xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision b4f25088)
1 /*
2  * Copyright (c) 2011-2013 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain and hammer2_chain_core structures.
38  *
39  * Chains represent the filesystem media topology in-memory.  Any given
40  * chain can represent an inode, indirect block, data, or other types
41  * of blocks.
42  *
43  * This module provides APIs for direct and indirect block searches,
44  * iterations, recursions, creation, deletion, replication, and snapshot
45  * views (used by the flush and snapshot code).
46  *
47  * Generally speaking any modification made to a chain must propagate all
48  * the way back to the volume header, issuing copy-on-write updates to the
49  * blockref tables all the way up.  Any chain except the volume header itself
50  * can be flushed to disk at any time, in any order.  None of it matters
51  * until we get to the point where we want to synchronize the volume header
52  * (see the flush code).
53  *
54  * The chain structure supports snapshot views in time, which are primarily
55  * used until the related data and meta-data is flushed to allow the
56  * filesystem to make snapshots without requiring it to first flush,
57  * and to allow the filesystem flush and modify the filesystem concurrently
58  * with minimal or no stalls.
59  */
60 #include <sys/cdefs.h>
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/types.h>
64 #include <sys/lock.h>
65 #include <sys/kern_syscall.h>
66 #include <sys/uuid.h>
67 
68 #include "hammer2.h"
69 
70 static int hammer2_indirect_optimize;	/* XXX SYSCTL */
71 
72 static hammer2_chain_t *hammer2_chain_create_indirect(
73 		hammer2_trans_t *trans, hammer2_chain_t *parent,
74 		hammer2_key_t key, int keybits, int for_type, int *errorp);
75 static void adjreadcounter(hammer2_blockref_t *bref, size_t bytes);
76 
77 /*
78  * We use a red-black tree to guarantee safe lookups under shared locks.
79  *
80  * Chains can be overloaded onto the same index, creating a different
81  * view of a blockref table based on a transaction id.  The RBTREE
82  * deconflicts the view by sub-sorting on delete_tid.
83  *
84  * NOTE: Any 'current' chain which is not yet deleted will have a
85  *	 delete_tid of HAMMER2_MAX_TID (0xFFF....FFFLLU).
86  */
87 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
88 
89 int
90 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
91 {
92 	if (chain1->index < chain2->index)
93 		return(-1);
94 	if (chain1->index > chain2->index)
95 		return(1);
96 	if (chain1->delete_tid < chain2->delete_tid)
97 		return(-1);
98 	if (chain1->delete_tid > chain2->delete_tid)
99 		return(1);
100 	return(0);
101 }
102 
103 static __inline
104 int
105 hammer2_isclusterable(hammer2_chain_t *chain)
106 {
107 	if (hammer2_cluster_enable) {
108 		if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
109 		    chain->bref.type == HAMMER2_BREF_TYPE_INODE ||
110 		    chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
111 			return(1);
112 		}
113 	}
114 	return(0);
115 }
116 
117 /*
118  * Recursively set the SUBMODIFIED flag up to the root starting at chain's
119  * parent.  SUBMODIFIED is not set in chain itself.
120  *
121  * This function only operates on current-time transactions and is not
122  * used during flushes.  Instead, the flush code manages the flag itself.
123  */
124 void
125 hammer2_chain_setsubmod(hammer2_trans_t *trans, hammer2_chain_t *chain)
126 {
127 	hammer2_chain_core_t *above;
128 
129 	if (trans->flags & HAMMER2_TRANS_ISFLUSH)
130 		return;
131 	while ((above = chain->above) != NULL) {
132 		spin_lock(&above->cst.spin);
133 		chain = above->first_parent;
134 		while (hammer2_chain_refactor_test(chain, 1))
135 			chain = chain->next_parent;
136 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_SUBMODIFIED);
137 		spin_unlock(&above->cst.spin);
138 	}
139 }
140 
141 /*
142  * Allocate a new disconnected chain element representing the specified
143  * bref.  chain->refs is set to 1 and the passed bref is copied to
144  * chain->bref.  chain->bytes is derived from the bref.
145  *
146  * chain->core is NOT allocated and the media data and bp pointers are left
147  * NULL.  The caller must call chain_core_alloc() to allocate or associate
148  * a core with the chain.
149  *
150  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
151  */
152 hammer2_chain_t *
153 hammer2_chain_alloc(hammer2_mount_t *hmp, hammer2_trans_t *trans,
154 		    hammer2_blockref_t *bref)
155 {
156 	hammer2_chain_t *chain;
157 	u_int bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
158 
159 	/*
160 	 * Construct the appropriate system structure.
161 	 */
162 	switch(bref->type) {
163 	case HAMMER2_BREF_TYPE_INODE:
164 	case HAMMER2_BREF_TYPE_INDIRECT:
165 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
166 	case HAMMER2_BREF_TYPE_DATA:
167 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
168 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
169 		break;
170 	case HAMMER2_BREF_TYPE_VOLUME:
171 	case HAMMER2_BREF_TYPE_FREEMAP:
172 		chain = NULL;
173 		panic("hammer2_chain_alloc volume type illegal for op");
174 	default:
175 		chain = NULL;
176 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
177 		      bref->type);
178 	}
179 
180 	chain->hmp = hmp;
181 	chain->bref = *bref;
182 	chain->index = -1;		/* not yet assigned */
183 	chain->bytes = bytes;
184 	chain->refs = 1;
185 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
186 	chain->delete_tid = HAMMER2_MAX_TID;
187 	if (trans)
188 		chain->modify_tid = trans->sync_tid;
189 
190 	return (chain);
191 }
192 
193 /*
194  * Associate an existing core with the chain or allocate a new core.
195  *
196  * The core is not locked.  No additional refs on the chain are made.
197  */
198 void
199 hammer2_chain_core_alloc(hammer2_chain_t *chain, hammer2_chain_core_t *core)
200 {
201 	hammer2_chain_t **scanp;
202 
203 	KKASSERT(chain->core == NULL);
204 	KKASSERT(chain->next_parent == NULL);
205 
206 	if (core == NULL) {
207 		core = kmalloc(sizeof(*core), chain->hmp->mchain,
208 			       M_WAITOK | M_ZERO);
209 		RB_INIT(&core->rbtree);
210 		core->sharecnt = 1;
211 		chain->core = core;
212 		ccms_cst_init(&core->cst, chain);
213 		core->first_parent = chain;
214 	} else {
215 		atomic_add_int(&core->sharecnt, 1);
216 		chain->core = core;
217 		spin_lock(&core->cst.spin);
218 		if (core->first_parent == NULL) {
219 			core->first_parent = chain;
220 		} else {
221 			scanp = &core->first_parent;
222 			while (*scanp)
223 				scanp = &(*scanp)->next_parent;
224 			*scanp = chain;
225 			hammer2_chain_ref(chain);	/* next_parent link */
226 		}
227 		spin_unlock(&core->cst.spin);
228 	}
229 }
230 
231 /*
232  * Add a reference to a chain element, preventing its destruction.
233  */
234 void
235 hammer2_chain_ref(hammer2_chain_t *chain)
236 {
237 	atomic_add_int(&chain->refs, 1);
238 }
239 
240 /*
241  * Drop the caller's reference to the chain.  When the ref count drops to
242  * zero this function will disassociate the chain from its parent and
243  * deallocate it, then recursely drop the parent using the implied ref
244  * from the chain's chain->parent.
245  *
246  * WARNING! Just because we are able to deallocate a chain doesn't mean
247  *	    that chain->core->rbtree is empty.  There can still be a sharecnt
248  *	    on chain->core and RBTREE entries that refer to different parents.
249  */
250 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain);
251 
252 void
253 hammer2_chain_drop(hammer2_chain_t *chain)
254 {
255 	u_int refs;
256 	u_int need = 0;
257 
258 #if 1
259 	if (chain->flags & HAMMER2_CHAIN_MOVED)
260 		++need;
261 	if (chain->flags & HAMMER2_CHAIN_MODIFIED)
262 		++need;
263 	KKASSERT(chain->refs > need);
264 #endif
265 
266 	while (chain) {
267 		refs = chain->refs;
268 		cpu_ccfence();
269 		KKASSERT(refs > 0);
270 
271 		if (refs == 1) {
272 			chain = hammer2_chain_lastdrop(chain);
273 		} else {
274 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
275 				break;
276 			/* retry the same chain */
277 		}
278 	}
279 }
280 
281 /*
282  * Safe handling of the 1->0 transition on chain.  Returns a chain for
283  * recursive drop or NULL, possibly returning the same chain of the atomic
284  * op fails.
285  *
286  * The cst spinlock is allowed nest child-to-parent (not parent-to-child).
287  */
288 static
289 hammer2_chain_t *
290 hammer2_chain_lastdrop(hammer2_chain_t *chain)
291 {
292 	hammer2_mount_t *hmp;
293 	hammer2_chain_core_t *above;
294 	hammer2_chain_core_t *core;
295 	hammer2_chain_t *rdrop1;
296 	hammer2_chain_t *rdrop2;
297 
298 	/*
299 	 * Spinlock the core and check to see if it is empty.  If it is
300 	 * not empty we leave chain intact with refs == 0.
301 	 */
302 	if ((core = chain->core) != NULL) {
303 		spin_lock(&core->cst.spin);
304 		if (RB_ROOT(&core->rbtree)) {
305 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
306 				/* 1->0 transition successful */
307 				spin_unlock(&core->cst.spin);
308 				return(NULL);
309 			} else {
310 				/* 1->0 transition failed, retry */
311 				spin_unlock(&core->cst.spin);
312 				return(chain);
313 			}
314 		}
315 	}
316 
317 	hmp = chain->hmp;
318 	rdrop1 = NULL;
319 	rdrop2 = NULL;
320 
321 	/*
322 	 * Spinlock the parent and try to drop the last ref.  On success
323 	 * remove chain from its parent.
324 	 */
325 	if ((above = chain->above) != NULL) {
326 		spin_lock(&above->cst.spin);
327 		if (!atomic_cmpset_int(&chain->refs, 1, 0)) {
328 			/* 1->0 transition failed */
329 			spin_unlock(&above->cst.spin);
330 			if (core)
331 				spin_unlock(&core->cst.spin);
332 			return(chain);
333 			/* stop */
334 		}
335 
336 		/*
337 		 * 1->0 transition successful
338 		 */
339 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
340 		RB_REMOVE(hammer2_chain_tree, &above->rbtree, chain);
341 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
342 		chain->above = NULL;
343 
344 		/*
345 		 * Calculate a chain to return for a recursive drop.
346 		 *
347 		 * XXX this needs help, we have a potential deep-recursion
348 		 * problem which we try to address but sometimes we wind up
349 		 * with two elements that have to be dropped.
350 		 *
351 		 * If the chain has an associated core with refs at 0
352 		 * the chain must be the first in the core's linked list
353 		 * by definition, and we will recursively drop the ref
354 		 * implied by the chain->next_parent field.
355 		 *
356 		 * Otherwise if the rbtree containing chain is empty we try
357 		 * to recursively drop our parent (only the first one could
358 		 * possibly have refs == 0 since the rest are linked via
359 		 * next_parent).
360 		 *
361 		 * Otherwise we try to recursively drop a sibling.
362 		 */
363 		if (chain->next_parent) {
364 			KKASSERT(core != NULL);
365 			rdrop1 = chain->next_parent;
366 		}
367 		if (RB_EMPTY(&above->rbtree)) {
368 			rdrop2 = above->first_parent;
369 			if (rdrop2 == NULL || rdrop2->refs ||
370 			    atomic_cmpset_int(&rdrop2->refs, 0, 1) == 0) {
371 				rdrop2 = NULL;
372 			}
373 		} else {
374 			rdrop2 = RB_ROOT(&above->rbtree);
375 			if (atomic_cmpset_int(&rdrop2->refs, 0, 1) == 0)
376 				rdrop2 = NULL;
377 		}
378 		spin_unlock(&above->cst.spin);
379 		above = NULL;	/* safety */
380 	} else {
381 		if (chain->next_parent) {
382 			KKASSERT(core != NULL);
383 			rdrop1 = chain->next_parent;
384 		}
385 	}
386 
387 	/*
388 	 * We still have the core spinlock (if core is non-NULL).  The
389 	 * above spinlock is gone.
390 	 */
391 	if (core) {
392 		KKASSERT(core->first_parent == chain);
393 		if (chain->next_parent) {
394 			/* parent should already be set */
395 			KKASSERT(rdrop1 == chain->next_parent);
396 		}
397 		core->first_parent = chain->next_parent;
398 		chain->next_parent = NULL;
399 		chain->core = NULL;
400 
401 		if (atomic_fetchadd_int(&core->sharecnt, -1) == 1) {
402 			/*
403 			 * On the 1->0 transition of core we can destroy
404 			 * it.
405 			 */
406 			spin_unlock(&core->cst.spin);
407 			KKASSERT(core->cst.count == 0);
408 			KKASSERT(core->cst.upgrade == 0);
409 			kfree(core, hmp->mchain);
410 		} else {
411 			spin_unlock(&core->cst.spin);
412 		}
413 		core = NULL;	/* safety */
414 	}
415 
416 	/*
417 	 * All spin locks are gone, finish freeing stuff.
418 	 */
419 	KKASSERT((chain->flags & (HAMMER2_CHAIN_MOVED |
420 				  HAMMER2_CHAIN_MODIFIED)) == 0);
421 
422 	switch(chain->bref.type) {
423 	case HAMMER2_BREF_TYPE_VOLUME:
424 	case HAMMER2_BREF_TYPE_FREEMAP:
425 		chain->data = NULL;
426 		break;
427 	case HAMMER2_BREF_TYPE_INODE:
428 		if (chain->data) {
429 			kfree(chain->data, hmp->mchain);
430 			chain->data = NULL;
431 		}
432 		break;
433 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
434 		if (chain->data) {
435 			kfree(chain->data, hmp->mchain);
436 			chain->data = NULL;
437 		}
438 		break;
439 	default:
440 		KKASSERT(chain->data == NULL);
441 		break;
442 	}
443 
444 	KKASSERT(chain->bp == NULL);
445 	chain->hmp = NULL;
446 
447 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
448 		chain->flags &= ~HAMMER2_CHAIN_ALLOCATED;
449 		kfree(chain, hmp->mchain);
450 	}
451 	if (rdrop1 && rdrop2) {
452 		hammer2_chain_drop(rdrop1);
453 		return(rdrop2);
454 	} else if (rdrop1)
455 		return(rdrop1);
456 	else
457 		return(rdrop2);
458 }
459 
460 /*
461  * Ref and lock a chain element, acquiring its data with I/O if necessary,
462  * and specify how you would like the data to be resolved.
463  *
464  * Returns 0 on success or an error code if the data could not be acquired.
465  * The chain element is locked on return regardless of whether an error
466  * occurred or not.
467  *
468  * The lock is allowed to recurse, multiple locking ops will aggregate
469  * the requested resolve types.  Once data is assigned it will not be
470  * removed until the last unlock.
471  *
472  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
473  *			   (typically used to avoid device/logical buffer
474  *			    aliasing for data)
475  *
476  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
477  *			   the INITIAL-create state (indirect blocks only).
478  *
479  *			   Do not resolve data elements for DATA chains.
480  *			   (typically used to avoid device/logical buffer
481  *			    aliasing for data)
482  *
483  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
484  *
485  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
486  *			   it will be locked exclusive.
487  *
488  * NOTE: Embedded elements (volume header, inodes) are always resolved
489  *	 regardless.
490  *
491  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
492  *	 element will instantiate and zero its buffer, and flush it on
493  *	 release.
494  *
495  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
496  *	 so as not to instantiate a device buffer, which could alias against
497  *	 a logical file buffer.  However, if ALWAYS is specified the
498  *	 device buffer will be instantiated anyway.
499  *
500  * WARNING! If data must be fetched a shared lock will temporarily be
501  *	    upgraded to exclusive.  However, a deadlock can occur if
502  *	    the caller owns more than one shared lock.
503  */
504 int
505 hammer2_chain_lock(hammer2_chain_t *chain, int how)
506 {
507 	hammer2_mount_t *hmp;
508 	hammer2_chain_core_t *core;
509 	hammer2_blockref_t *bref;
510 	hammer2_off_t pbase;
511 	hammer2_off_t pmask;
512 	hammer2_off_t peof;
513 	ccms_state_t ostate;
514 	size_t boff;
515 	size_t psize;
516 	int error;
517 	char *bdata;
518 
519 	/*
520 	 * Ref and lock the element.  Recursive locks are allowed.
521 	 */
522 	if ((how & HAMMER2_RESOLVE_NOREF) == 0)
523 		hammer2_chain_ref(chain);
524 	atomic_add_int(&chain->lockcnt, 1);
525 
526 	hmp = chain->hmp;
527 	KKASSERT(hmp != NULL);
528 
529 	/*
530 	 * Get the appropriate lock.
531 	 */
532 	core = chain->core;
533 	if (how & HAMMER2_RESOLVE_SHARED)
534 		ccms_thread_lock(&core->cst, CCMS_STATE_SHARED);
535 	else
536 		ccms_thread_lock(&core->cst, CCMS_STATE_EXCLUSIVE);
537 
538 	/*
539 	 * If we already have a valid data pointer no further action is
540 	 * necessary.
541 	 */
542 	if (chain->data)
543 		return (0);
544 
545 	/*
546 	 * Do we have to resolve the data?
547 	 */
548 	switch(how & HAMMER2_RESOLVE_MASK) {
549 	case HAMMER2_RESOLVE_NEVER:
550 		return(0);
551 	case HAMMER2_RESOLVE_MAYBE:
552 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
553 			return(0);
554 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
555 			return(0);
556 #if 0
557 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
558 			return(0);
559 #endif
560 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
561 			return(0);
562 		/* fall through */
563 	case HAMMER2_RESOLVE_ALWAYS:
564 		break;
565 	}
566 
567 	/*
568 	 * Upgrade to an exclusive lock so we can safely manipulate the
569 	 * buffer cache.  If another thread got to it before us we
570 	 * can just return.
571 	 */
572 	ostate = ccms_thread_lock_upgrade(&core->cst);
573 	if (chain->data) {
574 		ccms_thread_lock_downgrade(&core->cst, ostate);
575 		return (0);
576 	}
577 
578 	/*
579 	 * We must resolve to a device buffer, either by issuing I/O or
580 	 * by creating a zero-fill element.  We do not mark the buffer
581 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
582 	 * API must still be used to do that).
583 	 *
584 	 * The device buffer is variable-sized in powers of 2 down
585 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
586 	 * chunk always contains buffers of the same size. (XXX)
587 	 *
588 	 * The minimum physical IO size may be larger than the variable
589 	 * block size.
590 	 */
591 	bref = &chain->bref;
592 
593 	psize = hammer2_devblksize(chain->bytes);
594 	pmask = (hammer2_off_t)psize - 1;
595 	pbase = bref->data_off & ~pmask;
596 	boff = bref->data_off & (HAMMER2_OFF_MASK & pmask);
597 	KKASSERT(pbase != 0);
598 	peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
599 
600 	/*
601 	 * The getblk() optimization can only be used on newly created
602 	 * elements if the physical block size matches the request.
603 	 */
604 	if ((chain->flags & HAMMER2_CHAIN_INITIAL) &&
605 	    chain->bytes == psize) {
606 		chain->bp = getblk(hmp->devvp, pbase, psize, 0, 0);
607 		error = 0;
608 	} else if (hammer2_isclusterable(chain)) {
609 		error = cluster_read(hmp->devvp, peof, pbase, psize,
610 				     psize, HAMMER2_PBUFSIZE*4,
611 				     &chain->bp);
612 		adjreadcounter(&chain->bref, chain->bytes);
613 	} else {
614 		error = bread(hmp->devvp, pbase, psize, &chain->bp);
615 		adjreadcounter(&chain->bref, chain->bytes);
616 	}
617 
618 	if (error) {
619 		kprintf("hammer2_chain_get: I/O error %016jx: %d\n",
620 			(intmax_t)pbase, error);
621 		bqrelse(chain->bp);
622 		chain->bp = NULL;
623 		ccms_thread_lock_downgrade(&core->cst, ostate);
624 		return (error);
625 	}
626 
627 	/*
628 	 * Zero the data area if the chain is in the INITIAL-create state.
629 	 * Mark the buffer for bdwrite().  This clears the INITIAL state
630 	 * but does not mark the chain modified.
631 	 */
632 	bdata = (char *)chain->bp->b_data + boff;
633 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
634 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
635 		bzero(bdata, chain->bytes);
636 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
637 	}
638 
639 	/*
640 	 * Setup the data pointer, either pointing it to an embedded data
641 	 * structure and copying the data from the buffer, or pointing it
642 	 * into the buffer.
643 	 *
644 	 * The buffer is not retained when copying to an embedded data
645 	 * structure in order to avoid potential deadlocks or recursions
646 	 * on the same physical buffer.
647 	 */
648 	switch (bref->type) {
649 	case HAMMER2_BREF_TYPE_VOLUME:
650 	case HAMMER2_BREF_TYPE_FREEMAP:
651 		/*
652 		 * Copy data from bp to embedded buffer
653 		 */
654 		panic("hammer2_chain_lock: called on unresolved volume header");
655 #if 0
656 		/* NOT YET */
657 		KKASSERT(pbase == 0);
658 		KKASSERT(chain->bytes == HAMMER2_PBUFSIZE);
659 		bcopy(bdata, &hmp->voldata, chain->bytes);
660 		chain->data = (void *)&hmp->voldata;
661 		bqrelse(chain->bp);
662 		chain->bp = NULL;
663 #endif
664 		break;
665 	case HAMMER2_BREF_TYPE_INODE:
666 		/*
667 		 * Copy data from bp to embedded buffer, do not retain the
668 		 * device buffer.
669 		 */
670 		KKASSERT(chain->bytes == sizeof(chain->data->ipdata));
671 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
672 		chain->data = kmalloc(sizeof(chain->data->ipdata),
673 				      hmp->mchain, M_WAITOK | M_ZERO);
674 		bcopy(bdata, &chain->data->ipdata, chain->bytes);
675 		bqrelse(chain->bp);
676 		chain->bp = NULL;
677 		break;
678 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
679 		KKASSERT(chain->bytes == sizeof(chain->data->bmdata));
680 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
681 		chain->data = kmalloc(sizeof(chain->data->bmdata),
682 				      hmp->mchain, M_WAITOK | M_ZERO);
683 		bcopy(bdata, &chain->data->bmdata, chain->bytes);
684 		bqrelse(chain->bp);
685 		chain->bp = NULL;
686 		break;
687 	case HAMMER2_BREF_TYPE_INDIRECT:
688 	case HAMMER2_BREF_TYPE_DATA:
689 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
690 	default:
691 		/*
692 		 * Point data at the device buffer and leave bp intact.
693 		 */
694 		chain->data = (void *)bdata;
695 		break;
696 	}
697 
698 	/*
699 	 * Make sure the bp is not specifically owned by this thread before
700 	 * restoring to a possibly shared lock, so another hammer2 thread
701 	 * can release it.
702 	 */
703 	if (chain->bp)
704 		BUF_KERNPROC(chain->bp);
705 	ccms_thread_lock_downgrade(&core->cst, ostate);
706 	return (0);
707 }
708 
709 /*
710  * Asynchronously read the device buffer (dbp) and execute the specified
711  * callback.  The caller should pass-in a locked chain (shared lock is ok).
712  * The function is responsible for unlocking the chain and for disposing
713  * of dbp.
714  *
715  * NOTE!  A NULL dbp (but non-NULL data) will be passed to the function
716  *	  if the dbp is integrated into the chain, because we do not want
717  *	  the caller to dispose of dbp in that situation.
718  */
719 static void hammer2_chain_load_async_callback(struct bio *bio);
720 
721 void
722 hammer2_chain_load_async(hammer2_chain_t *chain,
723 	void (*func)(hammer2_chain_t *, struct buf *, char *, void *),
724 	void *arg)
725 {
726 	hammer2_cbinfo_t *cbinfo;
727 	hammer2_mount_t *hmp;
728 	hammer2_blockref_t *bref;
729 	hammer2_off_t pbase;
730 	hammer2_off_t pmask;
731 	hammer2_off_t peof;
732 	struct buf *dbp;
733 	size_t boff;
734 	size_t psize;
735 	char *bdata;
736 
737 	if (chain->data) {
738 		func(chain, NULL, (char *)chain->data, arg);
739 		return;
740 	}
741 
742 	/*
743 	 * We must resolve to a device buffer, either by issuing I/O or
744 	 * by creating a zero-fill element.  We do not mark the buffer
745 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
746 	 * API must still be used to do that).
747 	 *
748 	 * The device buffer is variable-sized in powers of 2 down
749 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
750 	 * chunk always contains buffers of the same size. (XXX)
751 	 *
752 	 * The minimum physical IO size may be larger than the variable
753 	 * block size.
754 	 */
755 	bref = &chain->bref;
756 
757 	psize = hammer2_devblksize(chain->bytes);
758 	pmask = (hammer2_off_t)psize - 1;
759 	pbase = bref->data_off & ~pmask;
760 	boff = bref->data_off & (HAMMER2_OFF_MASK & pmask);
761 	KKASSERT(pbase != 0);
762 	peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
763 
764 	hmp = chain->hmp;
765 
766 	/*
767 	 * The getblk() optimization can only be used on newly created
768 	 * elements if the physical block size matches the request.
769 	 */
770 	if ((chain->flags & HAMMER2_CHAIN_INITIAL) &&
771 	    chain->bytes == psize) {
772 		dbp = getblk(hmp->devvp, pbase, psize, 0, 0);
773 		/*atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);*/
774 		bdata = (char *)dbp->b_data + boff;
775 		bzero(bdata, chain->bytes);
776 		/*atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);*/
777 		func(chain, dbp, bdata, arg);
778 		return;
779 	}
780 
781 	adjreadcounter(&chain->bref, chain->bytes);
782 	cbinfo = kmalloc(sizeof(*cbinfo), hmp->mchain, M_INTWAIT | M_ZERO);
783 	cbinfo->chain = chain;
784 	cbinfo->func = func;
785 	cbinfo->arg = arg;
786 	cbinfo->boff = boff;
787 
788 	cluster_readcb(hmp->devvp, peof, pbase, psize,
789 		HAMMER2_PBUFSIZE*4, HAMMER2_PBUFSIZE*4,
790 		hammer2_chain_load_async_callback, cbinfo);
791 }
792 
793 static void
794 hammer2_chain_load_async_callback(struct bio *bio)
795 {
796 	hammer2_cbinfo_t *cbinfo;
797 	hammer2_mount_t *hmp;
798 	struct buf *dbp;
799 	char *data;
800 
801 	/*
802 	 * Nobody is waiting for bio/dbp to complete, we are
803 	 * responsible for handling the biowait() equivalent
804 	 * on dbp which means clearing BIO_DONE and BIO_SYNC
805 	 * and calling bpdone() if it hasn't already been called
806 	 * to restore any covered holes in the buffer's backing
807 	 * store.
808 	 */
809 	dbp = bio->bio_buf;
810 	if ((bio->bio_flags & BIO_DONE) == 0)
811 		bpdone(dbp, 0);
812 	bio->bio_flags &= ~(BIO_DONE | BIO_SYNC);
813 
814 	/*
815 	 * Extract the auxillary info and issue the callback.
816 	 * Finish up with the dbp after it returns.
817 	 */
818 	cbinfo = bio->bio_caller_info1.ptr;
819 	/*ccms_thread_lock_setown(cbinfo->chain->core);*/
820 	data = dbp->b_data + cbinfo->boff;
821 	hmp = cbinfo->chain->hmp;
822 
823 	cbinfo = bio->bio_caller_info1.ptr;
824 	cbinfo->func(cbinfo->chain, dbp, data, cbinfo->arg);
825 	/* cbinfo->chain is stale now */
826 	bqrelse(dbp);
827 	kfree(cbinfo, hmp->mchain);
828 }
829 
830 /*
831  * Unlock and deref a chain element.
832  *
833  * On the last lock release any non-embedded data (chain->bp) will be
834  * retired.
835  */
836 void
837 hammer2_chain_unlock(hammer2_chain_t *chain)
838 {
839 	hammer2_chain_core_t *core = chain->core;
840 	ccms_state_t ostate;
841 	long *counterp;
842 	u_int lockcnt;
843 
844 	/*
845 	 * The core->cst lock can be shared across several chains so we
846 	 * need to track the per-chain lockcnt separately.
847 	 *
848 	 * If multiple locks are present (or being attempted) on this
849 	 * particular chain we can just unlock, drop refs, and return.
850 	 *
851 	 * Otherwise fall-through on the 1->0 transition.
852 	 */
853 	for (;;) {
854 		lockcnt = chain->lockcnt;
855 		KKASSERT(lockcnt > 0);
856 		cpu_ccfence();
857 		if (lockcnt > 1) {
858 			if (atomic_cmpset_int(&chain->lockcnt,
859 					      lockcnt, lockcnt - 1)) {
860 				ccms_thread_unlock(&core->cst);
861 				hammer2_chain_drop(chain);
862 				return;
863 			}
864 		} else {
865 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
866 				break;
867 		}
868 		/* retry */
869 	}
870 
871 	/*
872 	 * On the 1->0 transition we upgrade the core lock (if necessary)
873 	 * to exclusive for terminal processing.  If after upgrading we find
874 	 * that lockcnt is non-zero, another thread is racing us and will
875 	 * handle the unload for us later on, so just cleanup and return
876 	 * leaving the data/bp intact
877 	 *
878 	 * Otherwise if lockcnt is still 0 it is possible for it to become
879 	 * non-zero and race, but since we hold the core->cst lock
880 	 * exclusively all that will happen is that the chain will be
881 	 * reloaded after we unload it.
882 	 */
883 	ostate = ccms_thread_lock_upgrade(&core->cst);
884 	if (chain->lockcnt) {
885 		ccms_thread_unlock_upgraded(&core->cst, ostate);
886 		hammer2_chain_drop(chain);
887 		return;
888 	}
889 
890 	/*
891 	 * Shortcut the case if the data is embedded or not resolved.
892 	 *
893 	 * Do NOT NULL out chain->data (e.g. inode data), it might be
894 	 * dirty.
895 	 *
896 	 * The DIRTYBP flag is non-applicable in this situation and can
897 	 * be cleared to keep the flags state clean.
898 	 */
899 	if (chain->bp == NULL) {
900 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
901 		ccms_thread_unlock_upgraded(&core->cst, ostate);
902 		hammer2_chain_drop(chain);
903 		return;
904 	}
905 
906 	/*
907 	 * Statistics
908 	 */
909 	if ((chain->flags & HAMMER2_CHAIN_DIRTYBP) == 0) {
910 		;
911 	} else if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
912 		switch(chain->bref.type) {
913 		case HAMMER2_BREF_TYPE_DATA:
914 			counterp = &hammer2_ioa_file_write;
915 			break;
916 		case HAMMER2_BREF_TYPE_INODE:
917 			counterp = &hammer2_ioa_meta_write;
918 			break;
919 		case HAMMER2_BREF_TYPE_INDIRECT:
920 			counterp = &hammer2_ioa_indr_write;
921 			break;
922 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
923 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
924 			counterp = &hammer2_ioa_fmap_write;
925 			break;
926 		default:
927 			counterp = &hammer2_ioa_volu_write;
928 			break;
929 		}
930 		*counterp += chain->bytes;
931 	} else {
932 		switch(chain->bref.type) {
933 		case HAMMER2_BREF_TYPE_DATA:
934 			counterp = &hammer2_iod_file_write;
935 			break;
936 		case HAMMER2_BREF_TYPE_INODE:
937 			counterp = &hammer2_iod_meta_write;
938 			break;
939 		case HAMMER2_BREF_TYPE_INDIRECT:
940 			counterp = &hammer2_iod_indr_write;
941 			break;
942 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
943 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
944 			counterp = &hammer2_iod_fmap_write;
945 			break;
946 		default:
947 			counterp = &hammer2_iod_volu_write;
948 			break;
949 		}
950 		*counterp += chain->bytes;
951 	}
952 
953 	/*
954 	 * Clean out the bp.
955 	 *
956 	 * If a device buffer was used for data be sure to destroy the
957 	 * buffer when we are done to avoid aliases (XXX what about the
958 	 * underlying VM pages?).
959 	 *
960 	 * NOTE: Freemap leaf's use reserved blocks and thus no aliasing
961 	 *	 is possible.
962 	 */
963 #if 0
964 	/*
965 	 * XXX our primary cache is now the block device, not
966 	 * the logical file. don't release the buffer.
967 	 */
968 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
969 		chain->bp->b_flags |= B_RELBUF;
970 #endif
971 
972 	/*
973 	 * The DIRTYBP flag tracks whether we have to bdwrite() the buffer
974 	 * or not.  The flag will get re-set when chain_modify() is called,
975 	 * even if MODIFIED is already set, allowing the OS to retire the
976 	 * buffer independent of a hammer2 flus.
977 	 */
978 	chain->data = NULL;
979 	if (chain->flags & HAMMER2_CHAIN_DIRTYBP) {
980 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
981 		if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
982 			atomic_clear_int(&chain->flags,
983 					 HAMMER2_CHAIN_IOFLUSH);
984 			chain->bp->b_flags |= B_RELBUF;
985 			cluster_awrite(chain->bp);
986 		} else {
987 			chain->bp->b_flags |= B_CLUSTEROK;
988 			bdwrite(chain->bp);
989 		}
990 	} else {
991 		if (chain->flags & HAMMER2_CHAIN_IOFLUSH) {
992 			atomic_clear_int(&chain->flags,
993 					 HAMMER2_CHAIN_IOFLUSH);
994 			chain->bp->b_flags |= B_RELBUF;
995 			brelse(chain->bp);
996 		} else {
997 			/* bp might still be dirty */
998 			bqrelse(chain->bp);
999 		}
1000 	}
1001 	chain->bp = NULL;
1002 	ccms_thread_unlock_upgraded(&core->cst, ostate);
1003 	hammer2_chain_drop(chain);
1004 }
1005 
1006 /*
1007  * Resize the chain's physical storage allocation in-place.  This may
1008  * replace the passed-in chain with a new chain.
1009  *
1010  * Chains can be resized smaller without reallocating the storage.
1011  * Resizing larger will reallocate the storage.
1012  *
1013  * Must be passed an exclusively locked parent and chain, returns a new
1014  * exclusively locked chain at the same index and unlocks the old chain.
1015  * Flushes the buffer if necessary.
1016  *
1017  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1018  * to avoid instantiating a device buffer that conflicts with the vnode
1019  * data buffer.  That is, the passed-in bp is a logical buffer, whereas
1020  * any chain-oriented bp would be a device buffer.
1021  *
1022  * XXX flags currently ignored, uses chain->bp to detect data/no-data.
1023  * XXX return error if cannot resize.
1024  */
1025 void
1026 hammer2_chain_resize(hammer2_trans_t *trans, hammer2_inode_t *ip,
1027 		     struct buf *bp,
1028 		     hammer2_chain_t *parent, hammer2_chain_t **chainp,
1029 		     int nradix, int flags)
1030 {
1031 	hammer2_mount_t *hmp;
1032 	hammer2_chain_t *chain;
1033 	hammer2_off_t pbase;
1034 	size_t obytes;
1035 	size_t nbytes;
1036 	size_t bbytes;
1037 	int boff;
1038 
1039 	chain = *chainp;
1040 	hmp = chain->hmp;
1041 
1042 	/*
1043 	 * Only data and indirect blocks can be resized for now.
1044 	 * (The volu root, inodes, and freemap elements use a fixed size).
1045 	 */
1046 	KKASSERT(chain != &hmp->vchain);
1047 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1048 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT);
1049 
1050 	/*
1051 	 * Nothing to do if the element is already the proper size
1052 	 */
1053 	obytes = chain->bytes;
1054 	nbytes = 1U << nradix;
1055 	if (obytes == nbytes)
1056 		return;
1057 
1058 	/*
1059 	 * Delete the old chain and duplicate it at the same (parent, index),
1060 	 * returning a new chain.  This allows the old chain to still be
1061 	 * used by the flush code.  Duplication occurs in-place.
1062 	 *
1063 	 * The parent does not have to be locked for the delete/duplicate call,
1064 	 * but is in this particular code path.
1065 	 *
1066 	 * NOTE: If we are not crossing a synchronization point the
1067 	 *	 duplication code will simply reuse the existing chain
1068 	 *	 structure.
1069 	 */
1070 	hammer2_chain_delete_duplicate(trans, &chain, 0);
1071 
1072 	/*
1073 	 * Set MODIFIED and add a chain ref to prevent destruction.  Both
1074 	 * modified flags share the same ref.  (duplicated chains do not
1075 	 * start out MODIFIED unless possibly if the duplication code
1076 	 * decided to reuse the existing chain as-is).
1077 	 *
1078 	 * If the chain is already marked MODIFIED then we can safely
1079 	 * return the previous allocation to the pool without having to
1080 	 * worry about snapshots.  XXX check flush synchronization.
1081 	 */
1082 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1083 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1084 		hammer2_chain_ref(chain);
1085 	}
1086 
1087 	/*
1088 	 * Relocate the block, even if making it smaller (because different
1089 	 * block sizes may be in different regions).
1090 	 */
1091 	hammer2_freemap_alloc(trans, chain->hmp, &chain->bref, nbytes);
1092 	chain->bytes = nbytes;
1093 	/*ip->delta_dcount += (ssize_t)(nbytes - obytes);*/ /* XXX atomic */
1094 
1095 	/*
1096 	 * The device buffer may be larger than the allocation size.
1097 	 */
1098 	if ((bbytes = chain->bytes) < HAMMER2_MINIOSIZE)
1099 		bbytes = HAMMER2_MINIOSIZE;
1100 	pbase = chain->bref.data_off & ~(hammer2_off_t)(bbytes - 1);
1101 	boff = chain->bref.data_off & HAMMER2_OFF_MASK & (bbytes - 1);
1102 
1103 	/*
1104 	 * For now just support it on DATA chains (and not on indirect
1105 	 * blocks).
1106 	 */
1107 	KKASSERT(chain->bp == NULL);
1108 
1109 	/*
1110 	 * Make sure the chain is marked MOVED and SUBMOD is set in the
1111 	 * parent(s) so the adjustments are picked up by flush.
1112 	 */
1113 	if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
1114 		hammer2_chain_ref(chain);
1115 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
1116 	}
1117 	hammer2_chain_setsubmod(trans, chain);
1118 	*chainp = chain;
1119 }
1120 
1121 /*
1122  * Set a chain modified, making it read-write and duplicating it if necessary.
1123  * This function will assign a new physical block to the chain if necessary
1124  *
1125  * Duplication of already-modified chains is possible when the modification
1126  * crosses a flush synchronization boundary.
1127  *
1128  * Non-data blocks - The chain should be locked to at least the RESOLVE_MAYBE
1129  *		     level or the COW operation will not work.
1130  *
1131  * Data blocks	   - The chain is usually locked RESOLVE_NEVER so as not to
1132  *		     run the data through the device buffers.
1133  *
1134  * This function may return a different chain than was passed, in which case
1135  * the old chain will be unlocked and the new chain will be locked.
1136  *
1137  * ip->chain may be adjusted by hammer2_chain_modify_ip().
1138  */
1139 hammer2_inode_data_t *
1140 hammer2_chain_modify_ip(hammer2_trans_t *trans, hammer2_inode_t *ip,
1141 			hammer2_chain_t **chainp, int flags)
1142 {
1143 	atomic_set_int(&ip->flags, HAMMER2_INODE_MODIFIED);
1144 	hammer2_chain_modify(trans, chainp, flags);
1145 	if (ip->chain != *chainp)
1146 		hammer2_inode_repoint(ip, NULL, *chainp);
1147 	return(&ip->chain->data->ipdata);
1148 }
1149 
1150 void
1151 hammer2_chain_modify(hammer2_trans_t *trans, hammer2_chain_t **chainp,
1152 		     int flags)
1153 {
1154 	hammer2_mount_t *hmp;
1155 	hammer2_chain_t *chain;
1156 	hammer2_off_t pbase;
1157 	hammer2_off_t pmask;
1158 	hammer2_off_t peof;
1159 	hammer2_tid_t flush_tid;
1160 	struct buf *nbp;
1161 	int error;
1162 	int wasinitial;
1163 	size_t psize;
1164 	size_t boff;
1165 	void *bdata;
1166 
1167 	/*
1168 	 * Data must be resolved if already assigned unless explicitly
1169 	 * flagged otherwise.
1170 	 */
1171 	chain = *chainp;
1172 	hmp = chain->hmp;
1173 	if (chain->data == NULL && (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1174 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1175 		hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS);
1176 		hammer2_chain_unlock(chain);
1177 	}
1178 
1179 	/*
1180 	 * data is not optional for freemap chains (we must always be sure
1181 	 * to copy the data on COW storage allocations).
1182 	 */
1183 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1184 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1185 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1186 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1187 	}
1188 
1189 	/*
1190 	 * If the chain is already marked MODIFIED we can usually just
1191 	 * return.  However, if a modified chain is modified again in
1192 	 * a synchronization-point-crossing manner we have to issue a
1193 	 * delete/duplicate on the chain to avoid flush interference.
1194 	 */
1195 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1196 		/*
1197 		 * Which flush_tid do we need to check?  If the chain is
1198 		 * related to the freemap we have to use the freemap flush
1199 		 * tid (free_flush_tid), otherwise we use the normal filesystem
1200 		 * flush tid (topo_flush_tid).  The two flush domains are
1201 		 * almost completely independent of each other.
1202 		 */
1203 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1204 		    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1205 			flush_tid = hmp->topo_flush_tid; /* XXX */
1206 			goto skipxx;	/* XXX */
1207 		} else {
1208 			flush_tid = hmp->topo_flush_tid;
1209 		}
1210 
1211 		/*
1212 		 * Main tests
1213 		 */
1214 		if (chain->modify_tid <= flush_tid &&
1215 		    trans->sync_tid > flush_tid) {
1216 			/*
1217 			 * Modifications cross synchronization point,
1218 			 * requires delete-duplicate.
1219 			 */
1220 			KKASSERT((flags & HAMMER2_MODIFY_ASSERTNOCOPY) == 0);
1221 			hammer2_chain_delete_duplicate(trans, chainp, 0);
1222 			chain = *chainp;
1223 			/* fall through using duplicate */
1224 		}
1225 skipxx: /* XXX */
1226 		/*
1227 		 * Quick return path, set DIRTYBP to ensure that
1228 		 * the later retirement of bp will write it out.
1229 		 *
1230 		 * quick return path also needs the modify_tid
1231 		 * logic.
1232 		 */
1233 		if (chain->bp)
1234 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1235 		if ((flags & HAMMER2_MODIFY_NO_MODIFY_TID) == 0)
1236 			chain->bref.modify_tid = trans->sync_tid;
1237 		chain->modify_tid = trans->sync_tid;
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * modify_tid is only update for primary modifications, not for
1243 	 * propagated brefs.  mirror_tid will be updated regardless during
1244 	 * the flush, no need to set it here.
1245 	 */
1246 	if ((flags & HAMMER2_MODIFY_NO_MODIFY_TID) == 0)
1247 		chain->bref.modify_tid = trans->sync_tid;
1248 
1249 	/*
1250 	 * Set MODIFIED and add a chain ref to prevent destruction.  Both
1251 	 * modified flags share the same ref.
1252 	 */
1253 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1254 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1255 		hammer2_chain_ref(chain);
1256 	}
1257 
1258 	/*
1259 	 * Adjust chain->modify_tid so the flusher knows when the
1260 	 * modification occurred.
1261 	 */
1262 	chain->modify_tid = trans->sync_tid;
1263 
1264 	/*
1265 	 * The modification or re-modification requires an allocation and
1266 	 * possible COW.
1267 	 *
1268 	 * We normally always allocate new storage here.  If storage exists
1269 	 * and MODIFY_NOREALLOC is passed in, we do not allocate new storage.
1270 	 */
1271 	if (chain != &hmp->vchain &&
1272 	    chain != &hmp->fchain &&
1273 	    ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1274 	     (flags & HAMMER2_MODIFY_NOREALLOC) == 0)
1275 	) {
1276 		hammer2_freemap_alloc(trans, chain->hmp,
1277 				      &chain->bref, chain->bytes);
1278 		/* XXX failed allocation */
1279 	}
1280 
1281 	/*
1282 	 * Do not COW if OPTDATA is set.  INITIAL flag remains unchanged.
1283 	 * (OPTDATA does not prevent [re]allocation of storage, only the
1284 	 * related copy-on-write op).
1285 	 */
1286 	if (flags & HAMMER2_MODIFY_OPTDATA)
1287 		goto skip2;
1288 
1289 	/*
1290 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1291 	 * we've processed the uninitialized storage allocation.
1292 	 *
1293 	 * If this flag is already clear we are likely in a copy-on-write
1294 	 * situation but we have to be sure NOT to bzero the storage if
1295 	 * no data is present.
1296 	 */
1297 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1298 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1299 		wasinitial = 1;
1300 	} else {
1301 		wasinitial = 0;
1302 	}
1303 
1304 #if 0
1305 	/*
1306 	 * We currently should never instantiate a device buffer for a
1307 	 * file data chain.  (We definitely can for a freemap chain).
1308 	 *
1309 	 * XXX we can now do this
1310 	 */
1311 	KKASSERT(chain->bref.type != HAMMER2_BREF_TYPE_DATA);
1312 #endif
1313 
1314 	/*
1315 	 * Instantiate data buffer and possibly execute COW operation
1316 	 */
1317 	switch(chain->bref.type) {
1318 	case HAMMER2_BREF_TYPE_VOLUME:
1319 	case HAMMER2_BREF_TYPE_FREEMAP:
1320 	case HAMMER2_BREF_TYPE_INODE:
1321 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1322 		/*
1323 		 * The data is embedded, no copy-on-write operation is
1324 		 * needed.
1325 		 */
1326 		KKASSERT(chain->bp == NULL);
1327 		break;
1328 	case HAMMER2_BREF_TYPE_DATA:
1329 	case HAMMER2_BREF_TYPE_INDIRECT:
1330 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1331 		/*
1332 		 * Perform the copy-on-write operation
1333 		 */
1334 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1335 
1336 		psize = hammer2_devblksize(chain->bytes);
1337 		pmask = (hammer2_off_t)psize - 1;
1338 		pbase = chain->bref.data_off & ~pmask;
1339 		boff = chain->bref.data_off & (HAMMER2_OFF_MASK & pmask);
1340 		KKASSERT(pbase != 0);
1341 		peof = (pbase + HAMMER2_SEGMASK64) & ~HAMMER2_SEGMASK64;
1342 
1343 		/*
1344 		 * The getblk() optimization can only be used if the
1345 		 * chain element size matches the physical block size.
1346 		 */
1347 		if (chain->bp && chain->bp->b_loffset == pbase) {
1348 			nbp = chain->bp;
1349 			error = 0;
1350 		} else if (chain->bytes == psize) {
1351 			nbp = getblk(hmp->devvp, pbase, psize, 0, 0);
1352 			error = 0;
1353 		} else if (hammer2_isclusterable(chain)) {
1354 			error = cluster_read(hmp->devvp, peof, pbase, psize,
1355 					     psize, HAMMER2_PBUFSIZE*4,
1356 					     &nbp);
1357 			adjreadcounter(&chain->bref, chain->bytes);
1358 		} else {
1359 			error = bread(hmp->devvp, pbase, psize, &nbp);
1360 			adjreadcounter(&chain->bref, chain->bytes);
1361 		}
1362 		KKASSERT(error == 0);
1363 		bdata = (char *)nbp->b_data + boff;
1364 
1365 		/*
1366 		 * Copy or zero-fill on write depending on whether
1367 		 * chain->data exists or not.  Retire the existing bp
1368 		 * based on the DIRTYBP flag.  Set the DIRTYBP flag to
1369 		 * indicate that retirement of nbp should use bdwrite().
1370 		 */
1371 		if (chain->data) {
1372 			KKASSERT(chain->bp != NULL);
1373 			if (chain->data != bdata) {
1374 				bcopy(chain->data, bdata, chain->bytes);
1375 			}
1376 		} else if (wasinitial) {
1377 			bzero(bdata, chain->bytes);
1378 		} else {
1379 			/*
1380 			 * We have a problem.  We were asked to COW but
1381 			 * we don't have any data to COW with!
1382 			 */
1383 			panic("hammer2_chain_modify: having a COW %p\n",
1384 			      chain);
1385 		}
1386 		if (chain->bp != nbp) {
1387 			if (chain->bp) {
1388 				if (chain->flags & HAMMER2_CHAIN_DIRTYBP) {
1389 					chain->bp->b_flags |= B_CLUSTEROK;
1390 					bdwrite(chain->bp);
1391 				} else {
1392 					chain->bp->b_flags |= B_RELBUF;
1393 					brelse(chain->bp);
1394 				}
1395 			}
1396 			chain->bp = nbp;
1397 			BUF_KERNPROC(chain->bp);
1398 		}
1399 		chain->data = bdata;
1400 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DIRTYBP);
1401 		break;
1402 	default:
1403 		panic("hammer2_chain_modify: illegal non-embedded type %d",
1404 		      chain->bref.type);
1405 		break;
1406 
1407 	}
1408 skip2:
1409 	hammer2_chain_setsubmod(trans, chain);
1410 }
1411 
1412 /*
1413  * Mark the volume as having been modified.  This short-cut version
1414  * does not have to lock the volume's chain, which allows the ioctl
1415  * code to make adjustments to connections without deadlocking.  XXX
1416  *
1417  * No ref is made on vchain when flagging it MODIFIED.
1418  */
1419 void
1420 hammer2_modify_volume(hammer2_mount_t *hmp)
1421 {
1422 	hammer2_voldata_lock(hmp);
1423 	hammer2_voldata_unlock(hmp, 1);
1424 }
1425 
1426 /*
1427  * Locate an in-memory chain.  The parent must be locked.  The in-memory
1428  * chain is returned with a reference and without a lock, or NULL
1429  * if not found.
1430  *
1431  * This function returns the chain at the specified index with the highest
1432  * delete_tid.  The caller must check whether the chain is flagged
1433  * CHAIN_DELETED or not.  However, because chain iterations can be removed
1434  * from memory we must ALSO check that DELETED chains are not flushed.  A
1435  * DELETED chain which has been flushed must be ignored (the caller must
1436  * check the parent's blockref array).
1437  *
1438  * NOTE: If no chain is found the caller usually must check the on-media
1439  *	 array to determine if a blockref exists at the index.
1440  */
1441 struct hammer2_chain_find_info {
1442 	hammer2_chain_t *best;
1443 	hammer2_tid_t	delete_tid;
1444 	int index;
1445 };
1446 
1447 static
1448 int
1449 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
1450 {
1451 	struct hammer2_chain_find_info *info = data;
1452 
1453 	if (child->index < info->index)
1454 		return(-1);
1455 	if (child->index > info->index)
1456 		return(1);
1457 	return(0);
1458 }
1459 
1460 static
1461 int
1462 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
1463 {
1464 	struct hammer2_chain_find_info *info = data;
1465 
1466 	if (info->delete_tid < child->delete_tid) {
1467 		info->delete_tid = child->delete_tid;
1468 		info->best = child;
1469 	}
1470 	return(0);
1471 }
1472 
1473 static
1474 hammer2_chain_t *
1475 hammer2_chain_find_locked(hammer2_chain_t *parent, int index)
1476 {
1477 	struct hammer2_chain_find_info info;
1478 	hammer2_chain_t *child;
1479 
1480 	info.index = index;
1481 	info.delete_tid = 0;
1482 	info.best = NULL;
1483 
1484 	RB_SCAN(hammer2_chain_tree, &parent->core->rbtree,
1485 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
1486 		&info);
1487 	child = info.best;
1488 
1489 	return (child);
1490 }
1491 
1492 hammer2_chain_t *
1493 hammer2_chain_find(hammer2_chain_t *parent, int index)
1494 {
1495 	hammer2_chain_t *child;
1496 
1497 	spin_lock(&parent->core->cst.spin);
1498 	child = hammer2_chain_find_locked(parent, index);
1499 	if (child)
1500 		hammer2_chain_ref(child);
1501 	spin_unlock(&parent->core->cst.spin);
1502 
1503 	return (child);
1504 }
1505 
1506 /*
1507  * Return a locked chain structure with all associated data acquired.
1508  * (if LOOKUP_NOLOCK is requested the returned chain is only referenced).
1509  *
1510  * Caller must hold the parent locked shared or exclusive since we may
1511  * need the parent's bref array to find our block.
1512  *
1513  * The returned child is locked as requested.  If NOLOCK, the returned
1514  * child is still at least referenced.
1515  */
1516 hammer2_chain_t *
1517 hammer2_chain_get(hammer2_chain_t *parent, int index, int flags)
1518 {
1519 	hammer2_blockref_t *bref;
1520 	hammer2_mount_t *hmp = parent->hmp;
1521 	hammer2_chain_core_t *above = parent->core;
1522 	hammer2_chain_t *chain;
1523 	hammer2_chain_t dummy;
1524 	int how;
1525 
1526 	/*
1527 	 * Figure out how to lock.  MAYBE can be used to optimized
1528 	 * the initial-create state for indirect blocks.
1529 	 */
1530 	if (flags & (HAMMER2_LOOKUP_NODATA | HAMMER2_LOOKUP_NOLOCK))
1531 		how = HAMMER2_RESOLVE_NEVER;
1532 	else
1533 		how = HAMMER2_RESOLVE_MAYBE;
1534 	if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
1535 		how |= HAMMER2_RESOLVE_SHARED;
1536 
1537 retry:
1538 	/*
1539 	 * First see if we have a (possibly modified) chain element cached
1540 	 * for this (parent, index).  Acquire the data if necessary.
1541 	 *
1542 	 * If chain->data is non-NULL the chain should already be marked
1543 	 * modified.
1544 	 */
1545 	dummy.flags = 0;
1546 	dummy.index = index;
1547 	dummy.delete_tid = HAMMER2_MAX_TID;
1548 	spin_lock(&above->cst.spin);
1549 	chain = RB_FIND(hammer2_chain_tree, &above->rbtree, &dummy);
1550 	if (chain) {
1551 		hammer2_chain_ref(chain);
1552 		spin_unlock(&above->cst.spin);
1553 		if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0)
1554 			hammer2_chain_lock(chain, how | HAMMER2_RESOLVE_NOREF);
1555 		return(chain);
1556 	}
1557 	spin_unlock(&above->cst.spin);
1558 
1559 	/*
1560 	 * The parent chain must not be in the INITIAL state.
1561 	 */
1562 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1563 		panic("hammer2_chain_get: Missing bref(1)");
1564 		/* NOT REACHED */
1565 	}
1566 
1567 	/*
1568 	 * No RBTREE entry found, lookup the bref and issue I/O (switch on
1569 	 * the parent's bref to determine where and how big the array is).
1570 	 */
1571 	switch(parent->bref.type) {
1572 	case HAMMER2_BREF_TYPE_INODE:
1573 		KKASSERT(index >= 0 && index < HAMMER2_SET_COUNT);
1574 		bref = &parent->data->ipdata.u.blockset.blockref[index];
1575 		break;
1576 	case HAMMER2_BREF_TYPE_INDIRECT:
1577 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1578 		KKASSERT(parent->data != NULL);
1579 		KKASSERT(index >= 0 &&
1580 			 index < parent->bytes / sizeof(hammer2_blockref_t));
1581 		bref = &parent->data->npdata[index];
1582 		break;
1583 	case HAMMER2_BREF_TYPE_VOLUME:
1584 		KKASSERT(index >= 0 && index < HAMMER2_SET_COUNT);
1585 		bref = &hmp->voldata.sroot_blockset.blockref[index];
1586 		break;
1587 	case HAMMER2_BREF_TYPE_FREEMAP:
1588 		KKASSERT(index >= 0 && index < HAMMER2_SET_COUNT);
1589 		bref = &hmp->voldata.freemap_blockset.blockref[index];
1590 		break;
1591 	default:
1592 		bref = NULL;
1593 		panic("hammer2_chain_get: unrecognized blockref type: %d",
1594 		      parent->bref.type);
1595 	}
1596 	if (bref->type == 0) {
1597 		panic("hammer2_chain_get: Missing bref(2)");
1598 		/* NOT REACHED */
1599 	}
1600 
1601 	/*
1602 	 * Allocate a chain structure representing the existing media
1603 	 * entry.  Resulting chain has one ref and is not locked.
1604 	 *
1605 	 * The locking operation we do later will issue I/O to read it.
1606 	 */
1607 	chain = hammer2_chain_alloc(hmp, NULL, bref);
1608 	hammer2_chain_core_alloc(chain, NULL);	/* ref'd chain returned */
1609 
1610 	/*
1611 	 * Link the chain into its parent.  A spinlock is required to safely
1612 	 * access the RBTREE, and it is possible to collide with another
1613 	 * hammer2_chain_get() operation because the caller might only hold
1614 	 * a shared lock on the parent.
1615 	 */
1616 	KKASSERT(parent->refs > 0);
1617 	spin_lock(&above->cst.spin);
1618 	chain->above = above;
1619 	chain->index = index;
1620 	if (RB_INSERT(hammer2_chain_tree, &above->rbtree, chain)) {
1621 		chain->above = NULL;
1622 		chain->index = -1;
1623 		spin_unlock(&above->cst.spin);
1624 		hammer2_chain_drop(chain);
1625 		goto retry;
1626 	}
1627 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
1628 	spin_unlock(&above->cst.spin);
1629 
1630 	/*
1631 	 * Our new chain is referenced but NOT locked.  Lock the chain
1632 	 * below.  The locking operation also resolves its data.
1633 	 *
1634 	 * If NOLOCK is set the release will release the one-and-only lock.
1635 	 */
1636 	if ((flags & HAMMER2_LOOKUP_NOLOCK) == 0) {
1637 		hammer2_chain_lock(chain, how);	/* recusive lock */
1638 		hammer2_chain_drop(chain);	/* excess ref */
1639 	}
1640 	return (chain);
1641 }
1642 
1643 /*
1644  * Lookup initialization/completion API
1645  */
1646 hammer2_chain_t *
1647 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
1648 {
1649 	if (flags & HAMMER2_LOOKUP_SHARED) {
1650 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
1651 					   HAMMER2_RESOLVE_SHARED);
1652 	} else {
1653 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1654 	}
1655 	return (parent);
1656 }
1657 
1658 void
1659 hammer2_chain_lookup_done(hammer2_chain_t *parent)
1660 {
1661 	if (parent)
1662 		hammer2_chain_unlock(parent);
1663 }
1664 
1665 static
1666 hammer2_chain_t *
1667 hammer2_chain_getparent(hammer2_chain_t **parentp, int how)
1668 {
1669 	hammer2_chain_t *oparent;
1670 	hammer2_chain_t *nparent;
1671 	hammer2_chain_core_t *above;
1672 
1673 	oparent = *parentp;
1674 	above = oparent->above;
1675 
1676 	spin_lock(&above->cst.spin);
1677 	nparent = above->first_parent;
1678 	while (hammer2_chain_refactor_test(nparent, 1))
1679 		nparent = nparent->next_parent;
1680 	hammer2_chain_ref(nparent);	/* protect nparent, use in lock */
1681 	spin_unlock(&above->cst.spin);
1682 
1683 	hammer2_chain_unlock(oparent);
1684 	hammer2_chain_lock(nparent, how | HAMMER2_RESOLVE_NOREF);
1685 	*parentp = nparent;
1686 
1687 	return (nparent);
1688 }
1689 
1690 /*
1691  * Locate any key between key_beg and key_end inclusive.  (*parentp)
1692  * typically points to an inode but can also point to a related indirect
1693  * block and this function will recurse upwards and find the inode again.
1694  *
1695  * WARNING!  THIS DOES NOT RETURN KEYS IN LOGICAL KEY ORDER!  ANY KEY
1696  *	     WITHIN THE RANGE CAN BE RETURNED.  HOWEVER, AN ITERATION
1697  *	     WHICH PICKS UP WHERE WE LEFT OFF WILL CONTINUE THE SCAN
1698  *	     AND ALL IN-RANGE KEYS WILL EVENTUALLY BE RETURNED (NOT
1699  *	     NECESSARILY IN ORDER).
1700  *
1701  * (*parentp) must be exclusively locked and referenced and can be an inode
1702  * or an existing indirect block within the inode.
1703  *
1704  * On return (*parentp) will be modified to point at the deepest parent chain
1705  * element encountered during the search, as a helper for an insertion or
1706  * deletion.   The new (*parentp) will be locked and referenced and the old
1707  * will be unlocked and dereferenced (no change if they are both the same).
1708  *
1709  * The matching chain will be returned exclusively locked.  If NOLOCK is
1710  * requested the chain will be returned only referenced.
1711  *
1712  * NULL is returned if no match was found, but (*parentp) will still
1713  * potentially be adjusted.
1714  *
1715  * This function will also recurse up the chain if the key is not within the
1716  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
1717  * can simply allow (*parentp) to float inside the loop.
1718  *
1719  * NOTE!  chain->data is not always resolved.  By default it will not be
1720  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
1721  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
1722  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
1723  *	  buffer).
1724  */
1725 hammer2_chain_t *
1726 hammer2_chain_lookup(hammer2_chain_t **parentp,
1727 		     hammer2_key_t key_beg, hammer2_key_t key_end,
1728 		     int flags)
1729 {
1730 	hammer2_mount_t *hmp;
1731 	hammer2_chain_t *parent;
1732 	hammer2_chain_t *chain;
1733 	hammer2_chain_t *tmp;
1734 	hammer2_blockref_t *base;
1735 	hammer2_blockref_t *bref;
1736 	hammer2_key_t scan_beg;
1737 	hammer2_key_t scan_end;
1738 	int count = 0;
1739 	int i;
1740 	int how_always = HAMMER2_RESOLVE_ALWAYS;
1741 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
1742 
1743 	if (flags & HAMMER2_LOOKUP_ALWAYS)
1744 		how_maybe = how_always;
1745 
1746 	if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK)) {
1747 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1748 		how_always |= HAMMER2_RESOLVE_SHARED;
1749 	}
1750 
1751 	/*
1752 	 * Recurse (*parentp) upward if necessary until the parent completely
1753 	 * encloses the key range or we hit the inode.
1754 	 */
1755 	parent = *parentp;
1756 	hmp = parent->hmp;
1757 
1758 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1759 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1760 		scan_beg = parent->bref.key;
1761 		scan_end = scan_beg +
1762 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1763 		if (key_beg >= scan_beg && key_end <= scan_end)
1764 			break;
1765 		parent = hammer2_chain_getparent(parentp, how_maybe);
1766 	}
1767 
1768 again:
1769 	/*
1770 	 * Locate the blockref array.  Currently we do a fully associative
1771 	 * search through the array.
1772 	 */
1773 	switch(parent->bref.type) {
1774 	case HAMMER2_BREF_TYPE_INODE:
1775 		/*
1776 		 * Special shortcut for embedded data returns the inode
1777 		 * itself.  Callers must detect this condition and access
1778 		 * the embedded data (the strategy code does this for us).
1779 		 *
1780 		 * This is only applicable to regular files and softlinks.
1781 		 */
1782 		if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
1783 			if (flags & HAMMER2_LOOKUP_NOLOCK)
1784 				hammer2_chain_ref(parent);
1785 			else
1786 				hammer2_chain_lock(parent, how_always);
1787 			return (parent);
1788 		}
1789 		base = &parent->data->ipdata.u.blockset.blockref[0];
1790 		count = HAMMER2_SET_COUNT;
1791 		break;
1792 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1793 	case HAMMER2_BREF_TYPE_INDIRECT:
1794 		/*
1795 		 * Handle MATCHIND on the parent
1796 		 */
1797 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
1798 			scan_beg = parent->bref.key;
1799 			scan_end = scan_beg +
1800 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
1801 			if (key_beg == scan_beg && key_end == scan_end) {
1802 				chain = parent;
1803 				hammer2_chain_lock(chain, how_maybe);
1804 				goto done;
1805 			}
1806 		}
1807 		/*
1808 		 * Optimize indirect blocks in the INITIAL state to avoid
1809 		 * I/O.
1810 		 */
1811 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1812 			base = NULL;
1813 		} else {
1814 			if (parent->data == NULL)
1815 				panic("parent->data is NULL");
1816 			base = &parent->data->npdata[0];
1817 		}
1818 		count = parent->bytes / sizeof(hammer2_blockref_t);
1819 		break;
1820 	case HAMMER2_BREF_TYPE_VOLUME:
1821 		base = &hmp->voldata.sroot_blockset.blockref[0];
1822 		count = HAMMER2_SET_COUNT;
1823 		break;
1824 	case HAMMER2_BREF_TYPE_FREEMAP:
1825 		base = &hmp->voldata.freemap_blockset.blockref[0];
1826 		count = HAMMER2_SET_COUNT;
1827 		break;
1828 	default:
1829 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
1830 		      parent->bref.type);
1831 		base = NULL;	/* safety */
1832 		count = 0;	/* safety */
1833 	}
1834 
1835 	/*
1836 	 * If the element and key overlap we use the element.
1837 	 *
1838 	 * NOTE! Deleted elements are effectively invisible.  Deletions
1839 	 *	 proactively clear the parent bref to the deleted child
1840 	 *	 so we do not try to shadow here to avoid parent updates
1841 	 *	 (which would be difficult since multiple deleted elements
1842 	 *	 might represent different flush synchronization points).
1843 	 */
1844 	bref = NULL;
1845 	scan_beg = 0;	/* avoid compiler warning */
1846 	scan_end = 0;	/* avoid compiler warning */
1847 
1848 	for (i = 0; i < count; ++i) {
1849 		tmp = hammer2_chain_find(parent, i);
1850 		if (tmp) {
1851 			if (tmp->flags & HAMMER2_CHAIN_DELETED) {
1852 				hammer2_chain_drop(tmp);
1853 				continue;
1854 			}
1855 			bref = &tmp->bref;
1856 			KKASSERT(bref->type != 0);
1857 		} else if (base == NULL || base[i].type == 0) {
1858 			continue;
1859 		} else {
1860 			bref = &base[i];
1861 		}
1862 		scan_beg = bref->key;
1863 		scan_end = scan_beg + ((hammer2_key_t)1 << bref->keybits) - 1;
1864 		if (tmp)
1865 			hammer2_chain_drop(tmp);
1866 		if (key_beg <= scan_end && key_end >= scan_beg)
1867 			break;
1868 	}
1869 	if (i == count) {
1870 		if (key_beg == key_end)
1871 			return (NULL);
1872 		return (hammer2_chain_next(parentp, NULL,
1873 					   key_beg, key_end, flags));
1874 	}
1875 
1876 	/*
1877 	 * Acquire the new chain element.  If the chain element is an
1878 	 * indirect block we must search recursively.
1879 	 *
1880 	 * It is possible for the tmp chain above to be removed from
1881 	 * the RBTREE but the parent lock ensures it would not have been
1882 	 * destroyed from the media, so the chain_get() code will simply
1883 	 * reload it from the media in that case.
1884 	 */
1885 	chain = hammer2_chain_get(parent, i, flags);
1886 	if (chain == NULL)
1887 		return (NULL);
1888 
1889 	/*
1890 	 * If the chain element is an indirect block it becomes the new
1891 	 * parent and we loop on it.
1892 	 *
1893 	 * The parent always has to be locked with at least RESOLVE_MAYBE
1894 	 * so we can access its data.  It might need a fixup if the caller
1895 	 * passed incompatible flags.  Be careful not to cause a deadlock
1896 	 * as a data-load requires an exclusive lock.
1897 	 *
1898 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
1899 	 * range is within the requested key range we return the indirect
1900 	 * block and do NOT loop.  This is usually only used to acquire
1901 	 * freemap nodes.
1902 	 */
1903 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1904 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1905 		hammer2_chain_unlock(parent);
1906 		*parentp = parent = chain;
1907 		if (flags & HAMMER2_LOOKUP_NOLOCK) {
1908 			hammer2_chain_lock(chain,
1909 					   how_maybe |
1910 					   HAMMER2_RESOLVE_NOREF);
1911 		} else if ((flags & HAMMER2_LOOKUP_NODATA) &&
1912 			   chain->data == NULL) {
1913 			hammer2_chain_ref(chain);
1914 			hammer2_chain_unlock(chain);
1915 			hammer2_chain_lock(chain,
1916 					   how_maybe |
1917 					   HAMMER2_RESOLVE_NOREF);
1918 		}
1919 		goto again;
1920 	}
1921 done:
1922 	/*
1923 	 * All done, return the chain
1924 	 */
1925 	return (chain);
1926 }
1927 
1928 /*
1929  * After having issued a lookup we can iterate all matching keys.
1930  *
1931  * If chain is non-NULL we continue the iteration from just after it's index.
1932  *
1933  * If chain is NULL we assume the parent was exhausted and continue the
1934  * iteration at the next parent.
1935  *
1936  * parent must be locked on entry and remains locked throughout.  chain's
1937  * lock status must match flags.  Chain is always at least referenced.
1938  *
1939  * WARNING!  The MATCHIND flag does not apply to this function.
1940  */
1941 hammer2_chain_t *
1942 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
1943 		   hammer2_key_t key_beg, hammer2_key_t key_end,
1944 		   int flags)
1945 {
1946 	hammer2_mount_t *hmp;
1947 	hammer2_chain_t *parent;
1948 	hammer2_chain_t *tmp;
1949 	hammer2_blockref_t *base;
1950 	hammer2_blockref_t *bref;
1951 	hammer2_key_t scan_beg;
1952 	hammer2_key_t scan_end;
1953 	int i;
1954 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
1955 	int count;
1956 
1957 	if (flags & (HAMMER2_LOOKUP_SHARED | HAMMER2_LOOKUP_NOLOCK))
1958 		how_maybe |= HAMMER2_RESOLVE_SHARED;
1959 
1960 	parent = *parentp;
1961 	hmp = parent->hmp;
1962 
1963 again:
1964 	/*
1965 	 * Calculate the next index and recalculate the parent if necessary.
1966 	 */
1967 	if (chain) {
1968 		/*
1969 		 * Continue iteration within current parent.  If not NULL
1970 		 * the passed-in chain may or may not be locked, based on
1971 		 * the LOOKUP_NOLOCK flag (passed in as returned from lookup
1972 		 * or a prior next).
1973 		 */
1974 		i = chain->index + 1;
1975 		if (flags & HAMMER2_LOOKUP_NOLOCK)
1976 			hammer2_chain_drop(chain);
1977 		else
1978 			hammer2_chain_unlock(chain);
1979 
1980 		/*
1981 		 * Any scan where the lookup returned degenerate data embedded
1982 		 * in the inode has an invalid index and must terminate.
1983 		 */
1984 		if (chain == parent)
1985 			return(NULL);
1986 		chain = NULL;
1987 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
1988 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
1989 		/*
1990 		 * We reached the end of the iteration.
1991 		 */
1992 		return (NULL);
1993 	} else {
1994 		/*
1995 		 * Continue iteration with next parent unless the current
1996 		 * parent covers the range.
1997 		 */
1998 		scan_beg = parent->bref.key;
1999 		scan_end = scan_beg +
2000 			    ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2001 		if (key_beg >= scan_beg && key_end <= scan_end)
2002 			return (NULL);
2003 
2004 		i = parent->index + 1;
2005 		parent = hammer2_chain_getparent(parentp, how_maybe);
2006 	}
2007 
2008 again2:
2009 	/*
2010 	 * Locate the blockref array.  Currently we do a fully associative
2011 	 * search through the array.
2012 	 */
2013 	switch(parent->bref.type) {
2014 	case HAMMER2_BREF_TYPE_INODE:
2015 		base = &parent->data->ipdata.u.blockset.blockref[0];
2016 		count = HAMMER2_SET_COUNT;
2017 		break;
2018 	case HAMMER2_BREF_TYPE_INDIRECT:
2019 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2020 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2021 			base = NULL;
2022 		} else {
2023 			KKASSERT(parent->data != NULL);
2024 			base = &parent->data->npdata[0];
2025 		}
2026 		count = parent->bytes / sizeof(hammer2_blockref_t);
2027 		break;
2028 	case HAMMER2_BREF_TYPE_VOLUME:
2029 		base = &hmp->voldata.sroot_blockset.blockref[0];
2030 		count = HAMMER2_SET_COUNT;
2031 		break;
2032 	case HAMMER2_BREF_TYPE_FREEMAP:
2033 		base = &hmp->voldata.freemap_blockset.blockref[0];
2034 		count = HAMMER2_SET_COUNT;
2035 		break;
2036 	default:
2037 		panic("hammer2_chain_next: unrecognized blockref type: %d",
2038 		      parent->bref.type);
2039 		base = NULL;	/* safety */
2040 		count = 0;	/* safety */
2041 		break;
2042 	}
2043 	KKASSERT(i <= count);
2044 
2045 	/*
2046 	 * Look for the key.  If we are unable to find a match and an exact
2047 	 * match was requested we return NULL.  If a range was requested we
2048 	 * run hammer2_chain_next() to iterate.
2049 	 *
2050 	 * NOTE! Deleted elements are effectively invisible.  Deletions
2051 	 *	 proactively clear the parent bref to the deleted child
2052 	 *	 so we do not try to shadow here to avoid parent updates
2053 	 *	 (which would be difficult since multiple deleted elements
2054 	 *	 might represent different flush synchronization points).
2055 	 */
2056 	bref = NULL;
2057 	scan_beg = 0;	/* avoid compiler warning */
2058 	scan_end = 0;	/* avoid compiler warning */
2059 
2060 	while (i < count) {
2061 		tmp = hammer2_chain_find(parent, i);
2062 		if (tmp) {
2063 			if (tmp->flags & HAMMER2_CHAIN_DELETED) {
2064 				hammer2_chain_drop(tmp);
2065 				++i;
2066 				continue;
2067 			}
2068 			bref = &tmp->bref;
2069 		} else if (base == NULL || base[i].type == 0) {
2070 			++i;
2071 			continue;
2072 		} else {
2073 			bref = &base[i];
2074 		}
2075 		scan_beg = bref->key;
2076 		scan_end = scan_beg + ((hammer2_key_t)1 << bref->keybits) - 1;
2077 		if (tmp)
2078 			hammer2_chain_drop(tmp);
2079 		if (key_beg <= scan_end && key_end >= scan_beg)
2080 			break;
2081 		++i;
2082 	}
2083 
2084 	/*
2085 	 * If we couldn't find a match recurse up a parent to continue the
2086 	 * search.
2087 	 */
2088 	if (i == count)
2089 		goto again;
2090 
2091 	/*
2092 	 * Acquire the new chain element.  If the chain element is an
2093 	 * indirect block we must search recursively.
2094 	 */
2095 	chain = hammer2_chain_get(parent, i, flags);
2096 	if (chain == NULL)
2097 		return (NULL);
2098 
2099 	/*
2100 	 * If the chain element is an indirect block it becomes the new
2101 	 * parent and we loop on it.
2102 	 *
2103 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2104 	 * so we can access its data.  It might need a fixup if the caller
2105 	 * passed incompatible flags.  Be careful not to cause a deadlock
2106 	 * as a data-load requires an exclusive lock.
2107 	 *
2108 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2109 	 * range is within the requested key range we return the indirect
2110 	 * block and do NOT loop.  This is usually only used to acquire
2111 	 * freemap nodes.
2112 	 */
2113 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2114 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2115 		if ((flags & HAMMER2_LOOKUP_MATCHIND) == 0 ||
2116 		    key_beg > scan_beg || key_end < scan_end) {
2117 			hammer2_chain_unlock(parent);
2118 			*parentp = parent = chain;
2119 			chain = NULL;
2120 			if (flags & HAMMER2_LOOKUP_NOLOCK) {
2121 				hammer2_chain_lock(parent,
2122 						   how_maybe |
2123 						   HAMMER2_RESOLVE_NOREF);
2124 			} else if ((flags & HAMMER2_LOOKUP_NODATA) &&
2125 				   parent->data == NULL) {
2126 				hammer2_chain_ref(parent);
2127 				hammer2_chain_unlock(parent);
2128 				hammer2_chain_lock(parent,
2129 						   how_maybe |
2130 						   HAMMER2_RESOLVE_NOREF);
2131 			}
2132 			i = 0;
2133 			goto again2;
2134 		}
2135 	}
2136 
2137 	/*
2138 	 * All done, return chain
2139 	 */
2140 	return (chain);
2141 }
2142 
2143 /*
2144  * Create and return a new hammer2 system memory structure of the specified
2145  * key, type and size and insert it under (*parentp).  This is a full
2146  * insertion, based on the supplied key/keybits, and may involve creating
2147  * indirect blocks and moving other chains around via delete/duplicate.
2148  *
2149  * (*parentp) must be exclusive locked and may be replaced on return
2150  * depending on how much work the function had to do.
2151  *
2152  * (*chainp) usually starts out NULL and returns the newly created chain,
2153  * but if the caller desires the caller may allocate a disconnected chain
2154  * and pass it in instead.  (It is also possible for the caller to use
2155  * chain_duplicate() to create a disconnected chain, manipulate it, then
2156  * pass it into this function to insert it).
2157  *
2158  * This function should NOT be used to insert INDIRECT blocks.  It is
2159  * typically used to create/insert inodes and data blocks.
2160  *
2161  * Caller must pass-in an exclusively locked parent the new chain is to
2162  * be inserted under, and optionally pass-in a disconnected, exclusively
2163  * locked chain to insert (else we create a new chain).  The function will
2164  * adjust (*parentp) as necessary, create or connect the chain, and
2165  * return an exclusively locked chain in *chainp.
2166  */
2167 int
2168 hammer2_chain_create(hammer2_trans_t *trans, hammer2_chain_t **parentp,
2169 		     hammer2_chain_t **chainp,
2170 		     hammer2_key_t key, int keybits, int type, size_t bytes)
2171 {
2172 	hammer2_mount_t *hmp;
2173 	hammer2_chain_t *chain;
2174 	hammer2_chain_t *child;
2175 	hammer2_chain_t *parent = *parentp;
2176 	hammer2_chain_core_t *above;
2177 	hammer2_blockref_t dummy;
2178 	hammer2_blockref_t *base;
2179 	int allocated = 0;
2180 	int error = 0;
2181 	int count;
2182 	int i;
2183 
2184 	above = parent->core;
2185 	KKASSERT(ccms_thread_lock_owned(&above->cst));
2186 	hmp = parent->hmp;
2187 	chain = *chainp;
2188 
2189 	if (chain == NULL) {
2190 		/*
2191 		 * First allocate media space and construct the dummy bref,
2192 		 * then allocate the in-memory chain structure.  Set the
2193 		 * INITIAL flag for fresh chains.
2194 		 */
2195 		bzero(&dummy, sizeof(dummy));
2196 		dummy.type = type;
2197 		dummy.key = key;
2198 		dummy.keybits = keybits;
2199 		dummy.data_off = hammer2_getradix(bytes);
2200 		dummy.methods = parent->bref.methods;
2201 		chain = hammer2_chain_alloc(hmp, trans, &dummy);
2202 		hammer2_chain_core_alloc(chain, NULL);
2203 
2204 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
2205 
2206 		/*
2207 		 * Lock the chain manually, chain_lock will load the chain
2208 		 * which we do NOT want to do.  (note: chain->refs is set
2209 		 * to 1 by chain_alloc() for us, but lockcnt is not).
2210 		 */
2211 		chain->lockcnt = 1;
2212 		ccms_thread_lock(&chain->core->cst, CCMS_STATE_EXCLUSIVE);
2213 		allocated = 1;
2214 
2215 		/*
2216 		 * We do NOT set INITIAL here (yet).  INITIAL is only
2217 		 * used for indirect blocks.
2218 		 *
2219 		 * Recalculate bytes to reflect the actual media block
2220 		 * allocation.
2221 		 */
2222 		bytes = (hammer2_off_t)1 <<
2223 			(int)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2224 		chain->bytes = bytes;
2225 
2226 		switch(type) {
2227 		case HAMMER2_BREF_TYPE_VOLUME:
2228 		case HAMMER2_BREF_TYPE_FREEMAP:
2229 			panic("hammer2_chain_create: called with volume type");
2230 			break;
2231 		case HAMMER2_BREF_TYPE_INODE:
2232 			KKASSERT(bytes == HAMMER2_INODE_BYTES);
2233 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
2234 			chain->data = kmalloc(sizeof(chain->data->ipdata),
2235 					      hmp->mchain, M_WAITOK | M_ZERO);
2236 			break;
2237 		case HAMMER2_BREF_TYPE_INDIRECT:
2238 			panic("hammer2_chain_create: cannot be used to"
2239 			      "create indirect block");
2240 			break;
2241 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2242 			panic("hammer2_chain_create: cannot be used to"
2243 			      "create freemap root or node");
2244 			break;
2245 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2246 			KKASSERT(bytes == sizeof(chain->data->bmdata));
2247 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_EMBEDDED);
2248 			chain->data = kmalloc(sizeof(chain->data->bmdata),
2249 					      hmp->mchain, M_WAITOK | M_ZERO);
2250 			break;
2251 		case HAMMER2_BREF_TYPE_DATA:
2252 		default:
2253 			/* leave chain->data NULL */
2254 			KKASSERT(chain->data == NULL);
2255 			break;
2256 		}
2257 	} else {
2258 		/*
2259 		 * Potentially update the existing chain's key/keybits.
2260 		 *
2261 		 * Do NOT mess with the current state of the INITIAL flag.
2262 		 */
2263 		chain->bref.key = key;
2264 		chain->bref.keybits = keybits;
2265 		KKASSERT(chain->above == NULL);
2266 	}
2267 
2268 again:
2269 	above = parent->core;
2270 
2271 	/*
2272 	 * Locate a free blockref in the parent's array
2273 	 */
2274 	switch(parent->bref.type) {
2275 	case HAMMER2_BREF_TYPE_INODE:
2276 		KKASSERT((parent->data->ipdata.op_flags &
2277 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
2278 		KKASSERT(parent->data != NULL);
2279 		base = &parent->data->ipdata.u.blockset.blockref[0];
2280 		count = HAMMER2_SET_COUNT;
2281 		break;
2282 	case HAMMER2_BREF_TYPE_INDIRECT:
2283 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2284 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2285 			base = NULL;
2286 		} else {
2287 			KKASSERT(parent->data != NULL);
2288 			base = &parent->data->npdata[0];
2289 		}
2290 		count = parent->bytes / sizeof(hammer2_blockref_t);
2291 		break;
2292 	case HAMMER2_BREF_TYPE_VOLUME:
2293 		KKASSERT(parent->data != NULL);
2294 		base = &hmp->voldata.sroot_blockset.blockref[0];
2295 		count = HAMMER2_SET_COUNT;
2296 		break;
2297 	case HAMMER2_BREF_TYPE_FREEMAP:
2298 		KKASSERT(parent->data != NULL);
2299 		base = &hmp->voldata.freemap_blockset.blockref[0];
2300 		count = HAMMER2_SET_COUNT;
2301 		break;
2302 	default:
2303 		panic("hammer2_chain_create: unrecognized blockref type: %d",
2304 		      parent->bref.type);
2305 		count = 0;
2306 		break;
2307 	}
2308 
2309 	/*
2310 	 * Scan for an unallocated bref, also skipping any slots occupied
2311 	 * by in-memory chain elements that may not yet have been updated
2312 	 * in the parent's bref array.
2313 	 *
2314 	 * We don't have to hold the spinlock to save an empty slot as
2315 	 * new slots can only transition from empty if the parent is
2316 	 * locked exclusively.
2317 	 */
2318 	spin_lock(&above->cst.spin);
2319 	for (i = 0; i < count; ++i) {
2320 		child = hammer2_chain_find_locked(parent, i);
2321 		if (child) {
2322 			if (child->flags & HAMMER2_CHAIN_DELETED)
2323 				break;
2324 			continue;
2325 		}
2326 		if (base == NULL)
2327 			break;
2328 		if (base[i].type == 0)
2329 			break;
2330 	}
2331 	spin_unlock(&above->cst.spin);
2332 
2333 	/*
2334 	 * If no free blockref could be found we must create an indirect
2335 	 * block and move a number of blockrefs into it.  With the parent
2336 	 * locked we can safely lock each child in order to move it without
2337 	 * causing a deadlock.
2338 	 *
2339 	 * This may return the new indirect block or the old parent depending
2340 	 * on where the key falls.  NULL is returned on error.
2341 	 */
2342 	if (i == count) {
2343 		hammer2_chain_t *nparent;
2344 
2345 		nparent = hammer2_chain_create_indirect(trans, parent,
2346 							key, keybits,
2347 							type, &error);
2348 		if (nparent == NULL) {
2349 			if (allocated)
2350 				hammer2_chain_drop(chain);
2351 			chain = NULL;
2352 			goto done;
2353 		}
2354 		if (parent != nparent) {
2355 			hammer2_chain_unlock(parent);
2356 			parent = *parentp = nparent;
2357 		}
2358 		goto again;
2359 	}
2360 
2361 	/*
2362 	 * Link the chain into its parent.  Later on we will have to set
2363 	 * the MOVED bit in situations where we don't mark the new chain
2364 	 * as being modified.
2365 	 */
2366 	if (chain->above != NULL)
2367 		panic("hammer2: hammer2_chain_create: chain already connected");
2368 	KKASSERT(chain->above == NULL);
2369 	KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
2370 
2371 	chain->above = above;
2372 	chain->index = i;
2373 	spin_lock(&above->cst.spin);
2374 	if (RB_INSERT(hammer2_chain_tree, &above->rbtree, chain))
2375 		panic("hammer2_chain_create: collision");
2376 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
2377 	spin_unlock(&above->cst.spin);
2378 
2379 	if (allocated) {
2380 		/*
2381 		 * Mark the newly created chain modified.
2382 		 *
2383 		 * Device buffers are not instantiated for DATA elements
2384 		 * as these are handled by logical buffers.
2385 		 *
2386 		 * Indirect and freemap node indirect blocks are handled
2387 		 * by hammer2_chain_create_indirect() and not by this
2388 		 * function.
2389 		 *
2390 		 * Data for all other bref types is expected to be
2391 		 * instantiated (INODE, LEAF).
2392 		 */
2393 		switch(chain->bref.type) {
2394 		case HAMMER2_BREF_TYPE_DATA:
2395 			hammer2_chain_modify(trans, &chain,
2396 					     HAMMER2_MODIFY_OPTDATA |
2397 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2398 			break;
2399 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2400 		case HAMMER2_BREF_TYPE_INODE:
2401 			hammer2_chain_modify(trans, &chain,
2402 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2403 			break;
2404 		default:
2405 			/*
2406 			 * Remaining types are not supported by this function.
2407 			 * In particular, INDIRECT and LEAF_NODE types are
2408 			 * handled by create_indirect().
2409 			 */
2410 			panic("hammer2_chain_create: bad type: %d",
2411 			      chain->bref.type);
2412 			/* NOT REACHED */
2413 			break;
2414 		}
2415 	} else {
2416 		/*
2417 		 * When reconnecting a chain we must set MOVED and setsubmod
2418 		 * so the flush recognizes that it must update the bref in
2419 		 * the parent.
2420 		 */
2421 		if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2422 			hammer2_chain_ref(chain);
2423 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
2424 		}
2425 		hammer2_chain_setsubmod(trans, chain);
2426 	}
2427 
2428 done:
2429 	*chainp = chain;
2430 
2431 	return (error);
2432 }
2433 
2434 /*
2435  * Replace (*chainp) with a duplicate.  The original *chainp is unlocked
2436  * and the replacement will be returned locked.  Both the original and the
2437  * new chain will share the same RBTREE (have the same chain->core), with
2438  * the new chain becoming the 'current' chain (meaning it is the first in
2439  * the linked list at core->chain_first).
2440  *
2441  * If (parent, i) then the new duplicated chain is inserted under the parent
2442  * at the specified index (the parent must not have a ref at that index).
2443  *
2444  * If (NULL, -1) then the new duplicated chain is not inserted anywhere,
2445  * similar to if it had just been chain_alloc()'d (suitable for passing into
2446  * hammer2_chain_create() after this function returns).
2447  *
2448  * NOTE! Duplication is used in order to retain the original topology to
2449  *	 support flush synchronization points.  Both the original and the
2450  *	 new chain will have the same transaction id and thus the operation
2451  *	 appears atomic w/regards to media flushes.
2452  */
2453 static void hammer2_chain_dup_fixup(hammer2_chain_t *ochain,
2454 				    hammer2_chain_t *nchain);
2455 
2456 void
2457 hammer2_chain_duplicate(hammer2_trans_t *trans, hammer2_chain_t *parent, int i,
2458 			hammer2_chain_t **chainp, hammer2_blockref_t *bref)
2459 {
2460 	hammer2_mount_t *hmp;
2461 	hammer2_blockref_t *base;
2462 	hammer2_chain_t *ochain;
2463 	hammer2_chain_t *nchain;
2464 	hammer2_chain_t *scan;
2465 	hammer2_chain_core_t *above;
2466 	size_t bytes;
2467 	int count;
2468 	int oflags;
2469 	void *odata;
2470 
2471 	/*
2472 	 * First create a duplicate of the chain structure, associating
2473 	 * it with the same core, making it the same size, pointing it
2474 	 * to the same bref (the same media block).
2475 	 */
2476 	ochain = *chainp;
2477 	hmp = ochain->hmp;
2478 	if (bref == NULL)
2479 		bref = &ochain->bref;
2480 	nchain = hammer2_chain_alloc(hmp, trans, bref);
2481 	hammer2_chain_core_alloc(nchain, ochain->core);
2482 	bytes = (hammer2_off_t)1 <<
2483 		(int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
2484 	nchain->bytes = bytes;
2485 	nchain->modify_tid = ochain->modify_tid;
2486 
2487 	hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER);
2488 	hammer2_chain_dup_fixup(ochain, nchain);
2489 
2490 	/*
2491 	 * If parent is not NULL, insert into the parent at the requested
2492 	 * index.  The newly duplicated chain must be marked MOVED and
2493 	 * SUBMODIFIED set in its parent(s).
2494 	 *
2495 	 * Having both chains locked is extremely important for atomicy.
2496 	 */
2497 	if (parent) {
2498 		/*
2499 		 * Locate a free blockref in the parent's array
2500 		 */
2501 		above = parent->core;
2502 		KKASSERT(ccms_thread_lock_owned(&above->cst));
2503 
2504 		switch(parent->bref.type) {
2505 		case HAMMER2_BREF_TYPE_INODE:
2506 			KKASSERT((parent->data->ipdata.op_flags &
2507 				  HAMMER2_OPFLAG_DIRECTDATA) == 0);
2508 			KKASSERT(parent->data != NULL);
2509 			base = &parent->data->ipdata.u.blockset.blockref[0];
2510 			count = HAMMER2_SET_COUNT;
2511 			break;
2512 		case HAMMER2_BREF_TYPE_INDIRECT:
2513 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2514 			if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2515 				base = NULL;
2516 			} else {
2517 				KKASSERT(parent->data != NULL);
2518 				base = &parent->data->npdata[0];
2519 			}
2520 			count = parent->bytes / sizeof(hammer2_blockref_t);
2521 			break;
2522 		case HAMMER2_BREF_TYPE_VOLUME:
2523 			KKASSERT(parent->data != NULL);
2524 			base = &hmp->voldata.sroot_blockset.blockref[0];
2525 			count = HAMMER2_SET_COUNT;
2526 			break;
2527 		case HAMMER2_BREF_TYPE_FREEMAP:
2528 			KKASSERT(parent->data != NULL);
2529 			base = &hmp->voldata.freemap_blockset.blockref[0];
2530 			count = HAMMER2_SET_COUNT;
2531 			break;
2532 		default:
2533 			panic("hammer2_chain_create: unrecognized "
2534 			      "blockref type: %d",
2535 			      parent->bref.type);
2536 			count = 0;
2537 			break;
2538 		}
2539 		KKASSERT(i >= 0 && i < count);
2540 
2541 		KKASSERT((nchain->flags & HAMMER2_CHAIN_DELETED) == 0);
2542 		KKASSERT(parent->refs > 0);
2543 
2544 		spin_lock(&above->cst.spin);
2545 		nchain->above = above;
2546 		nchain->index = i;
2547 		scan = hammer2_chain_find_locked(parent, i);
2548 		KKASSERT(base == NULL || base[i].type == 0 ||
2549 			 scan == NULL ||
2550 			 (scan->flags & HAMMER2_CHAIN_DELETED));
2551 		if (RB_INSERT(hammer2_chain_tree, &above->rbtree,
2552 			      nchain)) {
2553 			panic("hammer2_chain_duplicate: collision");
2554 		}
2555 		atomic_set_int(&nchain->flags, HAMMER2_CHAIN_ONRBTREE);
2556 		spin_unlock(&above->cst.spin);
2557 
2558 		if ((nchain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2559 			hammer2_chain_ref(nchain);
2560 			atomic_set_int(&nchain->flags, HAMMER2_CHAIN_MOVED);
2561 		}
2562 		hammer2_chain_setsubmod(trans, nchain);
2563 	}
2564 
2565 	/*
2566 	 * We have to unlock ochain to flush any dirty data, asserting the
2567 	 * case (data == NULL) to catch any extra locks that might have been
2568 	 * present, then transfer state to nchain.
2569 	 */
2570 	oflags = ochain->flags;
2571 	odata = ochain->data;
2572 	hammer2_chain_unlock(ochain);
2573 	KKASSERT((ochain->flags & HAMMER2_CHAIN_EMBEDDED) ||
2574 		 ochain->data == NULL);
2575 
2576 	if (oflags & HAMMER2_CHAIN_INITIAL)
2577 		atomic_set_int(&nchain->flags, HAMMER2_CHAIN_INITIAL);
2578 
2579 	/*
2580 	 * WARNING!  We should never resolve DATA to device buffers
2581 	 *	     (XXX allow it if the caller did?), and since
2582 	 *	     we currently do not have the logical buffer cache
2583 	 *	     buffer in-hand to fix its cached physical offset
2584 	 *	     we also force the modify code to not COW it. XXX
2585 	 */
2586 	if (oflags & HAMMER2_CHAIN_MODIFIED) {
2587 		if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2588 			hammer2_chain_modify(trans, &nchain,
2589 					     HAMMER2_MODIFY_OPTDATA |
2590 					     HAMMER2_MODIFY_NOREALLOC |
2591 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2592 		} else if (oflags & HAMMER2_CHAIN_INITIAL) {
2593 			hammer2_chain_modify(trans, &nchain,
2594 					     HAMMER2_MODIFY_OPTDATA |
2595 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2596 		} else {
2597 			hammer2_chain_modify(trans, &nchain,
2598 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2599 		}
2600 		hammer2_chain_drop(nchain);
2601 	} else {
2602 		if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2603 			hammer2_chain_drop(nchain);
2604 		} else if (oflags & HAMMER2_CHAIN_INITIAL) {
2605 			hammer2_chain_drop(nchain);
2606 		} else {
2607 			hammer2_chain_lock(nchain, HAMMER2_RESOLVE_ALWAYS |
2608 						   HAMMER2_RESOLVE_NOREF);
2609 			hammer2_chain_unlock(nchain);
2610 		}
2611 	}
2612 	atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SUBMODIFIED);
2613 	*chainp = nchain;
2614 }
2615 
2616 #if 0
2617 		/*
2618 		 * When the chain is in the INITIAL state we must still
2619 		 * ensure that a block has been assigned so MOVED processing
2620 		 * works as expected.
2621 		 */
2622 		KKASSERT (nchain->bref.type != HAMMER2_BREF_TYPE_DATA);
2623 		hammer2_chain_modify(trans, &nchain,
2624 				     HAMMER2_MODIFY_OPTDATA |
2625 				     HAMMER2_MODIFY_ASSERTNOCOPY);
2626 
2627 
2628 	hammer2_chain_lock(nchain, HAMMER2_RESOLVE_MAYBE |
2629 				   HAMMER2_RESOLVE_NOREF); /* eat excess ref */
2630 	hammer2_chain_unlock(nchain);
2631 #endif
2632 
2633 /*
2634  * Special in-place delete-duplicate sequence which does not require a
2635  * locked parent.  (*chainp) is marked DELETED and atomically replaced
2636  * with a duplicate.  Atomicy is at the very-fine spin-lock level in
2637  * order to ensure that lookups do not race us.
2638  */
2639 void
2640 hammer2_chain_delete_duplicate(hammer2_trans_t *trans, hammer2_chain_t **chainp,
2641 			       int flags)
2642 {
2643 	hammer2_mount_t *hmp;
2644 	hammer2_chain_t *ochain;
2645 	hammer2_chain_t *nchain;
2646 	hammer2_chain_core_t *above;
2647 	size_t bytes;
2648 	int oflags;
2649 	void *odata;
2650 
2651 	/*
2652 	 * First create a duplicate of the chain structure
2653 	 */
2654 	ochain = *chainp;
2655 	hmp = ochain->hmp;
2656 	nchain = hammer2_chain_alloc(hmp, trans, &ochain->bref);    /* 1 ref */
2657 	if (flags & HAMMER2_DELDUP_RECORE)
2658 		hammer2_chain_core_alloc(nchain, NULL);
2659 	else
2660 		hammer2_chain_core_alloc(nchain, ochain->core);
2661 	above = ochain->above;
2662 
2663 	bytes = (hammer2_off_t)1 <<
2664 		(int)(ochain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
2665 	nchain->bytes = bytes;
2666 	nchain->modify_tid = ochain->modify_tid;
2667 
2668 	/*
2669 	 * Lock nchain and insert into ochain's core hierarchy, marking
2670 	 * ochain DELETED at the same time.  Having both chains locked
2671 	 * is extremely important for atomicy.
2672 	 */
2673 	hammer2_chain_lock(nchain, HAMMER2_RESOLVE_NEVER);
2674 	hammer2_chain_dup_fixup(ochain, nchain);
2675 	/* extra ref still present from original allocation */
2676 
2677 	nchain->index = ochain->index;
2678 
2679 	spin_lock(&above->cst.spin);
2680 	atomic_set_int(&nchain->flags, HAMMER2_CHAIN_ONRBTREE);
2681 	ochain->delete_tid = trans->sync_tid;
2682 	nchain->above = above;
2683 	atomic_set_int(&ochain->flags, HAMMER2_CHAIN_DELETED);
2684 	if ((ochain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2685 		hammer2_chain_ref(ochain);
2686 		atomic_set_int(&ochain->flags, HAMMER2_CHAIN_MOVED);
2687 	}
2688 	if (RB_INSERT(hammer2_chain_tree, &above->rbtree, nchain)) {
2689 		panic("hammer2_chain_delete_duplicate: collision");
2690 	}
2691 	spin_unlock(&above->cst.spin);
2692 
2693 	/*
2694 	 * We have to unlock ochain to flush any dirty data, asserting the
2695 	 * case (data == NULL) to catch any extra locks that might have been
2696 	 * present, then transfer state to nchain.
2697 	 */
2698 	oflags = ochain->flags;
2699 	odata = ochain->data;
2700 	hammer2_chain_unlock(ochain);	/* replacing ochain */
2701 	KKASSERT(ochain->bref.type == HAMMER2_BREF_TYPE_INODE ||
2702 		 ochain->data == NULL);
2703 
2704 	if (oflags & HAMMER2_CHAIN_INITIAL)
2705 		atomic_set_int(&nchain->flags, HAMMER2_CHAIN_INITIAL);
2706 
2707 	/*
2708 	 * WARNING!  We should never resolve DATA to device buffers
2709 	 *	     (XXX allow it if the caller did?), and since
2710 	 *	     we currently do not have the logical buffer cache
2711 	 *	     buffer in-hand to fix its cached physical offset
2712 	 *	     we also force the modify code to not COW it. XXX
2713 	 */
2714 	if (oflags & HAMMER2_CHAIN_MODIFIED) {
2715 		if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2716 			hammer2_chain_modify(trans, &nchain,
2717 					     HAMMER2_MODIFY_OPTDATA |
2718 					     HAMMER2_MODIFY_NOREALLOC |
2719 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2720 		} else if (oflags & HAMMER2_CHAIN_INITIAL) {
2721 			hammer2_chain_modify(trans, &nchain,
2722 					     HAMMER2_MODIFY_OPTDATA |
2723 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2724 		} else {
2725 			hammer2_chain_modify(trans, &nchain,
2726 					     HAMMER2_MODIFY_ASSERTNOCOPY);
2727 		}
2728 		hammer2_chain_drop(nchain);
2729 	} else {
2730 		if (nchain->bref.type == HAMMER2_BREF_TYPE_DATA) {
2731 			hammer2_chain_drop(nchain);
2732 		} else if (oflags & HAMMER2_CHAIN_INITIAL) {
2733 			hammer2_chain_drop(nchain);
2734 		} else {
2735 			hammer2_chain_lock(nchain, HAMMER2_RESOLVE_ALWAYS |
2736 						   HAMMER2_RESOLVE_NOREF);
2737 			hammer2_chain_unlock(nchain);
2738 		}
2739 	}
2740 
2741 	/*
2742 	 * Unconditionally set the MOVED and SUBMODIFIED bit to force
2743 	 * update of parent bref and indirect blockrefs during flush.
2744 	 */
2745 	if ((nchain->flags & HAMMER2_CHAIN_MOVED) == 0) {
2746 		atomic_set_int(&nchain->flags, HAMMER2_CHAIN_MOVED);
2747 		hammer2_chain_ref(nchain);
2748 	}
2749 	atomic_set_int(&nchain->flags, HAMMER2_CHAIN_SUBMODIFIED);
2750 	hammer2_chain_setsubmod(trans, nchain);
2751 	*chainp = nchain;
2752 }
2753 
2754 /*
2755  * Helper function to fixup inodes.  The caller procedure stack may hold
2756  * multiple locks on ochain if it represents an inode, preventing our
2757  * unlock from retiring its state to the buffer cache.
2758  *
2759  * In this situation any attempt to access the buffer cache could result
2760  * either in stale data or a deadlock.  Work around the problem by copying
2761  * the embedded data directly.
2762  */
2763 static
2764 void
2765 hammer2_chain_dup_fixup(hammer2_chain_t *ochain, hammer2_chain_t *nchain)
2766 {
2767 	if (ochain->data == NULL)
2768 		return;
2769 	switch(ochain->bref.type) {
2770 	case HAMMER2_BREF_TYPE_INODE:
2771 		KKASSERT(nchain->data == NULL);
2772 		atomic_set_int(&nchain->flags, HAMMER2_CHAIN_EMBEDDED);
2773 		nchain->data = kmalloc(sizeof(nchain->data->ipdata),
2774 				       ochain->hmp->mchain, M_WAITOK | M_ZERO);
2775 		nchain->data->ipdata = ochain->data->ipdata;
2776 		break;
2777 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2778 		KKASSERT(nchain->data == NULL);
2779 		atomic_set_int(&nchain->flags, HAMMER2_CHAIN_EMBEDDED);
2780 		nchain->data = kmalloc(sizeof(nchain->data->bmdata),
2781 				       ochain->hmp->mchain, M_WAITOK | M_ZERO);
2782 		bcopy(ochain->data->bmdata,
2783 		      nchain->data->bmdata,
2784 		      sizeof(nchain->data->bmdata));
2785 		break;
2786 	default:
2787 		break;
2788 	}
2789 }
2790 
2791 /*
2792  * Create a snapshot of the specified {parent, chain} with the specified
2793  * label.
2794  *
2795  * (a) We create a duplicate connected to the super-root as the specified
2796  *     label.
2797  *
2798  * (b) We issue a restricted flush using the current transaction on the
2799  *     duplicate.
2800  *
2801  * (c) We disconnect and reallocate the duplicate's core.
2802  */
2803 int
2804 hammer2_chain_snapshot(hammer2_trans_t *trans, hammer2_inode_t *ip,
2805 		       hammer2_ioc_pfs_t *pfs)
2806 {
2807 	hammer2_cluster_t *cluster;
2808 	hammer2_mount_t *hmp;
2809 	hammer2_chain_t *chain;
2810 	hammer2_chain_t *nchain;
2811 	hammer2_chain_t *parent;
2812 	hammer2_inode_data_t *ipdata;
2813 	size_t name_len;
2814 	hammer2_key_t lhc;
2815 	int error;
2816 
2817 	name_len = strlen(pfs->name);
2818 	lhc = hammer2_dirhash(pfs->name, name_len);
2819 	cluster = ip->pmp->mount_cluster;
2820 	hmp = ip->chain->hmp;
2821 	KKASSERT(hmp == cluster->hmp);	/* XXX */
2822 
2823 	/*
2824 	 * Create disconnected duplicate
2825 	 */
2826 	KKASSERT((trans->flags & HAMMER2_TRANS_RESTRICTED) == 0);
2827 	nchain = ip->chain;
2828 	hammer2_chain_lock(nchain, HAMMER2_RESOLVE_MAYBE);
2829 	hammer2_chain_duplicate(trans, NULL, -1, &nchain, NULL);
2830 	atomic_set_int(&nchain->flags, HAMMER2_CHAIN_RECYCLE |
2831 				       HAMMER2_CHAIN_SNAPSHOT);
2832 
2833 	/*
2834 	 * Create named entry in the super-root.
2835 	 */
2836         parent = hammer2_chain_lookup_init(hmp->schain, 0);
2837 	error = 0;
2838 	while (error == 0) {
2839 		chain = hammer2_chain_lookup(&parent, lhc, lhc, 0);
2840 		if (chain == NULL)
2841 			break;
2842 		if ((lhc & HAMMER2_DIRHASH_LOMASK) == HAMMER2_DIRHASH_LOMASK)
2843 			error = ENOSPC;
2844 		hammer2_chain_unlock(chain);
2845 		chain = NULL;
2846 		++lhc;
2847 	}
2848 	hammer2_chain_create(trans, &parent, &nchain, lhc, 0,
2849 			     HAMMER2_BREF_TYPE_INODE,
2850 			     HAMMER2_INODE_BYTES);
2851 	hammer2_chain_modify(trans, &nchain, HAMMER2_MODIFY_ASSERTNOCOPY);
2852 	hammer2_chain_lookup_done(parent);
2853 	parent = NULL;	/* safety */
2854 
2855 	/*
2856 	 * Name fixup
2857 	 */
2858 	ipdata = &nchain->data->ipdata;
2859 	ipdata->name_key = lhc;
2860 	ipdata->name_len = name_len;
2861 	ksnprintf(ipdata->filename, sizeof(ipdata->filename), "%s", pfs->name);
2862 
2863 	/*
2864 	 * Set PFS type, generate a unique filesystem id, and generate
2865 	 * a cluster id.  Use the same clid when snapshotting a PFS root,
2866 	 * which theoretically allows the snapshot to be used as part of
2867 	 * the same cluster (perhaps as a cache).
2868 	 */
2869 	ipdata->pfs_type = HAMMER2_PFSTYPE_SNAPSHOT;
2870 	kern_uuidgen(&ipdata->pfs_fsid, 1);
2871 	if (ip->chain == cluster->rchain)
2872 		ipdata->pfs_clid = ip->chain->data->ipdata.pfs_clid;
2873 	else
2874 		kern_uuidgen(&ipdata->pfs_clid, 1);
2875 
2876 	/*
2877 	 * Issue a restricted flush of the snapshot.  This is a synchronous
2878 	 * operation.
2879 	 */
2880 	trans->flags |= HAMMER2_TRANS_RESTRICTED;
2881 	kprintf("SNAPSHOTA\n");
2882 	tsleep(trans, 0, "snapslp", hz*4);
2883 	kprintf("SNAPSHOTB\n");
2884 	hammer2_chain_flush(trans, nchain);
2885 	trans->flags &= ~HAMMER2_TRANS_RESTRICTED;
2886 
2887 #if 0
2888 	/*
2889 	 * Remove the link b/c nchain is a snapshot and snapshots don't
2890 	 * follow CHAIN_DELETED semantics ?
2891 	 */
2892 	chain = ip->chain;
2893 
2894 
2895 	KKASSERT(chain->duplink == nchain);
2896 	KKASSERT(chain->core == nchain->core);
2897 	KKASSERT(nchain->refs >= 2);
2898 	chain->duplink = nchain->duplink;
2899 	atomic_clear_int(&nchain->flags, HAMMER2_CHAIN_DUPTARGET);
2900 	hammer2_chain_drop(nchain);
2901 #endif
2902 
2903 	kprintf("snapshot %s nchain->refs %d nchain->flags %08x\n",
2904 		pfs->name, nchain->refs, nchain->flags);
2905 	hammer2_chain_unlock(nchain);
2906 
2907 	return (error);
2908 }
2909 
2910 /*
2911  * Create an indirect block that covers one or more of the elements in the
2912  * current parent.  Either returns the existing parent with no locking or
2913  * ref changes or returns the new indirect block locked and referenced
2914  * and leaving the original parent lock/ref intact as well.
2915  *
2916  * If an error occurs, NULL is returned and *errorp is set to the error.
2917  *
2918  * The returned chain depends on where the specified key falls.
2919  *
2920  * The key/keybits for the indirect mode only needs to follow three rules:
2921  *
2922  * (1) That all elements underneath it fit within its key space and
2923  *
2924  * (2) That all elements outside it are outside its key space.
2925  *
2926  * (3) When creating the new indirect block any elements in the current
2927  *     parent that fit within the new indirect block's keyspace must be
2928  *     moved into the new indirect block.
2929  *
2930  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
2931  *     keyspace the the current parent, but lookup/iteration rules will
2932  *     ensure (and must ensure) that rule (2) for all parents leading up
2933  *     to the nearest inode or the root volume header is adhered to.  This
2934  *     is accomplished by always recursing through matching keyspaces in
2935  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
2936  *
2937  * The current implementation calculates the current worst-case keyspace by
2938  * iterating the current parent and then divides it into two halves, choosing
2939  * whichever half has the most elements (not necessarily the half containing
2940  * the requested key).
2941  *
2942  * We can also opt to use the half with the least number of elements.  This
2943  * causes lower-numbered keys (aka logical file offsets) to recurse through
2944  * fewer indirect blocks and higher-numbered keys to recurse through more.
2945  * This also has the risk of not moving enough elements to the new indirect
2946  * block and being forced to create several indirect blocks before the element
2947  * can be inserted.
2948  *
2949  * Must be called with an exclusively locked parent.
2950  */
2951 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
2952 				hammer2_key_t *keyp, int keybits,
2953 				hammer2_blockref_t *base, int count);
2954 static int hammer2_chain_indkey_normal(hammer2_chain_t *parent,
2955 				hammer2_key_t *keyp, int keybits,
2956 				hammer2_blockref_t *base, int count);
2957 static
2958 hammer2_chain_t *
2959 hammer2_chain_create_indirect(hammer2_trans_t *trans, hammer2_chain_t *parent,
2960 			      hammer2_key_t create_key, int create_bits,
2961 			      int for_type, int *errorp)
2962 {
2963 	hammer2_mount_t *hmp;
2964 	hammer2_chain_core_t *above;
2965 	hammer2_chain_core_t *icore;
2966 	hammer2_blockref_t *base;
2967 	hammer2_blockref_t *bref;
2968 	hammer2_chain_t *chain;
2969 	hammer2_chain_t *child;
2970 	hammer2_chain_t *ichain;
2971 	hammer2_chain_t dummy;
2972 	hammer2_key_t key = create_key;
2973 	int keybits = create_bits;
2974 	int count;
2975 	int nbytes;
2976 	int i;
2977 
2978 	/*
2979 	 * Calculate the base blockref pointer or NULL if the chain
2980 	 * is known to be empty.  We need to calculate the array count
2981 	 * for RB lookups either way.
2982 	 */
2983 	hmp = parent->hmp;
2984 	*errorp = 0;
2985 	KKASSERT(ccms_thread_lock_owned(&parent->core->cst));
2986 	above = parent->core;
2987 
2988 	/*hammer2_chain_modify(trans, &parent, HAMMER2_MODIFY_OPTDATA);*/
2989 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2990 		base = NULL;
2991 
2992 		switch(parent->bref.type) {
2993 		case HAMMER2_BREF_TYPE_INODE:
2994 			count = HAMMER2_SET_COUNT;
2995 			break;
2996 		case HAMMER2_BREF_TYPE_INDIRECT:
2997 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2998 			count = parent->bytes / sizeof(hammer2_blockref_t);
2999 			break;
3000 		case HAMMER2_BREF_TYPE_VOLUME:
3001 			count = HAMMER2_SET_COUNT;
3002 			break;
3003 		case HAMMER2_BREF_TYPE_FREEMAP:
3004 			count = HAMMER2_SET_COUNT;
3005 			break;
3006 		default:
3007 			panic("hammer2_chain_create_indirect: "
3008 			      "unrecognized blockref type: %d",
3009 			      parent->bref.type);
3010 			count = 0;
3011 			break;
3012 		}
3013 	} else {
3014 		switch(parent->bref.type) {
3015 		case HAMMER2_BREF_TYPE_INODE:
3016 			base = &parent->data->ipdata.u.blockset.blockref[0];
3017 			count = HAMMER2_SET_COUNT;
3018 			break;
3019 		case HAMMER2_BREF_TYPE_INDIRECT:
3020 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3021 			base = &parent->data->npdata[0];
3022 			count = parent->bytes / sizeof(hammer2_blockref_t);
3023 			break;
3024 		case HAMMER2_BREF_TYPE_VOLUME:
3025 			base = &hmp->voldata.sroot_blockset.blockref[0];
3026 			count = HAMMER2_SET_COUNT;
3027 			break;
3028 		case HAMMER2_BREF_TYPE_FREEMAP:
3029 			base = &hmp->voldata.freemap_blockset.blockref[0];
3030 			count = HAMMER2_SET_COUNT;
3031 			break;
3032 		default:
3033 			panic("hammer2_chain_create_indirect: "
3034 			      "unrecognized blockref type: %d",
3035 			      parent->bref.type);
3036 			count = 0;
3037 			break;
3038 		}
3039 	}
3040 
3041 	/*
3042 	 * dummy used in later chain allocation (no longer used for lookups).
3043 	 */
3044 	bzero(&dummy, sizeof(dummy));
3045 	dummy.delete_tid = HAMMER2_MAX_TID;
3046 
3047 	/*
3048 	 * When creating an indirect block for a freemap node or leaf
3049 	 * the key/keybits must be fitted to static radix levels because
3050 	 * particular radix levels use particular reserved blocks in the
3051 	 * related zone.
3052 	 *
3053 	 * This routine calculates the key/radix of the indirect block
3054 	 * we need to create, and whether it is on the high-side or the
3055 	 * low-side.
3056 	 */
3057 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3058 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3059 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
3060 						       base, count);
3061 	} else {
3062 		keybits = hammer2_chain_indkey_normal(parent, &key, keybits,
3063 						      base, count);
3064 	}
3065 
3066 	/*
3067 	 * Normalize the key for the radix being represented, keeping the
3068 	 * high bits and throwing away the low bits.
3069 	 */
3070 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
3071 
3072 	/*
3073 	 * How big should our new indirect block be?  It has to be at least
3074 	 * as large as its parent.
3075 	 */
3076 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE)
3077 		nbytes = HAMMER2_IND_BYTES_MIN;
3078 	else
3079 		nbytes = HAMMER2_IND_BYTES_MAX;
3080 	if (nbytes < count * sizeof(hammer2_blockref_t))
3081 		nbytes = count * sizeof(hammer2_blockref_t);
3082 
3083 	/*
3084 	 * Ok, create our new indirect block
3085 	 */
3086 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
3087 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
3088 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
3089 	} else {
3090 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
3091 	}
3092 	dummy.bref.key = key;
3093 	dummy.bref.keybits = keybits;
3094 	dummy.bref.data_off = hammer2_getradix(nbytes);
3095 	dummy.bref.methods = parent->bref.methods;
3096 
3097 	ichain = hammer2_chain_alloc(hmp, trans, &dummy.bref);
3098 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
3099 	hammer2_chain_core_alloc(ichain, NULL);
3100 	icore = ichain->core;
3101 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
3102 	hammer2_chain_drop(ichain);	/* excess ref from alloc */
3103 
3104 	/*
3105 	 * We have to mark it modified to allocate its block, but use
3106 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
3107 	 * it won't be acted upon by the flush code.
3108 	 *
3109 	 * XXX leave the node unmodified, depend on the SUBMODIFIED
3110 	 * flush to assign and modify parent blocks.
3111 	 */
3112 	hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);
3113 
3114 	/*
3115 	 * Iterate the original parent and move the matching brefs into
3116 	 * the new indirect block.
3117 	 *
3118 	 * At the same time locate an empty slot (or what will become an
3119 	 * empty slot) and assign the new indirect block to that slot.
3120 	 *
3121 	 * XXX handle flushes.
3122 	 */
3123 	spin_lock(&above->cst.spin);
3124 	for (i = 0; i < count; ++i) {
3125 		/*
3126 		 * For keying purposes access the bref from the media or
3127 		 * from our in-memory cache.  In cases where the in-memory
3128 		 * cache overrides the media the keyrefs will be the same
3129 		 * anyway so we can avoid checking the cache when the media
3130 		 * has a key.
3131 		 */
3132 		child = hammer2_chain_find_locked(parent, i);
3133 		if (child) {
3134 			if (child->flags & HAMMER2_CHAIN_DELETED) {
3135 				if (ichain->index < 0)
3136 					ichain->index = i;
3137 				continue;
3138 			}
3139 			bref = &child->bref;
3140 		} else if (base && base[i].type) {
3141 			bref = &base[i];
3142 		} else {
3143 			if (ichain->index < 0)
3144 				ichain->index = i;
3145 			continue;
3146 		}
3147 
3148 		/*
3149 		 * Skip keys that are not within the key/radix of the new
3150 		 * indirect block.  They stay in the parent.
3151 		 */
3152 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
3153 		    (key ^ bref->key)) != 0) {
3154 			continue;
3155 		}
3156 
3157 		/*
3158 		 * This element is being moved from the parent, its slot
3159 		 * is available for our new indirect block.
3160 		 */
3161 		if (ichain->index < 0)
3162 			ichain->index = i;
3163 
3164 		/*
3165 		 * Load the new indirect block by acquiring or allocating
3166 		 * the related chain entries, then move them to the new
3167 		 * parent (ichain) by deleting them from their old location
3168 		 * and inserting a duplicate of the chain and any modified
3169 		 * sub-chain in the new location.
3170 		 *
3171 		 * We must set MOVED in the chain being duplicated and
3172 		 * SUBMODIFIED in the parent(s) so the flush code knows
3173 		 * what is going on.  The latter is done after the loop.
3174 		 *
3175 		 * WARNING! above->cst.spin must be held when parent is
3176 		 *	    modified, even though we own the full blown lock,
3177 		 *	    to deal with setsubmod and rename races.
3178 		 *	    (XXX remove this req).
3179 		 */
3180 		spin_unlock(&above->cst.spin);
3181 		chain = hammer2_chain_get(parent, i, HAMMER2_LOOKUP_NODATA);
3182 		hammer2_chain_delete(trans, chain);
3183 		hammer2_chain_duplicate(trans, ichain, i, &chain, NULL);
3184 		hammer2_chain_unlock(chain);
3185 		KKASSERT(parent->refs > 0);
3186 		chain = NULL;
3187 		spin_lock(&above->cst.spin);
3188 	}
3189 	spin_unlock(&above->cst.spin);
3190 
3191 	/*
3192 	 * Insert the new indirect block into the parent now that we've
3193 	 * cleared out some entries in the parent.  We calculated a good
3194 	 * insertion index in the loop above (ichain->index).
3195 	 *
3196 	 * We don't have to set MOVED here because we mark ichain modified
3197 	 * down below (so the normal modified -> flush -> set-moved sequence
3198 	 * applies).
3199 	 *
3200 	 * The insertion shouldn't race as this is a completely new block
3201 	 * and the parent is locked.
3202 	 */
3203 	if (ichain->index < 0)
3204 		kprintf("indirect parent %p count %d key %016jx/%d\n",
3205 			parent, count, (intmax_t)key, keybits);
3206 	KKASSERT(ichain->index >= 0);
3207 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
3208 	spin_lock(&above->cst.spin);
3209 	if (RB_INSERT(hammer2_chain_tree, &above->rbtree, ichain))
3210 		panic("hammer2_chain_create_indirect: ichain insertion");
3211 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_ONRBTREE);
3212 	ichain->above = above;
3213 	spin_unlock(&above->cst.spin);
3214 
3215 	/*
3216 	 * Mark the new indirect block modified after insertion, which
3217 	 * will propagate up through parent all the way to the root and
3218 	 * also allocate the physical block in ichain for our caller,
3219 	 * and assign ichain->data to a pre-zero'd space (because there
3220 	 * is not prior data to copy into it).
3221 	 *
3222 	 * We have to set SUBMODIFIED in ichain's flags manually so the
3223 	 * flusher knows it has to recurse through it to get to all of
3224 	 * our moved blocks, then call setsubmod() to set the bit
3225 	 * recursively.
3226 	 */
3227 	/*hammer2_chain_modify(trans, &ichain, HAMMER2_MODIFY_OPTDATA);*/
3228 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_SUBMODIFIED);
3229 	hammer2_chain_setsubmod(trans, ichain);
3230 
3231 	/*
3232 	 * Figure out what to return.
3233 	 */
3234 	if (~(((hammer2_key_t)1 << keybits) - 1) &
3235 		   (create_key ^ key)) {
3236 		/*
3237 		 * Key being created is outside the key range,
3238 		 * return the original parent.
3239 		 */
3240 		hammer2_chain_unlock(ichain);
3241 	} else {
3242 		/*
3243 		 * Otherwise its in the range, return the new parent.
3244 		 * (leave both the new and old parent locked).
3245 		 */
3246 		parent = ichain;
3247 	}
3248 
3249 	return(parent);
3250 }
3251 
3252 /*
3253  * Calculate the keybits and highside/lowside of the freemap node the
3254  * caller is creating.
3255  *
3256  * This routine will specify the next higher-level freemap key/radix
3257  * representing the lowest-ordered set.  By doing so, eventually all
3258  * low-ordered sets will be moved one level down.
3259  *
3260  * We have to be careful here because the freemap reserves a limited
3261  * number of blocks for a limited number of levels.  So we can't just
3262  * push indiscriminately.
3263  */
3264 int
3265 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
3266 			     int keybits, hammer2_blockref_t *base, int count)
3267 {
3268 	hammer2_chain_core_t *above;
3269 	hammer2_chain_t *child;
3270 	hammer2_blockref_t *bref;
3271 	hammer2_key_t key;
3272 	int locount;
3273 	int hicount;
3274 	int i;
3275 
3276 	key = *keyp;
3277 	above = parent->core;
3278 	locount = 0;
3279 	hicount = 0;
3280 	keybits = 64;
3281 
3282 	/*
3283 	 * Calculate the range of keys in the array being careful to skip
3284 	 * slots which are overridden with a deletion.
3285 	 */
3286 	spin_lock(&above->cst.spin);
3287 	for (i = 0; i < count; ++i) {
3288 		child = hammer2_chain_find_locked(parent, i);
3289 		if (child) {
3290 			if (child->flags & HAMMER2_CHAIN_DELETED)
3291 				continue;
3292 			bref = &child->bref;
3293 		} else if (base && base[i].type) {
3294 			bref = &base[i];
3295 		} else {
3296 			continue;
3297 		}
3298 
3299 		if (keybits > bref->keybits) {
3300 			key = bref->key;
3301 			keybits = bref->keybits;
3302 		} else if (keybits == bref->keybits && bref->key < key) {
3303 			key = bref->key;
3304 		}
3305 	}
3306 	spin_unlock(&above->cst.spin);
3307 
3308 	/*
3309 	 * Return the keybits for a higher-level FREEMAP_NODE covering
3310 	 * this node.
3311 	 */
3312 	switch(keybits) {
3313 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
3314 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
3315 		break;
3316 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
3317 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
3318 		break;
3319 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
3320 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
3321 		break;
3322 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
3323 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
3324 		break;
3325 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
3326 		panic("hammer2_chain_indkey_freemap: level too high");
3327 		break;
3328 	default:
3329 		panic("hammer2_chain_indkey_freemap: bad radix");
3330 		break;
3331 	}
3332 	*keyp = key;
3333 
3334 	return (keybits);
3335 }
3336 
3337 /*
3338  * Calculate the keybits and highside/lowside of the indirect block the
3339  * caller is creating.
3340  */
3341 static int
3342 hammer2_chain_indkey_normal(hammer2_chain_t *parent, hammer2_key_t *keyp,
3343 			    int keybits, hammer2_blockref_t *base, int count)
3344 {
3345 	hammer2_chain_core_t *above;
3346 	hammer2_chain_t *child;
3347 	hammer2_blockref_t *bref;
3348 	hammer2_key_t key;
3349 	int nkeybits;
3350 	int locount;
3351 	int hicount;
3352 	int i;
3353 
3354 	key = *keyp;
3355 	above = parent->core;
3356 	locount = 0;
3357 	hicount = 0;
3358 
3359 	/*
3360 	 * Calculate the range of keys in the array being careful to skip
3361 	 * slots which are overridden with a deletion.  Once the scan
3362 	 * completes we will cut the key range in half and shift half the
3363 	 * range into the new indirect block.
3364 	 */
3365 	spin_lock(&above->cst.spin);
3366 	for (i = 0; i < count; ++i) {
3367 		child = hammer2_chain_find_locked(parent, i);
3368 		if (child) {
3369 			if (child->flags & HAMMER2_CHAIN_DELETED)
3370 				continue;
3371 			bref = &child->bref;
3372 		} else if (base && base[i].type) {
3373 			bref = &base[i];
3374 		} else {
3375 			continue;
3376 		}
3377 
3378 		/*
3379 		 * Expand our calculated key range (key, keybits) to fit
3380 		 * the scanned key.  nkeybits represents the full range
3381 		 * that we will later cut in half (two halves @ nkeybits - 1).
3382 		 */
3383 		nkeybits = keybits;
3384 		if (nkeybits < bref->keybits) {
3385 			if (bref->keybits > 64) {
3386 				kprintf("bad bref index %d chain %p bref %p\n",
3387 					i, child, bref);
3388 				Debugger("fubar");
3389 			}
3390 			nkeybits = bref->keybits;
3391 		}
3392 		while (nkeybits < 64 &&
3393 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
3394 		        (key ^ bref->key)) != 0) {
3395 			++nkeybits;
3396 		}
3397 
3398 		/*
3399 		 * If the new key range is larger we have to determine
3400 		 * which side of the new key range the existing keys fall
3401 		 * under by checking the high bit, then collapsing the
3402 		 * locount into the hicount or vise-versa.
3403 		 */
3404 		if (keybits != nkeybits) {
3405 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
3406 				hicount += locount;
3407 				locount = 0;
3408 			} else {
3409 				locount += hicount;
3410 				hicount = 0;
3411 			}
3412 			keybits = nkeybits;
3413 		}
3414 
3415 		/*
3416 		 * The newly scanned key will be in the lower half or the
3417 		 * higher half of the (new) key range.
3418 		 */
3419 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
3420 			++hicount;
3421 		else
3422 			++locount;
3423 	}
3424 	spin_unlock(&above->cst.spin);
3425 	bref = NULL;	/* now invalid (safety) */
3426 
3427 	/*
3428 	 * Adjust keybits to represent half of the full range calculated
3429 	 * above (radix 63 max)
3430 	 */
3431 	--keybits;
3432 
3433 	/*
3434 	 * Select whichever half contains the most elements.  Theoretically
3435 	 * we can select either side as long as it contains at least one
3436 	 * element (in order to ensure that a free slot is present to hold
3437 	 * the indirect block).
3438 	 */
3439 	if (hammer2_indirect_optimize) {
3440 		/*
3441 		 * Insert node for least number of keys, this will arrange
3442 		 * the first few blocks of a large file or the first few
3443 		 * inodes in a directory with fewer indirect blocks when
3444 		 * created linearly.
3445 		 */
3446 		if (hicount < locount && hicount != 0)
3447 			key |= (hammer2_key_t)1 << keybits;
3448 		else
3449 			key &= ~(hammer2_key_t)1 << keybits;
3450 	} else {
3451 		/*
3452 		 * Insert node for most number of keys, best for heavily
3453 		 * fragmented files.
3454 		 */
3455 		if (hicount > locount)
3456 			key |= (hammer2_key_t)1 << keybits;
3457 		else
3458 			key &= ~(hammer2_key_t)1 << keybits;
3459 	}
3460 	*keyp = key;
3461 
3462 	return (keybits);
3463 }
3464 
3465 /*
3466  * Sets CHAIN_DELETED and CHAIN_MOVED in the chain being deleted and
3467  * set chain->delete_tid.
3468  *
3469  * This function does NOT generate a modification to the parent.  It
3470  * would be nearly impossible to figure out which parent to modify anyway.
3471  * Such modifications are handled by the flush code and are properly merged
3472  * using the flush synchronization point.
3473  *
3474  * The find/get code will properly overload the RBTREE check on top of
3475  * the bref check to detect deleted entries.
3476  *
3477  * This function is NOT recursive.  Any entity already pushed into the
3478  * chain (such as an inode) may still need visibility into its contents,
3479  * as well as the ability to read and modify the contents.  For example,
3480  * for an unlinked file which is still open.
3481  *
3482  * NOTE: This function does NOT set chain->modify_tid, allowing future
3483  *	 code to distinguish between live and deleted chains by testing
3484  *	 sync_tid.
3485  *
3486  * NOTE: Deletions normally do not occur in the middle of a duplication
3487  *	 chain but we use a trick for hardlink migration that refactors
3488  *	 the originating inode without deleting it, so we make no assumptions
3489  *	 here.
3490  */
3491 void
3492 hammer2_chain_delete(hammer2_trans_t *trans, hammer2_chain_t *chain)
3493 {
3494 	KKASSERT(ccms_thread_lock_owned(&chain->core->cst));
3495 
3496 	/*
3497 	 * Nothing to do if already marked.
3498 	 */
3499 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3500 		return;
3501 
3502 	/*
3503 	 * We must set MOVED along with DELETED for the flush code to
3504 	 * recognize the operation and properly disconnect the chain
3505 	 * in-memory.
3506 	 *
3507 	 * The setting of DELETED causes finds, lookups, and _next iterations
3508 	 * to no longer recognize the chain.  RB_SCAN()s will still have
3509 	 * visibility (needed for flush serialization points).
3510 	 *
3511 	 * We need the spinlock on the core whos RBTREE contains chain
3512 	 * to protect against races.
3513 	 */
3514 	spin_lock(&chain->above->cst.spin);
3515 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3516 	if ((chain->flags & HAMMER2_CHAIN_MOVED) == 0) {
3517 		hammer2_chain_ref(chain);
3518 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MOVED);
3519 	}
3520 	chain->delete_tid = trans->sync_tid;
3521 	spin_unlock(&chain->above->cst.spin);
3522 	hammer2_chain_setsubmod(trans, chain);
3523 }
3524 
3525 void
3526 hammer2_chain_wait(hammer2_chain_t *chain)
3527 {
3528 	tsleep(chain, 0, "chnflw", 1);
3529 }
3530 
3531 static
3532 void
3533 adjreadcounter(hammer2_blockref_t *bref, size_t bytes)
3534 {
3535 	long *counterp;
3536 
3537 	switch(bref->type) {
3538 	case HAMMER2_BREF_TYPE_DATA:
3539 		counterp = &hammer2_iod_file_read;
3540 		break;
3541 	case HAMMER2_BREF_TYPE_INODE:
3542 		counterp = &hammer2_iod_meta_read;
3543 		break;
3544 	case HAMMER2_BREF_TYPE_INDIRECT:
3545 		counterp = &hammer2_iod_indr_read;
3546 		break;
3547 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3548 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3549 		counterp = &hammer2_iod_fmap_read;
3550 		break;
3551 	default:
3552 		counterp = &hammer2_iod_volu_read;
3553 		break;
3554 	}
3555 	*counterp += bytes;
3556 }
3557