xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision 409b4c59)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
47 
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_transaction_t trans,
52 				hammer_node_t node, int isnew);
53 
54 static int
55 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
56 {
57 	if (vol1->vol_no < vol2->vol_no)
58 		return(-1);
59 	if (vol1->vol_no > vol2->vol_no)
60 		return(1);
61 	return(0);
62 }
63 
64 /*
65  * hammer_buffer structures are indexed via their zoneX_offset, not
66  * their zone2_offset.
67  */
68 static int
69 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
70 {
71 	if (buf1->zoneX_offset < buf2->zoneX_offset)
72 		return(-1);
73 	if (buf1->zoneX_offset > buf2->zoneX_offset)
74 		return(1);
75 	return(0);
76 }
77 
78 static int
79 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
80 {
81 	if (node1->node_offset < node2->node_offset)
82 		return(-1);
83 	if (node1->node_offset > node2->node_offset)
84 		return(1);
85 	return(0);
86 }
87 
88 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
89 	     hammer_vol_rb_compare, int32_t, vol_no);
90 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
91 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
92 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
93 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
94 
95 /************************************************************************
96  *				VOLUMES					*
97  ************************************************************************
98  *
99  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
100  * code on failure.  Volumes must be loaded at mount time, get_volume() will
101  * not load a new volume.
102  *
103  * Calls made to hammer_load_volume() or single-threaded
104  */
105 int
106 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
107 		      struct vnode *devvp)
108 {
109 	struct mount *mp;
110 	hammer_volume_t volume;
111 	struct hammer_volume_ondisk *ondisk;
112 	struct nlookupdata nd;
113 	struct buf *bp = NULL;
114 	int error;
115 	int ronly;
116 	int setmp = 0;
117 
118 	mp = hmp->mp;
119 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
120 
121 	/*
122 	 * Allocate a volume structure
123 	 */
124 	++hammer_count_volumes;
125 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
126 	volume->vol_name = kstrdup(volname, hmp->m_misc);
127 	volume->io.hmp = hmp;	/* bootstrap */
128 	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
129 	volume->io.offset = 0LL;
130 	volume->io.bytes = HAMMER_BUFSIZE;
131 
132 	/*
133 	 * Get the device vnode
134 	 */
135 	if (devvp == NULL) {
136 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
137 		if (error == 0)
138 			error = nlookup(&nd);
139 		if (error == 0)
140 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
141 		nlookup_done(&nd);
142 	} else {
143 		error = 0;
144 		volume->devvp = devvp;
145 	}
146 
147 	if (error == 0) {
148 		if (vn_isdisk(volume->devvp, &error)) {
149 			error = vfs_mountedon(volume->devvp);
150 		}
151 	}
152 	if (error == 0 &&
153 	    count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
154 		error = EBUSY;
155 	}
156 	if (error == 0) {
157 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
158 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
159 		if (error == 0) {
160 			error = VOP_OPEN(volume->devvp,
161 					 (ronly ? FREAD : FREAD|FWRITE),
162 					 FSCRED, NULL);
163 		}
164 		vn_unlock(volume->devvp);
165 	}
166 	if (error) {
167 		hammer_free_volume(volume);
168 		return(error);
169 	}
170 	volume->devvp->v_rdev->si_mountpoint = mp;
171 	setmp = 1;
172 
173 	/*
174 	 * Extract the volume number from the volume header and do various
175 	 * sanity checks.
176 	 */
177 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
178 	if (error)
179 		goto late_failure;
180 	ondisk = (void *)bp->b_data;
181 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
182 		kprintf("hammer_mount: volume %s has an invalid header\n",
183 			volume->vol_name);
184 		error = EFTYPE;
185 		goto late_failure;
186 	}
187 	volume->vol_no = ondisk->vol_no;
188 	volume->buffer_base = ondisk->vol_buf_beg;
189 	volume->vol_flags = ondisk->vol_flags;
190 	volume->nblocks = ondisk->vol_nblocks;
191 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
192 				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
193 	volume->maxraw_off = ondisk->vol_buf_end;
194 
195 	if (RB_EMPTY(&hmp->rb_vols_root)) {
196 		hmp->fsid = ondisk->vol_fsid;
197 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
198 		kprintf("hammer_mount: volume %s's fsid does not match "
199 			"other volumes\n", volume->vol_name);
200 		error = EFTYPE;
201 		goto late_failure;
202 	}
203 
204 	/*
205 	 * Insert the volume structure into the red-black tree.
206 	 */
207 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
208 		kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
209 			volume->vol_name, volume->vol_no);
210 		error = EEXIST;
211 	}
212 
213 	/*
214 	 * Set the root volume .  HAMMER special cases rootvol the structure.
215 	 * We do not hold a ref because this would prevent related I/O
216 	 * from being flushed.
217 	 */
218 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
219 		hmp->rootvol = volume;
220 		hmp->nvolumes = ondisk->vol_count;
221 		if (bp) {
222 			brelse(bp);
223 			bp = NULL;
224 		}
225 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
226 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
227 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
228 			(HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
229 	}
230 late_failure:
231 	if (bp)
232 		brelse(bp);
233 	if (error) {
234 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
235 		if (setmp)
236 			volume->devvp->v_rdev->si_mountpoint = NULL;
237 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
238 		hammer_free_volume(volume);
239 	}
240 	return (error);
241 }
242 
243 /*
244  * This is called for each volume when updating the mount point from
245  * read-write to read-only or vise-versa.
246  */
247 int
248 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
249 {
250 	if (volume->devvp) {
251 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
252 		if (volume->io.hmp->ronly) {
253 			/* do not call vinvalbuf */
254 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
255 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
256 		} else {
257 			/* do not call vinvalbuf */
258 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
259 			VOP_CLOSE(volume->devvp, FREAD);
260 		}
261 		vn_unlock(volume->devvp);
262 	}
263 	return(0);
264 }
265 
266 /*
267  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
268  * so returns -1 on failure.
269  */
270 int
271 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
272 {
273 	hammer_mount_t hmp = volume->io.hmp;
274 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
275 	struct buf *bp;
276 
277 	/*
278 	 * Clean up the root volume pointer, which is held unlocked in hmp.
279 	 */
280 	if (hmp->rootvol == volume)
281 		hmp->rootvol = NULL;
282 
283 	/*
284 	 * We must not flush a dirty buffer to disk on umount.  It should
285 	 * have already been dealt with by the flusher, or we may be in
286 	 * catastrophic failure.
287 	 */
288 	hammer_io_clear_modify(&volume->io, 1);
289 	volume->io.waitdep = 1;
290 	bp = hammer_io_release(&volume->io, 1);
291 
292 	/*
293 	 * Clean up the persistent ref ioerror might have on the volume
294 	 */
295 	if (volume->io.ioerror) {
296 		volume->io.ioerror = 0;
297 		hammer_unref(&volume->io.lock);
298 	}
299 
300 	/*
301 	 * There should be no references on the volume, no clusters, and
302 	 * no super-clusters.
303 	 */
304 	KKASSERT(volume->io.lock.refs == 0);
305 	if (bp)
306 		brelse(bp);
307 
308 	volume->ondisk = NULL;
309 	if (volume->devvp) {
310 		if (volume->devvp->v_rdev &&
311 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp
312 		) {
313 			volume->devvp->v_rdev->si_mountpoint = NULL;
314 		}
315 		if (ronly) {
316 			/*
317 			 * Make sure we don't sync anything to disk if we
318 			 * are in read-only mode (1) or critically-errored
319 			 * (2).  Note that there may be dirty buffers in
320 			 * normal read-only mode from crash recovery.
321 			 */
322 			vinvalbuf(volume->devvp, 0, 0, 0);
323 			VOP_CLOSE(volume->devvp, FREAD);
324 		} else {
325 			/*
326 			 * Normal termination, save any dirty buffers
327 			 * (XXX there really shouldn't be any).
328 			 */
329 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
330 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
331 		}
332 	}
333 
334 	/*
335 	 * Destroy the structure
336 	 */
337 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
338 	hammer_free_volume(volume);
339 	return(0);
340 }
341 
342 static
343 void
344 hammer_free_volume(hammer_volume_t volume)
345 {
346 	hammer_mount_t hmp = volume->io.hmp;
347 
348 	if (volume->vol_name) {
349 		kfree(volume->vol_name, hmp->m_misc);
350 		volume->vol_name = NULL;
351 	}
352 	if (volume->devvp) {
353 		vrele(volume->devvp);
354 		volume->devvp = NULL;
355 	}
356 	--hammer_count_volumes;
357 	kfree(volume, hmp->m_misc);
358 }
359 
360 /*
361  * Get a HAMMER volume.  The volume must already exist.
362  */
363 hammer_volume_t
364 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
365 {
366 	struct hammer_volume *volume;
367 
368 	/*
369 	 * Locate the volume structure
370 	 */
371 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
372 	if (volume == NULL) {
373 		*errorp = ENOENT;
374 		return(NULL);
375 	}
376 	hammer_ref(&volume->io.lock);
377 
378 	/*
379 	 * Deal with on-disk info
380 	 */
381 	if (volume->ondisk == NULL || volume->io.loading) {
382 		*errorp = hammer_load_volume(volume);
383 		if (*errorp) {
384 			hammer_rel_volume(volume, 1);
385 			volume = NULL;
386 		}
387 	} else {
388 		*errorp = 0;
389 	}
390 	return(volume);
391 }
392 
393 int
394 hammer_ref_volume(hammer_volume_t volume)
395 {
396 	int error;
397 
398 	hammer_ref(&volume->io.lock);
399 
400 	/*
401 	 * Deal with on-disk info
402 	 */
403 	if (volume->ondisk == NULL || volume->io.loading) {
404 		error = hammer_load_volume(volume);
405 		if (error)
406 			hammer_rel_volume(volume, 1);
407 	} else {
408 		error = 0;
409 	}
410 	return (error);
411 }
412 
413 hammer_volume_t
414 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
415 {
416 	hammer_volume_t volume;
417 
418 	volume = hmp->rootvol;
419 	KKASSERT(volume != NULL);
420 	hammer_ref(&volume->io.lock);
421 
422 	/*
423 	 * Deal with on-disk info
424 	 */
425 	if (volume->ondisk == NULL || volume->io.loading) {
426 		*errorp = hammer_load_volume(volume);
427 		if (*errorp) {
428 			hammer_rel_volume(volume, 1);
429 			volume = NULL;
430 		}
431 	} else {
432 		*errorp = 0;
433 	}
434 	return (volume);
435 }
436 
437 /*
438  * Load a volume's on-disk information.  The volume must be referenced and
439  * not locked.  We temporarily acquire an exclusive lock to interlock
440  * against releases or multiple get's.
441  */
442 static int
443 hammer_load_volume(hammer_volume_t volume)
444 {
445 	int error;
446 
447 	++volume->io.loading;
448 	hammer_lock_ex(&volume->io.lock);
449 
450 	if (volume->ondisk == NULL) {
451 		error = hammer_io_read(volume->devvp, &volume->io,
452 				       volume->maxraw_off);
453 		if (error == 0)
454 			volume->ondisk = (void *)volume->io.bp->b_data;
455 	} else {
456 		error = 0;
457 	}
458 	--volume->io.loading;
459 	hammer_unlock(&volume->io.lock);
460 	return(error);
461 }
462 
463 /*
464  * Release a volume.  Call hammer_io_release on the last reference.  We have
465  * to acquire an exclusive lock to interlock against volume->ondisk tests
466  * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
467  * lock to be held.
468  *
469  * Volumes are not unloaded from memory during normal operation.
470  */
471 void
472 hammer_rel_volume(hammer_volume_t volume, int flush)
473 {
474 	struct buf *bp = NULL;
475 
476 	crit_enter();
477 	if (volume->io.lock.refs == 1) {
478 		++volume->io.loading;
479 		hammer_lock_ex(&volume->io.lock);
480 		if (volume->io.lock.refs == 1) {
481 			volume->ondisk = NULL;
482 			bp = hammer_io_release(&volume->io, flush);
483 		}
484 		--volume->io.loading;
485 		hammer_unlock(&volume->io.lock);
486 	}
487 	hammer_unref(&volume->io.lock);
488 	if (bp)
489 		brelse(bp);
490 	crit_exit();
491 }
492 
493 int
494 hammer_mountcheck_volumes(struct hammer_mount *hmp)
495 {
496 	hammer_volume_t vol;
497 	int i;
498 
499 	for (i = 0; i < hmp->nvolumes; ++i) {
500 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
501 		if (vol == NULL)
502 			return(EINVAL);
503 	}
504 	return(0);
505 }
506 
507 /************************************************************************
508  *				BUFFERS					*
509  ************************************************************************
510  *
511  * Manage buffers.  Currently all blockmap-backed zones are direct-mapped
512  * to zone-2 buffer offsets, without a translation stage.  However, the
513  * hammer_buffer structure is indexed by its zoneX_offset, not its
514  * zone2_offset.
515  *
516  * The proper zone must be maintained throughout the code-base all the way
517  * through to the big-block allocator, or routines like hammer_del_buffers()
518  * will not be able to locate all potentially conflicting buffers.
519  */
520 hammer_buffer_t
521 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
522 		  int bytes, int isnew, int *errorp)
523 {
524 	hammer_buffer_t buffer;
525 	hammer_volume_t volume;
526 	hammer_off_t	zone2_offset;
527 	hammer_io_type_t iotype;
528 	int vol_no;
529 	int zone;
530 
531 	buf_offset &= ~HAMMER_BUFMASK64;
532 again:
533 	/*
534 	 * Shortcut if the buffer is already cached
535 	 */
536 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
537 	if (buffer) {
538 		if (buffer->io.lock.refs == 0)
539 			++hammer_count_refedbufs;
540 		hammer_ref(&buffer->io.lock);
541 
542 		/*
543 		 * Once refed the ondisk field will not be cleared by
544 		 * any other action.
545 		 */
546 		if (buffer->ondisk && buffer->io.loading == 0) {
547 			*errorp = 0;
548 			return(buffer);
549 		}
550 
551 		/*
552 		 * The buffer is no longer loose if it has a ref, and
553 		 * cannot become loose once it gains a ref.  Loose
554 		 * buffers will never be in a modified state.  This should
555 		 * only occur on the 0->1 transition of refs.
556 		 *
557 		 * lose_list can be modified via a biodone() interrupt.
558 		 */
559 		if (buffer->io.mod_list == &hmp->lose_list) {
560 			crit_enter();	/* biodone race against list */
561 			TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
562 				     mod_entry);
563 			crit_exit();
564 			buffer->io.mod_list = NULL;
565 			KKASSERT(buffer->io.modified == 0);
566 		}
567 		goto found;
568 	}
569 
570 	/*
571 	 * What is the buffer class?
572 	 */
573 	zone = HAMMER_ZONE_DECODE(buf_offset);
574 
575 	switch(zone) {
576 	case HAMMER_ZONE_LARGE_DATA_INDEX:
577 	case HAMMER_ZONE_SMALL_DATA_INDEX:
578 		iotype = HAMMER_STRUCTURE_DATA_BUFFER;
579 		break;
580 	case HAMMER_ZONE_UNDO_INDEX:
581 		iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
582 		break;
583 	case HAMMER_ZONE_META_INDEX:
584 	default:
585 		/*
586 		 * NOTE: inode data and directory entries are placed in this
587 		 * zone.  inode atime/mtime is updated in-place and thus
588 		 * buffers containing inodes must be synchronized as
589 		 * meta-buffers, same as buffers containing B-Tree info.
590 		 */
591 		iotype = HAMMER_STRUCTURE_META_BUFFER;
592 		break;
593 	}
594 
595 	/*
596 	 * Handle blockmap offset translations
597 	 */
598 	if (zone >= HAMMER_ZONE_BTREE_INDEX) {
599 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
600 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
601 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
602 	} else {
603 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
604 		zone2_offset = buf_offset;
605 		*errorp = 0;
606 	}
607 	if (*errorp)
608 		return(NULL);
609 
610 	/*
611 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
612 	 * specifications.
613 	 */
614 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
615 		 HAMMER_ZONE_RAW_BUFFER);
616 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
617 	volume = hammer_get_volume(hmp, vol_no, errorp);
618 	if (volume == NULL)
619 		return(NULL);
620 
621 	KKASSERT(zone2_offset < volume->maxbuf_off);
622 
623 	/*
624 	 * Allocate a new buffer structure.  We will check for races later.
625 	 */
626 	++hammer_count_buffers;
627 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
628 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
629 	buffer->zone2_offset = zone2_offset;
630 	buffer->zoneX_offset = buf_offset;
631 
632 	hammer_io_init(&buffer->io, volume, iotype);
633 	buffer->io.offset = volume->ondisk->vol_buf_beg +
634 			    (zone2_offset & HAMMER_OFF_SHORT_MASK);
635 	buffer->io.bytes = bytes;
636 	TAILQ_INIT(&buffer->clist);
637 	hammer_ref(&buffer->io.lock);
638 
639 	/*
640 	 * Insert the buffer into the RB tree and handle late collisions.
641 	 */
642 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
643 		hammer_unref(&buffer->io.lock);	/* safety */
644 		--hammer_count_buffers;
645 		hammer_rel_volume(volume, 0);
646 		buffer->io.volume = NULL;	/* safety */
647 		kfree(buffer, hmp->m_misc);
648 		goto again;
649 	}
650 	++hammer_count_refedbufs;
651 found:
652 
653 	/*
654 	 * Deal with on-disk info and loading races.
655 	 */
656 	if (buffer->ondisk == NULL || buffer->io.loading) {
657 		*errorp = hammer_load_buffer(buffer, isnew);
658 		if (*errorp) {
659 			hammer_rel_buffer(buffer, 1);
660 			buffer = NULL;
661 		}
662 	} else {
663 		*errorp = 0;
664 	}
665 	return(buffer);
666 }
667 
668 /*
669  * This is used by the direct-read code to deal with large-data buffers
670  * created by the reblocker and mirror-write code.  The direct-read code
671  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
672  * running hammer buffers must be fully synced to disk before we can issue
673  * the direct-read.
674  *
675  * This code path is not considered critical as only the rebocker and
676  * mirror-write code will create large-data buffers via the HAMMER buffer
677  * subsystem.  They do that because they operate at the B-Tree level and
678  * do not access the vnode/inode structures.
679  */
680 void
681 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
682 {
683 	hammer_buffer_t buffer;
684 	int error;
685 
686 	KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
687 		 HAMMER_ZONE_LARGE_DATA);
688 
689 	while (bytes > 0) {
690 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
691 				   base_offset);
692 		if (buffer && (buffer->io.modified || buffer->io.running)) {
693 			error = hammer_ref_buffer(buffer);
694 			if (error == 0) {
695 				hammer_io_wait(&buffer->io);
696 				if (buffer->io.modified) {
697 					hammer_io_write_interlock(&buffer->io);
698 					hammer_io_flush(&buffer->io);
699 					hammer_io_done_interlock(&buffer->io);
700 					hammer_io_wait(&buffer->io);
701 				}
702 				hammer_rel_buffer(buffer, 0);
703 			}
704 		}
705 		base_offset += HAMMER_BUFSIZE;
706 		bytes -= HAMMER_BUFSIZE;
707 	}
708 }
709 
710 /*
711  * Destroy all buffers covering the specified zoneX offset range.  This
712  * is called when the related blockmap layer2 entry is freed or when
713  * a direct write bypasses our buffer/buffer-cache subsystem.
714  *
715  * The buffers may be referenced by the caller itself.  Setting reclaim
716  * will cause the buffer to be destroyed when it's ref count reaches zero.
717  *
718  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
719  * to additional references held by other threads, or some other (typically
720  * fatal) error.
721  */
722 int
723 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
724 		   hammer_off_t zone2_offset, int bytes,
725 		   int report_conflicts)
726 {
727 	hammer_buffer_t buffer;
728 	hammer_volume_t volume;
729 	int vol_no;
730 	int error;
731 	int ret_error;
732 
733 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
734 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
735 	KKASSERT(ret_error == 0);
736 
737 	while (bytes > 0) {
738 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
739 				   base_offset);
740 		if (buffer) {
741 			error = hammer_ref_buffer(buffer);
742 			if (error == 0 && buffer->io.lock.refs != 1) {
743 				error = EAGAIN;
744 				hammer_rel_buffer(buffer, 0);
745 			}
746 			if (error == 0) {
747 				KKASSERT(buffer->zone2_offset == zone2_offset);
748 				hammer_io_clear_modify(&buffer->io, 1);
749 				buffer->io.reclaim = 1;
750 				buffer->io.waitdep = 1;
751 				KKASSERT(buffer->io.volume == volume);
752 				hammer_rel_buffer(buffer, 0);
753 			}
754 		} else {
755 			error = hammer_io_inval(volume, zone2_offset);
756 		}
757 		if (error) {
758 			ret_error = error;
759 			if (report_conflicts || (hammer_debug_general & 0x8000))
760 				kprintf("hammer_del_buffers: unable to invalidate %016llx buffer=%p rep=%d\n", base_offset, buffer, report_conflicts);
761 		}
762 		base_offset += HAMMER_BUFSIZE;
763 		zone2_offset += HAMMER_BUFSIZE;
764 		bytes -= HAMMER_BUFSIZE;
765 	}
766 	hammer_rel_volume(volume, 0);
767 	return (ret_error);
768 }
769 
770 static int
771 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
772 {
773 	hammer_volume_t volume;
774 	int error;
775 
776 	/*
777 	 * Load the buffer's on-disk info
778 	 */
779 	volume = buffer->io.volume;
780 	++buffer->io.loading;
781 	hammer_lock_ex(&buffer->io.lock);
782 
783 	if (hammer_debug_io & 0x0001) {
784 		kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
785 			buffer->zoneX_offset, buffer->zone2_offset, isnew,
786 			buffer->ondisk);
787 	}
788 
789 	if (buffer->ondisk == NULL) {
790 		if (isnew) {
791 			error = hammer_io_new(volume->devvp, &buffer->io);
792 		} else {
793 			error = hammer_io_read(volume->devvp, &buffer->io,
794 					       volume->maxraw_off);
795 		}
796 		if (error == 0)
797 			buffer->ondisk = (void *)buffer->io.bp->b_data;
798 	} else if (isnew) {
799 		error = hammer_io_new(volume->devvp, &buffer->io);
800 	} else {
801 		error = 0;
802 	}
803 	--buffer->io.loading;
804 	hammer_unlock(&buffer->io.lock);
805 	return (error);
806 }
807 
808 /*
809  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
810  * This routine is only called during unmount.
811  */
812 int
813 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
814 {
815 	/*
816 	 * Clean up the persistent ref ioerror might have on the buffer
817 	 * and acquire a ref (steal ioerror's if we can).
818 	 */
819 	if (buffer->io.ioerror) {
820 		buffer->io.ioerror = 0;
821 	} else {
822 		if (buffer->io.lock.refs == 0)
823 			++hammer_count_refedbufs;
824 		hammer_ref(&buffer->io.lock);
825 	}
826 
827 	/*
828 	 * We must not flush a dirty buffer to disk on umount.  It should
829 	 * have already been dealt with by the flusher, or we may be in
830 	 * catastrophic failure.
831 	 */
832 	hammer_io_clear_modify(&buffer->io, 1);
833 	hammer_flush_buffer_nodes(buffer);
834 	KKASSERT(buffer->io.lock.refs == 1);
835 	hammer_rel_buffer(buffer, 2);
836 	return(0);
837 }
838 
839 /*
840  * Reference a buffer that is either already referenced or via a specially
841  * handled pointer (aka cursor->buffer).
842  */
843 int
844 hammer_ref_buffer(hammer_buffer_t buffer)
845 {
846 	int error;
847 
848 	if (buffer->io.lock.refs == 0)
849 		++hammer_count_refedbufs;
850 	hammer_ref(&buffer->io.lock);
851 
852 	/*
853 	 * At this point a biodone() will not touch the buffer other then
854 	 * incidental bits.  However, lose_list can be modified via
855 	 * a biodone() interrupt.
856 	 *
857 	 * No longer loose
858 	 */
859 	if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
860 		crit_enter();
861 		TAILQ_REMOVE(buffer->io.mod_list, &buffer->io, mod_entry);
862 		buffer->io.mod_list = NULL;
863 		crit_exit();
864 	}
865 
866 	if (buffer->ondisk == NULL || buffer->io.loading) {
867 		error = hammer_load_buffer(buffer, 0);
868 		if (error) {
869 			hammer_rel_buffer(buffer, 1);
870 			/*
871 			 * NOTE: buffer pointer can become stale after
872 			 * the above release.
873 			 */
874 		}
875 	} else {
876 		error = 0;
877 	}
878 	return(error);
879 }
880 
881 /*
882  * Release a buffer.  We have to deal with several places where
883  * another thread can ref the buffer.
884  *
885  * Only destroy the structure itself if the related buffer cache buffer
886  * was disassociated from it.  This ties the management of the structure
887  * to the buffer cache subsystem.  buffer->ondisk determines whether the
888  * embedded io is referenced or not.
889  */
890 void
891 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
892 {
893 	hammer_volume_t volume;
894 	hammer_mount_t hmp;
895 	struct buf *bp = NULL;
896 	int freeme = 0;
897 
898 	hmp = buffer->io.hmp;
899 
900 	crit_enter();
901 	if (buffer->io.lock.refs == 1) {
902 		++buffer->io.loading;	/* force interlock check */
903 		hammer_lock_ex(&buffer->io.lock);
904 		if (buffer->io.lock.refs == 1) {
905 			bp = hammer_io_release(&buffer->io, flush);
906 
907 			if (buffer->io.lock.refs == 1)
908 				--hammer_count_refedbufs;
909 
910 			if (buffer->io.bp == NULL &&
911 			    buffer->io.lock.refs == 1) {
912 				/*
913 				 * Final cleanup
914 				 *
915 				 * NOTE: It is impossible for any associated
916 				 * B-Tree nodes to have refs if the buffer
917 				 * has no additional refs.
918 				 */
919 				RB_REMOVE(hammer_buf_rb_tree,
920 					  &buffer->io.hmp->rb_bufs_root,
921 					  buffer);
922 				volume = buffer->io.volume;
923 				buffer->io.volume = NULL; /* sanity */
924 				hammer_rel_volume(volume, 0);
925 				hammer_io_clear_modlist(&buffer->io);
926 				hammer_flush_buffer_nodes(buffer);
927 				KKASSERT(TAILQ_EMPTY(&buffer->clist));
928 				freeme = 1;
929 			}
930 		}
931 		--buffer->io.loading;
932 		hammer_unlock(&buffer->io.lock);
933 	}
934 	hammer_unref(&buffer->io.lock);
935 	crit_exit();
936 	if (bp)
937 		brelse(bp);
938 	if (freeme) {
939 		--hammer_count_buffers;
940 		kfree(buffer, hmp->m_misc);
941 	}
942 }
943 
944 /*
945  * Access the filesystem buffer containing the specified hammer offset.
946  * buf_offset is a conglomeration of the volume number and vol_buf_beg
947  * relative buffer offset.  It must also have bit 55 set to be valid.
948  * (see hammer_off_t in hammer_disk.h).
949  *
950  * Any prior buffer in *bufferp will be released and replaced by the
951  * requested buffer.
952  *
953  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
954  * passed cached *bufferp to match against either zoneX or zone2.
955  */
956 static __inline
957 void *
958 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
959 	     int *errorp, struct hammer_buffer **bufferp)
960 {
961 	hammer_buffer_t buffer;
962 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
963 
964 	buf_offset &= ~HAMMER_BUFMASK64;
965 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
966 
967 	buffer = *bufferp;
968 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
969 			       buffer->zoneX_offset != buf_offset)) {
970 		if (buffer)
971 			hammer_rel_buffer(buffer, 0);
972 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
973 		*bufferp = buffer;
974 	} else {
975 		*errorp = 0;
976 	}
977 
978 	/*
979 	 * Return a pointer to the buffer data.
980 	 */
981 	if (buffer == NULL)
982 		return(NULL);
983 	else
984 		return((char *)buffer->ondisk + xoff);
985 }
986 
987 void *
988 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
989 	     int *errorp, struct hammer_buffer **bufferp)
990 {
991 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
992 }
993 
994 void *
995 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
996 	         int *errorp, struct hammer_buffer **bufferp)
997 {
998 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
999 	return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1000 }
1001 
1002 /*
1003  * Access the filesystem buffer containing the specified hammer offset.
1004  * No disk read operation occurs.  The result buffer may contain garbage.
1005  *
1006  * Any prior buffer in *bufferp will be released and replaced by the
1007  * requested buffer.
1008  *
1009  * This function marks the buffer dirty but does not increment its
1010  * modify_refs count.
1011  */
1012 static __inline
1013 void *
1014 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1015 	     int *errorp, struct hammer_buffer **bufferp)
1016 {
1017 	hammer_buffer_t buffer;
1018 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1019 
1020 	buf_offset &= ~HAMMER_BUFMASK64;
1021 
1022 	buffer = *bufferp;
1023 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1024 			       buffer->zoneX_offset != buf_offset)) {
1025 		if (buffer)
1026 			hammer_rel_buffer(buffer, 0);
1027 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1028 		*bufferp = buffer;
1029 	} else {
1030 		*errorp = 0;
1031 	}
1032 
1033 	/*
1034 	 * Return a pointer to the buffer data.
1035 	 */
1036 	if (buffer == NULL)
1037 		return(NULL);
1038 	else
1039 		return((char *)buffer->ondisk + xoff);
1040 }
1041 
1042 void *
1043 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1044 	     int *errorp, struct hammer_buffer **bufferp)
1045 {
1046 	return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1047 }
1048 
1049 void *
1050 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1051 		int *errorp, struct hammer_buffer **bufferp)
1052 {
1053 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1054 	return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1055 }
1056 
1057 /************************************************************************
1058  *				NODES					*
1059  ************************************************************************
1060  *
1061  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1062  * method used by the HAMMER filesystem.
1063  *
1064  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1065  * associated with its buffer, and will only referenced the buffer while
1066  * the node itself is referenced.
1067  *
1068  * A hammer_node can also be passively associated with other HAMMER
1069  * structures, such as inodes, while retaining 0 references.  These
1070  * associations can be cleared backwards using a pointer-to-pointer in
1071  * the hammer_node.
1072  *
1073  * This allows the HAMMER implementation to cache hammer_nodes long-term
1074  * and short-cut a great deal of the infrastructure's complexity.  In
1075  * most cases a cached node can be reacquired without having to dip into
1076  * either the buffer or cluster management code.
1077  *
1078  * The caller must pass a referenced cluster on call and will retain
1079  * ownership of the reference on return.  The node will acquire its own
1080  * additional references, if necessary.
1081  */
1082 hammer_node_t
1083 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1084 		int isnew, int *errorp)
1085 {
1086 	hammer_mount_t hmp = trans->hmp;
1087 	hammer_node_t node;
1088 
1089 	KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1090 
1091 	/*
1092 	 * Locate the structure, allocating one if necessary.
1093 	 */
1094 again:
1095 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1096 	if (node == NULL) {
1097 		++hammer_count_nodes;
1098 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1099 		node->node_offset = node_offset;
1100 		node->hmp = hmp;
1101 		TAILQ_INIT(&node->cursor_list);
1102 		TAILQ_INIT(&node->cache_list);
1103 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1104 			--hammer_count_nodes;
1105 			kfree(node, hmp->m_misc);
1106 			goto again;
1107 		}
1108 	}
1109 	hammer_ref(&node->lock);
1110 	if (node->ondisk) {
1111 		*errorp = 0;
1112 	} else {
1113 		*errorp = hammer_load_node(trans, node, isnew);
1114 		trans->flags |= HAMMER_TRANSF_DIDIO;
1115 	}
1116 	if (*errorp) {
1117 		hammer_rel_node(node);
1118 		node = NULL;
1119 	}
1120 	return(node);
1121 }
1122 
1123 /*
1124  * Reference an already-referenced node.
1125  */
1126 void
1127 hammer_ref_node(hammer_node_t node)
1128 {
1129 	KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
1130 	hammer_ref(&node->lock);
1131 }
1132 
1133 /*
1134  * Load a node's on-disk data reference.
1135  */
1136 static int
1137 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1138 {
1139 	hammer_buffer_t buffer;
1140 	hammer_off_t buf_offset;
1141 	int error;
1142 
1143 	error = 0;
1144 	++node->loading;
1145 	hammer_lock_ex(&node->lock);
1146 	if (node->ondisk == NULL) {
1147 		/*
1148 		 * This is a little confusing but the jist is that
1149 		 * node->buffer determines whether the node is on
1150 		 * the buffer's clist and node->ondisk determines
1151 		 * whether the buffer is referenced.
1152 		 *
1153 		 * We could be racing a buffer release, in which case
1154 		 * node->buffer may become NULL while we are blocked
1155 		 * referencing the buffer.
1156 		 */
1157 		if ((buffer = node->buffer) != NULL) {
1158 			error = hammer_ref_buffer(buffer);
1159 			if (error == 0 && node->buffer == NULL) {
1160 				TAILQ_INSERT_TAIL(&buffer->clist,
1161 						  node, entry);
1162 				node->buffer = buffer;
1163 			}
1164 		} else {
1165 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1166 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1167 						   HAMMER_BUFSIZE, 0, &error);
1168 			if (buffer) {
1169 				KKASSERT(error == 0);
1170 				TAILQ_INSERT_TAIL(&buffer->clist,
1171 						  node, entry);
1172 				node->buffer = buffer;
1173 			}
1174 		}
1175 		if (error)
1176 			goto failed;
1177 		node->ondisk = (void *)((char *)buffer->ondisk +
1178 				        (node->node_offset & HAMMER_BUFMASK));
1179 
1180 		/*
1181 		 * Check CRC.  NOTE: Neither flag is set and the CRC is not
1182 		 * generated on new B-Tree nodes.
1183 		 */
1184 		if (isnew == 0 &&
1185 		    (node->flags & HAMMER_NODE_CRCANY) == 0) {
1186 			if (hammer_crc_test_btree(node->ondisk) == 0) {
1187 				if (hammer_debug_debug & 0x0002)
1188 					Debugger("CRC FAILED: B-TREE NODE");
1189 				node->flags |= HAMMER_NODE_CRCBAD;
1190 			} else {
1191 				node->flags |= HAMMER_NODE_CRCGOOD;
1192 			}
1193 		}
1194 	}
1195 	if (node->flags & HAMMER_NODE_CRCBAD) {
1196 		if (trans->flags & HAMMER_TRANSF_CRCDOM)
1197 			error = EDOM;
1198 		else
1199 			error = EIO;
1200 	}
1201 failed:
1202 	--node->loading;
1203 	hammer_unlock(&node->lock);
1204 	return (error);
1205 }
1206 
1207 /*
1208  * Safely reference a node, interlock against flushes via the IO subsystem.
1209  */
1210 hammer_node_t
1211 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1212 		     int *errorp)
1213 {
1214 	hammer_node_t node;
1215 
1216 	node = cache->node;
1217 	if (node != NULL) {
1218 		hammer_ref(&node->lock);
1219 		if (node->ondisk) {
1220 			if (node->flags & HAMMER_NODE_CRCBAD) {
1221 				if (trans->flags & HAMMER_TRANSF_CRCDOM)
1222 					*errorp = EDOM;
1223 				else
1224 					*errorp = EIO;
1225 			} else {
1226 				*errorp = 0;
1227 			}
1228 		} else {
1229 			*errorp = hammer_load_node(trans, node, 0);
1230 		}
1231 		if (*errorp) {
1232 			hammer_rel_node(node);
1233 			node = NULL;
1234 		}
1235 	} else {
1236 		*errorp = ENOENT;
1237 	}
1238 	return(node);
1239 }
1240 
1241 /*
1242  * Release a hammer_node.  On the last release the node dereferences
1243  * its underlying buffer and may or may not be destroyed.
1244  */
1245 void
1246 hammer_rel_node(hammer_node_t node)
1247 {
1248 	hammer_buffer_t buffer;
1249 
1250 	/*
1251 	 * If this isn't the last ref just decrement the ref count and
1252 	 * return.
1253 	 */
1254 	if (node->lock.refs > 1) {
1255 		hammer_unref(&node->lock);
1256 		return;
1257 	}
1258 
1259 	/*
1260 	 * If there is no ondisk info or no buffer the node failed to load,
1261 	 * remove the last reference and destroy the node.
1262 	 */
1263 	if (node->ondisk == NULL) {
1264 		hammer_unref(&node->lock);
1265 		hammer_flush_node(node);
1266 		/* node is stale now */
1267 		return;
1268 	}
1269 
1270 	/*
1271 	 * Do not disassociate the node from the buffer if it represents
1272 	 * a modified B-Tree node that still needs its crc to be generated.
1273 	 */
1274 	if (node->flags & HAMMER_NODE_NEEDSCRC)
1275 		return;
1276 
1277 	/*
1278 	 * Do final cleanups and then either destroy the node and leave it
1279 	 * passively cached.  The buffer reference is removed regardless.
1280 	 */
1281 	buffer = node->buffer;
1282 	node->ondisk = NULL;
1283 
1284 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1285 		hammer_unref(&node->lock);
1286 		hammer_rel_buffer(buffer, 0);
1287 		return;
1288 	}
1289 
1290 	/*
1291 	 * Destroy the node.
1292 	 */
1293 	hammer_unref(&node->lock);
1294 	hammer_flush_node(node);
1295 	/* node is stale */
1296 	hammer_rel_buffer(buffer, 0);
1297 }
1298 
1299 /*
1300  * Free space on-media associated with a B-Tree node.
1301  */
1302 void
1303 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1304 {
1305 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1306 	node->flags |= HAMMER_NODE_DELETED;
1307 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1308 }
1309 
1310 /*
1311  * Passively cache a referenced hammer_node.  The caller may release
1312  * the node on return.
1313  */
1314 void
1315 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1316 {
1317 	/*
1318 	 * If the node doesn't exist, or is being deleted, don't cache it!
1319 	 *
1320 	 * The node can only ever be NULL in the I/O failure path.
1321 	 */
1322 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1323 		return;
1324 	if (cache->node == node)
1325 		return;
1326 	while (cache->node)
1327 		hammer_uncache_node(cache);
1328 	if (node->flags & HAMMER_NODE_DELETED)
1329 		return;
1330 	cache->node = node;
1331 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1332 }
1333 
1334 void
1335 hammer_uncache_node(hammer_node_cache_t cache)
1336 {
1337 	hammer_node_t node;
1338 
1339 	if ((node = cache->node) != NULL) {
1340 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1341 		cache->node = NULL;
1342 		if (TAILQ_EMPTY(&node->cache_list))
1343 			hammer_flush_node(node);
1344 	}
1345 }
1346 
1347 /*
1348  * Remove a node's cache references and destroy the node if it has no
1349  * other references or backing store.
1350  */
1351 void
1352 hammer_flush_node(hammer_node_t node)
1353 {
1354 	hammer_node_cache_t cache;
1355 	hammer_buffer_t buffer;
1356 	hammer_mount_t hmp = node->hmp;
1357 
1358 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1359 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1360 		cache->node = NULL;
1361 	}
1362 	if (node->lock.refs == 0 && node->ondisk == NULL) {
1363 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1364 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1365 		if ((buffer = node->buffer) != NULL) {
1366 			node->buffer = NULL;
1367 			TAILQ_REMOVE(&buffer->clist, node, entry);
1368 			/* buffer is unreferenced because ondisk is NULL */
1369 		}
1370 		--hammer_count_nodes;
1371 		kfree(node, hmp->m_misc);
1372 	}
1373 }
1374 
1375 /*
1376  * Flush passively cached B-Tree nodes associated with this buffer.
1377  * This is only called when the buffer is about to be destroyed, so
1378  * none of the nodes should have any references.  The buffer is locked.
1379  *
1380  * We may be interlocked with the buffer.
1381  */
1382 void
1383 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1384 {
1385 	hammer_node_t node;
1386 
1387 	while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1388 		KKASSERT(node->ondisk == NULL);
1389 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1390 
1391 		if (node->lock.refs == 0) {
1392 			hammer_ref(&node->lock);
1393 			node->flags |= HAMMER_NODE_FLUSH;
1394 			hammer_rel_node(node);
1395 		} else {
1396 			KKASSERT(node->loading != 0);
1397 			KKASSERT(node->buffer != NULL);
1398 			buffer = node->buffer;
1399 			node->buffer = NULL;
1400 			TAILQ_REMOVE(&buffer->clist, node, entry);
1401 			/* buffer is unreferenced because ondisk is NULL */
1402 		}
1403 	}
1404 }
1405 
1406 
1407 /************************************************************************
1408  *				ALLOCATORS				*
1409  ************************************************************************/
1410 
1411 /*
1412  * Allocate a B-Tree node.
1413  */
1414 hammer_node_t
1415 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1416 {
1417 	hammer_buffer_t buffer = NULL;
1418 	hammer_node_t node = NULL;
1419 	hammer_off_t node_offset;
1420 
1421 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1422 					    sizeof(struct hammer_node_ondisk),
1423 					    errorp);
1424 	if (*errorp == 0) {
1425 		node = hammer_get_node(trans, node_offset, 1, errorp);
1426 		hammer_modify_node_noundo(trans, node);
1427 		bzero(node->ondisk, sizeof(*node->ondisk));
1428 		hammer_modify_node_done(node);
1429 	}
1430 	if (buffer)
1431 		hammer_rel_buffer(buffer, 0);
1432 	return(node);
1433 }
1434 
1435 /*
1436  * Allocate data.  If the address of a data buffer is supplied then
1437  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1438  * will be set to the related buffer.  The caller must release it when
1439  * finally done.  The initial *data_bufferp should be set to NULL by
1440  * the caller.
1441  *
1442  * The caller is responsible for making hammer_modify*() calls on the
1443  * *data_bufferp.
1444  */
1445 void *
1446 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1447 		  u_int16_t rec_type, hammer_off_t *data_offsetp,
1448 		  struct hammer_buffer **data_bufferp, int *errorp)
1449 {
1450 	void *data;
1451 	int zone;
1452 
1453 	/*
1454 	 * Allocate data
1455 	 */
1456 	if (data_len) {
1457 		switch(rec_type) {
1458 		case HAMMER_RECTYPE_INODE:
1459 		case HAMMER_RECTYPE_DIRENTRY:
1460 		case HAMMER_RECTYPE_EXT:
1461 		case HAMMER_RECTYPE_FIX:
1462 		case HAMMER_RECTYPE_PFS:
1463 			zone = HAMMER_ZONE_META_INDEX;
1464 			break;
1465 		case HAMMER_RECTYPE_DATA:
1466 		case HAMMER_RECTYPE_DB:
1467 			if (data_len <= HAMMER_BUFSIZE / 2) {
1468 				zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1469 			} else {
1470 				data_len = (data_len + HAMMER_BUFMASK) &
1471 					   ~HAMMER_BUFMASK;
1472 				zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1473 			}
1474 			break;
1475 		default:
1476 			panic("hammer_alloc_data: rec_type %04x unknown",
1477 			      rec_type);
1478 			zone = 0;	/* NOT REACHED */
1479 			break;
1480 		}
1481 		*data_offsetp = hammer_blockmap_alloc(trans, zone,
1482 						      data_len, errorp);
1483 	} else {
1484 		*data_offsetp = 0;
1485 	}
1486 	if (*errorp == 0 && data_bufferp) {
1487 		if (data_len) {
1488 			data = hammer_bread_ext(trans->hmp, *data_offsetp,
1489 						data_len, errorp, data_bufferp);
1490 		} else {
1491 			data = NULL;
1492 		}
1493 	} else {
1494 		data = NULL;
1495 	}
1496 	return(data);
1497 }
1498 
1499 /*
1500  * Sync dirty buffers to the media and clean-up any loose ends.
1501  *
1502  * These functions do not start the flusher going, they simply
1503  * queue everything up to the flusher.
1504  */
1505 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1506 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1507 
1508 int
1509 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1510 {
1511 	struct hammer_sync_info info;
1512 
1513 	info.error = 0;
1514 	info.waitfor = waitfor;
1515 	if (waitfor == MNT_WAIT) {
1516 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1517 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1518 	} else {
1519 		vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1520 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1521 	}
1522 	return(info.error);
1523 }
1524 
1525 /*
1526  * Filesystem sync.  If doing a synchronous sync make a second pass on
1527  * the vnodes in case any were already flushing during the first pass,
1528  * and activate the flusher twice (the second time brings the UNDO FIFO's
1529  * start position up to the end position after the first call).
1530  */
1531 int
1532 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1533 {
1534 	struct hammer_sync_info info;
1535 
1536 	info.error = 0;
1537 	info.waitfor = MNT_NOWAIT;
1538 	vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1539 		      hammer_sync_scan1, hammer_sync_scan2, &info);
1540 	if (info.error == 0 && waitfor == MNT_WAIT) {
1541 		info.waitfor = waitfor;
1542 		vmntvnodescan(hmp->mp, VMSC_GETVP,
1543 			      hammer_sync_scan1, hammer_sync_scan2, &info);
1544 	}
1545         if (waitfor == MNT_WAIT) {
1546                 hammer_flusher_sync(hmp);
1547                 hammer_flusher_sync(hmp);
1548 	} else {
1549                 hammer_flusher_async(hmp, NULL);
1550                 hammer_flusher_async(hmp, NULL);
1551 	}
1552 	return(info.error);
1553 }
1554 
1555 static int
1556 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1557 {
1558 	struct hammer_inode *ip;
1559 
1560 	ip = VTOI(vp);
1561 	if (vp->v_type == VNON || ip == NULL ||
1562 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1563 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1564 		return(-1);
1565 	}
1566 	return(0);
1567 }
1568 
1569 static int
1570 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1571 {
1572 	struct hammer_sync_info *info = data;
1573 	struct hammer_inode *ip;
1574 	int error;
1575 
1576 	ip = VTOI(vp);
1577 	if (vp->v_type == VNON || vp->v_type == VBAD ||
1578 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1579 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1580 		return(0);
1581 	}
1582 	error = VOP_FSYNC(vp, MNT_NOWAIT);
1583 	if (error)
1584 		info->error = error;
1585 	return(0);
1586 }
1587 
1588