xref: /dragonfly/sys/vfs/hammer/hammer_io.c (revision cae2835b)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * IO Primitives and buffer cache management
36  *
37  * All major data-tracking structures in HAMMER contain a struct hammer_io
38  * which is used to manage their backing store.  We use filesystem buffers
39  * for backing store and we leave them passively associated with their
40  * HAMMER structures.
41  *
42  * If the kernel tries to destroy a passively associated buf which we cannot
43  * yet let go we set B_LOCKED in the buffer and then actively released it
44  * later when we can.
45  *
46  * The io_token is required for anything which might race bioops and bio_done
47  * callbacks, with one exception: A successful hammer_try_interlock_norefs().
48  * the fs_token will be held in all other cases.
49  */
50 
51 #include <sys/buf2.h>
52 
53 #include "hammer.h"
54 
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 static void hammer_indirect_callback(struct bio *bio);
58 static void hammer_io_direct_write_complete(struct bio *nbio);
59 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data);
60 static void hammer_io_set_modlist(hammer_io_t io);
61 static __inline void hammer_io_flush_mark(hammer_volume_t volume);
62 static struct bio_ops hammer_bioops;
63 
64 static int
65 hammer_mod_rb_compare(hammer_io_t io1, hammer_io_t io2)
66 {
67 	hammer_off_t io1_offset;
68 	hammer_off_t io2_offset;
69 
70 	/*
71 	 * Encoded offsets are neither valid block device offsets
72 	 * nor valid zone-X offsets.
73 	 */
74 	io1_offset = HAMMER_ENCODE(0, io1->volume->vol_no, io1->offset);
75 	io2_offset = HAMMER_ENCODE(0, io2->volume->vol_no, io2->offset);
76 
77 	if (io1_offset < io2_offset)
78 		return(-1);
79 	if (io1_offset > io2_offset)
80 		return(1);
81 	return(0);
82 }
83 
84 RB_GENERATE(hammer_mod_rb_tree, hammer_io, rb_node, hammer_mod_rb_compare);
85 
86 /*
87  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
88  * an existing hammer_io structure which may have switched to another type.
89  */
90 void
91 hammer_io_init(hammer_io_t io, hammer_volume_t volume, hammer_io_type_t type)
92 {
93 	io->volume = volume;
94 	io->hmp = volume->io.hmp;
95 	io->type = type;
96 }
97 
98 /*
99  * Helper routine to disassociate a buffer cache buffer from an I/O
100  * structure.  The io must be interlocked and marked appropriately for
101  * reclamation.
102  *
103  * The io must be in a released state with the io->bp owned and
104  * locked by the caller of this function.  When not called from an
105  * io_deallocate() this cannot race an io_deallocate() since the
106  * kernel would be unable to get the buffer lock in that case.
107  * (The released state in this case means we own the bp, not the
108  * hammer_io structure).
109  *
110  * The io may have 0 or 1 references depending on who called us.  The
111  * caller is responsible for dealing with the refs.
112  *
113  * This call can only be made when no action is required on the buffer.
114  *
115  * This function is guaranteed not to race against anything because we
116  * own both the io lock and the bp lock and are interlocked with no
117  * references.
118  */
119 static void
120 hammer_io_disassociate(hammer_io_t io)
121 {
122 	struct buf *bp = io->bp;
123 
124 	KKASSERT(io->released);
125 	KKASSERT(io->modified == 0);
126 	KKASSERT(hammer_buf_peek_io(bp) == io);
127 	buf_dep_init(bp);
128 	io->bp = NULL;
129 
130 	/*
131 	 * If the buffer was locked someone wanted to get rid of it.
132 	 */
133 	if (bp->b_flags & B_LOCKED) {
134 		atomic_add_int(&hammer_count_io_locked, -1);
135 		bp->b_flags &= ~B_LOCKED;
136 	}
137 	if (io->reclaim) {
138 		bp->b_flags |= B_NOCACHE|B_RELBUF;
139 		io->reclaim = 0;
140 	}
141 
142 	switch(io->type) {
143 	case HAMMER_STRUCTURE_VOLUME:
144 		HAMMER_ITOV(io)->ondisk = NULL;
145 		break;
146 	case HAMMER_STRUCTURE_DATA_BUFFER:
147 	case HAMMER_STRUCTURE_META_BUFFER:
148 	case HAMMER_STRUCTURE_UNDO_BUFFER:
149 		HAMMER_ITOB(io)->ondisk = NULL;
150 		break;
151 	case HAMMER_STRUCTURE_DUMMY:
152 		hpanic("bad io type");
153 		break;
154 	}
155 }
156 
157 /*
158  * Wait for any physical IO to complete
159  *
160  * XXX we aren't interlocked against a spinlock or anything so there
161  *     is a small window in the interlock / io->running == 0 test.
162  */
163 void
164 hammer_io_wait(hammer_io_t io)
165 {
166 	if (io->running) {
167 		hammer_mount_t hmp = io->hmp;
168 
169 		lwkt_gettoken(&hmp->io_token);
170 		while (io->running) {
171 			io->waiting = 1;
172 			tsleep_interlock(io, 0);
173 			if (io->running)
174 				tsleep(io, PINTERLOCKED, "hmrflw", hz);
175 		}
176 		lwkt_reltoken(&hmp->io_token);
177 	}
178 }
179 
180 /*
181  * Wait for all currently queued HAMMER-initiated I/Os to complete.
182  *
183  * This is not supposed to count direct I/O's but some can leak
184  * through (for non-full-sized direct I/Os).
185  */
186 void
187 hammer_io_wait_all(hammer_mount_t hmp, const char *ident, int doflush)
188 {
189 	struct hammer_io iodummy;
190 	hammer_io_t io;
191 
192 	/*
193 	 * Degenerate case, no I/O is running
194 	 */
195 	lwkt_gettoken(&hmp->io_token);
196 	if (TAILQ_EMPTY(&hmp->iorun_list)) {
197 		lwkt_reltoken(&hmp->io_token);
198 		if (doflush)
199 			hammer_io_flush_sync(hmp);
200 		return;
201 	}
202 	bzero(&iodummy, sizeof(iodummy));
203 	iodummy.type = HAMMER_STRUCTURE_DUMMY;
204 
205 	/*
206 	 * Add placemarker and then wait until it becomes the head of
207 	 * the list.
208 	 */
209 	TAILQ_INSERT_TAIL(&hmp->iorun_list, &iodummy, iorun_entry);
210 	while (TAILQ_FIRST(&hmp->iorun_list) != &iodummy) {
211 		tsleep(&iodummy, 0, ident, 0);
212 	}
213 
214 	/*
215 	 * Chain in case several placemarkers are present.
216 	 */
217 	TAILQ_REMOVE(&hmp->iorun_list, &iodummy, iorun_entry);
218 	io = TAILQ_FIRST(&hmp->iorun_list);
219 	if (io && io->type == HAMMER_STRUCTURE_DUMMY)
220 		wakeup(io);
221 	lwkt_reltoken(&hmp->io_token);
222 
223 	if (doflush)
224 		hammer_io_flush_sync(hmp);
225 }
226 
227 /*
228  * Clear a flagged error condition on a I/O buffer.  The caller must hold
229  * its own ref on the buffer.
230  */
231 void
232 hammer_io_clear_error(hammer_io_t io)
233 {
234 	hammer_mount_t hmp = io->hmp;
235 
236 	lwkt_gettoken(&hmp->io_token);
237 	if (io->ioerror) {
238 		io->ioerror = 0;
239 		hammer_rel(&io->lock);
240 		KKASSERT(hammer_isactive(&io->lock));
241 	}
242 	lwkt_reltoken(&hmp->io_token);
243 }
244 
245 void
246 hammer_io_clear_error_noassert(hammer_io_t io)
247 {
248 	hammer_mount_t hmp = io->hmp;
249 
250 	lwkt_gettoken(&hmp->io_token);
251 	if (io->ioerror) {
252 		io->ioerror = 0;
253 		hammer_rel(&io->lock);
254 	}
255 	lwkt_reltoken(&hmp->io_token);
256 }
257 
258 /*
259  * This is an advisory function only which tells the buffer cache
260  * the bp is not a meta-data buffer, even though it is backed by
261  * a block device.
262  *
263  * This is used by HAMMER's reblocking code to avoid trying to
264  * swapcache the filesystem's data when it is read or written
265  * by the reblocking code.
266  *
267  * The caller has a ref on the buffer preventing the bp from
268  * being disassociated from it.
269  */
270 void
271 hammer_io_notmeta(hammer_buffer_t buffer)
272 {
273 	if ((buffer->io.bp->b_flags & B_NOTMETA) == 0) {
274 		hammer_mount_t hmp = buffer->io.hmp;
275 
276 		lwkt_gettoken(&hmp->io_token);
277 		buffer->io.bp->b_flags |= B_NOTMETA;
278 		lwkt_reltoken(&hmp->io_token);
279 	}
280 }
281 
282 /*
283  * Load bp for a HAMMER structure.  The io must be exclusively locked by
284  * the caller.
285  *
286  * This routine is mostly used on meta-data and small-data blocks.  Generally
287  * speaking HAMMER assumes some locality of reference and will cluster.
288  *
289  * Note that the caller (hammer_ondisk.c) may place further restrictions
290  * on clusterability via the limit (in bytes).  Typically large-data
291  * zones cannot be clustered due to their mixed buffer sizes.  This is
292  * not an issue since such clustering occurs in hammer_vnops at the
293  * regular file layer, whereas this is the buffered block device layer.
294  *
295  * No I/O callbacks can occur while we hold the buffer locked.
296  */
297 int
298 hammer_io_read(struct vnode *devvp, hammer_io_t io, int limit)
299 {
300 	struct buf *bp;
301 	int   error;
302 
303 	if ((bp = io->bp) == NULL) {
304 		int hce = hammer_cluster_enable;
305 
306 		atomic_add_long(&hammer_count_io_running_read, io->bytes);
307 		if (hce && limit > io->bytes) {
308 			error = cluster_read(devvp, io->offset + limit,
309 					     io->offset, io->bytes,
310 					     HAMMER_CLUSTER_SIZE,
311 					     HAMMER_CLUSTER_SIZE * hce,
312 					     &io->bp);
313 		} else {
314 			error = bread(devvp, io->offset, io->bytes, &io->bp);
315 		}
316 		hammer_stats_disk_read += io->bytes;
317 		atomic_add_long(&hammer_count_io_running_read, -io->bytes);
318 
319 		/*
320 		 * The code generally assumes b_ops/b_dep has been set-up,
321 		 * even if we error out here.
322 		 */
323 		bp = io->bp;
324 		if ((hammer_debug_io & 0x0001) && (bp->b_flags & B_IOISSUED)) {
325 			const char *metatype;
326 
327 			switch(io->type) {
328 			case HAMMER_STRUCTURE_VOLUME:
329 				metatype = "volume";
330 				break;
331 			case HAMMER_STRUCTURE_META_BUFFER:
332 				switch(HAMMER_ZONE(HAMMER_ITOB(io)->zoneX_offset)) {
333 				case HAMMER_ZONE_BTREE:
334 					metatype = "btree";
335 					break;
336 				case HAMMER_ZONE_META:
337 					metatype = "meta";
338 					break;
339 				case HAMMER_ZONE_FREEMAP:
340 					metatype = "freemap";
341 					break;
342 				default:
343 					metatype = "meta?";
344 					break;
345 				}
346 				break;
347 			case HAMMER_STRUCTURE_DATA_BUFFER:
348 				metatype = "data";
349 				break;
350 			case HAMMER_STRUCTURE_UNDO_BUFFER:
351 				metatype = "undo";
352 				break;
353 			default:
354 				metatype = "unknown";
355 				break;
356 			}
357 			hdkprintf("zone2_offset %016jx %s\n",
358 				(intmax_t)bp->b_bio2.bio_offset,
359 				metatype);
360 		}
361 		bp->b_flags &= ~B_IOISSUED;
362 		bp->b_ops = &hammer_bioops;
363 
364 		hammer_buf_attach_io(bp, io); /* locked by the io lock */
365 		BUF_KERNPROC(bp);
366 		KKASSERT(io->modified == 0);
367 		KKASSERT(io->running == 0);
368 		KKASSERT(io->waiting == 0);
369 		io->released = 0;	/* we hold an active lock on bp */
370 	} else {
371 		error = 0;
372 	}
373 	return(error);
374 }
375 
376 /*
377  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
378  * Must be called with the IO exclusively locked.
379  *
380  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
381  * I/O by forcing the buffer to not be in a released state before calling
382  * it.
383  *
384  * This function will also mark the IO as modified but it will not
385  * increment the modify_refs count.
386  *
387  * No I/O callbacks can occur while we hold the buffer locked.
388  */
389 int
390 hammer_io_new(struct vnode *devvp, hammer_io_t io)
391 {
392 	struct buf *bp;
393 
394 	if ((bp = io->bp) == NULL) {
395 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
396 		bp = io->bp;
397 		bp->b_ops = &hammer_bioops;
398 
399 		hammer_buf_attach_io(bp, io); /* locked by the io lock */
400 		io->released = 0;
401 		KKASSERT(io->running == 0);
402 		io->waiting = 0;
403 		BUF_KERNPROC(bp);
404 	} else {
405 		if (io->released) {
406 			regetblk(bp);
407 			BUF_KERNPROC(bp);
408 			io->released = 0;
409 		}
410 	}
411 	hammer_io_modify(io, 0);
412 	vfs_bio_clrbuf(bp);
413 	return(0);
414 }
415 
416 /*
417  * Advance the activity count on the underlying buffer because
418  * HAMMER does not getblk/brelse on every access.
419  *
420  * The io->bp cannot go away while the buffer is referenced.
421  */
422 void
423 hammer_io_advance(hammer_io_t io)
424 {
425 	if (io->bp)
426 		buf_act_advance(io->bp);
427 }
428 
429 /*
430  * Remove potential device level aliases against buffers managed by high level
431  * vnodes.  Aliases can also be created due to mixed buffer sizes or via
432  * direct access to the backing store device.
433  *
434  * This is nasty because the buffers are also VMIO-backed.  Even if a buffer
435  * does not exist its backing VM pages might, and we have to invalidate
436  * those as well or a getblk() will reinstate them.
437  *
438  * Buffer cache buffers associated with hammer_buffers cannot be
439  * invalidated.
440  */
441 int
442 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
443 {
444 	hammer_io_t io;
445 	hammer_mount_t hmp;
446 	hammer_off_t phys_offset;
447 	struct buf *bp;
448 	int error;
449 
450 	hmp = volume->io.hmp;
451 	lwkt_gettoken(&hmp->io_token);
452 
453 	/*
454 	 * If a device buffer already exists for the specified physical
455 	 * offset use that, otherwise instantiate a buffer to cover any
456 	 * related VM pages, set BNOCACHE, and brelse().
457 	 */
458 	phys_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
459 	if ((bp = findblk(volume->devvp, phys_offset, 0)) != NULL)
460 		bremfree(bp);
461 	else
462 		bp = getblk(volume->devvp, phys_offset, HAMMER_BUFSIZE, 0, 0);
463 
464 	if ((io = hammer_buf_peek_io(bp)) != NULL) {
465 #if 0
466 		hammer_ref(&io->lock);
467 		hammer_io_clear_modify(io, 1);
468 		bundirty(bp);
469 		io->released = 0;
470 		BUF_KERNPROC(bp);
471 		io->reclaim = 1;
472 		io->waitdep = 1;	/* XXX this is a fs_token field */
473 		KKASSERT(hammer_isactive(&io->lock) == 1);
474 		hammer_rel_buffer(HAMMER_ITOB(io), 0);
475 		/*hammer_io_deallocate(bp);*/
476 #endif
477 		bqrelse(bp);
478 		error = EAGAIN;
479 	} else {
480 		KKASSERT((bp->b_flags & B_LOCKED) == 0);
481 		bundirty(bp);
482 		bp->b_flags |= B_NOCACHE|B_RELBUF;
483 		brelse(bp);
484 		error = 0;
485 	}
486 	lwkt_reltoken(&hmp->io_token);
487 	return(error);
488 }
489 
490 /*
491  * This routine is called on the last reference to a hammer structure.
492  * The io must be interlocked with a refcount of zero.  The hammer structure
493  * will remain interlocked on return.
494  *
495  * This routine may return a non-NULL bp to the caller for dispoal.
496  * The caller typically brelse()'s the bp.
497  *
498  * The bp may or may not still be passively associated with the IO.  It
499  * will remain passively associated if it is unreleasable (e.g. a modified
500  * meta-data buffer).
501  *
502  * The only requirement here is that modified meta-data and volume-header
503  * buffer may NOT be disassociated from the IO structure, and consequently
504  * we also leave such buffers actively associated with the IO if they already
505  * are (since the kernel can't do anything with them anyway).  Only the
506  * flusher is allowed to write such buffers out.  Modified pure-data and
507  * undo buffers are returned to the kernel but left passively associated
508  * so we can track when the kernel writes the bp out.
509  */
510 struct buf *
511 hammer_io_release(hammer_io_t io, int flush)
512 {
513 	struct buf *bp;
514 
515 	if ((bp = io->bp) == NULL)
516 		return(NULL);
517 
518 	/*
519 	 * Try to flush a dirty IO to disk if asked to by the
520 	 * caller or if the kernel tried to flush the buffer in the past.
521 	 *
522 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
523 	 * meta-data and volume buffers can only be flushed explicitly
524 	 * by HAMMER.
525 	 */
526 	if (io->modified) {
527 		if (flush) {
528 			hammer_io_flush(io, 0);
529 		} else if (bp->b_flags & B_LOCKED) {
530 			switch(io->type) {
531 			case HAMMER_STRUCTURE_DATA_BUFFER:
532 				hammer_io_flush(io, 0);
533 				break;
534 			case HAMMER_STRUCTURE_UNDO_BUFFER:
535 				hammer_io_flush(io, hammer_undo_reclaim(io));
536 				break;
537 			default:
538 				break;
539 			}
540 		} /* else no explicit request to flush the buffer */
541 	}
542 
543 	/*
544 	 * Wait for the IO to complete if asked to.  This occurs when
545 	 * the buffer must be disposed of definitively during an umount
546 	 * or buffer invalidation.
547 	 */
548 	if (io->waitdep && io->running) {
549 		hammer_io_wait(io);
550 	}
551 
552 	/*
553 	 * Return control of the buffer to the kernel (with the provisio
554 	 * that our bioops can override kernel decisions with regards to
555 	 * the buffer).
556 	 */
557 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
558 		/*
559 		 * Always disassociate the bp if an explicit flush
560 		 * was requested and the IO completed with no error
561 		 * (so unmount can really clean up the structure).
562 		 */
563 		if (io->released) {
564 			regetblk(bp);
565 			BUF_KERNPROC(bp);
566 		} else {
567 			io->released = 1;
568 		}
569 		hammer_io_disassociate(io);
570 		/* return the bp */
571 	} else if (io->modified) {
572 		/*
573 		 * Only certain IO types can be released to the kernel if
574 		 * the buffer has been modified.
575 		 *
576 		 * volume and meta-data IO types may only be explicitly
577 		 * flushed by HAMMER.
578 		 */
579 		switch(io->type) {
580 		case HAMMER_STRUCTURE_DATA_BUFFER:
581 		case HAMMER_STRUCTURE_UNDO_BUFFER:
582 			if (io->released == 0) {
583 				io->released = 1;
584 				bp->b_flags |= B_CLUSTEROK;
585 				bdwrite(bp);
586 			}
587 			break;
588 		default:
589 			break;
590 		}
591 		bp = NULL;	/* bp left associated */
592 	} else if (io->released == 0) {
593 		/*
594 		 * Clean buffers can be generally released to the kernel.
595 		 * We leave the bp passively associated with the HAMMER
596 		 * structure and use bioops to disconnect it later on
597 		 * if the kernel wants to discard the buffer.
598 		 *
599 		 * We can steal the structure's ownership of the bp.
600 		 */
601 		io->released = 1;
602 		if (bp->b_flags & B_LOCKED) {
603 			hammer_io_disassociate(io);
604 			/* return the bp */
605 		} else {
606 			if (io->reclaim) {
607 				hammer_io_disassociate(io);
608 				/* return the bp */
609 			} else {
610 				/* return the bp (bp passively associated) */
611 			}
612 		}
613 	} else {
614 		/*
615 		 * A released buffer is passively associate with our
616 		 * hammer_io structure.  The kernel cannot destroy it
617 		 * without making a bioops call.  If the kernel (B_LOCKED)
618 		 * or we (reclaim) requested that the buffer be destroyed
619 		 * we destroy it, otherwise we do a quick get/release to
620 		 * reset its position in the kernel's LRU list.
621 		 *
622 		 * Leaving the buffer passively associated allows us to
623 		 * use the kernel's LRU buffer flushing mechanisms rather
624 		 * then rolling our own.
625 		 *
626 		 * XXX there are two ways of doing this.  We can re-acquire
627 		 * and passively release to reset the LRU, or not.
628 		 */
629 		if (io->running == 0) {
630 			regetblk(bp);
631 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
632 				hammer_io_disassociate(io);
633 				/* return the bp */
634 			} else {
635 				/* return the bp (bp passively associated) */
636 			}
637 		} else {
638 			/*
639 			 * bp is left passively associated but we do not
640 			 * try to reacquire it.  Interactions with the io
641 			 * structure will occur on completion of the bp's
642 			 * I/O.
643 			 */
644 			bp = NULL;
645 		}
646 	}
647 	return(bp);
648 }
649 
650 /*
651  * This routine is called with a locked IO when a flush is desired and
652  * no other references to the structure exists other then ours.  This
653  * routine is ONLY called when HAMMER believes it is safe to flush a
654  * potentially modified buffer out.
655  *
656  * The locked io or io reference prevents a flush from being initiated
657  * by the kernel.
658  */
659 void
660 hammer_io_flush(hammer_io_t io, int reclaim)
661 {
662 	struct buf *bp;
663 	hammer_mount_t hmp;
664 
665 	/*
666 	 * Degenerate case - nothing to flush if nothing is dirty.
667 	 */
668 	if (io->modified == 0)
669 		return;
670 
671 	KKASSERT(io->bp);
672 	KKASSERT(io->modify_refs <= 0);
673 
674 	/*
675 	 * Acquire ownership of the bp, particularly before we clear our
676 	 * modified flag.
677 	 *
678 	 * We are going to bawrite() this bp.  Don't leave a window where
679 	 * io->released is set, we actually own the bp rather then our
680 	 * buffer.
681 	 *
682 	 * The io_token should not be required here as only
683 	 */
684 	hmp = io->hmp;
685 	bp = io->bp;
686 	if (io->released) {
687 		regetblk(bp);
688 		/* BUF_KERNPROC(io->bp); */
689 		/* io->released = 0; */
690 		KKASSERT(io->released);
691 		KKASSERT(io->bp == bp);
692 	} else {
693 		io->released = 1;
694 	}
695 
696 	if (reclaim) {
697 		io->reclaim = 1;
698 		if ((bp->b_flags & B_LOCKED) == 0) {
699 			bp->b_flags |= B_LOCKED;
700 			atomic_add_int(&hammer_count_io_locked, 1);
701 		}
702 	}
703 
704 	/*
705 	 * Acquire exclusive access to the bp and then clear the modified
706 	 * state of the buffer prior to issuing I/O to interlock any
707 	 * modifications made while the I/O is in progress.  This shouldn't
708 	 * happen anyway but losing data would be worse.  The modified bit
709 	 * will be rechecked after the IO completes.
710 	 *
711 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
712 	 *
713 	 * This is only legal when lock.refs == 1 (otherwise we might clear
714 	 * the modified bit while there are still users of the cluster
715 	 * modifying the data).
716 	 *
717 	 * Do this before potentially blocking so any attempt to modify the
718 	 * ondisk while we are blocked blocks waiting for us.
719 	 */
720 	hammer_ref(&io->lock);
721 	hammer_io_clear_modify(io, 0);
722 	hammer_rel(&io->lock);
723 
724 	if (hammer_debug_io & 0x0002)
725 		hdkprintf("%016jx\n", bp->b_bio1.bio_offset);
726 
727 	/*
728 	 * Transfer ownership to the kernel and initiate I/O.
729 	 *
730 	 * NOTE: We do not hold io_token so an atomic op is required to
731 	 *	 update io_running_space.
732 	 */
733 	io->running = 1;
734 	atomic_add_long(&hmp->io_running_space, io->bytes);
735 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
736 	lwkt_gettoken(&hmp->io_token);
737 	TAILQ_INSERT_TAIL(&hmp->iorun_list, io, iorun_entry);
738 	lwkt_reltoken(&hmp->io_token);
739 	cluster_awrite(bp);
740 	hammer_io_flush_mark(io->volume);
741 }
742 
743 /************************************************************************
744  *				BUFFER DIRTYING				*
745  ************************************************************************
746  *
747  * These routines deal with dependancies created when IO buffers get
748  * modified.  The caller must call hammer_modify_*() on a referenced
749  * HAMMER structure prior to modifying its on-disk data.
750  *
751  * Any intent to modify an IO buffer acquires the related bp and imposes
752  * various write ordering dependancies.
753  */
754 
755 /*
756  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
757  * are locked until the flusher can deal with them, pure data buffers
758  * can be written out.
759  *
760  * The referenced io prevents races.
761  */
762 static
763 void
764 hammer_io_modify(hammer_io_t io, int count)
765 {
766 	/*
767 	 * io->modify_refs must be >= 0
768 	 */
769 	while (io->modify_refs < 0) {
770 		io->waitmod = 1;
771 		tsleep(io, 0, "hmrmod", 0);
772 	}
773 
774 	/*
775 	 * Shortcut if nothing to do.
776 	 */
777 	KKASSERT(hammer_isactive(&io->lock) && io->bp != NULL);
778 	io->modify_refs += count;
779 	if (io->modified && io->released == 0)
780 		return;
781 
782 	/*
783 	 * NOTE: It is important not to set the modified bit
784 	 *	 until after we have acquired the bp or we risk
785 	 *	 racing against checkwrite.
786 	 */
787 	hammer_lock_ex(&io->lock);
788 	if (io->released) {
789 		regetblk(io->bp);
790 		BUF_KERNPROC(io->bp);
791 		io->released = 0;
792 	}
793 	if (io->modified == 0) {
794 		hammer_io_set_modlist(io);
795 		io->modified = 1;
796 	}
797 	hammer_unlock(&io->lock);
798 }
799 
800 static __inline
801 void
802 hammer_io_modify_done(hammer_io_t io)
803 {
804 	KKASSERT(io->modify_refs > 0);
805 	--io->modify_refs;
806 	if (io->modify_refs == 0 && io->waitmod) {
807 		io->waitmod = 0;
808 		wakeup(io);
809 	}
810 }
811 
812 /*
813  * The write interlock blocks other threads trying to modify a buffer
814  * (they block in hammer_io_modify()) after us, or blocks us while other
815  * threads are in the middle of modifying a buffer.
816  *
817  * The caller also has a ref on the io, however if we are not careful
818  * we will race bioops callbacks (checkwrite).  To deal with this
819  * we must at least acquire and release the io_token, and it is probably
820  * better to hold it through the setting of modify_refs.
821  */
822 void
823 hammer_io_write_interlock(hammer_io_t io)
824 {
825 	hammer_mount_t hmp = io->hmp;
826 
827 	lwkt_gettoken(&hmp->io_token);
828 	while (io->modify_refs != 0) {
829 		io->waitmod = 1;
830 		tsleep(io, 0, "hmrmod", 0);
831 	}
832 	io->modify_refs = -1;
833 	lwkt_reltoken(&hmp->io_token);
834 }
835 
836 void
837 hammer_io_done_interlock(hammer_io_t io)
838 {
839 	KKASSERT(io->modify_refs == -1);
840 	io->modify_refs = 0;
841 	if (io->waitmod) {
842 		io->waitmod = 0;
843 		wakeup(io);
844 	}
845 }
846 
847 /*
848  * Caller intends to modify a volume's ondisk structure.
849  *
850  * This is only allowed if we are the flusher or we have a ref on the
851  * sync_lock.
852  */
853 void
854 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
855 		     void *base, int len)
856 {
857 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
858 
859 	hammer_io_modify(&volume->io, 1);
860 	if (len) {
861 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
862 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
863 		hammer_generate_undo(trans,
864 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
865 			 base, len);
866 	}
867 }
868 
869 /*
870  * Caller intends to modify a buffer's ondisk structure.
871  *
872  * This is only allowed if we are the flusher or we have a ref on the
873  * sync_lock.
874  */
875 void
876 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
877 		     void *base, int len)
878 {
879 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
880 
881 	hammer_io_modify(&buffer->io, 1);
882 	if (len) {
883 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
884 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
885 		hammer_generate_undo(trans,
886 				     buffer->zone2_offset + rel_offset,
887 				     base, len);
888 	}
889 }
890 
891 void
892 hammer_modify_volume_done(hammer_volume_t volume)
893 {
894 	hammer_io_modify_done(&volume->io);
895 }
896 
897 void
898 hammer_modify_buffer_done(hammer_buffer_t buffer)
899 {
900 	hammer_io_modify_done(&buffer->io);
901 }
902 
903 /*
904  * Mark an entity as not being dirty any more and finalize any
905  * delayed adjustments to the buffer.
906  *
907  * Delayed adjustments are an important performance enhancement, allowing
908  * us to avoid recalculating B-Tree node CRCs over and over again when
909  * making bulk-modifications to the B-Tree.
910  *
911  * If inval is non-zero delayed adjustments are ignored.
912  *
913  * This routine may dereference related btree nodes and cause the
914  * buffer to be dereferenced.  The caller must own a reference on io.
915  */
916 void
917 hammer_io_clear_modify(hammer_io_t io, int inval)
918 {
919 	hammer_mount_t hmp;
920 
921 	/*
922 	 * io_token is needed to avoid races on mod_root
923 	 */
924 	if (io->modified == 0)
925 		return;
926 	hmp = io->hmp;
927 	lwkt_gettoken(&hmp->io_token);
928 	if (io->modified == 0) {
929 		lwkt_reltoken(&hmp->io_token);
930 		return;
931 	}
932 
933 	/*
934 	 * Take us off the mod-list and clear the modified bit.
935 	 */
936 	KKASSERT(io->mod_root != NULL);
937 	if (io->mod_root == &io->hmp->volu_root ||
938 	    io->mod_root == &io->hmp->meta_root) {
939 		io->hmp->locked_dirty_space -= io->bytes;
940 		atomic_add_long(&hammer_count_dirtybufspace, -io->bytes);
941 	}
942 	RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
943 	io->mod_root = NULL;
944 	io->modified = 0;
945 
946 	lwkt_reltoken(&hmp->io_token);
947 
948 	/*
949 	 * If this bit is not set there are no delayed adjustments.
950 	 */
951 	if (io->gencrc == 0)
952 		return;
953 	io->gencrc = 0;
954 
955 	/*
956 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
957 	 * on the node (& underlying buffer).  Release the node after clearing
958 	 * the flag.
959 	 */
960 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
961 		hammer_buffer_t buffer = HAMMER_ITOB(io);
962 		hammer_node_t node;
963 
964 restart:
965 		TAILQ_FOREACH(node, &buffer->node_list, entry) {
966 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
967 				continue;
968 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
969 			KKASSERT(node->ondisk);
970 			if (inval == 0)
971 				hammer_crc_set_btree(node->ondisk);
972 			hammer_rel_node(node);
973 			goto restart;
974 		}
975 	}
976 	/* caller must still have ref on io */
977 	KKASSERT(hammer_isactive(&io->lock));
978 }
979 
980 /*
981  * Clear the IO's modify list.  Even though the IO is no longer modified
982  * it may still be on the lose_root.  This routine is called just before
983  * the governing hammer_buffer is destroyed.
984  *
985  * mod_root requires io_token protection.
986  */
987 void
988 hammer_io_clear_modlist(hammer_io_t io)
989 {
990 	hammer_mount_t hmp = io->hmp;
991 
992 	KKASSERT(io->modified == 0);
993 	if (io->mod_root) {
994 		lwkt_gettoken(&hmp->io_token);
995 		if (io->mod_root) {
996 			KKASSERT(io->mod_root == &io->hmp->lose_root);
997 			RB_REMOVE(hammer_mod_rb_tree, io->mod_root, io);
998 			io->mod_root = NULL;
999 		}
1000 		lwkt_reltoken(&hmp->io_token);
1001 	}
1002 }
1003 
1004 static void
1005 hammer_io_set_modlist(hammer_io_t io)
1006 {
1007 	hammer_mount_t hmp = io->hmp;
1008 
1009 	lwkt_gettoken(&hmp->io_token);
1010 	KKASSERT(io->mod_root == NULL);
1011 
1012 	switch(io->type) {
1013 	case HAMMER_STRUCTURE_VOLUME:
1014 		io->mod_root = &hmp->volu_root;
1015 		hmp->locked_dirty_space += io->bytes;
1016 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1017 		break;
1018 	case HAMMER_STRUCTURE_META_BUFFER:
1019 		io->mod_root = &hmp->meta_root;
1020 		hmp->locked_dirty_space += io->bytes;
1021 		atomic_add_long(&hammer_count_dirtybufspace, io->bytes);
1022 		break;
1023 	case HAMMER_STRUCTURE_UNDO_BUFFER:
1024 		io->mod_root = &hmp->undo_root;
1025 		break;
1026 	case HAMMER_STRUCTURE_DATA_BUFFER:
1027 		io->mod_root = &hmp->data_root;
1028 		break;
1029 	case HAMMER_STRUCTURE_DUMMY:
1030 		hpanic("bad io type");
1031 		break; /* NOT REACHED */
1032 	}
1033 	if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) {
1034 		hpanic("duplicate entry @ %d:%015jx",
1035 			io->volume->vol_no, io->offset);
1036 		/* NOT REACHED */
1037 	}
1038 	lwkt_reltoken(&hmp->io_token);
1039 }
1040 
1041 /************************************************************************
1042  *				HAMMER_BIOOPS				*
1043  ************************************************************************
1044  *
1045  */
1046 
1047 /*
1048  * Pre-IO initiation kernel callback - cluster build only
1049  *
1050  * bioops callback - hold io_token
1051  */
1052 static void
1053 hammer_io_start(struct buf *bp)
1054 {
1055 	/* nothing to do, so io_token not needed */
1056 }
1057 
1058 /*
1059  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
1060  *
1061  * NOTE: HAMMER may modify a data buffer after we have initiated write
1062  *	 I/O.
1063  *
1064  * NOTE: MPSAFE callback
1065  *
1066  * bioops callback - hold io_token
1067  */
1068 static void
1069 hammer_io_complete(struct buf *bp)
1070 {
1071 	hammer_io_t io = hammer_buf_peek_io(bp);
1072 	hammer_mount_t hmp = io->hmp;
1073 	hammer_io_t ionext;
1074 
1075 	lwkt_gettoken(&hmp->io_token);
1076 
1077 	KKASSERT(io->released == 1);
1078 
1079 	/*
1080 	 * Deal with people waiting for I/O to drain
1081 	 */
1082 	if (io->running) {
1083 		/*
1084 		 * Deal with critical write errors.  Once a critical error
1085 		 * has been flagged in hmp the UNDO FIFO will not be updated.
1086 		 * That way crash recover will give us a consistent
1087 		 * filesystem.
1088 		 *
1089 		 * Because of this we can throw away failed UNDO buffers.  If
1090 		 * we throw away META or DATA buffers we risk corrupting
1091 		 * the now read-only version of the filesystem visible to
1092 		 * the user.  Clear B_ERROR so the buffer is not re-dirtied
1093 		 * by the kernel and ref the io so it doesn't get thrown
1094 		 * away.
1095 		 */
1096 		if (bp->b_flags & B_ERROR) {
1097 			lwkt_gettoken(&hmp->fs_token);
1098 			hammer_critical_error(hmp, NULL, bp->b_error,
1099 					      "while flushing meta-data");
1100 			lwkt_reltoken(&hmp->fs_token);
1101 
1102 			switch(io->type) {
1103 			case HAMMER_STRUCTURE_UNDO_BUFFER:
1104 				break;
1105 			default:
1106 				if (io->ioerror == 0) {
1107 					io->ioerror = 1;
1108 					hammer_ref(&io->lock);
1109 				}
1110 				break;
1111 			}
1112 			bp->b_flags &= ~B_ERROR;
1113 			bundirty(bp);
1114 #if 0
1115 			hammer_io_set_modlist(io);
1116 			io->modified = 1;
1117 #endif
1118 		}
1119 		hammer_stats_disk_write += io->bytes;
1120 		atomic_add_long(&hammer_count_io_running_write, -io->bytes);
1121 		atomic_add_long(&hmp->io_running_space, -io->bytes);
1122 		KKASSERT(hmp->io_running_space >= 0);
1123 		io->running = 0;
1124 
1125 		/*
1126 		 * Remove from iorun list and wakeup any multi-io waiter(s).
1127 		 */
1128 		if (TAILQ_FIRST(&hmp->iorun_list) == io) {
1129 			ionext = TAILQ_NEXT(io, iorun_entry);
1130 			if (ionext && ionext->type == HAMMER_STRUCTURE_DUMMY)
1131 				wakeup(ionext);
1132 		}
1133 		TAILQ_REMOVE(&hmp->iorun_list, io, iorun_entry);
1134 	} else {
1135 		hammer_stats_disk_read += io->bytes;
1136 	}
1137 
1138 	if (io->waiting) {
1139 		io->waiting = 0;
1140 		wakeup(io);
1141 	}
1142 
1143 	/*
1144 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
1145 	 * point, try to do it now.  The operation will fail if there are
1146 	 * refs or if hammer_io_deallocate() is unable to gain the
1147 	 * interlock.
1148 	 */
1149 	if (bp->b_flags & B_LOCKED) {
1150 		atomic_add_int(&hammer_count_io_locked, -1);
1151 		bp->b_flags &= ~B_LOCKED;
1152 		hammer_io_deallocate(bp);
1153 		/* structure may be dead now */
1154 	}
1155 	lwkt_reltoken(&hmp->io_token);
1156 }
1157 
1158 /*
1159  * Callback from kernel when it wishes to deallocate a passively
1160  * associated structure.  This mostly occurs with clean buffers
1161  * but it may be possible for a holding structure to be marked dirty
1162  * while its buffer is passively associated.  The caller owns the bp.
1163  *
1164  * If we cannot disassociate we set B_LOCKED to prevent the buffer
1165  * from getting reused.
1166  *
1167  * WARNING: Because this can be called directly by getnewbuf we cannot
1168  * recurse into the tree.  If a bp cannot be immediately disassociated
1169  * our only recourse is to set B_LOCKED.
1170  *
1171  * WARNING: This may be called from an interrupt via hammer_io_complete()
1172  *
1173  * bioops callback - hold io_token
1174  */
1175 static void
1176 hammer_io_deallocate(struct buf *bp)
1177 {
1178 	hammer_io_t io = hammer_buf_peek_io(bp);
1179 	hammer_mount_t hmp;
1180 
1181 	hmp = io->hmp;
1182 
1183 	lwkt_gettoken(&hmp->io_token);
1184 
1185 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && io->running == 0);
1186 	if (hammer_try_interlock_norefs(&io->lock) == 0) {
1187 		/*
1188 		 * We cannot safely disassociate a bp from a referenced
1189 		 * or interlocked HAMMER structure.
1190 		 */
1191 		bp->b_flags |= B_LOCKED;
1192 		atomic_add_int(&hammer_count_io_locked, 1);
1193 	} else if (io->modified) {
1194 		/*
1195 		 * It is not legal to disassociate a modified buffer.  This
1196 		 * case really shouldn't ever occur.
1197 		 */
1198 		bp->b_flags |= B_LOCKED;
1199 		atomic_add_int(&hammer_count_io_locked, 1);
1200 		hammer_put_interlock(&io->lock, 0);
1201 	} else {
1202 		/*
1203 		 * Disassociate the BP.  If the io has no refs left we
1204 		 * have to add it to the loose list.  The kernel has
1205 		 * locked the buffer and therefore our io must be
1206 		 * in a released state.
1207 		 */
1208 		hammer_io_disassociate(io);
1209 		if (io->type != HAMMER_STRUCTURE_VOLUME) {
1210 			KKASSERT(io->bp == NULL);
1211 			KKASSERT(io->mod_root == NULL);
1212 			io->mod_root = &hmp->lose_root;
1213 			if (RB_INSERT(hammer_mod_rb_tree, io->mod_root, io)) {
1214 				hpanic("duplicate entry @ %d:%015jx",
1215 					io->volume->vol_no, io->offset);
1216 				/* NOT REACHED */
1217 			}
1218 		}
1219 		hammer_put_interlock(&io->lock, 1);
1220 	}
1221 	lwkt_reltoken(&hmp->io_token);
1222 }
1223 
1224 /*
1225  * bioops callback - hold io_token
1226  */
1227 static int
1228 hammer_io_fsync(struct vnode *vp)
1229 {
1230 	/* nothing to do, so io_token not needed */
1231 	return(0);
1232 }
1233 
1234 /*
1235  * NOTE: will not be called unless we tell the kernel about the
1236  * bioops.  Unused... we use the mount's VFS_SYNC instead.
1237  *
1238  * bioops callback - hold io_token
1239  */
1240 static int
1241 hammer_io_sync(struct mount *mp)
1242 {
1243 	/* nothing to do, so io_token not needed */
1244 	return(0);
1245 }
1246 
1247 /*
1248  * bioops callback - hold io_token
1249  */
1250 static void
1251 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
1252 {
1253 	/* nothing to do, so io_token not needed */
1254 }
1255 
1256 /*
1257  * I/O pre-check for reading and writing.  HAMMER only uses this for
1258  * B_CACHE buffers so checkread just shouldn't happen, but if it does
1259  * allow it.
1260  *
1261  * Writing is a different case.  We don't want the kernel to try to write
1262  * out a buffer that HAMMER may be modifying passively or which has a
1263  * dependancy.  In addition, kernel-demanded writes can only proceed for
1264  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
1265  * buffer types can only be explicitly written by the flusher.
1266  *
1267  * checkwrite will only be called for bdwrite()n buffers.  If we return
1268  * success the kernel is guaranteed to initiate the buffer write.
1269  *
1270  * bioops callback - hold io_token
1271  */
1272 static int
1273 hammer_io_checkread(struct buf *bp)
1274 {
1275 	/* nothing to do, so io_token not needed */
1276 	return(0);
1277 }
1278 
1279 /*
1280  * The kernel is asking us whether it can write out a dirty buffer or not.
1281  *
1282  * bioops callback - hold io_token
1283  */
1284 static int
1285 hammer_io_checkwrite(struct buf *bp)
1286 {
1287 	hammer_io_t io = hammer_buf_peek_io(bp);
1288 	hammer_mount_t hmp = io->hmp;
1289 
1290 	/*
1291 	 * This shouldn't happen under normal operation.
1292 	 */
1293 	lwkt_gettoken(&hmp->io_token);
1294 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
1295 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
1296 		if (!panicstr)
1297 			hpanic("illegal buffer");
1298 		if ((bp->b_flags & B_LOCKED) == 0) {
1299 			bp->b_flags |= B_LOCKED;
1300 			atomic_add_int(&hammer_count_io_locked, 1);
1301 		}
1302 		lwkt_reltoken(&hmp->io_token);
1303 		return(1);
1304 	}
1305 
1306 	/*
1307 	 * We have to be able to interlock the IO to safely modify any
1308 	 * of its fields without holding the fs_token.  If we can't lock
1309 	 * it then we are racing someone.
1310 	 *
1311 	 * Our ownership of the bp lock prevents the io from being ripped
1312 	 * out from under us.
1313 	 */
1314 	if (hammer_try_interlock_norefs(&io->lock) == 0) {
1315 		bp->b_flags |= B_LOCKED;
1316 		atomic_add_int(&hammer_count_io_locked, 1);
1317 		lwkt_reltoken(&hmp->io_token);
1318 		return(1);
1319 	}
1320 
1321 	/*
1322 	 * The modified bit must be cleared prior to the initiation of
1323 	 * any IO (returning 0 initiates the IO).  Because this is a
1324 	 * normal data buffer hammer_io_clear_modify() runs through a
1325 	 * simple degenerate case.
1326 	 *
1327 	 * Return 0 will cause the kernel to initiate the IO, and we
1328 	 * must normally clear the modified bit before we begin.  If
1329 	 * the io has modify_refs we do not clear the modified bit,
1330 	 * otherwise we may miss changes.
1331 	 *
1332 	 * Only data and undo buffers can reach here.  These buffers do
1333 	 * not have terminal crc functions but we temporarily reference
1334 	 * the IO anyway, just in case.
1335 	 */
1336 	if (io->modify_refs == 0 && io->modified) {
1337 		hammer_ref(&io->lock);
1338 		hammer_io_clear_modify(io, 0);
1339 		hammer_rel(&io->lock);
1340 	} else if (io->modified) {
1341 		KKASSERT(io->type == HAMMER_STRUCTURE_DATA_BUFFER);
1342 	}
1343 
1344 	/*
1345 	 * The kernel is going to start the IO, set io->running.
1346 	 */
1347 	KKASSERT(io->running == 0);
1348 	io->running = 1;
1349 	atomic_add_long(&io->hmp->io_running_space, io->bytes);
1350 	atomic_add_long(&hammer_count_io_running_write, io->bytes);
1351 	TAILQ_INSERT_TAIL(&io->hmp->iorun_list, io, iorun_entry);
1352 
1353 	hammer_put_interlock(&io->lock, 1);
1354 	lwkt_reltoken(&hmp->io_token);
1355 
1356 	return(0);
1357 }
1358 
1359 /*
1360  * Return non-zero if we wish to delay the kernel's attempt to flush
1361  * this buffer to disk.
1362  *
1363  * bioops callback - hold io_token
1364  */
1365 static int
1366 hammer_io_countdeps(struct buf *bp, int n)
1367 {
1368 	/* nothing to do, so io_token not needed */
1369 	return(0);
1370 }
1371 
1372 static struct bio_ops hammer_bioops = {
1373 	.io_start	= hammer_io_start,
1374 	.io_complete	= hammer_io_complete,
1375 	.io_deallocate	= hammer_io_deallocate,
1376 	.io_fsync	= hammer_io_fsync,
1377 	.io_sync	= hammer_io_sync,
1378 	.io_movedeps	= hammer_io_movedeps,
1379 	.io_countdeps	= hammer_io_countdeps,
1380 	.io_checkread	= hammer_io_checkread,
1381 	.io_checkwrite	= hammer_io_checkwrite,
1382 };
1383 
1384 /************************************************************************
1385  *				DIRECT IO OPS 				*
1386  ************************************************************************
1387  *
1388  * These functions operate directly on the buffer cache buffer associated
1389  * with a front-end vnode rather then a back-end device vnode.
1390  */
1391 
1392 /*
1393  * Read a buffer associated with a front-end vnode directly from the
1394  * disk media.  The bio may be issued asynchronously.  If leaf is non-NULL
1395  * we validate the CRC.
1396  *
1397  * We must check for the presence of a HAMMER buffer to handle the case
1398  * where the reblocker has rewritten the data (which it does via the HAMMER
1399  * buffer system, not via the high-level vnode buffer cache), but not yet
1400  * committed the buffer to the media.
1401  */
1402 int
1403 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio,
1404 		      hammer_btree_leaf_elm_t leaf)
1405 {
1406 	hammer_off_t buf_offset;
1407 	hammer_off_t zone2_offset;
1408 	hammer_volume_t volume;
1409 	struct buf *bp;
1410 	struct bio *nbio;
1411 	int vol_no;
1412 	int error;
1413 
1414 	buf_offset = bio->bio_offset;
1415 	KKASSERT(hammer_is_zone_large_data(buf_offset));
1416 
1417 	/*
1418 	 * The buffer cache may have an aliased buffer (the reblocker can
1419 	 * write them).  If it does we have to sync any dirty data before
1420 	 * we can build our direct-read.  This is a non-critical code path.
1421 	 */
1422 	bp = bio->bio_buf;
1423 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1424 
1425 	/*
1426 	 * Resolve to a zone-2 offset.  The conversion just requires
1427 	 * munging the top 4 bits but we want to abstract it anyway
1428 	 * so the blockmap code can verify the zone assignment.
1429 	 */
1430 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1431 	if (error)
1432 		goto done;
1433 	KKASSERT(hammer_is_zone_raw_buffer(zone2_offset));
1434 
1435 	/*
1436 	 * Resolve volume and raw-offset for 3rd level bio.  The
1437 	 * offset will be specific to the volume.
1438 	 */
1439 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1440 	volume = hammer_get_volume(hmp, vol_no, &error);
1441 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1442 		error = EIO;
1443 
1444 	if (error == 0) {
1445 		/*
1446 		 * 3rd level bio (the caller has already pushed once)
1447 		 */
1448 		nbio = push_bio(bio);
1449 		nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk,
1450 							zone2_offset);
1451 		hammer_stats_disk_read += bp->b_bufsize;
1452 		vn_strategy(volume->devvp, nbio);
1453 	}
1454 	hammer_rel_volume(volume, 0);
1455 done:
1456 	if (error) {
1457 		hdkprintf("failed @ %016jx\n", (intmax_t)zone2_offset);
1458 		bp->b_error = error;
1459 		bp->b_flags |= B_ERROR;
1460 		biodone(bio);
1461 	}
1462 	return(error);
1463 }
1464 
1465 /*
1466  * This works similarly to hammer_io_direct_read() except instead of
1467  * directly reading from the device into the bio we instead indirectly
1468  * read through the device's buffer cache and then copy the data into
1469  * the bio.
1470  *
1471  * If leaf is non-NULL and validation is enabled, the CRC will be checked.
1472  *
1473  * This routine also executes asynchronously.  It allows hammer strategy
1474  * calls to operate asynchronously when in double_buffer mode (in addition
1475  * to operating asynchronously when in normal mode).
1476  */
1477 int
1478 hammer_io_indirect_read(hammer_mount_t hmp, struct bio *bio,
1479 			hammer_btree_leaf_elm_t leaf)
1480 {
1481 	hammer_off_t buf_offset;
1482 	hammer_off_t zone2_offset;
1483 	hammer_volume_t volume;
1484 	struct buf *bp;
1485 	int vol_no;
1486 	int error;
1487 
1488 	buf_offset = bio->bio_offset;
1489 	KKASSERT(hammer_is_zone_large_data(buf_offset));
1490 
1491 	/*
1492 	 * The buffer cache may have an aliased buffer (the reblocker can
1493 	 * write them).  If it does we have to sync any dirty data before
1494 	 * we can build our direct-read.  This is a non-critical code path.
1495 	 */
1496 	bp = bio->bio_buf;
1497 	hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize);
1498 
1499 	/*
1500 	 * Resolve to a zone-2 offset.  The conversion just requires
1501 	 * munging the top 4 bits but we want to abstract it anyway
1502 	 * so the blockmap code can verify the zone assignment.
1503 	 */
1504 	zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1505 	if (error)
1506 		goto done;
1507 	KKASSERT(hammer_is_zone_raw_buffer(zone2_offset));
1508 
1509 	/*
1510 	 * Resolve volume and raw-offset for 3rd level bio.  The
1511 	 * offset will be specific to the volume.
1512 	 */
1513 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
1514 	volume = hammer_get_volume(hmp, vol_no, &error);
1515 	if (error == 0 && zone2_offset >= volume->maxbuf_off)
1516 		error = EIO;
1517 
1518 	if (error == 0) {
1519 		/*
1520 		 * Convert to the raw volume->devvp offset and acquire
1521 		 * the buf, issuing async I/O if necessary.
1522 		 */
1523 		hammer_off_t limit;
1524 		int hce;
1525 
1526 		buf_offset = hammer_xlate_to_phys(volume->ondisk, zone2_offset);
1527 
1528 		if (leaf && hammer_verify_data) {
1529 			bio->bio_caller_info1.uvalue32 = leaf->data_crc;
1530 			bio->bio_caller_info2.index = 1;
1531 		} else {
1532 			bio->bio_caller_info2.index = 0;
1533 		}
1534 
1535 		hce = hammer_cluster_enable;
1536 		if (hce > 0) {
1537 			limit = (zone2_offset + HAMMER_BIGBLOCK_MASK64) &
1538 				~HAMMER_BIGBLOCK_MASK64;
1539 			limit -= zone2_offset;
1540 			cluster_readcb(volume->devvp, limit, buf_offset,
1541 				       bp->b_bufsize,
1542 				       HAMMER_CLUSTER_SIZE,
1543 				       HAMMER_CLUSTER_SIZE * hce,
1544 				       hammer_indirect_callback,
1545 				       bio);
1546 		} else {
1547 			breadcb(volume->devvp, buf_offset, bp->b_bufsize,
1548 				hammer_indirect_callback, bio);
1549 		}
1550 	}
1551 	hammer_rel_volume(volume, 0);
1552 done:
1553 	if (error) {
1554 		hdkprintf("failed @ %016jx\n", (intmax_t)zone2_offset);
1555 		bp->b_error = error;
1556 		bp->b_flags |= B_ERROR;
1557 		biodone(bio);
1558 	}
1559 	return(error);
1560 }
1561 
1562 /*
1563  * Indirect callback on completion.  bio/bp specify the device-backed
1564  * buffer.  bio->bio_caller_info1.ptr holds obio.
1565  *
1566  * obio/obp is the original regular file buffer.  obio->bio_caller_info*
1567  * contains the crc specification.
1568  *
1569  * We are responsible for calling bpdone() and bqrelse() on bio/bp, and
1570  * for calling biodone() on obio.
1571  */
1572 static void
1573 hammer_indirect_callback(struct bio *bio)
1574 {
1575 	struct buf *bp = bio->bio_buf;
1576 	struct buf *obp;
1577 	struct bio *obio;
1578 
1579 	/*
1580 	 * If BIO_DONE is already set the device buffer was already
1581 	 * fully valid (B_CACHE).  If it is not set then I/O was issued
1582 	 * and we have to run I/O completion as the last bio.
1583 	 *
1584 	 * Nobody is waiting for our device I/O to complete, we are
1585 	 * responsible for bqrelse()ing it which means we also have to do
1586 	 * the equivalent of biowait() and clear BIO_DONE (which breadcb()
1587 	 * may have set).
1588 	 *
1589 	 * Any preexisting device buffer should match the requested size,
1590 	 * but due to big-block recycling and other factors there is some
1591 	 * fragility there, so we assert that the device buffer covers
1592 	 * the request.
1593 	 */
1594 	if ((bio->bio_flags & BIO_DONE) == 0)
1595 		bpdone(bp, 0);
1596 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
1597 
1598 	obio = bio->bio_caller_info1.ptr;
1599 	obp = obio->bio_buf;
1600 
1601 	if (bp->b_flags & B_ERROR) {
1602 		obp->b_flags |= B_ERROR;
1603 		obp->b_error = bp->b_error;
1604 	} else if (obio->bio_caller_info2.index &&
1605 		   obio->bio_caller_info1.uvalue32 !=
1606 		    crc32(bp->b_data, bp->b_bufsize)) {
1607 		obp->b_flags |= B_ERROR;
1608 		obp->b_error = EIO;
1609 	} else {
1610 		KKASSERT(bp->b_bufsize >= obp->b_bufsize);
1611 		bcopy(bp->b_data, obp->b_data, obp->b_bufsize);
1612 		obp->b_resid = 0;
1613 		obp->b_flags |= B_AGE;
1614 	}
1615 	biodone(obio);
1616 	bqrelse(bp);
1617 }
1618 
1619 /*
1620  * Write a buffer associated with a front-end vnode directly to the
1621  * disk media.  The bio may be issued asynchronously.
1622  *
1623  * The BIO is associated with the specified record and RECG_DIRECT_IO
1624  * is set.  The recorded is added to its object.
1625  */
1626 int
1627 hammer_io_direct_write(hammer_mount_t hmp, struct bio *bio,
1628 		       hammer_record_t record)
1629 {
1630 	hammer_btree_leaf_elm_t leaf = &record->leaf;
1631 	hammer_off_t buf_offset;
1632 	hammer_off_t zone2_offset;
1633 	hammer_volume_t volume;
1634 	hammer_buffer_t buffer;
1635 	struct buf *bp;
1636 	struct bio *nbio;
1637 	char *ptr;
1638 	int vol_no;
1639 	int error;
1640 
1641 	buf_offset = leaf->data_offset;
1642 
1643 	KKASSERT(hammer_is_zone2_mapped_index(
1644 		HAMMER_ZONE_DECODE(buf_offset)));
1645 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
1646 
1647 	/*
1648 	 * Issue or execute the I/O.  The new memory record must replace
1649 	 * the old one before the I/O completes, otherwise a reaquisition of
1650 	 * the buffer will load the old media data instead of the new.
1651 	 */
1652 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
1653 	    leaf->data_len >= HAMMER_BUFSIZE) {
1654 		/*
1655 		 * We are using the vnode's bio to write directly to the
1656 		 * media, any hammer_buffer at the same zone-X offset will
1657 		 * now have stale data.
1658 		 */
1659 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1660 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1661 		volume = hammer_get_volume(hmp, vol_no, &error);
1662 
1663 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1664 			error = EIO;
1665 		if (error == 0) {
1666 			bp = bio->bio_buf;
1667 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1668 
1669 			/*
1670 			 * Second level bio - cached zone2 offset.
1671 			 *
1672 			 * (We can put our bio_done function in either the
1673 			 *  2nd or 3rd level).
1674 			 */
1675 			nbio = push_bio(bio);
1676 			nbio->bio_offset = zone2_offset;
1677 			nbio->bio_done = hammer_io_direct_write_complete;
1678 			nbio->bio_caller_info1.ptr = record;
1679 			record->zone2_offset = zone2_offset;
1680 			record->gflags |= HAMMER_RECG_DIRECT_IO |
1681 					 HAMMER_RECG_DIRECT_INVAL;
1682 
1683 			/*
1684 			 * Third level bio - raw offset specific to the
1685 			 * correct volume.
1686 			 */
1687 			nbio = push_bio(nbio);
1688 			nbio->bio_offset = hammer_xlate_to_phys(volume->ondisk,
1689 								zone2_offset);
1690 			hammer_stats_disk_write += bp->b_bufsize;
1691 			hammer_ip_replace_bulk(hmp, record);
1692 			vn_strategy(volume->devvp, nbio);
1693 			hammer_io_flush_mark(volume);
1694 		}
1695 		hammer_rel_volume(volume, 0);
1696 	} else {
1697 		/*
1698 		 * Must fit in a standard HAMMER buffer.  In this case all
1699 		 * consumers use the HAMMER buffer system and RECG_DIRECT_IO
1700 		 * does not need to be set-up.
1701 		 */
1702 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1703 		buffer = NULL;
1704 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1705 		if (error == 0) {
1706 			bp = bio->bio_buf;
1707 			bp->b_flags |= B_AGE;
1708 			hammer_io_modify(&buffer->io, 1);
1709 			bcopy(bp->b_data, ptr, leaf->data_len);
1710 			hammer_io_modify_done(&buffer->io);
1711 			hammer_rel_buffer(buffer, 0);
1712 			bp->b_resid = 0;
1713 			hammer_ip_replace_bulk(hmp, record);
1714 			biodone(bio);
1715 		}
1716 	}
1717 	if (error) {
1718 		/*
1719 		 * Major suckage occured.  Also note:  The record was
1720 		 * never added to the tree so we do not have to worry
1721 		 * about the backend.
1722 		 */
1723 		hdkprintf("failed @ %016jx\n", (intmax_t)leaf->data_offset);
1724 		bp = bio->bio_buf;
1725 		bp->b_resid = 0;
1726 		bp->b_error = EIO;
1727 		bp->b_flags |= B_ERROR;
1728 		biodone(bio);
1729 		record->flags |= HAMMER_RECF_DELETED_FE;
1730 		hammer_rel_mem_record(record);
1731 	}
1732 	return(error);
1733 }
1734 
1735 /*
1736  * On completion of the BIO this callback must disconnect
1737  * it from the hammer_record and chain to the previous bio.
1738  *
1739  * An I/O error forces the mount to read-only.  Data buffers
1740  * are not B_LOCKED like meta-data buffers are, so we have to
1741  * throw the buffer away to prevent the kernel from retrying.
1742  *
1743  * NOTE: MPSAFE callback, only modify fields we have explicit
1744  *	 access to (the bp and the record->gflags).
1745  */
1746 static
1747 void
1748 hammer_io_direct_write_complete(struct bio *nbio)
1749 {
1750 	struct bio *obio;
1751 	struct buf *bp;
1752 	hammer_record_t record;
1753 	hammer_mount_t hmp;
1754 
1755 	record = nbio->bio_caller_info1.ptr;
1756 	KKASSERT(record != NULL);
1757 	hmp = record->ip->hmp;
1758 
1759 	lwkt_gettoken(&hmp->io_token);
1760 
1761 	bp = nbio->bio_buf;
1762 	obio = pop_bio(nbio);
1763 	if (bp->b_flags & B_ERROR) {
1764 		lwkt_gettoken(&hmp->fs_token);
1765 		hammer_critical_error(hmp, record->ip, bp->b_error,
1766 				      "while writing bulk data");
1767 		lwkt_reltoken(&hmp->fs_token);
1768 		bp->b_flags |= B_INVAL;
1769 	}
1770 
1771 	KKASSERT(record->gflags & HAMMER_RECG_DIRECT_IO);
1772 	if (record->gflags & HAMMER_RECG_DIRECT_WAIT) {
1773 		record->gflags &= ~(HAMMER_RECG_DIRECT_IO |
1774 				    HAMMER_RECG_DIRECT_WAIT);
1775 		/* record can disappear once DIRECT_IO flag is cleared */
1776 		wakeup(&record->flags);
1777 	} else {
1778 		record->gflags &= ~HAMMER_RECG_DIRECT_IO;
1779 		/* record can disappear once DIRECT_IO flag is cleared */
1780 	}
1781 
1782 	lwkt_reltoken(&hmp->io_token);
1783 
1784 	biodone(obio);
1785 }
1786 
1787 
1788 /*
1789  * This is called before a record is either committed to the B-Tree
1790  * or destroyed, to resolve any associated direct-IO.
1791  *
1792  * (1) We must wait for any direct-IO related to the record to complete.
1793  *
1794  * (2) We must remove any buffer cache aliases for data accessed via
1795  *     leaf->data_offset or zone2_offset so non-direct-IO consumers
1796  *     (the mirroring and reblocking code) do not see stale data.
1797  */
1798 void
1799 hammer_io_direct_wait(hammer_record_t record)
1800 {
1801 	hammer_mount_t hmp = record->ip->hmp;
1802 
1803 	/*
1804 	 * Wait for I/O to complete
1805 	 */
1806 	if (record->gflags & HAMMER_RECG_DIRECT_IO) {
1807 		lwkt_gettoken(&hmp->io_token);
1808 		while (record->gflags & HAMMER_RECG_DIRECT_IO) {
1809 			record->gflags |= HAMMER_RECG_DIRECT_WAIT;
1810 			tsleep(&record->flags, 0, "hmdiow", 0);
1811 		}
1812 		lwkt_reltoken(&hmp->io_token);
1813 	}
1814 
1815 	/*
1816 	 * Invalidate any related buffer cache aliases associated with the
1817 	 * backing device.  This is needed because the buffer cache buffer
1818 	 * for file data is associated with the file vnode, not the backing
1819 	 * device vnode.
1820 	 *
1821 	 * XXX I do not think this case can occur any more now that
1822 	 * reservations ensure that all such buffers are removed before
1823 	 * an area can be reused.
1824 	 */
1825 	if (record->gflags & HAMMER_RECG_DIRECT_INVAL) {
1826 		KKASSERT(record->leaf.data_offset);
1827 		hammer_del_buffers(hmp, record->leaf.data_offset,
1828 				   record->zone2_offset, record->leaf.data_len,
1829 				   1);
1830 		record->gflags &= ~HAMMER_RECG_DIRECT_INVAL;
1831 	}
1832 }
1833 
1834 /*
1835  * This is called to remove the second-level cached zone-2 offset from
1836  * frontend buffer cache buffers, now stale due to a data relocation.
1837  * These offsets are generated by cluster_read() via VOP_BMAP, or directly
1838  * by hammer_vop_strategy_read().
1839  *
1840  * This is rather nasty because here we have something like the reblocker
1841  * scanning the raw B-Tree with no held references on anything, really,
1842  * other then a shared lock on the B-Tree node, and we have to access the
1843  * frontend's buffer cache to check for and clean out the association.
1844  * Specifically, if the reblocker is moving data on the disk, these cached
1845  * offsets will become invalid.
1846  *
1847  * Only data record types associated with the large-data zone are subject
1848  * to direct-io and need to be checked.
1849  *
1850  */
1851 void
1852 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf)
1853 {
1854 	struct hammer_inode_info iinfo;
1855 	int zone;
1856 
1857 	if (leaf->base.rec_type != HAMMER_RECTYPE_DATA)
1858 		return;
1859 	zone = HAMMER_ZONE_DECODE(leaf->data_offset);
1860 	if (zone != HAMMER_ZONE_LARGE_DATA_INDEX)
1861 		return;
1862 	iinfo.obj_id = leaf->base.obj_id;
1863 	iinfo.obj_asof = 0;	/* unused */
1864 	iinfo.obj_localization = leaf->base.localization &
1865 				 HAMMER_LOCALIZE_PSEUDOFS_MASK;
1866 	iinfo.u.leaf = leaf;
1867 	hammer_scan_inode_snapshots(hmp, &iinfo,
1868 				    hammer_io_direct_uncache_callback,
1869 				    leaf);
1870 }
1871 
1872 static int
1873 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data)
1874 {
1875 	hammer_inode_info_t iinfo = data;
1876 	hammer_off_t file_offset;
1877 	struct vnode *vp;
1878 	struct buf *bp;
1879 	int blksize;
1880 
1881 	if (ip->vp == NULL)
1882 		return(0);
1883 	file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len;
1884 	blksize = iinfo->u.leaf->data_len;
1885 	KKASSERT((blksize & HAMMER_BUFMASK) == 0);
1886 
1887 	/*
1888 	 * Warning: FINDBLK_TEST return stable storage but not stable
1889 	 *	    contents.  It happens to be ok in this case.
1890 	 */
1891 	hammer_ref(&ip->lock);
1892 	if (hammer_get_vnode(ip, &vp) == 0) {
1893 		if ((bp = findblk(ip->vp, file_offset, FINDBLK_TEST)) != NULL &&
1894 		    bp->b_bio2.bio_offset != NOOFFSET) {
1895 			bp = getblk(ip->vp, file_offset, blksize, 0, 0);
1896 			bp->b_bio2.bio_offset = NOOFFSET;
1897 			brelse(bp);
1898 		}
1899 		vput(vp);
1900 	}
1901 	hammer_rel_inode(ip, 0);
1902 	return(0);
1903 }
1904 
1905 
1906 /*
1907  * This function is called when writes may have occured on the volume,
1908  * indicating that the device may be holding cached writes.
1909  */
1910 static __inline void
1911 hammer_io_flush_mark(hammer_volume_t volume)
1912 {
1913 	atomic_set_int(&volume->vol_flags, HAMMER_VOLF_NEEDFLUSH);
1914 }
1915 
1916 /*
1917  * This function ensures that the device has flushed any cached writes out.
1918  */
1919 void
1920 hammer_io_flush_sync(hammer_mount_t hmp)
1921 {
1922 	hammer_volume_t volume;
1923 	struct buf *bp_base = NULL;
1924 	struct buf *bp;
1925 
1926 	RB_FOREACH(volume, hammer_vol_rb_tree, &hmp->rb_vols_root) {
1927 		if (volume->vol_flags & HAMMER_VOLF_NEEDFLUSH) {
1928 			atomic_clear_int(&volume->vol_flags,
1929 					 HAMMER_VOLF_NEEDFLUSH);
1930 			bp = getpbuf(NULL);
1931 			bp->b_bio1.bio_offset = 0;
1932 			bp->b_bufsize = 0;
1933 			bp->b_bcount = 0;
1934 			bp->b_cmd = BUF_CMD_FLUSH;
1935 			bp->b_bio1.bio_caller_info1.cluster_head = bp_base;
1936 			bp->b_bio1.bio_done = biodone_sync;
1937 			bp->b_bio1.bio_flags |= BIO_SYNC;
1938 			bp_base = bp;
1939 			vn_strategy(volume->devvp, &bp->b_bio1);
1940 		}
1941 	}
1942 	while ((bp = bp_base) != NULL) {
1943 		bp_base = bp->b_bio1.bio_caller_info1.cluster_head;
1944 		biowait(&bp->b_bio1, "hmrFLS");
1945 		relpbuf(bp, NULL);
1946 	}
1947 }
1948 
1949 /*
1950  * Limit the amount of backlog which we allow to build up
1951  */
1952 void
1953 hammer_io_limit_backlog(hammer_mount_t hmp)
1954 {
1955 	waitrunningbufspace();
1956 }
1957