xref: /dragonfly/sys/vfs/hammer/hammer_ondisk.c (revision 745703c7)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 
47 #include <sys/buf2.h>
48 
49 static void hammer_free_volume(hammer_volume_t volume);
50 static int hammer_load_volume(hammer_volume_t volume);
51 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
52 static int hammer_load_node(hammer_transaction_t trans,
53 				hammer_node_t node, int isnew);
54 static void _hammer_rel_node(hammer_node_t node, int locked);
55 
56 static int
57 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
58 {
59 	if (vol1->vol_no < vol2->vol_no)
60 		return(-1);
61 	if (vol1->vol_no > vol2->vol_no)
62 		return(1);
63 	return(0);
64 }
65 
66 /*
67  * hammer_buffer structures are indexed via their zoneX_offset, not
68  * their zone2_offset.
69  */
70 static int
71 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
72 {
73 	if (buf1->zoneX_offset < buf2->zoneX_offset)
74 		return(-1);
75 	if (buf1->zoneX_offset > buf2->zoneX_offset)
76 		return(1);
77 	return(0);
78 }
79 
80 static int
81 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
82 {
83 	if (node1->node_offset < node2->node_offset)
84 		return(-1);
85 	if (node1->node_offset > node2->node_offset)
86 		return(1);
87 	return(0);
88 }
89 
90 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
91 	     hammer_vol_rb_compare, int32_t, vol_no);
92 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
93 	     hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
94 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
95 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
96 
97 /************************************************************************
98  *				VOLUMES					*
99  ************************************************************************
100  *
101  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
102  * code on failure.  Volumes must be loaded at mount time, hammer_get_volume()
103  * will not load a new volume.
104  *
105  * The passed devvp is vref()'d but not locked.  This function consumes the
106  * ref (typically by associating it with the volume structure).
107  *
108  * Calls made to hammer_load_volume() or single-threaded
109  */
110 int
111 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
112 		      struct vnode *devvp)
113 {
114 	struct mount *mp;
115 	hammer_volume_t volume;
116 	struct hammer_volume_ondisk *ondisk;
117 	struct nlookupdata nd;
118 	struct buf *bp = NULL;
119 	int error;
120 	int ronly;
121 	int setmp = 0;
122 
123 	mp = hmp->mp;
124 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
125 
126 	/*
127 	 * Allocate a volume structure
128 	 */
129 	++hammer_count_volumes;
130 	volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
131 	volume->vol_name = kstrdup(volname, hmp->m_misc);
132 	volume->io.hmp = hmp;	/* bootstrap */
133 	hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
134 	volume->io.offset = 0LL;
135 	volume->io.bytes = HAMMER_BUFSIZE;
136 
137 	/*
138 	 * Get the device vnode
139 	 */
140 	if (devvp == NULL) {
141 		error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
142 		if (error == 0)
143 			error = nlookup(&nd);
144 		if (error == 0)
145 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
146 		nlookup_done(&nd);
147 	} else {
148 		error = 0;
149 		volume->devvp = devvp;
150 	}
151 
152 	if (error == 0) {
153 		if (vn_isdisk(volume->devvp, &error)) {
154 			error = vfs_mountedon(volume->devvp);
155 		}
156 	}
157 	if (error == 0 && vcount(volume->devvp) > 0)
158 		error = EBUSY;
159 	if (error == 0) {
160 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
161 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
162 		if (error == 0) {
163 			error = VOP_OPEN(volume->devvp,
164 					 (ronly ? FREAD : FREAD|FWRITE),
165 					 FSCRED, NULL);
166 		}
167 		vn_unlock(volume->devvp);
168 	}
169 	if (error) {
170 		hammer_free_volume(volume);
171 		return(error);
172 	}
173 	volume->devvp->v_rdev->si_mountpoint = mp;
174 	setmp = 1;
175 
176 	/*
177 	 * Extract the volume number from the volume header and do various
178 	 * sanity checks.
179 	 */
180 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
181 	if (error)
182 		goto late_failure;
183 	ondisk = (void *)bp->b_data;
184 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
185 		kprintf("hammer_mount: volume %s has an invalid header\n",
186 			volume->vol_name);
187 		error = EFTYPE;
188 		goto late_failure;
189 	}
190 	volume->vol_no = ondisk->vol_no;
191 	volume->buffer_base = ondisk->vol_buf_beg;
192 	volume->vol_flags = ondisk->vol_flags;
193 	volume->nblocks = ondisk->vol_nblocks;
194 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
195 				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
196 	volume->maxraw_off = ondisk->vol_buf_end;
197 
198 	if (RB_EMPTY(&hmp->rb_vols_root)) {
199 		hmp->fsid = ondisk->vol_fsid;
200 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
201 		kprintf("hammer_mount: volume %s's fsid does not match "
202 			"other volumes\n", volume->vol_name);
203 		error = EFTYPE;
204 		goto late_failure;
205 	}
206 
207 	/*
208 	 * Insert the volume structure into the red-black tree.
209 	 */
210 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
211 		kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
212 			volume->vol_name, volume->vol_no);
213 		error = EEXIST;
214 	}
215 
216 	/*
217 	 * Set the root volume .  HAMMER special cases rootvol the structure.
218 	 * We do not hold a ref because this would prevent related I/O
219 	 * from being flushed.
220 	 */
221 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
222 		hmp->rootvol = volume;
223 		hmp->nvolumes = ondisk->vol_count;
224 		if (bp) {
225 			brelse(bp);
226 			bp = NULL;
227 		}
228 		hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
229 			(HAMMER_BIGBLOCK_SIZE / HAMMER_BUFSIZE);
230 		hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
231 			(HAMMER_BIGBLOCK_SIZE / HAMMER_BUFSIZE);
232 	}
233 late_failure:
234 	if (bp)
235 		brelse(bp);
236 	if (error) {
237 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
238 		if (setmp)
239 			volume->devvp->v_rdev->si_mountpoint = NULL;
240 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
241 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE, NULL);
242 		vn_unlock(volume->devvp);
243 		hammer_free_volume(volume);
244 	}
245 	return (error);
246 }
247 
248 /*
249  * This is called for each volume when updating the mount point from
250  * read-write to read-only or vise-versa.
251  */
252 int
253 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
254 {
255 	if (volume->devvp) {
256 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
257 		if (volume->io.hmp->ronly) {
258 			/* do not call vinvalbuf */
259 			VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
260 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
261 		} else {
262 			/* do not call vinvalbuf */
263 			VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
264 			VOP_CLOSE(volume->devvp, FREAD, NULL);
265 		}
266 		vn_unlock(volume->devvp);
267 	}
268 	return(0);
269 }
270 
271 /*
272  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
273  * so returns -1 on failure.
274  */
275 int
276 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
277 {
278 	hammer_mount_t hmp = volume->io.hmp;
279 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
280 
281 	/*
282 	 * Clean up the root volume pointer, which is held unlocked in hmp.
283 	 */
284 	if (hmp->rootvol == volume)
285 		hmp->rootvol = NULL;
286 
287 	/*
288 	 * We must not flush a dirty buffer to disk on umount.  It should
289 	 * have already been dealt with by the flusher, or we may be in
290 	 * catastrophic failure.
291 	 */
292 	hammer_io_clear_modify(&volume->io, 1);
293 	volume->io.waitdep = 1;
294 
295 	/*
296 	 * Clean up the persistent ref ioerror might have on the volume
297 	 */
298 	if (volume->io.ioerror)
299 		hammer_io_clear_error_noassert(&volume->io);
300 
301 	/*
302 	 * This should release the bp.  Releasing the volume with flush set
303 	 * implies the interlock is set.
304 	 */
305 	hammer_ref_interlock_true(&volume->io.lock);
306 	hammer_rel_volume(volume, 1);
307 	KKASSERT(volume->io.bp == NULL);
308 
309 	/*
310 	 * There should be no references on the volume, no clusters, and
311 	 * no super-clusters.
312 	 */
313 	KKASSERT(hammer_norefs(&volume->io.lock));
314 
315 	volume->ondisk = NULL;
316 	if (volume->devvp) {
317 		if (volume->devvp->v_rdev &&
318 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp
319 		) {
320 			volume->devvp->v_rdev->si_mountpoint = NULL;
321 		}
322 		if (ronly) {
323 			/*
324 			 * Make sure we don't sync anything to disk if we
325 			 * are in read-only mode (1) or critically-errored
326 			 * (2).  Note that there may be dirty buffers in
327 			 * normal read-only mode from crash recovery.
328 			 */
329 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
330 			vinvalbuf(volume->devvp, 0, 0, 0);
331 			VOP_CLOSE(volume->devvp, FREAD, NULL);
332 			vn_unlock(volume->devvp);
333 		} else {
334 			/*
335 			 * Normal termination, save any dirty buffers
336 			 * (XXX there really shouldn't be any).
337 			 */
338 			vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
339 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
340 			VOP_CLOSE(volume->devvp, FREAD|FWRITE, NULL);
341 			vn_unlock(volume->devvp);
342 		}
343 	}
344 
345 	/*
346 	 * Destroy the structure
347 	 */
348 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
349 	hammer_free_volume(volume);
350 	return(0);
351 }
352 
353 static
354 void
355 hammer_free_volume(hammer_volume_t volume)
356 {
357 	hammer_mount_t hmp = volume->io.hmp;
358 
359 	if (volume->vol_name) {
360 		kfree(volume->vol_name, hmp->m_misc);
361 		volume->vol_name = NULL;
362 	}
363 	if (volume->devvp) {
364 		vrele(volume->devvp);
365 		volume->devvp = NULL;
366 	}
367 	--hammer_count_volumes;
368 	kfree(volume, hmp->m_misc);
369 }
370 
371 /*
372  * Get a HAMMER volume.  The volume must already exist.
373  */
374 hammer_volume_t
375 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
376 {
377 	struct hammer_volume *volume;
378 
379 	/*
380 	 * Locate the volume structure
381 	 */
382 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
383 	if (volume == NULL) {
384 		*errorp = ENOENT;
385 		return(NULL);
386 	}
387 
388 	/*
389 	 * Reference the volume, load/check the data on the 0->1 transition.
390 	 * hammer_load_volume() will dispose of the interlock on return,
391 	 * and also clean up the ref count on error.
392 	 */
393 	if (hammer_ref_interlock(&volume->io.lock)) {
394 		*errorp = hammer_load_volume(volume);
395 		if (*errorp)
396 			volume = NULL;
397 	} else {
398 		KKASSERT(volume->ondisk);
399 		*errorp = 0;
400 	}
401 	return(volume);
402 }
403 
404 int
405 hammer_ref_volume(hammer_volume_t volume)
406 {
407 	int error;
408 
409 	/*
410 	 * Reference the volume and deal with the check condition used to
411 	 * load its ondisk info.
412 	 */
413 	if (hammer_ref_interlock(&volume->io.lock)) {
414 		error = hammer_load_volume(volume);
415 	} else {
416 		KKASSERT(volume->ondisk);
417 		error = 0;
418 	}
419 	return (error);
420 }
421 
422 /*
423  * May be called without fs_token
424  */
425 hammer_volume_t
426 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
427 {
428 	hammer_volume_t volume;
429 
430 	volume = hmp->rootvol;
431 	KKASSERT(volume != NULL);
432 
433 	/*
434 	 * Reference the volume and deal with the check condition used to
435 	 * load its ondisk info.
436 	 */
437 	if (hammer_ref_interlock(&volume->io.lock)) {
438 		lwkt_gettoken(&volume->io.hmp->fs_token);
439 		*errorp = hammer_load_volume(volume);
440 		lwkt_reltoken(&volume->io.hmp->fs_token);
441 		if (*errorp)
442 			volume = NULL;
443 	} else {
444 		KKASSERT(volume->ondisk);
445 		*errorp = 0;
446 	}
447 	return (volume);
448 }
449 
450 /*
451  * Load a volume's on-disk information.  The volume must be referenced and
452  * the interlock is held on call.  The interlock will be released on return.
453  * The reference will also be released on return if an error occurs.
454  */
455 static int
456 hammer_load_volume(hammer_volume_t volume)
457 {
458 	int error;
459 
460 	if (volume->ondisk == NULL) {
461 		error = hammer_io_read(volume->devvp, &volume->io,
462 				       HAMMER_BUFSIZE);
463 		if (error == 0) {
464 			volume->ondisk = (void *)volume->io.bp->b_data;
465                         hammer_ref_interlock_done(&volume->io.lock);
466 		} else {
467                         hammer_rel_volume(volume, 1);
468 		}
469 	} else {
470 		error = 0;
471 	}
472 	return(error);
473 }
474 
475 /*
476  * Release a previously acquired reference on the volume.
477  *
478  * Volumes are not unloaded from memory during normal operation.
479  *
480  * May be called without fs_token
481  */
482 void
483 hammer_rel_volume(hammer_volume_t volume, int locked)
484 {
485 	struct buf *bp;
486 
487 	if (hammer_rel_interlock(&volume->io.lock, locked)) {
488 		lwkt_gettoken(&volume->io.hmp->fs_token);
489 		volume->ondisk = NULL;
490 		bp = hammer_io_release(&volume->io, locked);
491 		lwkt_reltoken(&volume->io.hmp->fs_token);
492 		hammer_rel_interlock_done(&volume->io.lock, locked);
493 		if (bp)
494 			brelse(bp);
495 	}
496 }
497 
498 int
499 hammer_mountcheck_volumes(struct hammer_mount *hmp)
500 {
501 	hammer_volume_t vol;
502 	int i;
503 
504 	for (i = 0; i < hmp->nvolumes; ++i) {
505 		vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
506 		if (vol == NULL)
507 			return(EINVAL);
508 	}
509 	return(0);
510 }
511 
512 /************************************************************************
513  *				BUFFERS					*
514  ************************************************************************
515  *
516  * Manage buffers.  Currently most blockmap-backed zones are direct-mapped
517  * to zone-2 buffer offsets, without a translation stage.  However, the
518  * hammer_buffer structure is indexed by its zoneX_offset, not its
519  * zone2_offset.
520  *
521  * The proper zone must be maintained throughout the code-base all the way
522  * through to the big-block allocator, or routines like hammer_del_buffers()
523  * will not be able to locate all potentially conflicting buffers.
524  */
525 
526 /*
527  * Helper function returns whether a zone offset can be directly translated
528  * to a raw buffer index or not.  Really only the volume and undo zones
529  * can't be directly translated.  Volumes are special-cased and undo zones
530  * shouldn't be aliased accessed in read-only mode.
531  *
532  * This function is ONLY used to detect aliased zones during a read-only
533  * mount.
534  */
535 static __inline int
536 hammer_direct_zone(hammer_off_t buf_offset)
537 {
538 	switch(HAMMER_ZONE_DECODE(buf_offset)) {
539 	case HAMMER_ZONE_RAW_BUFFER_INDEX:
540 	case HAMMER_ZONE_FREEMAP_INDEX:
541 	case HAMMER_ZONE_BTREE_INDEX:
542 	case HAMMER_ZONE_META_INDEX:
543 	case HAMMER_ZONE_LARGE_DATA_INDEX:
544 	case HAMMER_ZONE_SMALL_DATA_INDEX:
545 		return(1);
546 	default:
547 		return(0);
548 	}
549 	/* NOT REACHED */
550 }
551 
552 hammer_buffer_t
553 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
554 		  int bytes, int isnew, int *errorp)
555 {
556 	hammer_buffer_t buffer;
557 	hammer_volume_t volume;
558 	hammer_off_t	zone2_offset;
559 	hammer_io_type_t iotype;
560 	int vol_no;
561 	int zone;
562 
563 	buf_offset &= ~HAMMER_BUFMASK64;
564 again:
565 	/*
566 	 * Shortcut if the buffer is already cached
567 	 */
568 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
569 	if (buffer) {
570 		/*
571 		 * Once refed the ondisk field will not be cleared by
572 		 * any other action.  Shortcut the operation if the
573 		 * ondisk structure is valid.
574 		 */
575 found_aliased:
576 		if (hammer_ref_interlock(&buffer->io.lock) == 0) {
577 			hammer_io_advance(&buffer->io);
578 			KKASSERT(buffer->ondisk);
579 			*errorp = 0;
580 			return(buffer);
581 		}
582 
583 		/*
584 		 * 0->1 transition or defered 0->1 transition (CHECK),
585 		 * interlock now held.  Shortcut if ondisk is already
586 		 * assigned.
587 		 */
588 		atomic_add_int(&hammer_count_refedbufs, 1);
589 		if (buffer->ondisk) {
590 			hammer_io_advance(&buffer->io);
591 			hammer_ref_interlock_done(&buffer->io.lock);
592 			*errorp = 0;
593 			return(buffer);
594 		}
595 
596 		/*
597 		 * The buffer is no longer loose if it has a ref, and
598 		 * cannot become loose once it gains a ref.  Loose
599 		 * buffers will never be in a modified state.  This should
600 		 * only occur on the 0->1 transition of refs.
601 		 *
602 		 * lose_list can be modified via a biodone() interrupt
603 		 * so the io_token must be held.
604 		 */
605 		if (buffer->io.mod_root == &hmp->lose_root) {
606 			lwkt_gettoken(&hmp->io_token);
607 			if (buffer->io.mod_root == &hmp->lose_root) {
608 				RB_REMOVE(hammer_mod_rb_tree,
609 					  buffer->io.mod_root, &buffer->io);
610 				buffer->io.mod_root = NULL;
611 				KKASSERT(buffer->io.modified == 0);
612 			}
613 			lwkt_reltoken(&hmp->io_token);
614 		}
615 		goto found;
616 	} else if (hmp->ronly && hammer_direct_zone(buf_offset)) {
617 		/*
618 		 * If this is a read-only mount there could be an alias
619 		 * in the raw-zone.  If there is we use that buffer instead.
620 		 *
621 		 * rw mounts will not have aliases.  Also note when going
622 		 * from ro -> rw the recovered raw buffers are flushed and
623 		 * reclaimed, so again there will not be any aliases once
624 		 * the mount is rw.
625 		 */
626 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
627 				   hammer_xlate_to_zone2(buf_offset));
628 		if (buffer) {
629 			if (hammer_debug_general & 0x0001) {
630 				krateprintf(&hmp->kdiag,
631 					    "HAMMER: recovered "
632 					    "aliased %016jx\n",
633 					    (intmax_t)buf_offset);
634 			}
635 			goto found_aliased;
636 		}
637 	}
638 
639 	/*
640 	 * What is the buffer class?
641 	 */
642 	zone = HAMMER_ZONE_DECODE(buf_offset);
643 
644 	switch(zone) {
645 	case HAMMER_ZONE_LARGE_DATA_INDEX:
646 	case HAMMER_ZONE_SMALL_DATA_INDEX:
647 		iotype = HAMMER_STRUCTURE_DATA_BUFFER;
648 		break;
649 	case HAMMER_ZONE_UNDO_INDEX:
650 		iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
651 		break;
652 	case HAMMER_ZONE_META_INDEX:
653 	default:
654 		/*
655 		 * NOTE: inode data and directory entries are placed in this
656 		 * zone.  inode atime/mtime is updated in-place and thus
657 		 * buffers containing inodes must be synchronized as
658 		 * meta-buffers, same as buffers containing B-Tree info.
659 		 */
660 		iotype = HAMMER_STRUCTURE_META_BUFFER;
661 		break;
662 	}
663 
664 	/*
665 	 * Handle blockmap offset translations
666 	 */
667 	if (zone >= HAMMER_ZONE2_MAPPED_INDEX) {
668 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
669 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
670 		zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
671 	} else {
672 		KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
673 		zone2_offset = buf_offset;
674 		*errorp = 0;
675 	}
676 	if (*errorp)
677 		return(NULL);
678 
679 	/*
680 	 * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
681 	 * specifications.
682 	 */
683 	KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
684 		 HAMMER_ZONE_RAW_BUFFER);
685 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
686 	volume = hammer_get_volume(hmp, vol_no, errorp);
687 	if (volume == NULL)
688 		return(NULL);
689 
690 	KKASSERT(zone2_offset < volume->maxbuf_off);
691 
692 	/*
693 	 * Allocate a new buffer structure.  We will check for races later.
694 	 */
695 	++hammer_count_buffers;
696 	buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
697 			 M_WAITOK|M_ZERO|M_USE_RESERVE);
698 	buffer->zone2_offset = zone2_offset;
699 	buffer->zoneX_offset = buf_offset;
700 
701 	hammer_io_init(&buffer->io, volume, iotype);
702 	buffer->io.offset = volume->ondisk->vol_buf_beg +
703 			    (zone2_offset & HAMMER_OFF_SHORT_MASK);
704 	buffer->io.bytes = bytes;
705 	TAILQ_INIT(&buffer->clist);
706 	hammer_ref_interlock_true(&buffer->io.lock);
707 
708 	/*
709 	 * Insert the buffer into the RB tree and handle late collisions.
710 	 */
711 	if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
712 		hammer_rel_volume(volume, 0);
713 		buffer->io.volume = NULL;			/* safety */
714 		if (hammer_rel_interlock(&buffer->io.lock, 1))	/* safety */
715 			hammer_rel_interlock_done(&buffer->io.lock, 1);
716 		--hammer_count_buffers;
717 		kfree(buffer, hmp->m_misc);
718 		goto again;
719 	}
720 	atomic_add_int(&hammer_count_refedbufs, 1);
721 found:
722 
723 	/*
724 	 * The buffer is referenced and interlocked.  Load the buffer
725 	 * if necessary.  hammer_load_buffer() deals with the interlock
726 	 * and, if an error is returned, also deals with the ref.
727 	 */
728 	if (buffer->ondisk == NULL) {
729 		*errorp = hammer_load_buffer(buffer, isnew);
730 		if (*errorp)
731 			buffer = NULL;
732 	} else {
733 		hammer_io_advance(&buffer->io);
734 		hammer_ref_interlock_done(&buffer->io.lock);
735 		*errorp = 0;
736 	}
737 	return(buffer);
738 }
739 
740 /*
741  * This is used by the direct-read code to deal with large-data buffers
742  * created by the reblocker and mirror-write code.  The direct-read code
743  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
744  * running hammer buffers must be fully synced to disk before we can issue
745  * the direct-read.
746  *
747  * This code path is not considered critical as only the rebocker and
748  * mirror-write code will create large-data buffers via the HAMMER buffer
749  * subsystem.  They do that because they operate at the B-Tree level and
750  * do not access the vnode/inode structures.
751  */
752 void
753 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
754 {
755 	hammer_buffer_t buffer;
756 	int error;
757 
758 	KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
759 		 HAMMER_ZONE_LARGE_DATA);
760 
761 	while (bytes > 0) {
762 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
763 				   base_offset);
764 		if (buffer && (buffer->io.modified || buffer->io.running)) {
765 			error = hammer_ref_buffer(buffer);
766 			if (error == 0) {
767 				hammer_io_wait(&buffer->io);
768 				if (buffer->io.modified) {
769 					hammer_io_write_interlock(&buffer->io);
770 					hammer_io_flush(&buffer->io, 0);
771 					hammer_io_done_interlock(&buffer->io);
772 					hammer_io_wait(&buffer->io);
773 				}
774 				hammer_rel_buffer(buffer, 0);
775 			}
776 		}
777 		base_offset += HAMMER_BUFSIZE;
778 		bytes -= HAMMER_BUFSIZE;
779 	}
780 }
781 
782 /*
783  * Destroy all buffers covering the specified zoneX offset range.  This
784  * is called when the related blockmap layer2 entry is freed or when
785  * a direct write bypasses our buffer/buffer-cache subsystem.
786  *
787  * The buffers may be referenced by the caller itself.  Setting reclaim
788  * will cause the buffer to be destroyed when it's ref count reaches zero.
789  *
790  * Return 0 on success, EAGAIN if some buffers could not be destroyed due
791  * to additional references held by other threads, or some other (typically
792  * fatal) error.
793  */
794 int
795 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
796 		   hammer_off_t zone2_offset, int bytes,
797 		   int report_conflicts)
798 {
799 	hammer_buffer_t buffer;
800 	hammer_volume_t volume;
801 	int vol_no;
802 	int error;
803 	int ret_error;
804 
805 	vol_no = HAMMER_VOL_DECODE(zone2_offset);
806 	volume = hammer_get_volume(hmp, vol_no, &ret_error);
807 	KKASSERT(ret_error == 0);
808 
809 	while (bytes > 0) {
810 		buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
811 				   base_offset);
812 		if (buffer) {
813 			error = hammer_ref_buffer(buffer);
814 			if (hammer_debug_general & 0x20000) {
815 				kprintf("hammer: delbufr %016jx "
816 					"rerr=%d 1ref=%d\n",
817 					(intmax_t)buffer->zoneX_offset,
818 					error,
819 					hammer_oneref(&buffer->io.lock));
820 			}
821 			if (error == 0 && !hammer_oneref(&buffer->io.lock)) {
822 				error = EAGAIN;
823 				hammer_rel_buffer(buffer, 0);
824 			}
825 			if (error == 0) {
826 				KKASSERT(buffer->zone2_offset == zone2_offset);
827 				hammer_io_clear_modify(&buffer->io, 1);
828 				buffer->io.reclaim = 1;
829 				buffer->io.waitdep = 1;
830 				KKASSERT(buffer->io.volume == volume);
831 				hammer_rel_buffer(buffer, 0);
832 			}
833 		} else {
834 			error = hammer_io_inval(volume, zone2_offset);
835 		}
836 		if (error) {
837 			ret_error = error;
838 			if (report_conflicts ||
839 			    (hammer_debug_general & 0x8000)) {
840 				krateprintf(&hmp->kdiag,
841 					"hammer_del_buffers: unable to "
842 					"invalidate %016llx buffer=%p "
843 					"rep=%d lkrefs=%08x\n",
844 					(long long)base_offset,
845 					buffer, report_conflicts,
846 					(buffer ? buffer->io.lock.refs : -1));
847 			}
848 		}
849 		base_offset += HAMMER_BUFSIZE;
850 		zone2_offset += HAMMER_BUFSIZE;
851 		bytes -= HAMMER_BUFSIZE;
852 	}
853 	hammer_rel_volume(volume, 0);
854 	return (ret_error);
855 }
856 
857 /*
858  * Given a referenced and interlocked buffer load/validate the data.
859  *
860  * The buffer interlock will be released on return.  If an error is
861  * returned the buffer reference will also be released (and the buffer
862  * pointer will thus be stale).
863  */
864 static int
865 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
866 {
867 	hammer_volume_t volume;
868 	int error;
869 
870 	/*
871 	 * Load the buffer's on-disk info
872 	 */
873 	volume = buffer->io.volume;
874 
875 	if (hammer_debug_io & 0x0004) {
876 		kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
877 			(long long)buffer->zoneX_offset,
878 			(long long)buffer->zone2_offset,
879 			isnew, buffer->ondisk);
880 	}
881 
882 	if (buffer->ondisk == NULL) {
883 		/*
884 		 * Issue the read or generate a new buffer.  When reading
885 		 * the limit argument controls any read-ahead clustering
886 		 * hammer_io_read() is allowed to do.
887 		 *
888 		 * We cannot read-ahead in the large-data zone and we cannot
889 		 * cross a big-block boundary as the next big-block might
890 		 * use a different buffer size.
891 		 */
892 		if (isnew) {
893 			error = hammer_io_new(volume->devvp, &buffer->io);
894 		} else if ((buffer->zoneX_offset & HAMMER_OFF_ZONE_MASK) ==
895 			   HAMMER_ZONE_LARGE_DATA) {
896 			error = hammer_io_read(volume->devvp, &buffer->io,
897 					       buffer->io.bytes);
898 		} else {
899 			hammer_off_t limit;
900 
901 			limit = (buffer->zone2_offset +
902 				 HAMMER_BIGBLOCK_MASK64) &
903 				~HAMMER_BIGBLOCK_MASK64;
904 			limit -= buffer->zone2_offset;
905 			error = hammer_io_read(volume->devvp, &buffer->io,
906 					       limit);
907 		}
908 		if (error == 0)
909 			buffer->ondisk = (void *)buffer->io.bp->b_data;
910 	} else if (isnew) {
911 		error = hammer_io_new(volume->devvp, &buffer->io);
912 	} else {
913 		error = 0;
914 	}
915 	if (error == 0) {
916 		hammer_io_advance(&buffer->io);
917 		hammer_ref_interlock_done(&buffer->io.lock);
918 	} else {
919 		hammer_rel_buffer(buffer, 1);
920 	}
921 	return (error);
922 }
923 
924 /*
925  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
926  * This routine is only called during unmount or when a volume is
927  * removed.
928  *
929  * If data != NULL, it specifies a volume whoose buffers should
930  * be unloaded.
931  */
932 int
933 hammer_unload_buffer(hammer_buffer_t buffer, void *data)
934 {
935 	struct hammer_volume *volume = (struct hammer_volume *) data;
936 
937 	/*
938 	 * If volume != NULL we are only interested in unloading buffers
939 	 * associated with a particular volume.
940 	 */
941 	if (volume != NULL && volume != buffer->io.volume)
942 		return 0;
943 
944 	/*
945 	 * Clean up the persistent ref ioerror might have on the buffer
946 	 * and acquire a ref.  Expect a 0->1 transition.
947 	 */
948 	if (buffer->io.ioerror) {
949 		hammer_io_clear_error_noassert(&buffer->io);
950 		atomic_add_int(&hammer_count_refedbufs, -1);
951 	}
952 	hammer_ref_interlock_true(&buffer->io.lock);
953 	atomic_add_int(&hammer_count_refedbufs, 1);
954 
955 	/*
956 	 * We must not flush a dirty buffer to disk on umount.  It should
957 	 * have already been dealt with by the flusher, or we may be in
958 	 * catastrophic failure.
959 	 *
960 	 * We must set waitdep to ensure that a running buffer is waited
961 	 * on and released prior to us trying to unload the volume.
962 	 */
963 	hammer_io_clear_modify(&buffer->io, 1);
964 	hammer_flush_buffer_nodes(buffer);
965 	buffer->io.waitdep = 1;
966 	hammer_rel_buffer(buffer, 1);
967 	return(0);
968 }
969 
970 /*
971  * Reference a buffer that is either already referenced or via a specially
972  * handled pointer (aka cursor->buffer).
973  */
974 int
975 hammer_ref_buffer(hammer_buffer_t buffer)
976 {
977 	hammer_mount_t hmp;
978 	int error;
979 	int locked;
980 
981 	/*
982 	 * Acquire a ref, plus the buffer will be interlocked on the
983 	 * 0->1 transition.
984 	 */
985 	locked = hammer_ref_interlock(&buffer->io.lock);
986 	hmp = buffer->io.hmp;
987 
988 	/*
989 	 * At this point a biodone() will not touch the buffer other then
990 	 * incidental bits.  However, lose_list can be modified via
991 	 * a biodone() interrupt.
992 	 *
993 	 * No longer loose.  lose_list requires the io_token.
994 	 */
995 	if (buffer->io.mod_root == &hmp->lose_root) {
996 		lwkt_gettoken(&hmp->io_token);
997 		if (buffer->io.mod_root == &hmp->lose_root) {
998 			RB_REMOVE(hammer_mod_rb_tree,
999 				  buffer->io.mod_root, &buffer->io);
1000 			buffer->io.mod_root = NULL;
1001 		}
1002 		lwkt_reltoken(&hmp->io_token);
1003 	}
1004 
1005 	if (locked) {
1006 		atomic_add_int(&hammer_count_refedbufs, 1);
1007 		error = hammer_load_buffer(buffer, 0);
1008 		/* NOTE: on error the buffer pointer is stale */
1009 	} else {
1010 		error = 0;
1011 	}
1012 	return(error);
1013 }
1014 
1015 /*
1016  * Release a reference on the buffer.  On the 1->0 transition the
1017  * underlying IO will be released but the data reference is left
1018  * cached.
1019  *
1020  * Only destroy the structure itself if the related buffer cache buffer
1021  * was disassociated from it.  This ties the management of the structure
1022  * to the buffer cache subsystem.  buffer->ondisk determines whether the
1023  * embedded io is referenced or not.
1024  */
1025 void
1026 hammer_rel_buffer(hammer_buffer_t buffer, int locked)
1027 {
1028 	hammer_volume_t volume;
1029 	hammer_mount_t hmp;
1030 	struct buf *bp = NULL;
1031 	int freeme = 0;
1032 
1033 	hmp = buffer->io.hmp;
1034 
1035 	if (hammer_rel_interlock(&buffer->io.lock, locked) == 0)
1036 		return;
1037 
1038 	/*
1039 	 * hammer_count_refedbufs accounting.  Decrement if we are in
1040 	 * the error path or if CHECK is clear.
1041 	 *
1042 	 * If we are not in the error path and CHECK is set the caller
1043 	 * probably just did a hammer_ref() and didn't account for it,
1044 	 * so we don't account for the loss here.
1045 	 */
1046 	if (locked || (buffer->io.lock.refs & HAMMER_REFS_CHECK) == 0)
1047 		atomic_add_int(&hammer_count_refedbufs, -1);
1048 
1049 	/*
1050 	 * If the caller locked us or the normal released transitions
1051 	 * from 1->0 (and acquired the lock) attempt to release the
1052 	 * io.  If the called locked us we tell hammer_io_release()
1053 	 * to flush (which would be the unload or failure path).
1054 	 */
1055 	bp = hammer_io_release(&buffer->io, locked);
1056 
1057 	/*
1058 	 * If the buffer has no bp association and no refs we can destroy
1059 	 * it.
1060 	 *
1061 	 * NOTE: It is impossible for any associated B-Tree nodes to have
1062 	 * refs if the buffer has no additional refs.
1063 	 */
1064 	if (buffer->io.bp == NULL && hammer_norefs(&buffer->io.lock)) {
1065 		RB_REMOVE(hammer_buf_rb_tree,
1066 			  &buffer->io.hmp->rb_bufs_root,
1067 			  buffer);
1068 		volume = buffer->io.volume;
1069 		buffer->io.volume = NULL; /* sanity */
1070 		hammer_rel_volume(volume, 0);
1071 		hammer_io_clear_modlist(&buffer->io);
1072 		hammer_flush_buffer_nodes(buffer);
1073 		KKASSERT(TAILQ_EMPTY(&buffer->clist));
1074 		freeme = 1;
1075 	}
1076 
1077 	/*
1078 	 * Cleanup
1079 	 */
1080 	hammer_rel_interlock_done(&buffer->io.lock, locked);
1081 	if (bp)
1082 		brelse(bp);
1083 	if (freeme) {
1084 		--hammer_count_buffers;
1085 		kfree(buffer, hmp->m_misc);
1086 	}
1087 }
1088 
1089 /*
1090  * Access the filesystem buffer containing the specified hammer offset.
1091  * buf_offset is a conglomeration of the volume number and vol_buf_beg
1092  * relative buffer offset.  It must also have bit 55 set to be valid.
1093  * (see hammer_off_t in hammer_disk.h).
1094  *
1095  * Any prior buffer in *bufferp will be released and replaced by the
1096  * requested buffer.
1097  *
1098  * NOTE: The buffer is indexed via its zoneX_offset but we allow the
1099  * passed cached *bufferp to match against either zoneX or zone2.
1100  */
1101 static __inline
1102 void *
1103 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1104 	     int *errorp, struct hammer_buffer **bufferp)
1105 {
1106 	hammer_buffer_t buffer;
1107 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1108 
1109 	buf_offset &= ~HAMMER_BUFMASK64;
1110 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
1111 
1112 	buffer = *bufferp;
1113 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1114 			       buffer->zoneX_offset != buf_offset)) {
1115 		if (buffer)
1116 			hammer_rel_buffer(buffer, 0);
1117 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
1118 		*bufferp = buffer;
1119 	} else {
1120 		*errorp = 0;
1121 	}
1122 
1123 	/*
1124 	 * Return a pointer to the buffer data.
1125 	 */
1126 	if (buffer == NULL)
1127 		return(NULL);
1128 	else
1129 		return((char *)buffer->ondisk + xoff);
1130 }
1131 
1132 void *
1133 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
1134 	     int *errorp, struct hammer_buffer **bufferp)
1135 {
1136 	return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1137 }
1138 
1139 void *
1140 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1141 	         int *errorp, struct hammer_buffer **bufferp)
1142 {
1143 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1144 	return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
1145 }
1146 
1147 /*
1148  * Access the filesystem buffer containing the specified hammer offset.
1149  * No disk read operation occurs.  The result buffer may contain garbage.
1150  *
1151  * Any prior buffer in *bufferp will be released and replaced by the
1152  * requested buffer.
1153  *
1154  * This function marks the buffer dirty but does not increment its
1155  * modify_refs count.
1156  */
1157 static __inline
1158 void *
1159 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1160 	     int *errorp, struct hammer_buffer **bufferp)
1161 {
1162 	hammer_buffer_t buffer;
1163 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
1164 
1165 	buf_offset &= ~HAMMER_BUFMASK64;
1166 
1167 	buffer = *bufferp;
1168 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
1169 			       buffer->zoneX_offset != buf_offset)) {
1170 		if (buffer)
1171 			hammer_rel_buffer(buffer, 0);
1172 		buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
1173 		*bufferp = buffer;
1174 	} else {
1175 		*errorp = 0;
1176 	}
1177 
1178 	/*
1179 	 * Return a pointer to the buffer data.
1180 	 */
1181 	if (buffer == NULL)
1182 		return(NULL);
1183 	else
1184 		return((char *)buffer->ondisk + xoff);
1185 }
1186 
1187 void *
1188 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1189 	     int *errorp, struct hammer_buffer **bufferp)
1190 {
1191 	return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1192 }
1193 
1194 void *
1195 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1196 		int *errorp, struct hammer_buffer **bufferp)
1197 {
1198 	bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1199 	return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1200 }
1201 
1202 /************************************************************************
1203  *				NODES					*
1204  ************************************************************************
1205  *
1206  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1207  * method used by the HAMMER filesystem.
1208  *
1209  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1210  * associated with its buffer, and will only referenced the buffer while
1211  * the node itself is referenced.
1212  *
1213  * A hammer_node can also be passively associated with other HAMMER
1214  * structures, such as inodes, while retaining 0 references.  These
1215  * associations can be cleared backwards using a pointer-to-pointer in
1216  * the hammer_node.
1217  *
1218  * This allows the HAMMER implementation to cache hammer_nodes long-term
1219  * and short-cut a great deal of the infrastructure's complexity.  In
1220  * most cases a cached node can be reacquired without having to dip into
1221  * either the buffer or cluster management code.
1222  *
1223  * The caller must pass a referenced cluster on call and will retain
1224  * ownership of the reference on return.  The node will acquire its own
1225  * additional references, if necessary.
1226  */
1227 hammer_node_t
1228 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1229 		int isnew, int *errorp)
1230 {
1231 	hammer_mount_t hmp = trans->hmp;
1232 	hammer_node_t node;
1233 	int doload;
1234 
1235 	KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1236 
1237 	/*
1238 	 * Locate the structure, allocating one if necessary.
1239 	 */
1240 again:
1241 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1242 	if (node == NULL) {
1243 		++hammer_count_nodes;
1244 		node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1245 		node->node_offset = node_offset;
1246 		node->hmp = hmp;
1247 		TAILQ_INIT(&node->cursor_list);
1248 		TAILQ_INIT(&node->cache_list);
1249 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1250 			--hammer_count_nodes;
1251 			kfree(node, hmp->m_misc);
1252 			goto again;
1253 		}
1254 		doload = hammer_ref_interlock_true(&node->lock);
1255 	} else {
1256 		doload = hammer_ref_interlock(&node->lock);
1257 	}
1258 	if (doload) {
1259 		*errorp = hammer_load_node(trans, node, isnew);
1260 		trans->flags |= HAMMER_TRANSF_DIDIO;
1261 		if (*errorp)
1262 			node = NULL;
1263 	} else {
1264 		KKASSERT(node->ondisk);
1265 		*errorp = 0;
1266 		hammer_io_advance(&node->buffer->io);
1267 	}
1268 	return(node);
1269 }
1270 
1271 /*
1272  * Reference an already-referenced node.  0->1 transitions should assert
1273  * so we do not have to deal with hammer_ref() setting CHECK.
1274  */
1275 void
1276 hammer_ref_node(hammer_node_t node)
1277 {
1278 	KKASSERT(hammer_isactive(&node->lock) && node->ondisk != NULL);
1279 	hammer_ref(&node->lock);
1280 }
1281 
1282 /*
1283  * Load a node's on-disk data reference.  Called with the node referenced
1284  * and interlocked.
1285  *
1286  * On return the node interlock will be unlocked.  If a non-zero error code
1287  * is returned the node will also be dereferenced (and the caller's pointer
1288  * will be stale).
1289  */
1290 static int
1291 hammer_load_node(hammer_transaction_t trans, hammer_node_t node, int isnew)
1292 {
1293 	hammer_buffer_t buffer;
1294 	hammer_off_t buf_offset;
1295 	int error;
1296 
1297 	error = 0;
1298 	if (node->ondisk == NULL) {
1299 		/*
1300 		 * This is a little confusing but the jist is that
1301 		 * node->buffer determines whether the node is on
1302 		 * the buffer's clist and node->ondisk determines
1303 		 * whether the buffer is referenced.
1304 		 *
1305 		 * We could be racing a buffer release, in which case
1306 		 * node->buffer may become NULL while we are blocked
1307 		 * referencing the buffer.
1308 		 */
1309 		if ((buffer = node->buffer) != NULL) {
1310 			error = hammer_ref_buffer(buffer);
1311 			if (error == 0 && node->buffer == NULL) {
1312 				TAILQ_INSERT_TAIL(&buffer->clist,
1313 						  node, entry);
1314 				node->buffer = buffer;
1315 			}
1316 		} else {
1317 			buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1318 			buffer = hammer_get_buffer(node->hmp, buf_offset,
1319 						   HAMMER_BUFSIZE, 0, &error);
1320 			if (buffer) {
1321 				KKASSERT(error == 0);
1322 				TAILQ_INSERT_TAIL(&buffer->clist,
1323 						  node, entry);
1324 				node->buffer = buffer;
1325 			}
1326 		}
1327 		if (error)
1328 			goto failed;
1329 		node->ondisk = (void *)((char *)buffer->ondisk +
1330 				        (node->node_offset & HAMMER_BUFMASK));
1331 
1332 		/*
1333 		 * Check CRC.  NOTE: Neither flag is set and the CRC is not
1334 		 * generated on new B-Tree nodes.
1335 		 */
1336 		if (isnew == 0 &&
1337 		    (node->flags & HAMMER_NODE_CRCANY) == 0) {
1338 			if (hammer_crc_test_btree(node->ondisk) == 0) {
1339 				if (hammer_debug_critical)
1340 					Debugger("CRC FAILED: B-TREE NODE");
1341 				node->flags |= HAMMER_NODE_CRCBAD;
1342 			} else {
1343 				node->flags |= HAMMER_NODE_CRCGOOD;
1344 			}
1345 		}
1346 	}
1347 	if (node->flags & HAMMER_NODE_CRCBAD) {
1348 		if (trans->flags & HAMMER_TRANSF_CRCDOM)
1349 			error = EDOM;
1350 		else
1351 			error = EIO;
1352 	}
1353 failed:
1354 	if (error) {
1355 		_hammer_rel_node(node, 1);
1356 	} else {
1357 		hammer_ref_interlock_done(&node->lock);
1358 	}
1359 	return (error);
1360 }
1361 
1362 /*
1363  * Safely reference a node, interlock against flushes via the IO subsystem.
1364  */
1365 hammer_node_t
1366 hammer_ref_node_safe(hammer_transaction_t trans, hammer_node_cache_t cache,
1367 		     int *errorp)
1368 {
1369 	hammer_node_t node;
1370 	int doload;
1371 
1372 	node = cache->node;
1373 	if (node != NULL) {
1374 		doload = hammer_ref_interlock(&node->lock);
1375 		if (doload) {
1376 			*errorp = hammer_load_node(trans, node, 0);
1377 			if (*errorp)
1378 				node = NULL;
1379 		} else {
1380 			KKASSERT(node->ondisk);
1381 			if (node->flags & HAMMER_NODE_CRCBAD) {
1382 				if (trans->flags & HAMMER_TRANSF_CRCDOM)
1383 					*errorp = EDOM;
1384 				else
1385 					*errorp = EIO;
1386 				_hammer_rel_node(node, 0);
1387 				node = NULL;
1388 			} else {
1389 				*errorp = 0;
1390 			}
1391 		}
1392 	} else {
1393 		*errorp = ENOENT;
1394 	}
1395 	return(node);
1396 }
1397 
1398 /*
1399  * Release a hammer_node.  On the last release the node dereferences
1400  * its underlying buffer and may or may not be destroyed.
1401  *
1402  * If locked is non-zero the passed node has been interlocked by the
1403  * caller and we are in the failure/unload path, otherwise it has not and
1404  * we are doing a normal release.
1405  *
1406  * This function will dispose of the interlock and the reference.
1407  * On return the node pointer is stale.
1408  */
1409 void
1410 _hammer_rel_node(hammer_node_t node, int locked)
1411 {
1412 	hammer_buffer_t buffer;
1413 
1414 	/*
1415 	 * Deref the node.  If this isn't the 1->0 transition we're basically
1416 	 * done.  If locked is non-zero this function will just deref the
1417 	 * locked node and return TRUE, otherwise it will deref the locked
1418 	 * node and either lock and return TRUE on the 1->0 transition or
1419 	 * not lock and return FALSE.
1420 	 */
1421 	if (hammer_rel_interlock(&node->lock, locked) == 0)
1422 		return;
1423 
1424 	/*
1425 	 * Either locked was non-zero and we are interlocked, or the
1426 	 * hammer_rel_interlock() call returned non-zero and we are
1427 	 * interlocked.
1428 	 *
1429 	 * The ref-count must still be decremented if locked != 0 so
1430 	 * the cleanup required still varies a bit.
1431 	 *
1432 	 * hammer_flush_node() when called with 1 or 2 will dispose of
1433 	 * the lock and possible ref-count.
1434 	 */
1435 	if (node->ondisk == NULL) {
1436 		hammer_flush_node(node, locked + 1);
1437 		/* node is stale now */
1438 		return;
1439 	}
1440 
1441 	/*
1442 	 * Do not disassociate the node from the buffer if it represents
1443 	 * a modified B-Tree node that still needs its crc to be generated.
1444 	 */
1445 	if (node->flags & HAMMER_NODE_NEEDSCRC) {
1446 		hammer_rel_interlock_done(&node->lock, locked);
1447 		return;
1448 	}
1449 
1450 	/*
1451 	 * Do final cleanups and then either destroy the node and leave it
1452 	 * passively cached.  The buffer reference is removed regardless.
1453 	 */
1454 	buffer = node->buffer;
1455 	node->ondisk = NULL;
1456 
1457 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1458 		/*
1459 		 * Normal release.
1460 		 */
1461 		hammer_rel_interlock_done(&node->lock, locked);
1462 	} else {
1463 		/*
1464 		 * Destroy the node.
1465 		 */
1466 		hammer_flush_node(node, locked + 1);
1467 		/* node is stale */
1468 
1469 	}
1470 	hammer_rel_buffer(buffer, 0);
1471 }
1472 
1473 void
1474 hammer_rel_node(hammer_node_t node)
1475 {
1476 	_hammer_rel_node(node, 0);
1477 }
1478 
1479 /*
1480  * Free space on-media associated with a B-Tree node.
1481  */
1482 void
1483 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1484 {
1485 	KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1486 	node->flags |= HAMMER_NODE_DELETED;
1487 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1488 }
1489 
1490 /*
1491  * Passively cache a referenced hammer_node.  The caller may release
1492  * the node on return.
1493  */
1494 void
1495 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1496 {
1497 	/*
1498 	 * If the node doesn't exist, or is being deleted, don't cache it!
1499 	 *
1500 	 * The node can only ever be NULL in the I/O failure path.
1501 	 */
1502 	if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1503 		return;
1504 	if (cache->node == node)
1505 		return;
1506 	while (cache->node)
1507 		hammer_uncache_node(cache);
1508 	if (node->flags & HAMMER_NODE_DELETED)
1509 		return;
1510 	cache->node = node;
1511 	TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1512 }
1513 
1514 void
1515 hammer_uncache_node(hammer_node_cache_t cache)
1516 {
1517 	hammer_node_t node;
1518 
1519 	if ((node = cache->node) != NULL) {
1520 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1521 		cache->node = NULL;
1522 		if (TAILQ_EMPTY(&node->cache_list))
1523 			hammer_flush_node(node, 0);
1524 	}
1525 }
1526 
1527 /*
1528  * Remove a node's cache references and destroy the node if it has no
1529  * other references or backing store.
1530  *
1531  * locked == 0	Normal unlocked operation
1532  * locked == 1	Call hammer_rel_interlock_done(..., 0);
1533  * locked == 2	Call hammer_rel_interlock_done(..., 1);
1534  *
1535  * XXX for now this isn't even close to being MPSAFE so the refs check
1536  *     is sufficient.
1537  */
1538 void
1539 hammer_flush_node(hammer_node_t node, int locked)
1540 {
1541 	hammer_node_cache_t cache;
1542 	hammer_buffer_t buffer;
1543 	hammer_mount_t hmp = node->hmp;
1544 	int dofree;
1545 
1546 	while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1547 		TAILQ_REMOVE(&node->cache_list, cache, entry);
1548 		cache->node = NULL;
1549 	}
1550 
1551 	/*
1552 	 * NOTE: refs is predisposed if another thread is blocking and
1553 	 *	 will be larger than 0 in that case.  We aren't MPSAFE
1554 	 *	 here.
1555 	 */
1556 	if (node->ondisk == NULL && hammer_norefs(&node->lock)) {
1557 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1558 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1559 		if ((buffer = node->buffer) != NULL) {
1560 			node->buffer = NULL;
1561 			TAILQ_REMOVE(&buffer->clist, node, entry);
1562 			/* buffer is unreferenced because ondisk is NULL */
1563 		}
1564 		dofree = 1;
1565 	} else {
1566 		dofree = 0;
1567 	}
1568 
1569 	/*
1570 	 * Deal with the interlock if locked == 1 or locked == 2.
1571 	 */
1572 	if (locked)
1573 		hammer_rel_interlock_done(&node->lock, locked - 1);
1574 
1575 	/*
1576 	 * Destroy if requested
1577 	 */
1578 	if (dofree) {
1579 		--hammer_count_nodes;
1580 		kfree(node, hmp->m_misc);
1581 	}
1582 }
1583 
1584 /*
1585  * Flush passively cached B-Tree nodes associated with this buffer.
1586  * This is only called when the buffer is about to be destroyed, so
1587  * none of the nodes should have any references.  The buffer is locked.
1588  *
1589  * We may be interlocked with the buffer.
1590  */
1591 void
1592 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1593 {
1594 	hammer_node_t node;
1595 
1596 	while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1597 		KKASSERT(node->ondisk == NULL);
1598 		KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1599 
1600 		if (hammer_try_interlock_norefs(&node->lock)) {
1601 			hammer_ref(&node->lock);
1602 			node->flags |= HAMMER_NODE_FLUSH;
1603 			_hammer_rel_node(node, 1);
1604 		} else {
1605 			KKASSERT(node->buffer != NULL);
1606 			buffer = node->buffer;
1607 			node->buffer = NULL;
1608 			TAILQ_REMOVE(&buffer->clist, node, entry);
1609 			/* buffer is unreferenced because ondisk is NULL */
1610 		}
1611 	}
1612 }
1613 
1614 
1615 /************************************************************************
1616  *				ALLOCATORS				*
1617  ************************************************************************/
1618 
1619 /*
1620  * Allocate a B-Tree node.
1621  */
1622 hammer_node_t
1623 hammer_alloc_btree(hammer_transaction_t trans, hammer_off_t hint, int *errorp)
1624 {
1625 	hammer_buffer_t buffer = NULL;
1626 	hammer_node_t node = NULL;
1627 	hammer_off_t node_offset;
1628 
1629 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1630 					    sizeof(struct hammer_node_ondisk),
1631 					    hint, errorp);
1632 	if (*errorp == 0) {
1633 		node = hammer_get_node(trans, node_offset, 1, errorp);
1634 		hammer_modify_node_noundo(trans, node);
1635 		bzero(node->ondisk, sizeof(*node->ondisk));
1636 		hammer_modify_node_done(node);
1637 	}
1638 	if (buffer)
1639 		hammer_rel_buffer(buffer, 0);
1640 	return(node);
1641 }
1642 
1643 /*
1644  * Allocate data.  If the address of a data buffer is supplied then
1645  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1646  * will be set to the related buffer.  The caller must release it when
1647  * finally done.  The initial *data_bufferp should be set to NULL by
1648  * the caller.
1649  *
1650  * The caller is responsible for making hammer_modify*() calls on the
1651  * *data_bufferp.
1652  */
1653 void *
1654 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1655 		  u_int16_t rec_type, hammer_off_t *data_offsetp,
1656 		  struct hammer_buffer **data_bufferp,
1657 		  hammer_off_t hint, int *errorp)
1658 {
1659 	void *data;
1660 	int zone;
1661 
1662 	/*
1663 	 * Allocate data
1664 	 */
1665 	if (data_len) {
1666 		switch(rec_type) {
1667 		case HAMMER_RECTYPE_INODE:
1668 		case HAMMER_RECTYPE_DIRENTRY:
1669 		case HAMMER_RECTYPE_EXT:
1670 		case HAMMER_RECTYPE_FIX:
1671 		case HAMMER_RECTYPE_PFS:
1672 		case HAMMER_RECTYPE_SNAPSHOT:
1673 		case HAMMER_RECTYPE_CONFIG:
1674 			zone = HAMMER_ZONE_META_INDEX;
1675 			break;
1676 		case HAMMER_RECTYPE_DATA:
1677 		case HAMMER_RECTYPE_DB:
1678 			/*
1679 			 * This is an exceptional case. HAMMER usually
1680 			 * uses HAMMER_ZONE_LARGE_DATA when the data length
1681 			 * is >=HAMMER_BUFSIZE, but not 1/2 of that. Mirror
1682 			 * write code seems to be the only case that allocates
1683 			 * HAMMER_RECTYPE_DATA via this function.
1684 			 *
1685 			 * When data_len is >HAMMER_BUFSIZE/2 it uses
1686 			 * HAMMER_ZONE_LARGE_DATA but data_len is also rounded
1687 			 * up so it doesn't make much difference from the
1688 			 * normal way of using this zone.
1689 			 *
1690 			 * Also note hammer_vop_strategy_write() could have
1691 			 * rounded up storage allocation size of the original
1692 			 * mirror source to fs block size when it was written
1693 			 * if the file size was >HAMMER_BUFSIZE/2.
1694 			 */
1695 			if (data_len <= HAMMER_BUFSIZE / 2) {
1696 				zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1697 			} else {
1698 				data_len = (data_len + HAMMER_BUFMASK) &
1699 					   ~HAMMER_BUFMASK;
1700 				zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1701 			}
1702 			break;
1703 		default:
1704 			panic("hammer_alloc_data: rec_type %04x unknown",
1705 			      rec_type);
1706 			zone = 0;	/* NOT REACHED */
1707 			break;
1708 		}
1709 		*data_offsetp = hammer_blockmap_alloc(trans, zone, data_len,
1710 						      hint, errorp);
1711 	} else {
1712 		*data_offsetp = 0;
1713 	}
1714 	if (*errorp == 0 && data_bufferp) {
1715 		if (data_len) {
1716 			data = hammer_bread_ext(trans->hmp, *data_offsetp,
1717 						data_len, errorp, data_bufferp);
1718 		} else {
1719 			data = NULL;
1720 		}
1721 	} else {
1722 		data = NULL;
1723 	}
1724 	return(data);
1725 }
1726 
1727 /*
1728  * Sync dirty buffers to the media and clean-up any loose ends.
1729  *
1730  * These functions do not start the flusher going, they simply
1731  * queue everything up to the flusher.
1732  */
1733 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1734 
1735 int
1736 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1737 {
1738 	struct hammer_sync_info info;
1739 
1740 	info.error = 0;
1741 	info.waitfor = waitfor;
1742 	if (waitfor == MNT_WAIT) {
1743 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS,
1744 			  hammer_sync_scan2, &info);
1745 	} else {
1746 		vsyncscan(hmp->mp, VMSC_GETVP | VMSC_ONEPASS | VMSC_NOWAIT,
1747 			  hammer_sync_scan2, &info);
1748 	}
1749 	return(info.error);
1750 }
1751 
1752 /*
1753  * Filesystem sync.  If doing a synchronous sync make a second pass on
1754  * the vnodes in case any were already flushing during the first pass,
1755  * and activate the flusher twice (the second time brings the UNDO FIFO's
1756  * start position up to the end position after the first call).
1757  *
1758  * If doing a lazy sync make just one pass on the vnode list, ignoring
1759  * any new vnodes added to the list while the sync is in progress.
1760  */
1761 int
1762 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1763 {
1764 	struct hammer_sync_info info;
1765 	int flags;
1766 
1767 	flags = VMSC_GETVP;
1768 	if (waitfor & MNT_LAZY)
1769 		flags |= VMSC_ONEPASS;
1770 
1771 	info.error = 0;
1772 	info.waitfor = MNT_NOWAIT;
1773 	vsyncscan(hmp->mp, flags | VMSC_NOWAIT, hammer_sync_scan2, &info);
1774 
1775 	if (info.error == 0 && (waitfor & MNT_WAIT)) {
1776 		info.waitfor = waitfor;
1777 		vsyncscan(hmp->mp, flags, hammer_sync_scan2, &info);
1778 	}
1779         if (waitfor == MNT_WAIT) {
1780                 hammer_flusher_sync(hmp);
1781                 hammer_flusher_sync(hmp);
1782 	} else {
1783                 hammer_flusher_async(hmp, NULL);
1784                 hammer_flusher_async(hmp, NULL);
1785 	}
1786 	return(info.error);
1787 }
1788 
1789 static int
1790 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1791 {
1792 	struct hammer_sync_info *info = data;
1793 	struct hammer_inode *ip;
1794 	int error;
1795 
1796 	ip = VTOI(vp);
1797 	if (ip == NULL)
1798 		return(0);
1799 	if (vp->v_type == VNON || vp->v_type == VBAD) {
1800 		vclrisdirty(vp);
1801 		return(0);
1802 	}
1803 	if ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1804 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
1805 		vclrisdirty(vp);
1806 		return(0);
1807 	}
1808 	error = VOP_FSYNC(vp, MNT_NOWAIT, 0);
1809 	if (error)
1810 		info->error = error;
1811 	return(0);
1812 }
1813