xref: /dragonfly/sys/vfs/hammer2/hammer2_admin.c (revision 7b1120e5)
1 /*
2  * Copyright (c) 2015-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * This module implements the hammer2 helper thread API, including
36  * the frontend/backend XOP API.
37  */
38 #include "hammer2.h"
39 
40 #define H2XOPDESCRIPTOR(label)					\
41 	hammer2_xop_desc_t hammer2_##label##_desc = {		\
42 		.storage_func = hammer2_xop_##label,		\
43 		.id = #label					\
44 	};							\
45 
46 H2XOPDESCRIPTOR(ipcluster);
47 H2XOPDESCRIPTOR(readdir);
48 H2XOPDESCRIPTOR(nresolve);
49 H2XOPDESCRIPTOR(unlink);
50 H2XOPDESCRIPTOR(nrename);
51 H2XOPDESCRIPTOR(scanlhc);
52 H2XOPDESCRIPTOR(scanall);
53 H2XOPDESCRIPTOR(lookup);
54 H2XOPDESCRIPTOR(delete);
55 H2XOPDESCRIPTOR(inode_mkdirent);
56 H2XOPDESCRIPTOR(inode_create);
57 H2XOPDESCRIPTOR(inode_create_det);
58 H2XOPDESCRIPTOR(inode_create_ins);
59 H2XOPDESCRIPTOR(inode_destroy);
60 H2XOPDESCRIPTOR(inode_chain_sync);
61 H2XOPDESCRIPTOR(inode_unlinkall);
62 H2XOPDESCRIPTOR(inode_connect);
63 H2XOPDESCRIPTOR(inode_flush);
64 H2XOPDESCRIPTOR(strategy_read);
65 H2XOPDESCRIPTOR(strategy_write);
66 
67 /*
68  * Set flags and wakeup any waiters.
69  *
70  * WARNING! During teardown (thr) can disappear the instant our cmpset
71  *	    succeeds.
72  */
73 void
74 hammer2_thr_signal(hammer2_thread_t *thr, uint32_t flags)
75 {
76 	uint32_t oflags;
77 	uint32_t nflags;
78 
79 	for (;;) {
80 		oflags = thr->flags;
81 		cpu_ccfence();
82 		nflags = (oflags | flags) & ~HAMMER2_THREAD_WAITING;
83 
84 		if (oflags & HAMMER2_THREAD_WAITING) {
85 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
86 				wakeup(&thr->flags);
87 				break;
88 			}
89 		} else {
90 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
91 				break;
92 		}
93 	}
94 }
95 
96 /*
97  * Set and clear flags and wakeup any waiters.
98  *
99  * WARNING! During teardown (thr) can disappear the instant our cmpset
100  *	    succeeds.
101  */
102 void
103 hammer2_thr_signal2(hammer2_thread_t *thr, uint32_t posflags, uint32_t negflags)
104 {
105 	uint32_t oflags;
106 	uint32_t nflags;
107 
108 	for (;;) {
109 		oflags = thr->flags;
110 		cpu_ccfence();
111 		nflags = (oflags | posflags) &
112 			~(negflags | HAMMER2_THREAD_WAITING);
113 		if (oflags & HAMMER2_THREAD_WAITING) {
114 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
115 				wakeup(&thr->flags);
116 				break;
117 			}
118 		} else {
119 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
120 				break;
121 		}
122 	}
123 }
124 
125 /*
126  * Wait until all the bits in flags are set.
127  *
128  * WARNING! During teardown (thr) can disappear the instant our cmpset
129  *	    succeeds.
130  */
131 void
132 hammer2_thr_wait(hammer2_thread_t *thr, uint32_t flags)
133 {
134 	uint32_t oflags;
135 	uint32_t nflags;
136 
137 	for (;;) {
138 		oflags = thr->flags;
139 		cpu_ccfence();
140 		if ((oflags & flags) == flags)
141 			break;
142 		nflags = oflags | HAMMER2_THREAD_WAITING;
143 		tsleep_interlock(&thr->flags, 0);
144 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
145 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
146 		}
147 	}
148 }
149 
150 /*
151  * Wait until any of the bits in flags are set, with timeout.
152  *
153  * WARNING! During teardown (thr) can disappear the instant our cmpset
154  *	    succeeds.
155  */
156 int
157 hammer2_thr_wait_any(hammer2_thread_t *thr, uint32_t flags, int timo)
158 {
159 	uint32_t oflags;
160 	uint32_t nflags;
161 	int error;
162 
163 	error = 0;
164 	for (;;) {
165 		oflags = thr->flags;
166 		cpu_ccfence();
167 		if (oflags & flags)
168 			break;
169 		nflags = oflags | HAMMER2_THREAD_WAITING;
170 		tsleep_interlock(&thr->flags, 0);
171 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
172 			error = tsleep(&thr->flags, PINTERLOCKED,
173 				       "h2twait", timo);
174 		}
175 		if (error == ETIMEDOUT) {
176 			error = HAMMER2_ERROR_ETIMEDOUT;
177 			break;
178 		}
179 	}
180 	return error;
181 }
182 
183 /*
184  * Wait until the bits in flags are clear.
185  *
186  * WARNING! During teardown (thr) can disappear the instant our cmpset
187  *	    succeeds.
188  */
189 void
190 hammer2_thr_wait_neg(hammer2_thread_t *thr, uint32_t flags)
191 {
192 	uint32_t oflags;
193 	uint32_t nflags;
194 
195 	for (;;) {
196 		oflags = thr->flags;
197 		cpu_ccfence();
198 		if ((oflags & flags) == 0)
199 			break;
200 		nflags = oflags | HAMMER2_THREAD_WAITING;
201 		tsleep_interlock(&thr->flags, 0);
202 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
203 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
204 		}
205 	}
206 }
207 
208 /*
209  * Initialize the supplied thread structure, starting the specified
210  * thread.
211  *
212  * NOTE: thr structure can be retained across mounts and unmounts for this
213  *	 pmp, so make sure the flags are in a sane state.
214  */
215 void
216 hammer2_thr_create(hammer2_thread_t *thr, hammer2_pfs_t *pmp,
217 		   hammer2_dev_t *hmp,
218 		   const char *id, int clindex, int repidx,
219 		   void (*func)(void *arg))
220 {
221 	thr->pmp = pmp;		/* xop helpers */
222 	thr->hmp = hmp;		/* bulkfree */
223 	thr->clindex = clindex;
224 	thr->repidx = repidx;
225 	TAILQ_INIT(&thr->xopq);
226 	atomic_clear_int(&thr->flags, HAMMER2_THREAD_STOP |
227 				      HAMMER2_THREAD_STOPPED |
228 				      HAMMER2_THREAD_FREEZE |
229 				      HAMMER2_THREAD_FROZEN);
230 	if (thr->scratch == NULL)
231 		thr->scratch = kmalloc(MAXPHYS, M_HAMMER2, M_WAITOK | M_ZERO);
232 	if (repidx >= 0) {
233 		lwkt_create(func, thr, &thr->td, NULL, 0, repidx % ncpus,
234 			    "%s-%s.%02d", id, pmp->pfs_names[clindex], repidx);
235 	} else if (pmp) {
236 		lwkt_create(func, thr, &thr->td, NULL, 0, -1,
237 			    "%s-%s", id, pmp->pfs_names[clindex]);
238 	} else {
239 		lwkt_create(func, thr, &thr->td, NULL, 0, -1, "%s", id);
240 	}
241 }
242 
243 /*
244  * Terminate a thread.  This function will silently return if the thread
245  * was never initialized or has already been deleted.
246  *
247  * This is accomplished by setting the STOP flag and waiting for the td
248  * structure to become NULL.
249  */
250 void
251 hammer2_thr_delete(hammer2_thread_t *thr)
252 {
253 	if (thr->td == NULL)
254 		return;
255 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOP);
256 	hammer2_thr_wait(thr, HAMMER2_THREAD_STOPPED);
257 	thr->pmp = NULL;
258 	if (thr->scratch) {
259 		kfree(thr->scratch, M_HAMMER2);
260 		thr->scratch = NULL;
261 	}
262 	KKASSERT(TAILQ_EMPTY(&thr->xopq));
263 }
264 
265 /*
266  * Asynchronous remaster request.  Ask the synchronization thread to
267  * start over soon (as if it were frozen and unfrozen, but without waiting).
268  * The thread always recalculates mastership relationships when restarting.
269  */
270 void
271 hammer2_thr_remaster(hammer2_thread_t *thr)
272 {
273 	if (thr->td == NULL)
274 		return;
275 	hammer2_thr_signal(thr, HAMMER2_THREAD_REMASTER);
276 }
277 
278 void
279 hammer2_thr_freeze_async(hammer2_thread_t *thr)
280 {
281 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
282 }
283 
284 void
285 hammer2_thr_freeze(hammer2_thread_t *thr)
286 {
287 	if (thr->td == NULL)
288 		return;
289 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
290 	hammer2_thr_wait(thr, HAMMER2_THREAD_FROZEN);
291 }
292 
293 void
294 hammer2_thr_unfreeze(hammer2_thread_t *thr)
295 {
296 	if (thr->td == NULL)
297 		return;
298 	hammer2_thr_signal(thr, HAMMER2_THREAD_UNFREEZE);
299 	hammer2_thr_wait_neg(thr, HAMMER2_THREAD_FROZEN);
300 }
301 
302 int
303 hammer2_thr_break(hammer2_thread_t *thr)
304 {
305 	if (thr->flags & (HAMMER2_THREAD_STOP |
306 			  HAMMER2_THREAD_REMASTER |
307 			  HAMMER2_THREAD_FREEZE)) {
308 		return 1;
309 	}
310 	return 0;
311 }
312 
313 /****************************************************************************
314  *			    HAMMER2 XOPS API	 			    *
315  ****************************************************************************/
316 
317 void
318 hammer2_xop_group_init(hammer2_pfs_t *pmp, hammer2_xop_group_t *xgrp)
319 {
320 	/* no extra fields in structure at the moment */
321 }
322 
323 /*
324  * Allocate a XOP request.
325  *
326  * Once allocated a XOP request can be started, collected, and retired,
327  * and can be retired early if desired.
328  *
329  * NOTE: Fifo indices might not be zero but ri == wi on objcache_get().
330  */
331 void *
332 hammer2_xop_alloc(hammer2_inode_t *ip, int flags)
333 {
334 	hammer2_xop_t *xop;
335 
336 	xop = objcache_get(cache_xops, M_WAITOK);
337 	KKASSERT(xop->head.cluster.array[0].chain == NULL);
338 
339 	xop->head.ip1 = ip;
340 	xop->head.desc = NULL;
341 	xop->head.flags = flags;
342 	xop->head.state = 0;
343 	xop->head.error = 0;
344 	xop->head.collect_key = 0;
345 	xop->head.focus_dio = NULL;
346 
347 	if (flags & HAMMER2_XOP_MODIFYING)
348 		xop->head.mtid = hammer2_trans_sub(ip->pmp);
349 	else
350 		xop->head.mtid = 0;
351 
352 	xop->head.cluster.nchains = ip->cluster.nchains;
353 	xop->head.cluster.pmp = ip->pmp;
354 	xop->head.cluster.flags = HAMMER2_CLUSTER_LOCKED;
355 
356 	/*
357 	 * run_mask - Active thread (or frontend) associated with XOP
358 	 */
359 	xop->head.run_mask = HAMMER2_XOPMASK_VOP;
360 
361 	hammer2_inode_ref(ip);
362 
363 	return xop;
364 }
365 
366 void
367 hammer2_xop_setname(hammer2_xop_head_t *xop, const char *name, size_t name_len)
368 {
369 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
370 	xop->name1_len = name_len;
371 	bcopy(name, xop->name1, name_len);
372 }
373 
374 void
375 hammer2_xop_setname2(hammer2_xop_head_t *xop, const char *name, size_t name_len)
376 {
377 	xop->name2 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
378 	xop->name2_len = name_len;
379 	bcopy(name, xop->name2, name_len);
380 }
381 
382 size_t
383 hammer2_xop_setname_inum(hammer2_xop_head_t *xop, hammer2_key_t inum)
384 {
385 	const size_t name_len = 18;
386 
387 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
388 	xop->name1_len = name_len;
389 	ksnprintf(xop->name1, name_len + 1, "0x%016jx", (intmax_t)inum);
390 
391 	return name_len;
392 }
393 
394 
395 void
396 hammer2_xop_setip2(hammer2_xop_head_t *xop, hammer2_inode_t *ip2)
397 {
398 	xop->ip2 = ip2;
399 	hammer2_inode_ref(ip2);
400 }
401 
402 void
403 hammer2_xop_setip3(hammer2_xop_head_t *xop, hammer2_inode_t *ip3)
404 {
405 	xop->ip3 = ip3;
406 	hammer2_inode_ref(ip3);
407 }
408 
409 void
410 hammer2_xop_reinit(hammer2_xop_head_t *xop)
411 {
412 	xop->state = 0;
413 	xop->error = 0;
414 	xop->collect_key = 0;
415 	xop->run_mask = HAMMER2_XOPMASK_VOP;
416 }
417 
418 /*
419  * A mounted PFS needs Xops threads to support frontend operations.
420  */
421 void
422 hammer2_xop_helper_create(hammer2_pfs_t *pmp)
423 {
424 	int i;
425 	int j;
426 
427 	lockmgr(&pmp->lock, LK_EXCLUSIVE);
428 	pmp->has_xop_threads = 1;
429 
430 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
431 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
432 			if (pmp->xop_groups[j].thrs[i].td)
433 				continue;
434 			hammer2_thr_create(&pmp->xop_groups[j].thrs[i],
435 					   pmp, NULL,
436 					   "h2xop", i, j,
437 					   hammer2_primary_xops_thread);
438 		}
439 	}
440 	lockmgr(&pmp->lock, LK_RELEASE);
441 }
442 
443 void
444 hammer2_xop_helper_cleanup(hammer2_pfs_t *pmp)
445 {
446 	int i;
447 	int j;
448 
449 	for (i = 0; i < pmp->pfs_nmasters; ++i) {
450 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
451 			if (pmp->xop_groups[j].thrs[i].td)
452 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
453 		}
454 	}
455 	pmp->has_xop_threads = 0;
456 }
457 
458 /*
459  * Start a XOP request, queueing it to all nodes in the cluster to
460  * execute the cluster op.
461  *
462  * XXX optimize single-target case.
463  */
464 void
465 hammer2_xop_start_except(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc,
466 			 int notidx)
467 {
468 	hammer2_inode_t *ip1;
469 	hammer2_pfs_t *pmp;
470 	hammer2_thread_t *thr;
471 	int i;
472 	int ng;
473 	int nchains;
474 
475 	ip1 = xop->ip1;
476 	pmp = ip1->pmp;
477 	if (pmp->has_xop_threads == 0)
478 		hammer2_xop_helper_create(pmp);
479 
480 	/*
481 	 * The intent of the XOP sequencer is to ensure that ops on the same
482 	 * inode execute in the same order.  This is necessary when issuing
483 	 * modifying operations to multiple targets because some targets might
484 	 * get behind and the frontend is allowed to complete the moment a
485 	 * quorum of targets succeed.
486 	 *
487 	 * Strategy operations:
488 	 *
489 	 *	(1) Must be segregated from non-strategy operations to
490 	 *	    avoid a deadlock.  A vfsync and a bread/bwrite can
491 	 *	    deadlock the vfsync's buffer list scan.
492 	 *
493 	 *	(2) Reads are separated from writes to avoid write stalls
494 	 *	    from excessively intefering with reads.  Reads are allowed
495 	 *	    to wander across multiple worker threads for potential
496 	 *	    single-file concurrency improvements.
497 	 *
498 	 *	(3) Writes are serialized to a single worker thread (for any
499 	 *	    given inode) in order to try to improve block allocation
500 	 *	    sequentiality and to reduce lock contention.
501 	 *
502 	 * TODO - RENAME fails here because it is potentially modifying
503 	 *	  three different inodes, but we triple-lock the inodes
504 	 *	  involved so it shouldn't create a sequencing schism.
505 	 */
506 	if (xop->flags & HAMMER2_XOP_STRATEGY) {
507 		hammer2_xop_strategy_t *xopst;
508 		hammer2_off_t off;
509 		int cdr;
510 
511 		xopst = &((hammer2_xop_t *)xop)->xop_strategy;
512 		ng = (int)(hammer2_icrc32(&xop->ip1, sizeof(xop->ip1)));
513 		if (desc == &hammer2_strategy_read_desc) {
514 			off = xopst->lbase / HAMMER2_PBUFSIZE;
515 			cdr = hammer2_cluster_data_read;
516 			/* sysctl race, load into var */
517 			cpu_ccfence();
518 			if (cdr)
519 				off /= cdr;
520 			ng ^= hammer2_icrc32(&off, sizeof(off)) &
521 			      (hammer2_worker_rmask << 1);
522 			ng |= 1;
523 		} else {
524 #if 0
525 			off = xopst->lbase >> 21;
526 			ng ^= hammer2_icrc32(&off, sizeof(off)) & 3;
527 #endif
528 			ng &= ~1;
529 		}
530 		ng = ng & (HAMMER2_XOPGROUPS_MASK >> 1);
531 		ng += HAMMER2_XOPGROUPS / 2;
532 	} else {
533 		ng = (int)(hammer2_icrc32(&xop->ip1, sizeof(xop->ip1)));
534 		ng = ng & (HAMMER2_XOPGROUPS_MASK >> 1);
535 	}
536 	xop->desc = desc;
537 
538 	/*
539 	 * The instant xop is queued another thread can pick it off.  In the
540 	 * case of asynchronous ops, another thread might even finish and
541 	 * deallocate it.
542 	 */
543 	hammer2_spin_ex(&pmp->xop_spin);
544 	nchains = ip1->cluster.nchains;
545 	for (i = 0; i < nchains; ++i) {
546 		/*
547 		 * XXX ip1->cluster.array* not stable here.  This temporary
548 		 *     hack fixes basic issues in target XOPs which need to
549 		 *     obtain a starting chain from the inode but does not
550 		 *     address possible races against inode updates which
551 		 *     might NULL-out a chain.
552 		 */
553 		if (i != notidx && ip1->cluster.array[i].chain) {
554 			thr = &pmp->xop_groups[ng].thrs[i];
555 			atomic_set_64(&xop->run_mask, 1LLU << i);
556 			atomic_set_64(&xop->chk_mask, 1LLU << i);
557 			xop->collect[i].thr = thr;
558 			TAILQ_INSERT_TAIL(&thr->xopq, xop, collect[i].entry);
559 		}
560 	}
561 	hammer2_spin_unex(&pmp->xop_spin);
562 	/* xop can become invalid at this point */
563 
564 	/*
565 	 * Each thread has its own xopq
566 	 */
567 	for (i = 0; i < nchains; ++i) {
568 		if (i != notidx) {
569 			thr = &pmp->xop_groups[ng].thrs[i];
570 			hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
571 		}
572 	}
573 }
574 
575 void
576 hammer2_xop_start(hammer2_xop_head_t *xop, hammer2_xop_desc_t *desc)
577 {
578 	hammer2_xop_start_except(xop, desc, -1);
579 }
580 
581 /*
582  * Retire a XOP.  Used by both the VOP frontend and by the XOP backend.
583  */
584 void
585 hammer2_xop_retire(hammer2_xop_head_t *xop, uint64_t mask)
586 {
587 	hammer2_chain_t *chain;
588 	uint64_t nmask;
589 	int i;
590 
591 	/*
592 	 * Remove the frontend collector or remove a backend feeder.
593 	 *
594 	 * When removing the frontend we must wakeup any backend feeders
595 	 * who are waiting for FIFO space.
596 	 *
597 	 * When removing the last backend feeder we must wakeup any waiting
598 	 * frontend.
599 	 */
600 	KKASSERT(xop->run_mask & mask);
601 	nmask = atomic_fetchadd_64(&xop->run_mask,
602 				   -mask + HAMMER2_XOPMASK_FEED);
603 
604 	/*
605 	 * More than one entity left
606 	 */
607 	if ((nmask & HAMMER2_XOPMASK_ALLDONE) != mask) {
608 		/*
609 		 * Frontend terminating, wakeup any backends waiting on
610 		 * fifo full.
611 		 *
612 		 * NOTE!!! The xop can get ripped out from under us at
613 		 *	   this point, so do not reference it again.
614 		 *	   The wakeup(xop) doesn't touch the xop and
615 		 *	   is ok.
616 		 */
617 		if (mask == HAMMER2_XOPMASK_VOP) {
618 			if (nmask & HAMMER2_XOPMASK_FIFOW)
619 				wakeup(xop);
620 		}
621 
622 		/*
623 		 * Wakeup frontend if the last backend is terminating.
624 		 */
625 		nmask -= mask;
626 		if ((nmask & HAMMER2_XOPMASK_ALLDONE) == HAMMER2_XOPMASK_VOP) {
627 			if (nmask & HAMMER2_XOPMASK_WAIT)
628 				wakeup(xop);
629 		}
630 
631 		return;
632 	}
633 	/* else nobody else left, we can ignore FIFOW */
634 
635 	/*
636 	 * All collectors are gone, we can cleanup and dispose of the XOP.
637 	 * Note that this can wind up being a frontend OR a backend.
638 	 * Pending chains are locked shared and not owned by any thread.
639 	 *
640 	 * Cleanup the collection cluster.
641 	 */
642 	for (i = 0; i < xop->cluster.nchains; ++i) {
643 		xop->cluster.array[i].flags = 0;
644 		chain = xop->cluster.array[i].chain;
645 		if (chain) {
646 			xop->cluster.array[i].chain = NULL;
647 			hammer2_chain_drop_unhold(chain);
648 		}
649 	}
650 
651 	/*
652 	 * Cleanup the fifos.  Since we are the only entity left on this
653 	 * xop we don't have to worry about fifo flow control, and one
654 	 * lfence() will do the job.
655 	 */
656 	cpu_lfence();
657 	mask = xop->chk_mask;
658 	for (i = 0; mask && i < HAMMER2_MAXCLUSTER; ++i) {
659 		hammer2_xop_fifo_t *fifo = &xop->collect[i];
660 		while (fifo->ri != fifo->wi) {
661 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
662 			if (chain)
663 				hammer2_chain_drop_unhold(chain);
664 			++fifo->ri;
665 		}
666 		mask &= ~(1U << i);
667 	}
668 
669 	/*
670 	 * The inode is only held at this point, simply drop it.
671 	 */
672 	if (xop->ip1) {
673 		hammer2_inode_drop(xop->ip1);
674 		xop->ip1 = NULL;
675 	}
676 	if (xop->ip2) {
677 		hammer2_inode_drop(xop->ip2);
678 		xop->ip2 = NULL;
679 	}
680 	if (xop->ip3) {
681 		hammer2_inode_drop(xop->ip3);
682 		xop->ip3 = NULL;
683 	}
684 	if (xop->name1) {
685 		kfree(xop->name1, M_HAMMER2);
686 		xop->name1 = NULL;
687 		xop->name1_len = 0;
688 	}
689 	if (xop->name2) {
690 		kfree(xop->name2, M_HAMMER2);
691 		xop->name2 = NULL;
692 		xop->name2_len = 0;
693 	}
694 
695 	objcache_put(cache_xops, xop);
696 }
697 
698 /*
699  * (Backend) Returns non-zero if the frontend is still attached.
700  */
701 int
702 hammer2_xop_active(hammer2_xop_head_t *xop)
703 {
704 	if (xop->run_mask & HAMMER2_XOPMASK_VOP)
705 		return 1;
706 	else
707 		return 0;
708 }
709 
710 /*
711  * (Backend) Feed chain data through the cluster validator and back to
712  * the frontend.  Chains are fed from multiple nodes concurrently
713  * and pipelined via per-node FIFOs in the XOP.
714  *
715  * The chain must be locked (either shared or exclusive).  The caller may
716  * unlock and drop the chain on return.  This function will add an extra
717  * ref and hold the chain's data for the pass-back.
718  *
719  * No xop lock is needed because we are only manipulating fields under
720  * our direct control.
721  *
722  * Returns 0 on success and a hammer2 error code if sync is permanently
723  * lost.  The caller retains a ref on the chain but by convention
724  * the lock is typically inherited by the xop (caller loses lock).
725  *
726  * Returns non-zero on error.  In this situation the caller retains a
727  * ref on the chain but loses the lock (we unlock here).
728  */
729 int
730 hammer2_xop_feed(hammer2_xop_head_t *xop, hammer2_chain_t *chain,
731 		 int clindex, int error)
732 {
733 	hammer2_xop_fifo_t *fifo;
734 	uint64_t mask;
735 
736 	/*
737 	 * Early termination (typicaly of xop_readir)
738 	 */
739 	if (hammer2_xop_active(xop) == 0) {
740 		error = HAMMER2_ERROR_ABORTED;
741 		goto done;
742 	}
743 
744 	/*
745 	 * Multi-threaded entry into the XOP collector.  We own the
746 	 * fifo->wi for our clindex.
747 	 */
748 	fifo = &xop->collect[clindex];
749 
750 	if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO)
751 		lwkt_yield();
752 	while (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
753 		atomic_set_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
754 		mask = xop->run_mask;
755 		if ((mask & HAMMER2_XOPMASK_VOP) == 0) {
756 			error = HAMMER2_ERROR_ABORTED;
757 			goto done;
758 		}
759 		tsleep_interlock(xop, 0);
760 		if (atomic_cmpset_64(&xop->run_mask, mask,
761 				     mask | HAMMER2_XOPMASK_FIFOW)) {
762 			if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
763 				tsleep(xop, PINTERLOCKED, "h2feed", hz*60);
764 			}
765 		}
766 		/* retry */
767 	}
768 	atomic_clear_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
769 	if (chain)
770 		hammer2_chain_ref_hold(chain);
771 	if (error == 0 && chain)
772 		error = chain->error;
773 	fifo->errors[fifo->wi & HAMMER2_XOPFIFO_MASK] = error;
774 	fifo->array[fifo->wi & HAMMER2_XOPFIFO_MASK] = chain;
775 	cpu_sfence();
776 	++fifo->wi;
777 
778 	mask = atomic_fetchadd_64(&xop->run_mask, HAMMER2_XOPMASK_FEED);
779 	if (mask & HAMMER2_XOPMASK_WAIT) {
780 		atomic_clear_64(&xop->run_mask, HAMMER2_XOPMASK_WAIT);
781 		wakeup(xop);
782 	}
783 	error = 0;
784 
785 	/*
786 	 * Cleanup.  If an error occurred we eat the lock.  If no error
787 	 * occurred the fifo inherits the lock and gains an additional ref.
788 	 *
789 	 * The caller's ref remains in both cases.
790 	 */
791 done:
792 	return error;
793 }
794 
795 /*
796  * (Frontend) collect a response from a running cluster op.
797  *
798  * Responses are fed from all appropriate nodes concurrently
799  * and collected into a cohesive response >= collect_key.
800  *
801  * The collector will return the instant quorum or other requirements
802  * are met, even if some nodes get behind or become non-responsive.
803  *
804  * HAMMER2_XOP_COLLECT_NOWAIT	- Used to 'poll' a completed collection,
805  *				  usually called synchronously from the
806  *				  node XOPs for the strategy code to
807  *				  fake the frontend collection and complete
808  *				  the BIO as soon as possible.
809  *
810  * HAMMER2_XOP_SYNCHRONIZER	- Reqeuest synchronization with a particular
811  *				  cluster index, prevents looping when that
812  *				  index is out of sync so caller can act on
813  *				  the out of sync element.  ESRCH and EDEADLK
814  *				  can be returned if this flag is specified.
815  *
816  * Returns 0 on success plus a filled out xop->cluster structure.
817  * Return ENOENT on normal termination.
818  * Otherwise return an error.
819  *
820  * WARNING! If the xop returns a cluster with a non-NULL focus, note that
821  *	    none of the chains in the cluster (or the focus) are either
822  *	    locked or I/O synchronized with the cpu.  hammer2_xop_gdata()
823  *	    and hammer2_xop_pdata() must be used to safely access the focus
824  *	    chain's content.
825  *
826  *	    The frontend can make certain assumptions based on higher-level
827  *	    locking done by the frontend, but data integrity absolutely
828  *	    requires using the gdata/pdata API.
829  */
830 int
831 hammer2_xop_collect(hammer2_xop_head_t *xop, int flags)
832 {
833 	hammer2_xop_fifo_t *fifo;
834 	hammer2_chain_t *chain;
835 	hammer2_key_t lokey;
836 	uint64_t mask;
837 	int error;
838 	int keynull;
839 	int adv;		/* advance the element */
840 	int i;
841 
842 loop:
843 	/*
844 	 * First loop tries to advance pieces of the cluster which
845 	 * are out of sync.
846 	 */
847 	lokey = HAMMER2_KEY_MAX;
848 	keynull = HAMMER2_CHECK_NULL;
849 	mask = xop->run_mask;
850 	cpu_lfence();
851 
852 	for (i = 0; i < xop->cluster.nchains; ++i) {
853 		chain = xop->cluster.array[i].chain;
854 		if (chain == NULL) {
855 			adv = 1;
856 		} else if (chain->bref.key < xop->collect_key) {
857 			adv = 1;
858 		} else {
859 			keynull &= ~HAMMER2_CHECK_NULL;
860 			if (lokey > chain->bref.key)
861 				lokey = chain->bref.key;
862 			adv = 0;
863 		}
864 		if (adv == 0)
865 			continue;
866 
867 		/*
868 		 * Advance element if possible, advanced element may be NULL.
869 		 */
870 		if (chain)
871 			hammer2_chain_drop_unhold(chain);
872 
873 		fifo = &xop->collect[i];
874 		if (fifo->ri != fifo->wi) {
875 			cpu_lfence();
876 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
877 			error = fifo->errors[fifo->ri & HAMMER2_XOPFIFO_MASK];
878 			++fifo->ri;
879 			xop->cluster.array[i].chain = chain;
880 			xop->cluster.array[i].error = error;
881 			if (chain == NULL) {
882 				/* XXX */
883 				xop->cluster.array[i].flags |=
884 							HAMMER2_CITEM_NULL;
885 			}
886 			if (fifo->wi - fifo->ri <= HAMMER2_XOPFIFO / 2) {
887 				if (fifo->flags & HAMMER2_XOP_FIFO_STALL) {
888 					atomic_clear_int(&fifo->flags,
889 						    HAMMER2_XOP_FIFO_STALL);
890 					wakeup(xop);
891 					lwkt_yield();
892 				}
893 			}
894 			--i;		/* loop on same index */
895 		} else {
896 			/*
897 			 * Retain CITEM_NULL flag.  If set just repeat EOF.
898 			 * If not, the NULL,0 combination indicates an
899 			 * operation in-progress.
900 			 */
901 			xop->cluster.array[i].chain = NULL;
902 			/* retain any CITEM_NULL setting */
903 		}
904 	}
905 
906 	/*
907 	 * Determine whether the lowest collected key meets clustering
908 	 * requirements.  Returns:
909 	 *
910 	 * 0	 	 - key valid, cluster can be returned.
911 	 *
912 	 * ENOENT	 - normal end of scan, return ENOENT.
913 	 *
914 	 * ESRCH	 - sufficient elements collected, quorum agreement
915 	 *		   that lokey is not a valid element and should be
916 	 *		   skipped.
917 	 *
918 	 * EDEADLK	 - sufficient elements collected, no quorum agreement
919 	 *		   (and no agreement possible).  In this situation a
920 	 *		   repair is needed, for now we loop.
921 	 *
922 	 * EINPROGRESS	 - insufficient elements collected to resolve, wait
923 	 *		   for event and loop.
924 	 */
925 	if ((flags & HAMMER2_XOP_COLLECT_WAITALL) &&
926 	    (mask & HAMMER2_XOPMASK_ALLDONE) != HAMMER2_XOPMASK_VOP) {
927 		error = HAMMER2_ERROR_EINPROGRESS;
928 	} else {
929 		error = hammer2_cluster_check(&xop->cluster, lokey, keynull);
930 	}
931 	if (error == HAMMER2_ERROR_EINPROGRESS) {
932 		if (flags & HAMMER2_XOP_COLLECT_NOWAIT)
933 			goto done;
934 		tsleep_interlock(xop, 0);
935 		if (atomic_cmpset_64(&xop->run_mask,
936 				     mask, mask | HAMMER2_XOPMASK_WAIT)) {
937 			tsleep(xop, PINTERLOCKED, "h2coll", hz*60);
938 		}
939 		goto loop;
940 	}
941 	if (error == HAMMER2_ERROR_ESRCH) {
942 		if (lokey != HAMMER2_KEY_MAX) {
943 			xop->collect_key = lokey + 1;
944 			goto loop;
945 		}
946 		error = HAMMER2_ERROR_ENOENT;
947 	}
948 	if (error == HAMMER2_ERROR_EDEADLK) {
949 		kprintf("hammer2: no quorum possible lokey %016jx\n",
950 			lokey);
951 		if (lokey != HAMMER2_KEY_MAX) {
952 			xop->collect_key = lokey + 1;
953 			goto loop;
954 		}
955 		error = HAMMER2_ERROR_ENOENT;
956 	}
957 	if (lokey == HAMMER2_KEY_MAX)
958 		xop->collect_key = lokey;
959 	else
960 		xop->collect_key = lokey + 1;
961 done:
962 	return error;
963 }
964 
965 /*
966  * N x M processing threads are available to handle XOPs, N per cluster
967  * index x M cluster nodes.
968  *
969  * Locate and return the next runnable xop, or NULL if no xops are
970  * present or none of the xops are currently runnable (for various reasons).
971  * The xop is left on the queue and serves to block other dependent xops
972  * from being run.
973  *
974  * Dependent xops will not be returned.
975  *
976  * Sets HAMMER2_XOP_FIFO_RUN on the returned xop or returns NULL.
977  *
978  * NOTE! Xops run concurrently for each cluster index.
979  */
980 #define XOP_HASH_SIZE	16
981 #define XOP_HASH_MASK	(XOP_HASH_SIZE - 1)
982 
983 static __inline
984 int
985 xop_testhash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
986 {
987 	uint32_t mask;
988 	int hv;
989 
990 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
991 	mask = 1U << (hv & 31);
992 	hv >>= 5;
993 
994 	return ((int)(hash[hv & XOP_HASH_MASK] & mask));
995 }
996 
997 static __inline
998 void
999 xop_sethash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
1000 {
1001 	uint32_t mask;
1002 	int hv;
1003 
1004 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
1005 	mask = 1U << (hv & 31);
1006 	hv >>= 5;
1007 
1008 	hash[hv & XOP_HASH_MASK] |= mask;
1009 }
1010 
1011 static
1012 hammer2_xop_head_t *
1013 hammer2_xop_next(hammer2_thread_t *thr)
1014 {
1015 	hammer2_pfs_t *pmp = thr->pmp;
1016 	int clindex = thr->clindex;
1017 	uint32_t hash[XOP_HASH_SIZE] = { 0 };
1018 	hammer2_xop_head_t *xop;
1019 
1020 	hammer2_spin_ex(&pmp->xop_spin);
1021 	TAILQ_FOREACH(xop, &thr->xopq, collect[clindex].entry) {
1022 		/*
1023 		 * Check dependency
1024 		 */
1025 		if (xop_testhash(thr, xop->ip1, hash) ||
1026 		    (xop->ip2 && xop_testhash(thr, xop->ip2, hash)) ||
1027 		    (xop->ip3 && xop_testhash(thr, xop->ip3, hash))) {
1028 			continue;
1029 		}
1030 		xop_sethash(thr, xop->ip1, hash);
1031 		if (xop->ip2)
1032 			xop_sethash(thr, xop->ip2, hash);
1033 		if (xop->ip3)
1034 			xop_sethash(thr, xop->ip3, hash);
1035 
1036 		/*
1037 		 * Check already running
1038 		 */
1039 		if (xop->collect[clindex].flags & HAMMER2_XOP_FIFO_RUN)
1040 			continue;
1041 
1042 		/*
1043 		 * Found a good one, return it.
1044 		 */
1045 		atomic_set_int(&xop->collect[clindex].flags,
1046 			       HAMMER2_XOP_FIFO_RUN);
1047 		break;
1048 	}
1049 	hammer2_spin_unex(&pmp->xop_spin);
1050 
1051 	return xop;
1052 }
1053 
1054 /*
1055  * Remove the completed XOP from the queue, clear HAMMER2_XOP_FIFO_RUN.
1056  *
1057  * NOTE! Xops run concurrently for each cluster index.
1058  */
1059 static
1060 void
1061 hammer2_xop_dequeue(hammer2_thread_t *thr, hammer2_xop_head_t *xop)
1062 {
1063 	hammer2_pfs_t *pmp = thr->pmp;
1064 	int clindex = thr->clindex;
1065 
1066 	hammer2_spin_ex(&pmp->xop_spin);
1067 	TAILQ_REMOVE(&thr->xopq, xop, collect[clindex].entry);
1068 	atomic_clear_int(&xop->collect[clindex].flags,
1069 			 HAMMER2_XOP_FIFO_RUN);
1070 	hammer2_spin_unex(&pmp->xop_spin);
1071 	if (TAILQ_FIRST(&thr->xopq))
1072 		hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
1073 }
1074 
1075 /*
1076  * Primary management thread for xops support.  Each node has several such
1077  * threads which replicate front-end operations on cluster nodes.
1078  *
1079  * XOPS thread node operations, allowing the function to focus on a single
1080  * node in the cluster after validating the operation with the cluster.
1081  * This is primarily what prevents dead or stalled nodes from stalling
1082  * the front-end.
1083  */
1084 void
1085 hammer2_primary_xops_thread(void *arg)
1086 {
1087 	hammer2_thread_t *thr = arg;
1088 	hammer2_pfs_t *pmp;
1089 	hammer2_xop_head_t *xop;
1090 	uint64_t mask;
1091 	uint32_t flags;
1092 	uint32_t nflags;
1093 	hammer2_xop_desc_t *last_desc = NULL;
1094 
1095 	pmp = thr->pmp;
1096 	/*xgrp = &pmp->xop_groups[thr->repidx]; not needed */
1097 	mask = 1LLU << thr->clindex;
1098 
1099 	for (;;) {
1100 		flags = thr->flags;
1101 
1102 		/*
1103 		 * Handle stop request
1104 		 */
1105 		if (flags & HAMMER2_THREAD_STOP)
1106 			break;
1107 
1108 		/*
1109 		 * Handle freeze request
1110 		 */
1111 		if (flags & HAMMER2_THREAD_FREEZE) {
1112 			hammer2_thr_signal2(thr, HAMMER2_THREAD_FROZEN,
1113 						 HAMMER2_THREAD_FREEZE);
1114 			continue;
1115 		}
1116 
1117 		if (flags & HAMMER2_THREAD_UNFREEZE) {
1118 			hammer2_thr_signal2(thr, 0,
1119 						 HAMMER2_THREAD_FROZEN |
1120 						 HAMMER2_THREAD_UNFREEZE);
1121 			continue;
1122 		}
1123 
1124 		/*
1125 		 * Force idle if frozen until unfrozen or stopped.
1126 		 */
1127 		if (flags & HAMMER2_THREAD_FROZEN) {
1128 			hammer2_thr_wait_any(thr,
1129 					     HAMMER2_THREAD_UNFREEZE |
1130 					     HAMMER2_THREAD_STOP,
1131 					     0);
1132 			continue;
1133 		}
1134 
1135 		/*
1136 		 * Reset state on REMASTER request
1137 		 */
1138 		if (flags & HAMMER2_THREAD_REMASTER) {
1139 			hammer2_thr_signal2(thr, 0, HAMMER2_THREAD_REMASTER);
1140 			/* reset state here */
1141 			continue;
1142 		}
1143 
1144 		/*
1145 		 * Process requests.  Each request can be multi-queued.
1146 		 *
1147 		 * If we get behind and the frontend VOP is no longer active,
1148 		 * we retire the request without processing it.  The callback
1149 		 * may also abort processing if the frontend VOP becomes
1150 		 * inactive.
1151 		 */
1152 		if (flags & HAMMER2_THREAD_XOPQ) {
1153 			nflags = flags & ~HAMMER2_THREAD_XOPQ;
1154 			if (!atomic_cmpset_int(&thr->flags, flags, nflags))
1155 				continue;
1156 			flags = nflags;
1157 			/* fall through */
1158 		}
1159 		while ((xop = hammer2_xop_next(thr)) != NULL) {
1160 			if (hammer2_xop_active(xop)) {
1161 				last_desc = xop->desc;
1162 				xop->desc->storage_func((hammer2_xop_t *)xop,
1163 							thr->scratch,
1164 							thr->clindex);
1165 				hammer2_xop_dequeue(thr, xop);
1166 				hammer2_xop_retire(xop, mask);
1167 			} else {
1168 				last_desc = xop->desc;
1169 				hammer2_xop_feed(xop, NULL, thr->clindex,
1170 						 ECONNABORTED);
1171 				hammer2_xop_dequeue(thr, xop);
1172 				hammer2_xop_retire(xop, mask);
1173 			}
1174 		}
1175 
1176 		/*
1177 		 * Wait for event, interlock using THREAD_WAITING and
1178 		 * THREAD_SIGNAL.
1179 		 *
1180 		 * For robustness poll on a 30-second interval, but nominally
1181 		 * expect to be woken up.
1182 		 */
1183 		nflags = flags | HAMMER2_THREAD_WAITING;
1184 
1185 		tsleep_interlock(&thr->flags, 0);
1186 		if (atomic_cmpset_int(&thr->flags, flags, nflags)) {
1187 			tsleep(&thr->flags, PINTERLOCKED, "h2idle", hz*30);
1188 		}
1189 	}
1190 
1191 #if 0
1192 	/*
1193 	 * Cleanup / termination
1194 	 */
1195 	while ((xop = TAILQ_FIRST(&thr->xopq)) != NULL) {
1196 		kprintf("hammer2_thread: aborting xop %s\n", xop->desc->id);
1197 		TAILQ_REMOVE(&thr->xopq, xop,
1198 			     collect[thr->clindex].entry);
1199 		hammer2_xop_retire(xop, mask);
1200 	}
1201 #endif
1202 	thr->td = NULL;
1203 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOPPED);
1204 	/* thr structure can go invalid after this point */
1205 }
1206