Aliases can also be created due to mixed buffer sizes or via 432 * direct access to the backing store device. 433 * 434 * This is nasty because the buffers are also VMIO-backed. Even if a buffer 435 * does not exist its backing VM pages might, and we have to invalidate 436 * those as well or a getblk() will reinstate them. 437 * 438 * Buffer cache buffers associated with hammer_buffers cannot be 439 * invalidated. 440 */ 441 int 442 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset) 443 { 444 hammer_io_t io; 445 hammer_mount_t hmp; 446 hammer_off_t phys_offset; 447 struct buf *bp; 448 int error; 449 450 hmp = volume->io.hmp; 451 lwkt_gettoken(&hmp->io_token); 452 453 /* 454 * If a device buffer already exists for the specified physical 455 * offset use that, otherwise instantiate a buffer to cover any 456 * related VM pages, set BNOCACHE, and brelse(). 457 */ 458 phys_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset); 459 if ((bp = findblk(volume->devvp, phys_offset, 0)) != NULL) 460 bremfree(bp); 461 else 462 bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0); 463 464 if ((io = hammer_buf_peek_io(bp)) != NULL) { 465 #if 0 466 hammer_ref(&io->lock); 467 hammer_io_clear_modify(io, 1); 468 bundirty(bp); 469 io->released = 0; 470 BUF_KERNPROC(bp); 471 io->reclaim = 1; 472 io->waitdep = 1; /* XXX this is a fs_token field */ 473 KKASSERT(hammer_isactive(&io->lock) == 1); 474 hammer_rel_buffer(HAMMER_ITOB(io), 0); 475 /*hammer_io_deallocate(bp);*/ 476 #endif 477 bqrelse(bp); 478 error = EAGAIN; 479 } else { 480 KKASSERT((bp->b_flags & B_LOCKED) == 0); 481 bundirty(bp); 482 bp->b_flags |= B_NOCACHE|B_RELBUF; 483 brelse(bp); 484 error = 0; 485 } 486 lwkt_reltoken(&hmp->io_token); 487 return(error); 488 } 489 490 /* 491 * This routine is called on the last reference to a hammer structure. 492 * The io must be interlocked with a refcount of zero. The hammer structure 493 * will remain interlocked on return. 494 * 495 * This routine may return a non-NULL bp to the caller for dispoal. 496 * The caller typically brelse()'s the bp. 497 * 498 * The bp may or may not still be passively associated with the IO. It 499 * will remain passively associated if it is unreleasable (e.g. a modified 500 * meta-data buffer). 501 * 502 * The only requirement here is that modified meta-data and volume-header 503 * buffer may NOT be disassociated from the IO structure, and consequently 504 * we also leave such buffers actively associated with the IO if they already 505 * are (since the kernel can't do anything with them anyway). Only the 506 * flusher is allowed to write such buffers out. Modified pure-data and 507 * undo buffers are returned to the kernel but left passively associated 508 * so we can track when the kernel writes the bp out. 509 */ 510 struct buf * 511 hammer_io_release(hammer_io_t io, int flush) 512 { 513 struct buf *bp; 514 515 if ((bp = io->bp) == NULL) 516 return(NULL); 517 518 /* 519 * Try to flush a dirty IO to disk if asked to by the 520 * caller or if the kernel tried to flush the buffer in the past. 521 * 522 * Kernel-initiated flushes are only allowed for pure-data buffers. 523 * meta-data and volume buffers can only be flushed explicitly 524 * by HAMMER. 525 */ 526 if (io->modified) { 527 if (flush) { 528 hammer_io_flush(io, 0); 529 } else if (bp->b_flags & B_LOCKED) { 530 switch(io->type) { 531 case HAMMER_STRUCTURE_DATA_BUFFER: 532 hammer_io_flush(io, 0); 533 break; 534 case HAMMER_STRUCTURE_UNDO_BUFFER: 535 hammer_io_flush(io, hammer_undo_reclaim(io)); 536 break; 537 default: 538 break; 539 } 540 } /* else no explicit request to flush the buffer */ 541 } 542 543 /* 544 * Wait for the IO to complete if asked to. This occurs when 545 * the buffer must be disposed of definitively during an umount 546 * or buffer invalidation. 547 */ 548 if (io->waitdep && io->running) { 549 hammer_io_wait(io); 550 } 551 552 /* 553 * Return control of the buffer to the kernel (with the provisio 554 * that our bioops can override kernel decisions with regards to 555 * the buffer). 556 */ 557 if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) { 558 /* 559 * Always disassociate the bp if an explicit flush 560 * was requested and the IO completed with no error 561 * (so unmount can really clean up the structure). 562 */ 563 if (io->released) { 564 regetblk(bp); 565 BUF_KERNPROC(bp); 566 } else { 567 io->released = 1; 568 } 569 hammer_io_disassociate(io); 570 /* return the bp */ 571 } else if (io->modified) { 572 /* 573 * Only certain IO types can be released to the kernel if 574 * the buffer has been modified. 575 * 576 * volume and meta-data IO types may only be explicitly 577 * flushed by HAMMER. 578 */ 579 switch(io->type) { 580 case HAMMER_STRUCTURE_DATA_BUFFER: 581 case HAMMER_STRUCTURE_UNDO_BUFFER: 582 if (io->released == 0) { 583 io->released = 1; 584 bp->b_flags |= B_CLUSTEROK; 585 bdwrite(bp); 586 } 587 break; 588 default: 589 break; 590 } 591 bp = NULL; /* bp left associated */ 592 } else if (io->released == 0) { 593 /* 594 * Clean buffers can be generally released to the kernel. 595 * We leave the bp passively associated with the HAMMER 596 * structure and use bioops to disconnect it later on 597 * if the kernel wants to discard the buffer. 598 * 599 * We can steal the structure's ownership of the bp. 600 */ 601 io->released = 1; 602 if (bp->b_flags & B_LOCKED) { 603 hammer_io_disassociate(io); 604 /* return the bp */ 605 } else { 606 if (io->reclaim) { 607 hammer_io_disassociate(io); 608 /* return the bp */ 609 } else { 610 /* return the bp (bp passively associated) */ 611 } 612 } 613 } else { 614 /* 615 * A released buffer is passively associate with our 616 * hammer_io structure. The kernel cannot destroy it 617 * without making a bioops call. If the kernel (B_LOCKED) 618 * or we (reclaim) requested that the buffer be destroyed 619 * we destroy it, otherwise we do a quick get/release to 620 * reset its position in the kernel's LRU list. 621 * 622 * Leaving the buffer passively associated allows us to 623 * use the kernel's LRU buffer flushing mechanisms rather 624 * then rolling our own. 625 * 626 * XXX there are two ways of doing this. We can re-acquire 627 * and passively release to reset the LRU, or not. 628 */ 629 if (io->running == 0) { 630 regetblk(bp); 631 if ((bp->b_flags & B_LOCKED) || io->reclaim) { 632 hammer_io_disassociate(io); 633 /* return the bp */ 634 } else { 635 /* return the bp (bp passively associated) */ 636 } 637 } else { 638 /* 639 * bp is left passively associated but we do not 640 * try to reacquire it. Interactions with the io 641 * structure will occur on completion of the bp's 642 * I/O. 643 */ 644 bp = NULL; 645 } 646 } 647 return(bp); 648 } 649 650 /* 651 * This routine is called with a locked IO when a flush is desired and 652 * no other references to the structure exists other then ours. This 653 * routine is ONLY called when HAMMER believes it is safe to flush a 654 * potentially modified buffer out. 655 * 656 * The locked io or io reference prevents a flush from being initiated 657 * by the kernel. 658 */ 659 void 660 hammer_io_flush(hammer_io_t io, int reclaim) 661 { 662 struct buf *bp; 663 hammer_mount_t hmp; 664 665 /* 666 * Degenerate case - nothing to flush if nothing is dirty. 667 */ 668 if (io->modified == 0) 669 return; 670 671 KKASSERT(io->bp); 672 KKASSERT(io->modify_refs <= 0); 673 674 /* 675 * Acquire ownership of the bp, particularly before we clear our 676 * modified flag. 677 * 678 * We are going to bawrite() this bp. Don't leave a window where 679 * io->released is set, we actually own the bp rather then our 680 * buffer. 681 * 682 * The io_token should not be required here as only 683 */ 684 hmp = io->hmp; 685 bp = io->bp; 686 if (io->released) { 687 regetblk(bp); 688 /* BUF_KERNPROC(io->bp); */ 689 /* io->released = 0; */ 690 KKASSERT(io->released); 691 KKASSERT(io->bp == bp); 692 } else { 693 io->released = 1; 694 } 695 696 if (reclaim) { 697 io->reclaim = 1; 698 if ((bp->b_flags & B_LOCKED) == 0) { 699 bp->b_flags |= B_LOCKED; 700 atomic_add_int(&hammer_count_io_locked, 1); 701 } 702 } 703 704 /* 705 * Acquire exclusive access to the bp and then clear the modified 706 * state of the buffer prior to issuing I/O to interlock any 707 * modifications made while the I/O is in progress. This shouldn't 708 * happen anyway but losing data would be worse. The modified bit 709 * will be rechecked after the IO completes. 710 * 711 * NOTE: This call also finalizes the buffer's content (inval == 0). 712 * 713 * This is only legal when lock.refs == 1 (otherwise we might clear 714 * the modified bit while there are still users of the cluster 715 * modifying the data). 716 * 717 * Do this before potentially blocking so any attempt to modify the 718 * ondisk while we are blocked blocks waiting for us. 719 */ 720 hammer_ref(&io->lock); 721 hammer_io_clear_modify(io, 0); 722 hammer_rel(&io->lock); 723 724 if (hammer_debug_io & 0x0002) 725 hdkprintf("%016jx\n", bp->b_bio1.bio_offset); 726 727 /* 728 * Transfer ownership to the kernel and initiate I/O. 729 * 730 * NOTE: We do not hold io_token so an atomic op is required to 731 * update io_running_space. 732 */ 733 io->running = 1; 734 atomic_add_long(&hmp->io_running_space, io->bytes); 735 atomic_add_long(&hammer_count_io_running_write, io->bytes); 736 lwkt_gettoken(&hmp->io_token); 737 TAILQ_INSERT_TAIL(&hmp->iorun_list, io, iorun_entry); 738 lwkt_reltoken(&hmp->io_token); 739 cluster_awrite(bp); 740 hammer_io_flush_mark(io->volume); 741 } 742 743 /************************************************************************ 744 * BUFFER DIRTYING * 745 ************************************************************************ 746 * 747 * These routines deal with dependancies created when IO buffers get 748 * modified. The caller must call hammer_modify_*() on a referenced 749 * HAMMER structure prior to modifying its on-disk data. 750 * 751 * Any intent to modify an IO buffer acquires the related bp and imposes 752 * various write ordering dependancies. 753 */ 754 755 /* 756 * Mark a HAMMER structure as undergoing modification. Meta-data buffers 757 * are locked until the flusher can deal with them, pure data buffers 758 * can be written out. 759 * 760 * The referenced io prevents races. 761 */ 762 static 763 void 764 hammer_io_modify(hammer_io_t io, int count) 765 { 766 /* 767 * io->modify_refs must be >= 0 768 */ 769 while (io->modify_refs < 0) { 770 io->waitmod = 1; 771 tsleep(io, 0, "hmrmod", 0); 772 } 773 774 /* 775 * Shortcut if nothing to do. 776 */ 777 KKASSERT(hammer_isactive(&io->lock) && io->bp != NULL); 778 io->modify_refs += count; 779 if (io->modified && io->released == 0) 780 return; 781 782 /* 783 * NOTE: It is important not to set the modified bit 784 * until after we have acquired the bp or we risk 785 * racing against checkwrite. 786 */ 787 hammer_lock_ex(&io->lock); 788 if (io->released) { 789 regetblk(io->bp); 790 BUF_KERNPROC(io->bp); 791 io->released = 0; 792 } 793 if (io->modified == 0) { 794 hammer_io_set_modlist(io); 795 io->modified = 1; 796 } 797 hammer_unlock(&io->lock); 798 } 799 800 static __inline 801 void 802 hammer_io_modify_done(hammer_io_t io) 803 { 804 KKASSERT(io->modify_refs > 0); 805 --io->modify_refs; 806 if (io->modify_refs == 0 && io->waitmod) { 807 io->waitmod = 0; 808 wakeup(io); 809 } 810 } 811 812 /* 813 * The write interlock blocks other threads trying to modify a buffer 814 * (they block in hammer_io_modify()) after us, or blocks us while other 815 * threads are in the middle of modifying a buffer. 816 * 817 * The caller also has a ref on the io, however if we are not careful 818 * we will race bioops callbacks (checkwrite). To deal with this 819 * we must at least acquire and release the io_token, and it is probably 820 * better to hold it through the setting of modify_refs. 821 */ 822 void 823 hammer_io_write_interlock(hammer_io_t io) 824 { 825 hammer_mount_t hmp = io->hmp; 826 827 lwkt_gettoken(&hmp->io_token); 828 while (io->modify_refs != 0) { 829 io->waitmod = 1; 830 tsleep(io, 0, "hmrmod", 0); 831 } 832 io->modify_refs = -1; 833 lwkt_reltoken(&hmp->io_token); 834 } 835 836 void 837 hammer_io_done_interlock(hammer_io_t io) 838 { 839 KKASSERT(io->modify_refs == -1); 840 io->modify_refs = 0; 841 if (io->waitmod) { 842 io->waitmod = 0; 843 wakeup(io); 844 } 845 } 846 847 /* 848 * Caller intends to modify a volume's ondisk structure. 849 * 850 * This is only allowed if we are the flusher or we have a ref on the 851 * sync_lock. 852 */ 853 void 854 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume, 855 void *base, int len) 856 { 857 KKASSERT (trans == NULL || trans->sync_lock_refs > 0); 858 859 hammer_io_modify(&volume->io, 1); 860 if (len) { 861 intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk; 862 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0); 863 hammer_generate_undo(trans, 864 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset), 865 base, len); 866 } 867 } 868 869 /* 870 * Caller intends to modify a buffer's ondisk structure. 871 * 872 * This is only allowed if we are the flusher or we have a ref on the 873 * sync_lock. 874 */ 875 void 876 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer, 877 void *base, int len) 878 { 879 KKASSERT (trans == NULL || trans->sync_lock_refs > 0); 880 881 hammer_io_modify(&buffer->io, 1); 882 if (len) { 883 intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk; 884 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0); 885 hammer_generate_undo(trans, 886 buffer->zone2_offset + rel_offset, 887 base, len); 888 } 889 } 890 891 void 892 hammer_modify_volume_done(hammer_volume_t volume) 893 { 894 hammer_io_modify_done(&volume->io); 895 } 896 897 void 898 hammer_modify_buffer_done(hammer_buffer_t buffer) 899 { 900 hammer_io_modify_done(&buffer->io); 901 } 902 903 /* 904 * Mark an entity as not being dirty any more and finalize any 905 * delayed adjustments to the buffer. 906 * 907 * Delayed adjustments are an important performance enhancement, allowing 908 * us to avoid recalculating B-Tree node CRCs over and over again when 909 * making bulk-modifications to the B-Tree. 910 * 911 * If inval is non-zero delayed adjustments are ignored. 912 * 913 * This routine may dereference related btree nodes and cause the 914 * buffer to be dereferenced. The caller must own a reference on io. 915 */ 916 void 917 hammer_io_clear_modify(hammer_io_t io, int inval) 918 { 919 hammer_mount_t hmp; 920 921 /* 922 * io_token is needed to avoid races on mod_root 923 */ 924 if (io->modified == 0) 925 return; 926 hmp = io->hmp; 927 lwkt_gettoken(&hmp->io_token); 928 if (io->modified == 0) { 929 lwkt_reltoken(&hmp->io_token); 930 return; 931 } 932 933 /* 934 * Take us off the mod-list and clear the modified bit. 935 */ 936 KKASSERT(io->mod_root != NULL); 937 if (io->mod_root == &io->hmp->volu_root || 938 io->mod_root == &io->hmp->meta_root) { 939 io->hmp->locked_dirty_space -= io->bytes; 940 atomic_add_long(&hammer_count_dirtybufspace, -io->bytes); 941 } 942 RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io); 943 io->mod_root = NULL; 944 io->modified = 0; 945 946 lwkt_reltoken(&hmp->io_token); 947 948 /* 949 * If this bit is not set there are no delayed adjustments. 950 */ 951 if (io->gencrc == 0) 952 return; 953 io->gencrc = 0; 954 955 /* 956 * Finalize requested CRCs. The NEEDSCRC flag also holds a reference 957 * on the node (& underlying buffer). Release the node after clearing 958 * the flag. 959 */ 960 if (io->type == HAMMER_STRUCTURE_META_BUFFER) { 961 hammer_buffer_t buffer = HAMMER_ITOB(io); 962 hammer_node_t node; 963 964 restart: 965 TAILQ_FOREACH(node, &buffer->node_list, entry) { 966 if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0) 967 continue; 968 node->flags &= ~HAMMER_NODE_NEEDSCRC; 969 KKASSERT(node->ondisk); 970 if (inval == 0) 971 hammer_crc_set_btree(node->ondisk); 972 hammer_rel_node(node); 973 goto restart; 974 } 975 } 976 /* caller must still have ref on io */ 977 KKASSERT(hammer_isactive(&io->lock)); 978 } 979 980 /* 981 * Clear the IO's modify list. Even though the IO is no longer modified 982 * it may still be on the lose_root. This routine is called just before 983 * the governing hammer_buffer is destroyed. 984 * 985 * mod_root requires io_token protection. 986 */ 987 void 988 hammer_io_clear_modlist(hammer_io_t io) 989 { 990 hammer_mount_t hmp = io->hmp; 991 992 KKASSERT(io->modified == 0); 993 if (io->mod_root) { 994 lwkt_gettoken(&hmp->io_token); 995 if (io->mod_root) { 996 KKASSERT(io->mod_root == &io->hmp->lose_root); 997 RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io); 998 io->mod_root = NULL; 999 } 1000 lwkt_reltoken(&hmp->io_token); 1001 } 1002 } 1003 1004 static void 1005 hammer_io_set_modlist(hammer_io_t io) 1006 { 1007 hammer_mount_t hmp = io->hmp; 1008 1009 lwkt_gettoken(&hmp->io_token); 1010 KKASSERT(io->mod_root == NULL); 1011 1012 switch(io->type) { 1013 case HAMMER_STRUCTURE_VOLUME: 1014 io->mod_root = &hmp->volu_root; 1015 hmp->locked_dirty_space += io->bytes; 1016 atomic_add_long(&hammer_count_dirtybufspace, io->bytes); 1017 break; 1018 case HAMMER_STRUCTURE_META_BUFFER: 1019 io->mod_root = &hmp->meta_root; 1020 hmp->locked_dirty_space += io->bytes; 1021 atomic_add_long(&hammer_count_dirtybufspace, io->bytes); 1022 break; 1023 case HAMMER_STRUCTURE_UNDO_BUFFER: 1024 io->mod_root = &hmp->undo_root; 1025 break; 1026 case HAMMER_STRUCTURE_DATA_BUFFER: 1027 io->mod_root = &hmp->data_root; 1028 break; 1029 case HAMMER_STRUCTURE_DUMMY: 1030 hpanic("bad io type"); 1031 break; /* NOT REACHED */ 1032 } 1033 if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) { 1034 hpanic("duplicate entry @ %d:%015jx", 1035 io->volume->vol_no, io->offset); 1036 /* NOT REACHED */ 1037 } 1038 lwkt_reltoken(&hmp->io_token); 1039 } 1040 1041 /************************************************************************ 1042 * HAMMER_BIOOPS * 1043 ************************************************************************ 1044 * 1045 */ 1046 1047 /* 1048 * Pre-IO initiation kernel callback - cluster build only 1049 * 1050 * bioops callback - hold io_token 1051 */ 1052 static void 1053 hammer_io_start(struct buf *bp) 1054 { 1055 /* nothing to do, so io_token not needed */ 1056 } 1057 1058 /* 1059 * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT! 1060 * 1061 * NOTE: HAMMER may modify a data buffer after we have initiated write 1062 * I/O. 1063 * 1064 * NOTE: MPSAFE callback 1065 * 1066 * bioops callback - hold io_token 1067 */ 1068 static void 1069 hammer_io_complete(struct buf *bp) 1070 { 1071 hammer_io_t io = hammer_buf_peek_io(bp); 1072 hammer_mount_t hmp = io->hmp; 1073 hammer_io_t ionext; 1074 1075 lwkt_gettoken(&hmp->io_token); 1076 1077 KKASSERT(io->released == 1); 1078 1079 /* 1080 * Deal with people waiting for I/O to drain 1081 */ 1082 if (io->running) { 1083 /* 1084 * Deal with critical write errors. Once a critical error 1085 * has been flagged in hmp the UNDO FIFO will not be updated. 1086 * That way crash recover will give us a consistent 1087 * filesystem. 1088 * 1089 * Because of this we can throw away failed UNDO buffers. If 1090 * we throw away META or DATA buffers we risk corrupting 1091 * the now read-only version of the filesystem visible to 1092 * the user. Clear B_ERROR so the buffer is not re-dirtied 1093 * by the kernel and ref the io so it doesn't get thrown 1094 * away. 1095 */ 1096 if (bp->b_flags & B_ERROR) { 1097 lwkt_gettoken(&hmp->fs_token); 1098 hammer_critical_error(hmp, NULL, bp->b_error, 1099 "while flushing meta-data"); 1100 lwkt_reltoken(&hmp->fs_token); 1101 1102 switch(io->type) { 1103 case HAMMER_STRUCTURE_UNDO_BUFFER: 1104 break; 1105 default: 1106 if (io->ioerror == 0) { 1107 io->ioerror = 1; 1108 hammer_ref(&io->lock); 1109 } 1110 break; 1111 } 1112 bp->b_flags &= ~B_ERROR; 1113 bundirty(bp); 1114 #if 0 1115 hammer_io_set_modlist(io); 1116 io->modified = 1; 1117 #endif 1118 } 1119 hammer_stats_disk_write += io->bytes; 1120 atomic_add_long(&hammer_count_io_running_write, -io->bytes); 1121 atomic_add_long(&hmp->io_running_space, -io->bytes); 1122 KKASSERT(hmp->io_running_space >= 0); 1123 io->running = 0; 1124 1125 /* 1126 * Remove from iorun list and wakeup any multi-io waiter(s). 1127 */ 1128 if (TAILQ_FIRST(&hmp->iorun_list) == io) { 1129 ionext = TAILQ_NEXT(io, iorun_entry); 1130 if (ionext && ionext->type == HAMMER_STRUCTURE_DUMMY) 1131 wakeup(ionext); 1132 } 1133 TAILQ_REMOVE(&hmp->iorun_list, io, iorun_entry); 1134 } else { 1135 hammer_stats_disk_read += io->bytes; 1136 } 1137 1138 if (io->waiting) { 1139 io->waiting = 0; 1140 wakeup(io); 1141 } 1142 1143 /* 1144 * If B_LOCKED is set someone wanted to deallocate the bp at some 1145 * point, try to do it now. The operation will fail if there are 1146 * refs or if hammer_io_deallocate() is unable to gain the 1147 * interlock. 1148 */ 1149 if (bp->b_flags & B_LOCKED) { 1150 atomic_add_int(&hammer_count_io_locked, -1); 1151 bp->b_flags &= ~B_LOCKED; 1152 hammer_io_deallocate(bp); 1153 /* structure may be dead now */ 1154 } 1155 lwkt_reltoken(&hmp->io_token); 1156 } 1157 1158 /* 1159 * Callback from kernel when it wishes to deallocate a passively 1160 * associated structure. This mostly occurs with clean buffers 1161 * but it may be possible for a holding structure to be marked dirty 1162 * while its buffer is passively associated. The caller owns the bp. 1163 * 1164 * If we cannot disassociate we set B_LOCKED to prevent the buffer 1165 * from getting reused. 1166 * 1167 * WARNING: Because this can be called directly by getnewbuf we cannot 1168 * recurse into the tree. If a bp cannot be immediately disassociated 1169 * our only recourse is to set B_LOCKED. 1170 * 1171 * WARNING: This may be called from an interrupt via hammer_io_complete() 1172 * 1173 * bioops callback - hold io_token 1174 */ 1175 static void 1176 hammer_io_deallocate(struct buf *bp) 1177 { 1178 hammer_io_t io = hammer_buf_peek_io(bp); 1179 hammer_mount_t hmp; 1180 1181 hmp = io->hmp; 1182 1183 lwkt_gettoken(&hmp->io_token); 1184 1185 KKASSERT((bp->b_flags & B_LOCKED) == 0 && io->running == 0); 1186 if (hammer_try_interlock_norefs(&io->lock) == 0) { 1187 /* 1188 * We cannot safely disassociate a bp from a referenced 1189 * or interlocked HAMMER structure. 1190 */ 1191 bp->b_flags |= B_LOCKED; 1192 atomic_add_int(&hammer_count_io_locked, 1); 1193 } else if (io->modified) { 1194 /* 1195 * It is not legal to disassociate a modified buffer. This 1196 * case really shouldn't ever occur. 1197 */ 1198 bp->b_flags |= B_LOCKED; 1199 atomic_add_int(&hammer_count_io_locked, 1); 1200 hammer_put_interlock(&io->lock, 0); 1201 } else { 1202 /* 1203 * Disassociate the BP. If the io has no refs left we 1204 * have to add it to the loose list. The kernel has 1205 * locked the buffer and therefore our io must be 1206 * in a released state. 1207 */ 1208 hammer_io_disassociate(io); 1209 if (io->type != HAMMER_STRUCTURE_VOLUME) { 1210 KKASSERT(io->bp == NULL); 1211 KKASSERT(io->mod_root == NULL); 1212 io->mod_root = &hmp->lose_root; 1213 if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) { 1214 hpanic("duplicate entry @ %d:%015jx", 1215 io->volume->vol_no, io->offset); 1216 /* NOT REACHED */ 1217 } 1218 } 1219 hammer_put_interlock(&io->lock, 1); 1220 } 1221 lwkt_reltoken(&hmp->io_token); 1222 } 1223 1224 /* 1225 * bioops callback - hold io_token 1226 */ 1227 static int 1228 hammer_io_fsync(struct vnode *vp) 1229 { 1230 /* nothing to do, so io_token not needed */ 1231 return(0); 1232 } 1233 1234 /* 1235 * NOTE: will not be called unless we tell the kernel about the 1236 * bioops. Unused... we use the mount's VFS_SYNC instead. 1237 * 1238 * bioops callback - hold io_token 1239 */ 1240 static int 1241 hammer_io_sync(struct mount *mp) 1242 { 1243 /* nothing to do, so io_token not needed */ 1244 return(0); 1245 } 1246 1247 /* 1248 * bioops callback - hold io_token 1249 */ 1250 static void 1251 hammer_io_movedeps(struct buf *bp1, struct buf *bp2) 1252 { 1253 /* nothing to do, so io_token not needed */ 1254 } 1255 1256 /* 1257 * I/O pre-check for reading and writing. HAMMER only uses this for 1258 * B_CACHE buffers so checkread just shouldn't happen, but if it does 1259 * allow it. 1260 * 1261 * Writing is a different case. We don't want the kernel to try to write 1262 * out a buffer that HAMMER may be modifying passively or which has a 1263 * dependancy. In addition, kernel-demanded writes can only proceed for 1264 * certain types of buffers (i.e. UNDO and DATA types). Other dirty 1265 * buffer types can only be explicitly written by the flusher. 1266 * 1267 * checkwrite will only be called for bdwrite()n buffers. If we return 1268 * success the kernel is guaranteed to initiate the buffer write. 1269 * 1270 * bioops callback - hold io_token 1271 */ 1272 static int 1273 hammer_io_checkread(struct buf *bp) 1274 { 1275 /* nothing to do, so io_token not needed */ 1276 return(0); 1277 } 1278 1279 /* 1280 * The kernel is asking us whether it can write out a dirty buffer or not. 1281 * 1282 * bioops callback - hold io_token 1283 */ 1284 static int 1285 hammer_io_checkwrite(struct buf *bp) 1286 { 1287 hammer_io_t io = hammer_buf_peek_io(bp); 1288 hammer_mount_t hmp = io->hmp; 1289 1290 /* 1291 * This shouldn't happen under normal operation. 1292 */ 1293 lwkt_gettoken(&hmp->io_token); 1294 if (io->type == HAMMER_STRUCTURE_VOLUME || 1295 io->type == HAMMER_STRUCTURE_META_BUFFER) { 1296 if (!panicstr) 1297 hpanic("illegal buffer"); 1298 if ((bp->b_flags & B_LOCKED) == 0) { 1299 bp->b_flags |= B_LOCKED; 1300 atomic_add_int(&hammer_count_io_locked, 1); 1301 } 1302 lwkt_reltoken(&hmp->io_token); 1303 return(1); 1304 } 1305 1306 /* 1307 * We have to be able to interlock the IO to safely modify any 1308 * of its fields without holding the fs_token. If we can't lock 1309 * it then we are racing someone. 1310 * 1311 * Our ownership of the bp lock prevents the io from being ripped 1312 * out from under us. 1313 */ 1314 if (hammer_try_interlock_norefs(&io->lock) == 0) { 1315 bp->b_flags |= B_LOCKED; 1316 atomic_add_int(&hammer_count_io_locked, 1); 1317 lwkt_reltoken(&hmp->io_token); 1318 return(1); 1319 } 1320 1321 /* 1322 * The modified bit must be cleared prior to the initiation of 1323 * any IO (returning 0 initiates the IO). Because this is a 1324 * normal data buffer hammer_io_clear_modify() runs through a 1325 * simple degenerate case. 1326 * 1327 * Return 0 will cause the kernel to initiate the IO, and we 1328 * must normally clear the modified bit before we begin. If 1329 * the io has modify_refs we do not clear the modified bit, 1330 * otherwise we may miss changes. 1331 * 1332 * Only data and undo buffers can reach here. These buffers do 1333 * not have terminal crc functions but we temporarily reference 1334 * the IO anyway, just in case. 1335 */ 1336 if (io->modify_refs == 0 && io->modified) { 1337 hammer_ref(&io->lock); 1338 hammer_io_clear_modify(io, 0); 1339 hammer_rel(&io->lock); 1340 } else if (io->modified) { 1341 KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER); 1342 } 1343 1344 /* 1345 * The kernel is going to start the IO, set io->running. 1346 */ 1347 KKASSERT(io->running == 0); 1348 io->running = 1; 1349 atomic_add_long(&io->hmp->io_running_space, io->bytes); 1350 atomic_add_long(&hammer_count_io_running_write, io->bytes); 1351 TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry); 1352 1353 hammer_put_interlock(&io->lock, 1); 1354 lwkt_reltoken(&hmp->io_token); 1355 1356 return(0); 1357 } 1358 1359 /* 1360 * Return non-zero if we wish to delay the kernel's attempt to flush 1361 * this buffer to disk. 1362 * 1363 * bioops callback - hold io_token 1364 */ 1365 static int 1366 hammer_io_countdeps(struct buf *bp, int n) 1367 { 1368 /* nothing to do, so io_token not needed */ 1369 return(0); 1370 } 1371 1372 static struct bio_ops hammer_bioops = { 1373 .io_start = hammer_io_start, 1374 .io_complete = hammer_io_complete, 1375 .io_deallocate = hammer_io_deallocate, 1376 .io_fsync = hammer_io_fsync, 1377 .io_sync = hammer_io_sync, 1378 .io_movedeps = hammer_io_movedeps, 1379 .io_countdeps = hammer_io_countdeps, 1380 .io_checkread = hammer_io_checkread, 1381 .io_checkwrite = hammer_io_checkwrite, 1382 }; 1383 1384 /************************************************************************ 1385 * DIRECT IO OPS * 1386 ************************************************************************ 1387 * 1388 * These functions operate directly on the buffer cache buffer associated 1389 * with a front-end vnode rather then a back-end device vnode. 1390 */ 1391 1392 /* 1393 * Read a buffer associated with a front-end vnode directly from the 1394 * disk media. The bio may be issued asynchronously. If leaf is non-NULL 1395 * we validate the CRC. 1396 * 1397 * We must check for the presence of a HAMMER buffer to handle the case 1398 * where the reblocker has rewritten the data (which it does via the HAMMER 1399 * buffer system, not via the high-level vnode buffer cache), but not yet 1400 * committed the buffer to the media. 1401 */ 1402 int 1403 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio, 1404 hammer_btree_leaf_elm_t leaf) 1405 { 1406 hammer_off_t buf_offset; 1407 hammer_off_t zone2_offset; 1408 hammer_volume_t volume; 1409 struct buf *bp; 1410 struct bio *nbio; 1411 int vol_no; 1412 int error; 1413 1414 buf_offset = bio->bio_offset; 1415 KKASSERT(hammer_is_zone_large_data(buf_offset)); 1416 1417 /* 1418 * The buffer cache may have an aliased buffer (the reblocker can 1419 * write them). If it does we have to sync any dirty data before 1420 * we can build our direct-read. This is a non-critical code path. 1421 */ 1422 bp = bio->bio_buf; 1423 hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize); 1424 1425 /* 1426 * Resolve to a zone-2 offset. The conversion just requires 1427 * munging the top 4 bits but we want to abstract it anyway 1428 * so the blockmap code can verify the zone assignment. 1429 */ 1430 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1431 if (error) 1432 goto done; 1433 KKASSERT(hammer_is_zone_raw_buffer(zone2_offset)); 1434 1435 /* 1436 * Resolve volume and raw-offset for 3rd level bio. The 1437 * offset will be specific to the volume. 1438 */ 1439 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1440 volume = hammer_get_volume(hmp, vol_no, &error); 1441 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1442 error = EIO; 1443 1444 if (error == 0) { 1445 /* 1446 * 3rd level bio (the caller has already pushed once) 1447 */ 1448 nbio = push_bio(bio); 1449 nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk, 1450 zone2_offset); 1451 hammer_stats_disk_read += bp->b_bufsize; 1452 vn_strategy(volume->devvp, nbio); 1453 } 1454 hammer_rel_volume(volume, 0); 1455 done: 1456 if (error) { 1457 hdkprintf("failed @ %016jx\n", (intmax_t)zone2_offset); 1458 bp->b_error = error; 1459 bp->b_flags |= B_ERROR; 1460 biodone(bio); 1461 } 1462 return(error); 1463 } 1464 1465 /* 1466 * This works similarly to hammer_io_direct_read() except instead of 1467 * directly reading from the device into the bio we instead indirectly 1468 * read through the device's buffer cache and then copy the data into 1469 * the bio. 1470 * 1471 * If leaf is non-NULL and validation is enabled, the CRC will be checked. 1472 * 1473 * This routine also executes asynchronously. It allows hammer strategy 1474 * calls to operate asynchronously when in double_buffer mode (in addition 1475 * to operating asynchronously when in normal mode). 1476 */ 1477 int 1478 hammer_io_indirect_read(hammer_mount_t hmp, struct bio *bio, 1479 hammer_btree_leaf_elm_t leaf) 1480 { 1481 hammer_off_t buf_offset; 1482 hammer_off_t zone2_offset; 1483 hammer_volume_t volume; 1484 struct buf *bp; 1485 int vol_no; 1486 int error; 1487 1488 buf_offset = bio->bio_offset; 1489 KKASSERT(hammer_is_zone_large_data(buf_offset)); 1490 1491 /* 1492 * The buffer cache may have an aliased buffer (the reblocker can 1493 * write them). If it does we have to sync any dirty data before 1494 * we can build our direct-read. This is a non-critical code path. 1495 */ 1496 bp = bio->bio_buf; 1497 hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize); 1498 1499 /* 1500 * Resolve to a zone-2 offset. The conversion just requires 1501 * munging the top 4 bits but we want to abstract it anyway 1502 * so the blockmap code can verify the zone assignment. 1503 */ 1504 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1505 if (error) 1506 goto done; 1507 KKASSERT(hammer_is_zone_raw_buffer(zone2_offset)); 1508 1509 /* 1510 * Resolve volume and raw-offset for 3rd level bio. The 1511 * offset will be specific to the volume. 1512 */ 1513 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1514 volume = hammer_get_volume(hmp, vol_no, &error); 1515 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1516 error = EIO; 1517 1518 if (error == 0) { 1519 /* 1520 * Convert to the raw volume->devvp offset and acquire 1521 * the buf, issuing async I/O if necessary. 1522 */ 1523 hammer_off_t limit; 1524 int hce; 1525 1526 buf_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset); 1527 1528 if (leaf && hammer_verify_data) { 1529 bio->bio_caller_info1.uvalue32 = leaf->data_crc; 1530 bio->bio_caller_info2.index = 1; 1531 } else { 1532 bio->bio_caller_info2.index = 0; 1533 } 1534 1535 hce = hammer_cluster_enable; 1536 if (hce > 0) { 1537 limit = (zone2_offset + HAMMER_BIGBLOCK_MASK64) & 1538 ~HAMMER_BIGBLOCK_MASK64; 1539 limit -= zone2_offset; 1540 cluster_readcb(volume->devvp, limit, buf_offset, 1541 bp->b_bufsize, 1542 HAMMER_CLUSTER_SIZE, 1543 HAMMER_CLUSTER_SIZE * hce, 1544 hammer_indirect_callback, 1545 bio); 1546 } else { 1547 breadcb(volume->devvp, buf_offset, bp->b_bufsize, 1548 hammer_indirect_callback, bio); 1549 } 1550 } 1551 hammer_rel_volume(volume, 0); 1552 done: 1553 if (error) { 1554 hdkprintf("failed @ %016jx\n", (intmax_t)zone2_offset); 1555 bp->b_error = error; 1556 bp->b_flags |= B_ERROR; 1557 biodone(bio); 1558 } 1559 return(error); 1560 } 1561 1562 /* 1563 * Indirect callback on completion. bio/bp specify the device-backed 1564 * buffer. bio->bio_caller_info1.ptr holds obio. 1565 * 1566 * obio/obp is the original regular file buffer. obio->bio_caller_info* 1567 * contains the crc specification. 1568 * 1569 * We are responsible for calling bpdone() and bqrelse() on bio/bp, and 1570 * for calling biodone() on obio. 1571 */ 1572 static void 1573 hammer_indirect_callback(struct bio *bio) 1574 { 1575 struct buf *bp = bio->bio_buf; 1576 struct buf *obp; 1577 struct bio *obio; 1578 1579 /* 1580 * If BIO_DONE is already set the device buffer was already 1581 * fully valid (B_CACHE). If it is not set then I/O was issued 1582 * and we have to run I/O completion as the last bio. 1583 * 1584 * Nobody is waiting for our device I/O to complete, we are 1585 * responsible for bqrelse()ing it which means we also have to do 1586 * the equivalent of biowait() and clear BIO_DONE (which breadcb() 1587 * may have set). 1588 * 1589 * Any preexisting device buffer should match the requested size, 1590 * but due to big-block recycling and other factors there is some 1591 * fragility there, so we assert that the device buffer covers 1592 * the request. 1593 */ 1594 if ((bio->bio_flags & BIO_DONE) == 0) 1595 bpdone(bp, 0); 1596 bio->bio_flags &= ~(BIO_DONE | BIO_SYNC); 1597 1598 obio = bio->bio_caller_info1.ptr; 1599 obp = obio->bio_buf; 1600 1601 if (bp->b_flags & B_ERROR) { 1602 obp->b_flags |= B_ERROR; 1603 obp->b_error = bp->b_error; 1604 } else if (obio->bio_caller_info2.index && 1605 obio->bio_caller_info1.uvalue32 != 1606 crc32(bp->b_data, bp->b_bufsize)) { 1607 obp->b_flags |= B_ERROR; 1608 obp->b_error = EIO; 1609 } else { 1610 KKASSERT(bp->b_bufsize >= obp->b_bufsize); 1611 bcopy(bp->b_data, obp->b_data, obp->b_bufsize); 1612 obp->b_resid = 0; 1613 obp->b_flags |= B_AGE; 1614 } 1615 biodone(obio); 1616 bqrelse(bp); 1617 } 1618 1619 /* 1620 * Write a buffer associated with a front-end vnode directly to the 1621 * disk media. The bio may be issued asynchronously. 1622 * 1623 * The BIO is associated with the specified record and RECG_DIRECT_IO 1624 * is set. The recorded is added to its object. 1625 */ 1626 int 1627 hammer_io_direct_write(hammer_mount_t hmp, struct bio *bio, 1628 hammer_record_t record) 1629 { 1630 hammer_btree_leaf_elm_t leaf = &record->leaf; 1631 hammer_off_t buf_offset; 1632 hammer_off_t zone2_offset; 1633 hammer_volume_t volume; 1634 hammer_buffer_t buffer; 1635 struct buf *bp; 1636 struct bio *nbio; 1637 char *ptr; 1638 int vol_no; 1639 int error; 1640 1641 buf_offset = leaf->data_offset; 1642 1643 KKASSERT(hammer_is_zone2_mapped_index( 1644 HAMMER_ZONE_DECODE(buf_offset))); 1645 KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE); 1646 1647 /* 1648 * Issue or execute the I/O. The new memory record must replace 1649 * the old one before the I/O completes, otherwise a reaquisition of 1650 * the buffer will load the old media data instead of the new. 1651 */ 1652 if ((buf_offset & HAMMER_BUFMASK) == 0 && 1653 leaf->data_len >= HAMMER_BUFSIZE) { 1654 /* 1655 * We are using the vnode's bio to write directly to the 1656 * media, any hammer_buffer at the same zone-X offset will 1657 * now have stale data. 1658 */ 1659 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1660 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1661 volume = hammer_get_volume(hmp, vol_no, &error); 1662 1663 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1664 error = EIO; 1665 if (error == 0) { 1666 bp = bio->bio_buf; 1667 KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0); 1668 1669 /* 1670 * Second level bio - cached zone2 offset. 1671 * 1672 * (We can put our bio_done function in either the 1673 * 2nd or 3rd level). 1674 */ 1675 nbio = push_bio(bio); 1676 nbio->bio_offset = zone2_offset; 1677 nbio->bio_done = hammer_io_direct_write_complete; 1678 nbio->bio_caller_info1.ptr = record; 1679 record->zone2_offset = zone2_offset; 1680 record->gflags |= HAMMER_RECG_DIRECT_IO | 1681 HAMMER_RECG_DIRECT_INVAL; 1682 1683 /* 1684 * Third level bio - raw offset specific to the 1685 * correct volume. 1686 */ 1687 nbio = push_bio(nbio); 1688 nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk, 1689 zone2_offset); 1690 hammer_stats_disk_write += bp->b_bufsize; 1691 hammer_ip_replace_bulk(hmp, record); 1692 vn_strategy(volume->devvp, nbio); 1693 hammer_io_flush_mark(volume); 1694 } 1695 hammer_rel_volume(volume, 0); 1696 } else { 1697 /* 1698 * Must fit in a standard HAMMER buffer. In this case all 1699 * consumers use the HAMMER buffer system and RECG_DIRECT_IO 1700 * does not need to be set-up. 1701 */ 1702 KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0); 1703 buffer = NULL; 1704 ptr = hammer_bread(hmp, buf_offset, &error, &buffer); 1705 if (error == 0) { 1706 bp = bio->bio_buf; 1707 bp->b_flags |= B_AGE; 1708 hammer_io_modify(&buffer->io, 1); 1709 bcopy(bp->b_data, ptr, leaf->data_len); 1710 hammer_io_modify_done(&buffer->io); 1711 hammer_rel_buffer(buffer, 0); 1712 bp->b_resid = 0; 1713 hammer_ip_replace_bulk(hmp, record); 1714 biodone(bio); 1715 } 1716 } 1717 if (error) { 1718 /* 1719 * Major suckage occured. Also note: The record was 1720 * never added to the tree so we do not have to worry 1721 * about the backend. 1722 */ 1723 hdkprintf("failed @ %016jx\n", (intmax_t)leaf->data_offset); 1724 bp = bio->bio_buf; 1725 bp->b_resid = 0; 1726 bp->b_error = EIO; 1727 bp->b_flags |= B_ERROR; 1728 biodone(bio); 1729 record->flags |= HAMMER_RECF_DELETED_FE; 1730 hammer_rel_mem_record(record); 1731 } 1732 return(error); 1733 } 1734 1735 /* 1736 * On completion of the BIO this callback must disconnect 1737 * it from the hammer_record and chain to the previous bio. 1738 * 1739 * An I/O error forces the mount to read-only. Data buffers 1740 * are not B_LOCKED like meta-data buffers are, so we have to 1741 * throw the buffer away to prevent the kernel from retrying. 1742 * 1743 * NOTE: MPSAFE callback, only modify fields we have explicit 1744 * access to (the bp and the record->gflags). 1745 */ 1746 static 1747 void 1748 hammer_io_direct_write_complete(struct bio *nbio) 1749 { 1750 struct bio *obio; 1751 struct buf *bp; 1752 hammer_record_t record; 1753 hammer_mount_t hmp; 1754 1755 record = nbio->bio_caller_info1.ptr; 1756 KKASSERT(record != NULL); 1757 hmp = record->ip->hmp; 1758 1759 lwkt_gettoken(&hmp->io_token); 1760 1761 bp = nbio->bio_buf; 1762 obio = pop_bio(nbio); 1763 if (bp->b_flags & B_ERROR) { 1764 lwkt_gettoken(&hmp->fs_token); 1765 hammer_critical_error(hmp, record->ip, bp->b_error, 1766 "while writing bulk data"); 1767 lwkt_reltoken(&hmp->fs_token); 1768 bp->b_flags |= B_INVAL; 1769 } 1770 1771 KKASSERT(record->gflags & HAMMER_RECG_DIRECT_IO); 1772 if (record->gflags & HAMMER_RECG_DIRECT_WAIT) { 1773 record->gflags &= ~(HAMMER_RECG_DIRECT_IO | 1774 HAMMER_RECG_DIRECT_WAIT); 1775 /* record can disappear once DIRECT_IO flag is cleared */ 1776 wakeup(&record->flags); 1777 } else { 1778 record->gflags &= ~HAMMER_RECG_DIRECT_IO; 1779 /* record can disappear once DIRECT_IO flag is cleared */ 1780 } 1781 1782 lwkt_reltoken(&hmp->io_token); 1783 1784 biodone(obio); 1785 } 1786 1787 1788 /* 1789 * This is called before a record is either committed to the B-Tree 1790 * or destroyed, to resolve any associated direct-IO. 1791 * 1792 * (1) We must wait for any direct-IO related to the record to complete. 1793 * 1794 * (2) We must remove any buffer cache aliases for data accessed via 1795 * leaf->data_offset or zone2_offset so non-direct-IO consumers 1796 * (the mirroring and reblocking code) do not see stale data. 1797 */ 1798 void 1799 hammer_io_direct_wait(hammer_record_t record) 1800 { 1801 hammer_mount_t hmp = record->ip->hmp; 1802 1803 /* 1804 * Wait for I/O to complete 1805 */ 1806 if (record->gflags & HAMMER_RECG_DIRECT_IO) { 1807 lwkt_gettoken(&hmp->io_token); 1808 while (record->gflags & HAMMER_RECG_DIRECT_IO) { 1809 record->gflags |= HAMMER_RECG_DIRECT_WAIT; 1810 tsleep(&record->flags, 0, "hmdiow", 0); 1811 } 1812 lwkt_reltoken(&hmp->io_token); 1813 } 1814 1815 /* 1816 * Invalidate any related buffer cache aliases associated with the 1817 * backing device. This is needed because the buffer cache buffer 1818 * for file data is associated with the file vnode, not the backing 1819 * device vnode. 1820 * 1821 * XXX I do not think this case can occur any more now that 1822 * reservations ensure that all such buffers are removed before 1823 * an area can be reused. 1824 */ 1825 if (record->gflags & HAMMER_RECG_DIRECT_INVAL) { 1826 KKASSERT(record->leaf.data_offset); 1827 hammer_del_buffers(hmp, record->leaf.data_offset, 1828 record->zone2_offset, record->leaf.data_len, 1829 1); 1830 record->gflags &= ~HAMMER_RECG_DIRECT_INVAL; 1831 } 1832 } 1833 1834 /* 1835 * This is called to remove the second-level cached zone-2 offset from 1836 * frontend buffer cache buffers, now stale due to a data relocation. 1837 * These offsets are generated by cluster_read() via VOP_BMAP, or directly 1838 * by hammer_vop_strategy_read(). 1839 * 1840 * This is rather nasty because here we have something like the reblocker 1841 * scanning the raw B-Tree with no held references on anything, really, 1842 * other then a shared lock on the B-Tree node, and we have to access the 1843 * frontend's buffer cache to check for and clean out the association. 1844 * Specifically, if the reblocker is moving data on the disk, these cached 1845 * offsets will become invalid. 1846 * 1847 * Only data record types associated with the large-data zone are subject 1848 * to direct-io and need to be checked. 1849 * 1850 */ 1851 void 1852 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf) 1853 { 1854 struct hammer_inode_info iinfo; 1855 int zone; 1856 1857 if (leaf->base.rec_type != HAMMER_RECTYPE_DATA) 1858 return; 1859 zone = HAMMER_ZONE_DECODE(leaf->data_offset); 1860 if (zone != HAMMER_ZONE_LARGE_DATA_INDEX) 1861 return; 1862 iinfo.obj_id = leaf->base.obj_id; 1863 iinfo.obj_asof = 0; /* unused */ 1864 iinfo.obj_localization = leaf->base.localization & 1865 HAMMER_LOCALIZE_PSEUDOFS_MASK; 1866 iinfo.u.leaf = leaf; 1867 hammer_scan_inode_snapshots(hmp, &iinfo, 1868 hammer_io_direct_uncache_callback, 1869 leaf); 1870 } 1871 1872 static int 1873 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data) 1874 { 1875 hammer_inode_info_t iinfo = data; 1876 hammer_off_t file_offset; 1877 struct vnode *vp; 1878 struct buf *bp; 1879 int blksize; 1880 1881 if (ip->vp == NULL) 1882 return(0); 1883 file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len; 1884 blksize = iinfo->u.leaf->data_len; 1885 KKASSERT((blksize & HAMMER_BUFMASK) == 0); 1886 1887 /* 1888 * Warning: FINDBLK_TEST return stable storage but not stable 1889 * contents. It happens to be ok in this case. 1890 */ 1891 hammer_ref(&ip->lock); 1892 if (hammer_get_vnode(ip, &vp) == 0) { 1893 if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL && 1894 bp->b_bio2.bio_offset != NOOFFSET) { 1895 bp = getblk(ip->vp, file_offset, blksize, 0, 0); 1896 bp->b_bio2.bio_offset = NOOFFSET; 1897 brelse(bp); 1898 } 1899 vput(vp); 1900 } 1901 hammer_rel_inode(ip, 0); 1902 return(0); 1903 } 1904 1905 1906 /* 1907 * This function is called when writes may have occured on the volume, 1908 * indicating that the device may be holding cached writes. 1909 */ 1910 static __inline void 1911 hammer_io_flush_mark(hammer_volume_t volume) 1912 { 1913 atomic_set_int(&volume->vol_flags, HAMMER_VOLF_NEEDFLUSH); 1914 } 1915 1916 /* 1917 * This function ensures that the device has flushed any cached writes out. 1918 */ 1919 void 1920 hammer_io_flush_sync(hammer_mount_t hmp) 1921 { 1922 hammer_volume_t volume; 1923 struct buf *bp_base = NULL; 1924 struct buf *bp; 1925 1926 RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) { 1927 if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) { 1928 atomic_clear_int(&volume->vol_flags, 1929 HAMMER_VOLF_NEEDFLUSH); 1930 bp = getpbuf(NULL); 1931 bp->b_bio1.bio_offset = 0; 1932 bp->b_bufsize = 0; 1933 bp->b_bcount = 0; 1934 bp->b_cmd = BUF_CMD_FLUSH; 1935 bp->b_bio1.bio_caller_info1.cluster_head = bp_base; 1936 bp->b_bio1.bio_done = biodone_sync; 1937 bp->b_bio1.bio_flags |= BIO_SYNC; 1938 bp_base = bp; 1939 vn_strategy(volume->devvp, &bp->b_bio1); 1940 } 1941 } 1942 while ((bp = bp_base) != NULL) { 1943 bp_base = bp->b_bio1.bio_caller_info1.cluster_head; 1944 biowait(&bp->b_bio1, "hmrFLS"); 1945 relpbuf(bp, NULL); 1946 } 1947 } 1948 1949 /* 1950 * Limit the amount of backlog which we allow to build up 1951 */ 1952 void 1953 hammer_io_limit_backlog(hammer_mount_t hmp) 1954 { 1955 waitrunningbufspace(); 1956 } 1957