xref: /dragonfly/sys/vfs/hammer2/hammer2_chain.c (revision b608d1d3)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62 
63 #include <crypto/sha2/sha2.h>
64 
65 #include "hammer2.h"
66 
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68 		hammer2_chain_t *parent,
69 		hammer2_key_t key, int keybits,
70 		hammer2_tid_t mtid, int for_type, int *errorp);
71 static void hammer2_chain_rename_obref(hammer2_chain_t **parentp,
72 		hammer2_chain_t *chain, hammer2_tid_t mtid,
73 		int flags, hammer2_blockref_t *obref);
74 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
75 		hammer2_chain_t *chain,
76 		hammer2_tid_t mtid, int flags,
77 		hammer2_blockref_t *obref);
78 static hammer2_io_t *hammer2_chain_drop_data(hammer2_chain_t *chain);
79 static hammer2_chain_t *hammer2_combined_find(
80 		hammer2_chain_t *parent,
81 		hammer2_blockref_t *base, int count,
82 		hammer2_key_t *key_nextp,
83 		hammer2_key_t key_beg, hammer2_key_t key_end,
84 		hammer2_blockref_t **bresp);
85 
86 static struct krate krate_h2me = { .freq = 1 };
87 
88 /*
89  * Basic RBTree for chains (core->rbtree and core->dbtree).  Chains cannot
90  * overlap in the RB trees.  Deleted chains are moved from rbtree to either
91  * dbtree or to dbq.
92  *
93  * Chains in delete-duplicate sequences can always iterate through core_entry
94  * to locate the live version of the chain.
95  */
96 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
97 
98 int
99 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
100 {
101 	hammer2_key_t c1_beg;
102 	hammer2_key_t c1_end;
103 	hammer2_key_t c2_beg;
104 	hammer2_key_t c2_end;
105 
106 	/*
107 	 * Compare chains.  Overlaps are not supposed to happen and catch
108 	 * any software issues early we count overlaps as a match.
109 	 */
110 	c1_beg = chain1->bref.key;
111 	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
112 	c2_beg = chain2->bref.key;
113 	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
114 
115 	if (c1_end < c2_beg)	/* fully to the left */
116 		return(-1);
117 	if (c1_beg > c2_end)	/* fully to the right */
118 		return(1);
119 	return(0);		/* overlap (must not cross edge boundary) */
120 }
121 
122 /*
123  * Assert that a chain has no media data associated with it.
124  */
125 static __inline void
126 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
127 {
128 	KKASSERT(chain->dio == NULL);
129 	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
130 	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
131 	    chain->data) {
132 		panic("hammer2_assert_no_data: chain %p still has data", chain);
133 	}
134 }
135 
136 /*
137  * Make a chain visible to the flusher.  The flusher operates using a top-down
138  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
139  * flushes them, and updates blocks back to the volume root.
140  *
141  * This routine sets the ONFLUSH flag upward from the triggering chain until
142  * it hits an inode root or the volume root.  Inode chains serve as inflection
143  * points, requiring the flusher to bridge across trees.  Inodes include
144  * regular inodes, PFS roots (pmp->iroot), and the media super root
145  * (spmp->iroot).
146  */
147 void
148 hammer2_chain_setflush(hammer2_chain_t *chain)
149 {
150 	hammer2_chain_t *parent;
151 
152 	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
153 		hammer2_spin_sh(&chain->core.spin);
154 		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
155 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
156 			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
157 				break;
158 			if ((parent = chain->parent) == NULL)
159 				break;
160 			hammer2_spin_sh(&parent->core.spin);
161 			hammer2_spin_unsh(&chain->core.spin);
162 			chain = parent;
163 		}
164 		hammer2_spin_unsh(&chain->core.spin);
165 	}
166 }
167 
168 /*
169  * Allocate a new disconnected chain element representing the specified
170  * bref.  chain->refs is set to 1 and the passed bref is copied to
171  * chain->bref.  chain->bytes is derived from the bref.
172  *
173  * chain->pmp inherits pmp unless the chain is an inode (other than the
174  * super-root inode).
175  *
176  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
177  */
178 hammer2_chain_t *
179 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
180 		    hammer2_blockref_t *bref)
181 {
182 	hammer2_chain_t *chain;
183 	u_int bytes;
184 
185 	/*
186 	 * Special case - radix of 0 indicates a chain that does not
187 	 * need a data reference (context is completely embedded in the
188 	 * bref).
189 	 */
190 	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
191 		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
192 	else
193 		bytes = 0;
194 
195 	atomic_add_long(&hammer2_chain_allocs, 1);
196 
197 	/*
198 	 * Construct the appropriate system structure.
199 	 */
200 	switch(bref->type) {
201 	case HAMMER2_BREF_TYPE_DIRENT:
202 	case HAMMER2_BREF_TYPE_INODE:
203 	case HAMMER2_BREF_TYPE_INDIRECT:
204 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
205 	case HAMMER2_BREF_TYPE_DATA:
206 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
207 		/*
208 		 * Chain's are really only associated with the hmp but we
209 		 * maintain a pmp association for per-mount memory tracking
210 		 * purposes.  The pmp can be NULL.
211 		 */
212 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
213 		break;
214 	case HAMMER2_BREF_TYPE_VOLUME:
215 	case HAMMER2_BREF_TYPE_FREEMAP:
216 		/*
217 		 * Only hammer2_chain_bulksnap() calls this function with these
218 		 * types.
219 		 */
220 		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
221 		break;
222 	default:
223 		chain = NULL;
224 		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
225 		      bref->type);
226 	}
227 
228 	/*
229 	 * Initialize the new chain structure.  pmp must be set to NULL for
230 	 * chains belonging to the super-root topology of a device mount.
231 	 */
232 	if (pmp == hmp->spmp)
233 		chain->pmp = NULL;
234 	else
235 		chain->pmp = pmp;
236 
237 	chain->hmp = hmp;
238 	chain->bref = *bref;
239 	chain->bytes = bytes;
240 	chain->refs = 1;
241 	chain->flags = HAMMER2_CHAIN_ALLOCATED;
242 	lockinit(&chain->diolk, "chdio", 0, 0);
243 
244 	/*
245 	 * Set the PFS boundary flag if this chain represents a PFS root.
246 	 */
247 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
248 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
249 	hammer2_chain_core_init(chain);
250 
251 	return (chain);
252 }
253 
254 /*
255  * Initialize a chain's core structure.  This structure used to be allocated
256  * but is now embedded.
257  *
258  * The core is not locked.  No additional refs on the chain are made.
259  * (trans) must not be NULL if (core) is not NULL.
260  */
261 void
262 hammer2_chain_core_init(hammer2_chain_t *chain)
263 {
264 	/*
265 	 * Fresh core under nchain (no multi-homing of ochain's
266 	 * sub-tree).
267 	 */
268 	RB_INIT(&chain->core.rbtree);	/* live chains */
269 	hammer2_mtx_init(&chain->lock, "h2chain");
270 }
271 
272 /*
273  * Add a reference to a chain element, preventing its destruction.
274  *
275  * (can be called with spinlock held)
276  */
277 void
278 hammer2_chain_ref(hammer2_chain_t *chain)
279 {
280 	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
281 		/*
282 		 * Just flag that the chain was used and should be recycled
283 		 * on the LRU if it encounters it later.
284 		 */
285 		if (chain->flags & HAMMER2_CHAIN_ONLRU)
286 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
287 
288 #if 0
289 		/*
290 		 * REMOVED - reduces contention, lru_list is more heuristical
291 		 * now.
292 		 *
293 		 * 0->non-zero transition must ensure that chain is removed
294 		 * from the LRU list.
295 		 *
296 		 * NOTE: Already holding lru_spin here so we cannot call
297 		 *	 hammer2_chain_ref() to get it off lru_list, do
298 		 *	 it manually.
299 		 */
300 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
301 			hammer2_pfs_t *pmp = chain->pmp;
302 			hammer2_spin_ex(&pmp->lru_spin);
303 			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
304 				atomic_add_int(&pmp->lru_count, -1);
305 				atomic_clear_int(&chain->flags,
306 						 HAMMER2_CHAIN_ONLRU);
307 				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
308 			}
309 			hammer2_spin_unex(&pmp->lru_spin);
310 		}
311 #endif
312 	}
313 }
314 
315 /*
316  * Ref a locked chain and force the data to be held across an unlock.
317  * Chain must be currently locked.  The user of the chain who desires
318  * to release the hold must call hammer2_chain_lock_unhold() to relock
319  * and unhold the chain, then unlock normally, or may simply call
320  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
321  */
322 void
323 hammer2_chain_ref_hold(hammer2_chain_t *chain)
324 {
325 	atomic_add_int(&chain->lockcnt, 1);
326 	hammer2_chain_ref(chain);
327 }
328 
329 /*
330  * Insert the chain in the core rbtree.
331  *
332  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
333  * chain is a special case used by the flush code that is placed on the
334  * unstaged deleted list to avoid confusing the live view.
335  */
336 #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
337 #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
338 #define HAMMER2_CHAIN_INSERT_RACE	0x0004
339 
340 static
341 int
342 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
343 		     int flags, int generation)
344 {
345 	hammer2_chain_t *xchain;
346 	int error = 0;
347 
348 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
349 		hammer2_spin_ex(&parent->core.spin);
350 
351 	/*
352 	 * Interlocked by spinlock, check for race
353 	 */
354 	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
355 	    parent->core.generation != generation) {
356 		error = HAMMER2_ERROR_EAGAIN;
357 		goto failed;
358 	}
359 
360 	/*
361 	 * Insert chain
362 	 */
363 	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
364 	KASSERT(xchain == NULL,
365 		("hammer2_chain_insert: collision %p %p (key=%016jx)",
366 		chain, xchain, chain->bref.key));
367 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
368 	chain->parent = parent;
369 	++parent->core.chain_count;
370 	++parent->core.generation;	/* XXX incs for _get() too, XXX */
371 
372 	/*
373 	 * We have to keep track of the effective live-view blockref count
374 	 * so the create code knows when to push an indirect block.
375 	 */
376 	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
377 		atomic_add_int(&parent->core.live_count, 1);
378 failed:
379 	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
380 		hammer2_spin_unex(&parent->core.spin);
381 	return error;
382 }
383 
384 /*
385  * Drop the caller's reference to the chain.  When the ref count drops to
386  * zero this function will try to disassociate the chain from its parent and
387  * deallocate it, then recursely drop the parent using the implied ref
388  * from the chain's chain->parent.
389  *
390  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
391  * races an acquisition by another cpu.  Therefore we can loop if we are
392  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
393  * race against another drop.
394  */
395 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
396 				int depth);
397 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
398 
399 void
400 hammer2_chain_drop(hammer2_chain_t *chain)
401 {
402 	u_int refs;
403 
404 	if (hammer2_debug & 0x200000)
405 		Debugger("drop");
406 
407 	KKASSERT(chain->refs > 0);
408 
409 	while (chain) {
410 		refs = chain->refs;
411 		cpu_ccfence();
412 		KKASSERT(refs > 0);
413 
414 		if (refs == 1) {
415 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
416 				chain = hammer2_chain_lastdrop(chain, 0);
417 			/* retry the same chain, or chain from lastdrop */
418 		} else {
419 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
420 				break;
421 			/* retry the same chain */
422 		}
423 		cpu_pause();
424 	}
425 }
426 
427 /*
428  * Unhold a held and probably not-locked chain, ensure that the data is
429  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
430  * lock and then simply unlocking the chain.
431  */
432 void
433 hammer2_chain_unhold(hammer2_chain_t *chain)
434 {
435 	u_int lockcnt;
436 	int iter = 0;
437 
438 	for (;;) {
439 		lockcnt = chain->lockcnt;
440 		cpu_ccfence();
441 		if (lockcnt > 1) {
442 			if (atomic_cmpset_int(&chain->lockcnt,
443 					      lockcnt, lockcnt - 1)) {
444 				break;
445 			}
446 		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
447 			hammer2_chain_unlock(chain);
448 			break;
449 		} else {
450 			/*
451 			 * This situation can easily occur on SMP due to
452 			 * the gap inbetween the 1->0 transition and the
453 			 * final unlock.  We cannot safely block on the
454 			 * mutex because lockcnt might go above 1.
455 			 *
456 			 * XXX Sleep for one tick if it takes too long.
457 			 */
458 			if (++iter > 1000) {
459 				if (iter > 1000 + hz) {
460 					kprintf("hammer2: h2race1 %p\n", chain);
461 					iter = 1000;
462 				}
463 				tsleep(&iter, 0, "h2race1", 1);
464 			}
465 			cpu_pause();
466 		}
467 	}
468 }
469 
470 void
471 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
472 {
473 	hammer2_chain_unhold(chain);
474 	hammer2_chain_drop(chain);
475 }
476 
477 void
478 hammer2_chain_rehold(hammer2_chain_t *chain)
479 {
480 	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
481 	atomic_add_int(&chain->lockcnt, 1);
482 	hammer2_chain_unlock(chain);
483 }
484 
485 /*
486  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
487  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
488  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
489  *
490  * This function returns an unlocked chain for recursive drop or NULL.  It
491  * can return the same chain if it determines it has raced another ref.
492  *
493  * --
494  *
495  * When two chains need to be recursively dropped we use the chain we
496  * would otherwise free to placehold the additional chain.  It's a bit
497  * convoluted but we can't just recurse without potentially blowing out
498  * the kernel stack.
499  *
500  * The chain cannot be freed if it has any children.
501  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
502  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
503  * Any dedup registration can remain intact.
504  *
505  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
506  */
507 static
508 hammer2_chain_t *
509 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
510 {
511 	hammer2_pfs_t *pmp;
512 	hammer2_dev_t *hmp;
513 	hammer2_chain_t *parent;
514 	hammer2_chain_t *rdrop;
515 
516 	/*
517 	 * We need chain's spinlock to interlock the sub-tree test.
518 	 * We already have chain's mutex, protecting chain->parent.
519 	 *
520 	 * Remember that chain->refs can be in flux.
521 	 */
522 	hammer2_spin_ex(&chain->core.spin);
523 
524 	if (chain->parent != NULL) {
525 		/*
526 		 * If the chain has a parent the UPDATE bit prevents scrapping
527 		 * as the chain is needed to properly flush the parent.  Try
528 		 * to complete the 1->0 transition and return NULL.  Retry
529 		 * (return chain) if we are unable to complete the 1->0
530 		 * transition, else return NULL (nothing more to do).
531 		 *
532 		 * If the chain has a parent the MODIFIED bit prevents
533 		 * scrapping.
534 		 *
535 		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
536 		 */
537 		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
538 				    HAMMER2_CHAIN_MODIFIED)) {
539 			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
540 				hammer2_spin_unex(&chain->core.spin);
541 				hammer2_chain_assert_no_data(chain);
542 				hammer2_mtx_unlock(&chain->lock);
543 				chain = NULL;
544 			} else {
545 				hammer2_spin_unex(&chain->core.spin);
546 				hammer2_mtx_unlock(&chain->lock);
547 			}
548 			return (chain);
549 		}
550 		/* spinlock still held */
551 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
552 		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
553 		/*
554 		 * Retain the static vchain and fchain.  Clear bits that
555 		 * are not relevant.  Do not clear the MODIFIED bit,
556 		 * and certainly do not put it on the delayed-flush queue.
557 		 */
558 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
559 	} else {
560 		/*
561 		 * The chain has no parent and can be flagged for destruction.
562 		 * Since it has no parent, UPDATE can also be cleared.
563 		 */
564 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
565 		if (chain->flags & HAMMER2_CHAIN_UPDATE)
566 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
567 
568 		/*
569 		 * If the chain has children we must propagate the DESTROY
570 		 * flag downward and rip the disconnected topology apart.
571 		 * This is accomplished by calling hammer2_flush() on the
572 		 * chain.
573 		 *
574 		 * Any dedup is already handled by the underlying DIO, so
575 		 * we do not have to specifically flush it here.
576 		 */
577 		if (chain->core.chain_count) {
578 			hammer2_spin_unex(&chain->core.spin);
579 			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
580 					     HAMMER2_FLUSH_ALL);
581 			hammer2_mtx_unlock(&chain->lock);
582 
583 			return(chain);	/* retry drop */
584 		}
585 
586 		/*
587 		 * Otherwise we can scrap the MODIFIED bit if it is set,
588 		 * and continue along the freeing path.
589 		 *
590 		 * Be sure to clean-out any dedup bits.  Without a parent
591 		 * this chain will no longer be visible to the flush code.
592 		 * Easy check data_off to avoid the volume root.
593 		 */
594 		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
595 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
596 			atomic_add_long(&hammer2_count_modified_chains, -1);
597 			if (chain->pmp)
598 				hammer2_pfs_memory_wakeup(chain->pmp);
599 		}
600 		/* spinlock still held */
601 	}
602 
603 	/* spinlock still held */
604 
605 	/*
606 	 * If any children exist we must leave the chain intact with refs == 0.
607 	 * They exist because chains are retained below us which have refs or
608 	 * may require flushing.
609 	 *
610 	 * Retry (return chain) if we fail to transition the refs to 0, else
611 	 * return NULL indication nothing more to do.
612 	 *
613 	 * Chains with children are NOT put on the LRU list.
614 	 */
615 	if (chain->core.chain_count) {
616 		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
617 			hammer2_spin_unex(&chain->core.spin);
618 			hammer2_chain_assert_no_data(chain);
619 			hammer2_mtx_unlock(&chain->lock);
620 			chain = NULL;
621 		} else {
622 			hammer2_spin_unex(&chain->core.spin);
623 			hammer2_mtx_unlock(&chain->lock);
624 		}
625 		return (chain);
626 	}
627 	/* spinlock still held */
628 	/* no chains left under us */
629 
630 	/*
631 	 * chain->core has no children left so no accessors can get to our
632 	 * chain from there.  Now we have to lock the parent core to interlock
633 	 * remaining possible accessors that might bump chain's refs before
634 	 * we can safely drop chain's refs with intent to free the chain.
635 	 */
636 	hmp = chain->hmp;
637 	pmp = chain->pmp;	/* can be NULL */
638 	rdrop = NULL;
639 
640 	parent = chain->parent;
641 
642 	/*
643 	 * WARNING! chain's spin lock is still held here, and other spinlocks
644 	 *	    will be acquired and released in the code below.  We
645 	 *	    cannot be making fancy procedure calls!
646 	 */
647 
648 	/*
649 	 * We can cache the chain if it is associated with a pmp
650 	 * and not flagged as being destroyed or requesting a full
651 	 * release.  In this situation the chain is not removed
652 	 * from its parent, i.e. it can still be looked up.
653 	 *
654 	 * We intentionally do not cache DATA chains because these
655 	 * were likely used to load data into the logical buffer cache
656 	 * and will not be accessed again for some time.
657 	 */
658 	if ((chain->flags &
659 	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
660 	    chain->pmp &&
661 	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
662 		if (parent)
663 			hammer2_spin_ex(&parent->core.spin);
664 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
665 			/*
666 			 * 1->0 transition failed, retry.  Do not drop
667 			 * the chain's data yet!
668 			 */
669 			if (parent)
670 				hammer2_spin_unex(&parent->core.spin);
671 			hammer2_spin_unex(&chain->core.spin);
672 			hammer2_mtx_unlock(&chain->lock);
673 
674 			return(chain);
675 		}
676 
677 		/*
678 		 * Success
679 		 */
680 		hammer2_chain_assert_no_data(chain);
681 
682 		/*
683 		 * Make sure we are on the LRU list, clean up excessive
684 		 * LRU entries.  We can only really drop one but there might
685 		 * be other entries that we can remove from the lru_list
686 		 * without dropping.
687 		 *
688 		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
689 		 *	 chain->core.spin AND pmp->lru_spin are held, but
690 		 *	 can be safely cleared only holding pmp->lru_spin.
691 		 */
692 		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
693 			hammer2_spin_ex(&pmp->lru_spin);
694 			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
695 				atomic_set_int(&chain->flags,
696 					       HAMMER2_CHAIN_ONLRU);
697 				TAILQ_INSERT_TAIL(&pmp->lru_list,
698 						  chain, lru_node);
699 				atomic_add_int(&pmp->lru_count, 1);
700 			}
701 			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
702 				depth = 1;	/* disable lru_list flush */
703 			hammer2_spin_unex(&pmp->lru_spin);
704 		} else {
705 			/* disable lru flush */
706 			depth = 1;
707 		}
708 
709 		if (parent) {
710 			hammer2_spin_unex(&parent->core.spin);
711 			parent = NULL;	/* safety */
712 		}
713 		hammer2_spin_unex(&chain->core.spin);
714 		hammer2_mtx_unlock(&chain->lock);
715 
716 		/*
717 		 * lru_list hysteresis (see above for depth overrides).
718 		 * Note that depth also prevents excessive lastdrop recursion.
719 		 */
720 		if (depth == 0)
721 			hammer2_chain_lru_flush(pmp);
722 
723 		return NULL;
724 		/* NOT REACHED */
725 	}
726 
727 	/*
728 	 * Make sure we are not on the LRU list.
729 	 */
730 	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
731 		hammer2_spin_ex(&pmp->lru_spin);
732 		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
733 			atomic_add_int(&pmp->lru_count, -1);
734 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
735 			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
736 		}
737 		hammer2_spin_unex(&pmp->lru_spin);
738 	}
739 
740 	/*
741 	 * Spinlock the parent and try to drop the last ref on chain.
742 	 * On success determine if we should dispose of the chain
743 	 * (remove the chain from its parent, etc).
744 	 *
745 	 * (normal core locks are top-down recursive but we define
746 	 * core spinlocks as bottom-up recursive, so this is safe).
747 	 */
748 	if (parent) {
749 		hammer2_spin_ex(&parent->core.spin);
750 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
751 			/*
752 			 * 1->0 transition failed, retry.
753 			 */
754 			hammer2_spin_unex(&parent->core.spin);
755 			hammer2_spin_unex(&chain->core.spin);
756 			hammer2_mtx_unlock(&chain->lock);
757 
758 			return(chain);
759 		}
760 
761 		/*
762 		 * 1->0 transition successful, parent spin held to prevent
763 		 * new lookups, chain spinlock held to protect parent field.
764 		 * Remove chain from the parent.
765 		 *
766 		 * If the chain is being removed from the parent's btree but
767 		 * is not bmapped, we have to adjust live_count downward.  If
768 		 * it is bmapped then the blockref is retained in the parent
769 		 * as is its associated live_count.  This case can occur when
770 		 * a chain added to the topology is unable to flush and is
771 		 * then later deleted.
772 		 */
773 		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
774 			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
775 			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
776 				atomic_add_int(&parent->core.live_count, -1);
777 			}
778 			RB_REMOVE(hammer2_chain_tree,
779 				  &parent->core.rbtree, chain);
780 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
781 			--parent->core.chain_count;
782 			chain->parent = NULL;
783 		}
784 
785 		/*
786 		 * If our chain was the last chain in the parent's core the
787 		 * core is now empty and its parent might have to be
788 		 * re-dropped if it has 0 refs.
789 		 */
790 		if (parent->core.chain_count == 0) {
791 			rdrop = parent;
792 			atomic_add_int(&rdrop->refs, 1);
793 			/*
794 			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
795 				rdrop = NULL;
796 			*/
797 		}
798 		hammer2_spin_unex(&parent->core.spin);
799 		parent = NULL;	/* safety */
800 		/* FALL THROUGH */
801 	} else {
802 		/*
803 		 * No-parent case.
804 		 */
805 		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
806 			/*
807 			 * 1->0 transition failed, retry.
808 			 */
809 			hammer2_spin_unex(&parent->core.spin);
810 			hammer2_spin_unex(&chain->core.spin);
811 			hammer2_mtx_unlock(&chain->lock);
812 
813 			return(chain);
814 		}
815 	}
816 
817 	/*
818 	 * Successful 1->0 transition, no parent, no children... no way for
819 	 * anyone to ref this chain any more.  We can clean-up and free it.
820 	 *
821 	 * We still have the core spinlock, and core's chain_count is 0.
822 	 * Any parent spinlock is gone.
823 	 */
824 	hammer2_spin_unex(&chain->core.spin);
825 	hammer2_chain_assert_no_data(chain);
826 	hammer2_mtx_unlock(&chain->lock);
827 	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
828 		 chain->core.chain_count == 0);
829 
830 	/*
831 	 * All locks are gone, no pointers remain to the chain, finish
832 	 * freeing it.
833 	 */
834 	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
835 				  HAMMER2_CHAIN_MODIFIED)) == 0);
836 
837 	/*
838 	 * Once chain resources are gone we can use the now dead chain
839 	 * structure to placehold what might otherwise require a recursive
840 	 * drop, because we have potentially two things to drop and can only
841 	 * return one directly.
842 	 */
843 	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
844 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
845 		chain->hmp = NULL;
846 		kfree(chain, hmp->mchain);
847 	}
848 
849 	/*
850 	 * Possible chaining loop when parent re-drop needed.
851 	 */
852 	return(rdrop);
853 }
854 
855 /*
856  * Heuristical flush of the LRU, try to reduce the number of entries
857  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
858  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
859  */
860 static
861 void
862 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
863 {
864 	hammer2_chain_t *chain;
865 
866 again:
867 	chain = NULL;
868 	hammer2_spin_ex(&pmp->lru_spin);
869 	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
870 		/*
871 		 * Pick a chain off the lru_list, just recycle it quickly
872 		 * if LRUHINT is set (the chain was ref'd but left on
873 		 * the lru_list, so cycle to the end).
874 		 */
875 		chain = TAILQ_FIRST(&pmp->lru_list);
876 		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
877 
878 		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
879 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
880 			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
881 			chain = NULL;
882 			continue;
883 		}
884 
885 		/*
886 		 * Ok, we are off the LRU.  We must adjust refs before we
887 		 * can safely clear the ONLRU flag.
888 		 */
889 		atomic_add_int(&pmp->lru_count, -1);
890 		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
891 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
892 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
893 			break;
894 		}
895 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
896 		chain = NULL;
897 	}
898 	hammer2_spin_unex(&pmp->lru_spin);
899 	if (chain == NULL)
900 		return;
901 
902 	/*
903 	 * If we picked a chain off the lru list we may be able to lastdrop
904 	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
905 	 */
906 	while (chain) {
907 		u_int refs;
908 
909 		refs = chain->refs;
910 		cpu_ccfence();
911 		KKASSERT(refs > 0);
912 
913 		if (refs == 1) {
914 			if (hammer2_mtx_ex_try(&chain->lock) == 0)
915 				chain = hammer2_chain_lastdrop(chain, 1);
916 			/* retry the same chain, or chain from lastdrop */
917 		} else {
918 			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
919 				break;
920 			/* retry the same chain */
921 		}
922 		cpu_pause();
923 	}
924 	goto again;
925 }
926 
927 /*
928  * On last lock release.
929  */
930 static hammer2_io_t *
931 hammer2_chain_drop_data(hammer2_chain_t *chain)
932 {
933 	hammer2_io_t *dio;
934 
935 	if ((dio = chain->dio) != NULL) {
936 		chain->dio = NULL;
937 		chain->data = NULL;
938 	} else {
939 		switch(chain->bref.type) {
940 		case HAMMER2_BREF_TYPE_VOLUME:
941 		case HAMMER2_BREF_TYPE_FREEMAP:
942 			break;
943 		default:
944 			if (chain->data != NULL) {
945 				hammer2_spin_unex(&chain->core.spin);
946 				panic("chain data not null: "
947 				      "chain %p bref %016jx.%02x "
948 				      "refs %d parent %p dio %p data %p",
949 				      chain, chain->bref.data_off,
950 				      chain->bref.type, chain->refs,
951 				      chain->parent,
952 				      chain->dio, chain->data);
953 			}
954 			KKASSERT(chain->data == NULL);
955 			break;
956 		}
957 	}
958 	return dio;
959 }
960 
961 /*
962  * Lock a referenced chain element, acquiring its data with I/O if necessary,
963  * and specify how you would like the data to be resolved.
964  *
965  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
966  *
967  * The lock is allowed to recurse, multiple locking ops will aggregate
968  * the requested resolve types.  Once data is assigned it will not be
969  * removed until the last unlock.
970  *
971  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
972  *			   (typically used to avoid device/logical buffer
973  *			    aliasing for data)
974  *
975  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
976  *			   the INITIAL-create state (indirect blocks only).
977  *
978  *			   Do not resolve data elements for DATA chains.
979  *			   (typically used to avoid device/logical buffer
980  *			    aliasing for data)
981  *
982  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
983  *
984  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
985  *			   it will be locked exclusive.
986  *
987  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
988  *			   the lock fails, EAGAIN is returned.
989  *
990  * NOTE: Embedded elements (volume header, inodes) are always resolved
991  *	 regardless.
992  *
993  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
994  *	 element will instantiate and zero its buffer, and flush it on
995  *	 release.
996  *
997  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
998  *	 so as not to instantiate a device buffer, which could alias against
999  *	 a logical file buffer.  However, if ALWAYS is specified the
1000  *	 device buffer will be instantiated anyway.
1001  *
1002  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
1003  *	 case it can be either 0 or EAGAIN.
1004  *
1005  * WARNING! This function blocks on I/O if data needs to be fetched.  This
1006  *	    blocking can run concurrent with other compatible lock holders
1007  *	    who do not need data returning.  The lock is not upgraded to
1008  *	    exclusive during a data fetch, a separate bit is used to
1009  *	    interlock I/O.  However, an exclusive lock holder can still count
1010  *	    on being interlocked against an I/O fetch managed by a shared
1011  *	    lock holder.
1012  */
1013 int
1014 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1015 {
1016 	KKASSERT(chain->refs > 0);
1017 
1018 	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1019 		/*
1020 		 * We still have to bump lockcnt before acquiring the lock,
1021 		 * even for non-blocking operation, because the unlock code
1022 		 * live-loops on lockcnt == 1 when dropping the last lock.
1023 		 *
1024 		 * If the non-blocking operation fails we have to use an
1025 		 * unhold sequence to undo the mess.
1026 		 *
1027 		 * NOTE: LOCKAGAIN must always succeed without blocking,
1028 		 *	 even if NONBLOCK is specified.
1029 		 */
1030 		atomic_add_int(&chain->lockcnt, 1);
1031 		if (how & HAMMER2_RESOLVE_SHARED) {
1032 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1033 				hammer2_mtx_sh_again(&chain->lock);
1034 			} else {
1035 				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1036 					hammer2_chain_unhold(chain);
1037 					return EAGAIN;
1038 				}
1039 			}
1040 		} else {
1041 			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1042 				hammer2_chain_unhold(chain);
1043 				return EAGAIN;
1044 			}
1045 		}
1046 		++curthread->td_tracker;
1047 	} else {
1048 		/*
1049 		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1050 		 * SHARED the caller expects a shared lock to already be
1051 		 * present and we are giving it another ref.  This case must
1052 		 * importantly not block if there is a pending exclusive lock
1053 		 * request.
1054 		 */
1055 		atomic_add_int(&chain->lockcnt, 1);
1056 		if (how & HAMMER2_RESOLVE_SHARED) {
1057 			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1058 				hammer2_mtx_sh_again(&chain->lock);
1059 			} else {
1060 				hammer2_mtx_sh(&chain->lock);
1061 			}
1062 		} else {
1063 			hammer2_mtx_ex(&chain->lock);
1064 		}
1065 		++curthread->td_tracker;
1066 	}
1067 
1068 	/*
1069 	 * If we already have a valid data pointer make sure the data is
1070 	 * synchronized to the current cpu, and then no further action is
1071 	 * necessary.
1072 	 */
1073 	if (chain->data) {
1074 		if (chain->dio)
1075 			hammer2_io_bkvasync(chain->dio);
1076 		return 0;
1077 	}
1078 
1079 	/*
1080 	 * Do we have to resolve the data?  This is generally only
1081 	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1082 	 * Other BREF types expects the data to be there.
1083 	 */
1084 	switch(how & HAMMER2_RESOLVE_MASK) {
1085 	case HAMMER2_RESOLVE_NEVER:
1086 		return 0;
1087 	case HAMMER2_RESOLVE_MAYBE:
1088 		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1089 			return 0;
1090 		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1091 			return 0;
1092 #if 0
1093 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1094 			return 0;
1095 		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1096 			return 0;
1097 #endif
1098 		/* fall through */
1099 	case HAMMER2_RESOLVE_ALWAYS:
1100 	default:
1101 		break;
1102 	}
1103 
1104 	/*
1105 	 * Caller requires data
1106 	 */
1107 	hammer2_chain_load_data(chain);
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Lock the chain, retain the hold, and drop the data persistence count.
1114  * The data should remain valid because we never transitioned lockcnt
1115  * through 0.
1116  */
1117 void
1118 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1119 {
1120 	hammer2_chain_lock(chain, how);
1121 	atomic_add_int(&chain->lockcnt, -1);
1122 }
1123 
1124 #if 0
1125 /*
1126  * Downgrade an exclusive chain lock to a shared chain lock.
1127  *
1128  * NOTE: There is no upgrade equivalent due to the ease of
1129  *	 deadlocks in that direction.
1130  */
1131 void
1132 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1133 {
1134 	hammer2_mtx_downgrade(&chain->lock);
1135 }
1136 #endif
1137 
1138 /*
1139  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1140  * may be of any type.
1141  *
1142  * Once chain->data is set it cannot be disposed of until all locks are
1143  * released.
1144  *
1145  * Make sure the data is synchronized to the current cpu.
1146  */
1147 void
1148 hammer2_chain_load_data(hammer2_chain_t *chain)
1149 {
1150 	hammer2_blockref_t *bref;
1151 	hammer2_dev_t *hmp;
1152 	hammer2_io_t *dio;
1153 	char *bdata;
1154 	int error;
1155 
1156 	/*
1157 	 * Degenerate case, data already present, or chain has no media
1158 	 * reference to load.
1159 	 */
1160 	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1161 	if (chain->data) {
1162 		if (chain->dio)
1163 			hammer2_io_bkvasync(chain->dio);
1164 		return;
1165 	}
1166 	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1167 		return;
1168 
1169 	hmp = chain->hmp;
1170 	KKASSERT(hmp != NULL);
1171 
1172 	/*
1173 	 * Gain the IOINPROG bit, interlocked block.
1174 	 */
1175 	for (;;) {
1176 		u_int oflags;
1177 		u_int nflags;
1178 
1179 		oflags = chain->flags;
1180 		cpu_ccfence();
1181 		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1182 			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1183 			tsleep_interlock(&chain->flags, 0);
1184 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1185 				tsleep(&chain->flags, PINTERLOCKED,
1186 					"h2iocw", 0);
1187 			}
1188 			/* retry */
1189 		} else {
1190 			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1191 			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1192 				break;
1193 			}
1194 			/* retry */
1195 		}
1196 	}
1197 
1198 	/*
1199 	 * We own CHAIN_IOINPROG
1200 	 *
1201 	 * Degenerate case if we raced another load.
1202 	 */
1203 	if (chain->data) {
1204 		if (chain->dio)
1205 			hammer2_io_bkvasync(chain->dio);
1206 		goto done;
1207 	}
1208 
1209 	/*
1210 	 * We must resolve to a device buffer, either by issuing I/O or
1211 	 * by creating a zero-fill element.  We do not mark the buffer
1212 	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1213 	 * API must still be used to do that).
1214 	 *
1215 	 * The device buffer is variable-sized in powers of 2 down
1216 	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1217 	 * chunk always contains buffers of the same size. (XXX)
1218 	 *
1219 	 * The minimum physical IO size may be larger than the variable
1220 	 * block size.
1221 	 */
1222 	bref = &chain->bref;
1223 
1224 	/*
1225 	 * The getblk() optimization can only be used on newly created
1226 	 * elements if the physical block size matches the request.
1227 	 */
1228 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1229 		error = hammer2_io_new(hmp, bref->type,
1230 				       bref->data_off, chain->bytes,
1231 				       &chain->dio);
1232 	} else {
1233 		error = hammer2_io_bread(hmp, bref->type,
1234 					 bref->data_off, chain->bytes,
1235 					 &chain->dio);
1236 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1237 	}
1238 	if (error) {
1239 		chain->error = HAMMER2_ERROR_EIO;
1240 		kprintf("hammer2_chain_lock: I/O error %016jx: %d\n",
1241 			(intmax_t)bref->data_off, error);
1242 		hammer2_io_bqrelse(&chain->dio);
1243 		goto done;
1244 	}
1245 	chain->error = 0;
1246 
1247 	/*
1248 	 * This isn't perfect and can be ignored on OSs which do not have
1249 	 * an indication as to whether a buffer is coming from cache or
1250 	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1251 	 * pretty well without the B_IOISSUED logic because chains are
1252 	 * cached, but in that situation (without B_IOISSUED) it will not
1253 	 * detect whether a re-read via I/O is corrupted verses the original
1254 	 * read.
1255 	 *
1256 	 * We can't re-run the CRC on every fresh lock.  That would be
1257 	 * insanely expensive.
1258 	 *
1259 	 * If the underlying kernel buffer covers the entire chain we can
1260 	 * use the B_IOISSUED indication to determine if we have to re-run
1261 	 * the CRC on chain data for chains that managed to stay cached
1262 	 * across the kernel disposal of the original buffer.
1263 	 */
1264 	if ((dio = chain->dio) != NULL && dio->bp) {
1265 		struct buf *bp = dio->bp;
1266 
1267 		if (dio->psize == chain->bytes &&
1268 		    (bp->b_flags & B_IOISSUED)) {
1269 			atomic_clear_int(&chain->flags,
1270 					 HAMMER2_CHAIN_TESTEDGOOD);
1271 			bp->b_flags &= ~B_IOISSUED;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * NOTE: A locked chain's data cannot be modified without first
1277 	 *	 calling hammer2_chain_modify().
1278 	 */
1279 
1280 	/*
1281 	 * Clear INITIAL.  In this case we used io_new() and the buffer has
1282 	 * been zero'd and marked dirty.
1283 	 *
1284 	 * NOTE: hammer2_io_data() call issues bkvasync()
1285 	 */
1286 	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1287 
1288 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1289 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1290 		chain->bref.flags |= HAMMER2_BREF_FLAG_ZERO;
1291 	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1292 		/*
1293 		 * check data not currently synchronized due to
1294 		 * modification.  XXX assumes data stays in the buffer
1295 		 * cache, which might not be true (need biodep on flush
1296 		 * to calculate crc?  or simple crc?).
1297 		 */
1298 	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1299 		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1300 			chain->error = HAMMER2_ERROR_CHECK;
1301 		} else {
1302 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Setup the data pointer, either pointing it to an embedded data
1308 	 * structure and copying the data from the buffer, or pointing it
1309 	 * into the buffer.
1310 	 *
1311 	 * The buffer is not retained when copying to an embedded data
1312 	 * structure in order to avoid potential deadlocks or recursions
1313 	 * on the same physical buffer.
1314 	 *
1315 	 * WARNING! Other threads can start using the data the instant we
1316 	 *	    set chain->data non-NULL.
1317 	 */
1318 	switch (bref->type) {
1319 	case HAMMER2_BREF_TYPE_VOLUME:
1320 	case HAMMER2_BREF_TYPE_FREEMAP:
1321 		/*
1322 		 * Copy data from bp to embedded buffer
1323 		 */
1324 		panic("hammer2_chain_load_data: unresolved volume header");
1325 		break;
1326 	case HAMMER2_BREF_TYPE_DIRENT:
1327 		KKASSERT(chain->bytes != 0);
1328 		/* fall through */
1329 	case HAMMER2_BREF_TYPE_INODE:
1330 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1331 	case HAMMER2_BREF_TYPE_INDIRECT:
1332 	case HAMMER2_BREF_TYPE_DATA:
1333 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1334 	default:
1335 		/*
1336 		 * Point data at the device buffer and leave dio intact.
1337 		 */
1338 		chain->data = (void *)bdata;
1339 		break;
1340 	}
1341 
1342 	/*
1343 	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1344 	 */
1345 done:
1346 	for (;;) {
1347 		u_int oflags;
1348 		u_int nflags;
1349 
1350 		oflags = chain->flags;
1351 		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1352 				    HAMMER2_CHAIN_IOSIGNAL);
1353 		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1354 		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1355 			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1356 				wakeup(&chain->flags);
1357 			break;
1358 		}
1359 	}
1360 }
1361 
1362 /*
1363  * Unlock and deref a chain element.
1364  *
1365  * Remember that the presence of children under chain prevent the chain's
1366  * destruction but do not add additional references, so the dio will still
1367  * be dropped.
1368  */
1369 void
1370 hammer2_chain_unlock(hammer2_chain_t *chain)
1371 {
1372 	hammer2_io_t *dio;
1373 	u_int lockcnt;
1374 	int iter = 0;
1375 
1376 	--curthread->td_tracker;
1377 
1378 	/*
1379 	 * If multiple locks are present (or being attempted) on this
1380 	 * particular chain we can just unlock, drop refs, and return.
1381 	 *
1382 	 * Otherwise fall-through on the 1->0 transition.
1383 	 */
1384 	for (;;) {
1385 		lockcnt = chain->lockcnt;
1386 		KKASSERT(lockcnt > 0);
1387 		cpu_ccfence();
1388 		if (lockcnt > 1) {
1389 			if (atomic_cmpset_int(&chain->lockcnt,
1390 					      lockcnt, lockcnt - 1)) {
1391 				hammer2_mtx_unlock(&chain->lock);
1392 				return;
1393 			}
1394 		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1395 			/* while holding the mutex exclusively */
1396 			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1397 				break;
1398 		} else {
1399 			/*
1400 			 * This situation can easily occur on SMP due to
1401 			 * the gap inbetween the 1->0 transition and the
1402 			 * final unlock.  We cannot safely block on the
1403 			 * mutex because lockcnt might go above 1.
1404 			 *
1405 			 * XXX Sleep for one tick if it takes too long.
1406 			 */
1407 			if (++iter > 1000) {
1408 				if (iter > 1000 + hz) {
1409 					kprintf("hammer2: h2race2 %p\n", chain);
1410 					iter = 1000;
1411 				}
1412 				tsleep(&iter, 0, "h2race2", 1);
1413 			}
1414 			cpu_pause();
1415 		}
1416 		/* retry */
1417 	}
1418 
1419 	/*
1420 	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1421 	 * reference.
1422 	 */
1423 	dio = hammer2_chain_drop_data(chain);
1424 	if (dio)
1425 		hammer2_io_bqrelse(&dio);
1426 	hammer2_mtx_unlock(&chain->lock);
1427 }
1428 
1429 /*
1430  * Unlock and hold chain data intact
1431  */
1432 void
1433 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1434 {
1435 	atomic_add_int(&chain->lockcnt, 1);
1436 	hammer2_chain_unlock(chain);
1437 }
1438 
1439 /*
1440  * Helper to obtain the blockref[] array base and count for a chain.
1441  *
1442  * XXX Not widely used yet, various use cases need to be validated and
1443  *     converted to use this function.
1444  */
1445 static
1446 hammer2_blockref_t *
1447 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1448 {
1449 	hammer2_blockref_t *base;
1450 	int count;
1451 
1452 	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1453 		base = NULL;
1454 
1455 		switch(parent->bref.type) {
1456 		case HAMMER2_BREF_TYPE_INODE:
1457 			count = HAMMER2_SET_COUNT;
1458 			break;
1459 		case HAMMER2_BREF_TYPE_INDIRECT:
1460 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1461 			count = parent->bytes / sizeof(hammer2_blockref_t);
1462 			break;
1463 		case HAMMER2_BREF_TYPE_VOLUME:
1464 			count = HAMMER2_SET_COUNT;
1465 			break;
1466 		case HAMMER2_BREF_TYPE_FREEMAP:
1467 			count = HAMMER2_SET_COUNT;
1468 			break;
1469 		default:
1470 			panic("hammer2_chain_create_indirect: "
1471 			      "unrecognized blockref type: %d",
1472 			      parent->bref.type);
1473 			count = 0;
1474 			break;
1475 		}
1476 	} else {
1477 		switch(parent->bref.type) {
1478 		case HAMMER2_BREF_TYPE_INODE:
1479 			base = &parent->data->ipdata.u.blockset.blockref[0];
1480 			count = HAMMER2_SET_COUNT;
1481 			break;
1482 		case HAMMER2_BREF_TYPE_INDIRECT:
1483 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1484 			base = &parent->data->npdata[0];
1485 			count = parent->bytes / sizeof(hammer2_blockref_t);
1486 			break;
1487 		case HAMMER2_BREF_TYPE_VOLUME:
1488 			base = &parent->data->voldata.
1489 					sroot_blockset.blockref[0];
1490 			count = HAMMER2_SET_COUNT;
1491 			break;
1492 		case HAMMER2_BREF_TYPE_FREEMAP:
1493 			base = &parent->data->blkset.blockref[0];
1494 			count = HAMMER2_SET_COUNT;
1495 			break;
1496 		default:
1497 			panic("hammer2_chain_create_indirect: "
1498 			      "unrecognized blockref type: %d",
1499 			      parent->bref.type);
1500 			count = 0;
1501 			break;
1502 		}
1503 	}
1504 	*countp = count;
1505 
1506 	return base;
1507 }
1508 
1509 /*
1510  * This counts the number of live blockrefs in a block array and
1511  * also calculates the point at which all remaining blockrefs are empty.
1512  * This routine can only be called on a live chain.
1513  *
1514  * Caller holds the chain locked, but possibly with a shared lock.  We
1515  * must use an exclusive spinlock to prevent corruption.
1516  *
1517  * NOTE: Flag is not set until after the count is complete, allowing
1518  *	 callers to test the flag without holding the spinlock.
1519  *
1520  * NOTE: If base is NULL the related chain is still in the INITIAL
1521  *	 state and there are no blockrefs to count.
1522  *
1523  * NOTE: live_count may already have some counts accumulated due to
1524  *	 creation and deletion and could even be initially negative.
1525  */
1526 void
1527 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1528 			 hammer2_blockref_t *base, int count)
1529 {
1530 	hammer2_spin_ex(&chain->core.spin);
1531         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1532 		if (base) {
1533 			while (--count >= 0) {
1534 				if (base[count].type)
1535 					break;
1536 			}
1537 			chain->core.live_zero = count + 1;
1538 			while (count >= 0) {
1539 				if (base[count].type)
1540 					atomic_add_int(&chain->core.live_count,
1541 						       1);
1542 				--count;
1543 			}
1544 		} else {
1545 			chain->core.live_zero = 0;
1546 		}
1547 		/* else do not modify live_count */
1548 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1549 	}
1550 	hammer2_spin_unex(&chain->core.spin);
1551 }
1552 
1553 /*
1554  * Resize the chain's physical storage allocation in-place.  This function does
1555  * not usually adjust the data pointer and must be followed by (typically) a
1556  * hammer2_chain_modify() call to copy any old data over and adjust the
1557  * data pointer.
1558  *
1559  * Chains can be resized smaller without reallocating the storage.  Resizing
1560  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1561  * asynchronously at a later time.
1562  *
1563  * An nradix value of 0 is special-cased to mean that the storage should
1564  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1565  * byte).
1566  *
1567  * Must be passed an exclusively locked parent and chain.
1568  *
1569  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1570  * to avoid instantiating a device buffer that conflicts with the vnode data
1571  * buffer.  However, because H2 can compress or encrypt data, the chain may
1572  * have a dio assigned to it in those situations, and they do not conflict.
1573  *
1574  * XXX return error if cannot resize.
1575  */
1576 int
1577 hammer2_chain_resize(hammer2_chain_t *chain,
1578 		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1579 		     int nradix, int flags)
1580 {
1581 	hammer2_dev_t *hmp;
1582 	size_t obytes;
1583 	size_t nbytes;
1584 	int error;
1585 
1586 	hmp = chain->hmp;
1587 
1588 	/*
1589 	 * Only data and indirect blocks can be resized for now.
1590 	 * (The volu root, inodes, and freemap elements use a fixed size).
1591 	 */
1592 	KKASSERT(chain != &hmp->vchain);
1593 	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1594 		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1595 		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1596 
1597 	/*
1598 	 * Nothing to do if the element is already the proper size
1599 	 */
1600 	obytes = chain->bytes;
1601 	nbytes = (nradix) ? (1U << nradix) : 0;
1602 	if (obytes == nbytes)
1603 		return (chain->error);
1604 
1605 	/*
1606 	 * Make sure the old data is instantiated so we can copy it.  If this
1607 	 * is a data block, the device data may be superfluous since the data
1608 	 * might be in a logical block, but compressed or encrypted data is
1609 	 * another matter.
1610 	 *
1611 	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1612 	 */
1613 	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1614 	if (error)
1615 		return error;
1616 
1617 	/*
1618 	 * Relocate the block, even if making it smaller (because different
1619 	 * block sizes may be in different regions).
1620 	 *
1621 	 * NOTE: Operation does not copy the data and may only be used
1622 	 *	  to resize data blocks in-place, or directory entry blocks
1623 	 *	  which are about to be modified in some manner.
1624 	 */
1625 	error = hammer2_freemap_alloc(chain, nbytes);
1626 	if (error)
1627 		return error;
1628 
1629 	chain->bytes = nbytes;
1630 
1631 	/*
1632 	 * We don't want the followup chain_modify() to try to copy data
1633 	 * from the old (wrong-sized) buffer.  It won't know how much to
1634 	 * copy.  This case should only occur during writes when the
1635 	 * originator already has the data to write in-hand.
1636 	 */
1637 	if (chain->dio) {
1638 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1639 			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1640 		hammer2_io_brelse(&chain->dio);
1641 		chain->data = NULL;
1642 	}
1643 	return (chain->error);
1644 }
1645 
1646 /*
1647  * Set the chain modified so its data can be changed by the caller, or
1648  * install deduplicated data.  The caller must call this routine for each
1649  * set of modifications it makes, even if the chain is already flagged
1650  * MODIFIED.
1651  *
1652  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1653  * is a CLC (cluster level change) field and is not updated by parent
1654  * propagation during a flush.
1655  *
1656  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1657  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1658  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1659  * remains unmodified with its old data ref intact and chain->error
1660  * unchanged.
1661  *
1662  *				 Dedup Handling
1663  *
1664  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1665  * even if the chain is still flagged MODIFIED.  In this case the chain's
1666  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1667  *
1668  * If the caller passes a non-zero dedup_off we will use it to assign the
1669  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1670  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1671  * must not modify the data content upon return.
1672  */
1673 int
1674 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1675 		     hammer2_off_t dedup_off, int flags)
1676 {
1677 	hammer2_blockref_t obref;
1678 	hammer2_dev_t *hmp;
1679 	hammer2_io_t *dio;
1680 	int error;
1681 	int wasinitial;
1682 	int setmodified;
1683 	int setupdate;
1684 	int newmod;
1685 	char *bdata;
1686 
1687 	hmp = chain->hmp;
1688 	obref = chain->bref;
1689 	KKASSERT((chain->flags & HAMMER2_CHAIN_FICTITIOUS) == 0);
1690 	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1691 
1692 	/*
1693 	 * Data is not optional for freemap chains (we must always be sure
1694 	 * to copy the data on COW storage allocations).
1695 	 */
1696 	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1697 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1698 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1699 			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1700 	}
1701 
1702 	/*
1703 	 * Data must be resolved if already assigned, unless explicitly
1704 	 * flagged otherwise.  If we cannot safety load the data the
1705 	 * modification fails and we return early.
1706 	 */
1707 	if (chain->data == NULL && chain->bytes != 0 &&
1708 	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1709 	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1710 		hammer2_chain_load_data(chain);
1711 		if (chain->error)
1712 			return (chain->error);
1713 	}
1714 	error = 0;
1715 
1716 	/*
1717 	 * Set MODIFIED to indicate that the chain has been modified.  A new
1718 	 * allocation is required when modifying a chain.
1719 	 *
1720 	 * Set UPDATE to ensure that the blockref is updated in the parent.
1721 	 *
1722 	 * If MODIFIED is already set determine if we can reuse the assigned
1723 	 * data block or if we need a new data block.
1724 	 */
1725 	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1726 		/*
1727 		 * Must set modified bit.
1728 		 */
1729 		atomic_add_long(&hammer2_count_modified_chains, 1);
1730 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1731 		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1732 		setmodified = 1;
1733 
1734 		/*
1735 		 * We may be able to avoid a copy-on-write if the chain's
1736 		 * check mode is set to NONE and the chain's current
1737 		 * modify_tid is beyond the last explicit snapshot tid.
1738 		 *
1739 		 * This implements HAMMER2's overwrite-in-place feature.
1740 		 *
1741 		 * NOTE! This data-block cannot be used as a de-duplication
1742 		 *	 source when the check mode is set to NONE.
1743 		 */
1744 		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1745 		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1746 		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1747 		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1748 		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1749 		     HAMMER2_CHECK_NONE &&
1750 		    chain->pmp &&
1751 		    chain->bref.modify_tid >
1752 		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1753 			/*
1754 			 * Sector overwrite allowed.
1755 			 */
1756 			newmod = 0;
1757 		} else {
1758 			/*
1759 			 * Sector overwrite not allowed, must copy-on-write.
1760 			 */
1761 			newmod = 1;
1762 		}
1763 	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1764 		/*
1765 		 * If the modified chain was registered for dedup we need
1766 		 * a new allocation.  This only happens for delayed-flush
1767 		 * chains (i.e. which run through the front-end buffer
1768 		 * cache).
1769 		 */
1770 		newmod = 1;
1771 		setmodified = 0;
1772 	} else {
1773 		/*
1774 		 * Already flagged modified, no new allocation is needed.
1775 		 */
1776 		newmod = 0;
1777 		setmodified = 0;
1778 	}
1779 
1780 	/*
1781 	 * Flag parent update required.
1782 	 */
1783 	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1784 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1785 		setupdate = 1;
1786 	} else {
1787 		setupdate = 0;
1788 	}
1789 
1790 	/*
1791 	 * The XOP code returns held but unlocked focus chains.  This
1792 	 * prevents the chain from being destroyed but does not prevent
1793 	 * it from being modified.  diolk is used to interlock modifications
1794 	 * against XOP frontend accesses to the focus.
1795 	 *
1796 	 * This allows us to theoretically avoid deadlocking the frontend
1797 	 * if one of the backends lock up by not formally locking the
1798 	 * focused chain in the frontend.  In addition, the synchronization
1799 	 * code relies on this mechanism to avoid deadlocking concurrent
1800 	 * synchronization threads.
1801 	 */
1802 	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1803 
1804 	/*
1805 	 * The modification or re-modification requires an allocation and
1806 	 * possible COW.  If an error occurs, the previous content and data
1807 	 * reference is retained and the modification fails.
1808 	 *
1809 	 * If dedup_off is non-zero, the caller is requesting a deduplication
1810 	 * rather than a modification.  The MODIFIED bit is not set and the
1811 	 * data offset is set to the deduplication offset.  The data cannot
1812 	 * be modified.
1813 	 *
1814 	 * NOTE: The dedup offset is allowed to be in a partially free state
1815 	 *	 and we must be sure to reset it to a fully allocated state
1816 	 *	 to force two bulkfree passes to free it again.
1817 	 *
1818 	 * NOTE: Only applicable when chain->bytes != 0.
1819 	 *
1820 	 * XXX can a chain already be marked MODIFIED without a data
1821 	 * assignment?  If not, assert here instead of testing the case.
1822 	 */
1823 	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1824 	    chain->bytes) {
1825 		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1826 		     newmod
1827 		) {
1828 			/*
1829 			 * NOTE: We do not have to remove the dedup
1830 			 *	 registration because the area is still
1831 			 *	 allocated and the underlying DIO will
1832 			 *	 still be flushed.
1833 			 */
1834 			if (dedup_off) {
1835 				chain->bref.data_off = dedup_off;
1836 				chain->bytes = 1 << (dedup_off &
1837 						     HAMMER2_OFF_MASK_RADIX);
1838 				chain->error = 0;
1839 				atomic_clear_int(&chain->flags,
1840 						 HAMMER2_CHAIN_MODIFIED);
1841 				atomic_add_long(&hammer2_count_modified_chains,
1842 						-1);
1843 				if (chain->pmp)
1844 					hammer2_pfs_memory_wakeup(chain->pmp);
1845 				hammer2_freemap_adjust(hmp, &chain->bref,
1846 						HAMMER2_FREEMAP_DORECOVER);
1847 				atomic_set_int(&chain->flags,
1848 						HAMMER2_CHAIN_DEDUPABLE);
1849 			} else {
1850 				error = hammer2_freemap_alloc(chain,
1851 							      chain->bytes);
1852 				atomic_clear_int(&chain->flags,
1853 						HAMMER2_CHAIN_DEDUPABLE);
1854 			}
1855 		}
1856 	}
1857 
1858 	/*
1859 	 * Stop here if error.  We have to undo any flag bits we might
1860 	 * have set above.
1861 	 */
1862 	if (error) {
1863 		if (setmodified) {
1864 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1865 			atomic_add_long(&hammer2_count_modified_chains, -1);
1866 			if (chain->pmp)
1867 				hammer2_pfs_memory_wakeup(chain->pmp);
1868 		}
1869 		if (setupdate) {
1870 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1871 		}
1872 		lockmgr(&chain->diolk, LK_RELEASE);
1873 
1874 		return error;
1875 	}
1876 
1877 	/*
1878 	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1879 	 * if not passed as zero (during flushes, parent propagation passes
1880 	 * the value 0).
1881 	 *
1882 	 * NOTE: chain->pmp could be the device spmp.
1883 	 */
1884 	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1885 	if (mtid)
1886 		chain->bref.modify_tid = mtid;
1887 
1888 	/*
1889 	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1890 	 * requires updating as well as to tell the delete code that the
1891 	 * chain's blockref might not exactly match (in terms of physical size
1892 	 * or block offset) the one in the parent's blocktable.  The base key
1893 	 * of course will still match.
1894 	 */
1895 	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1896 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1897 
1898 	/*
1899 	 * Short-cut data blocks which the caller does not need an actual
1900 	 * data reference to (aka OPTDATA), as long as the chain does not
1901 	 * already have a data pointer to the data.  This generally means
1902 	 * that the modifications are being done via the logical buffer cache.
1903 	 * The INITIAL flag relates only to the device data buffer and thus
1904 	 * remains unchange in this situation.
1905 	 *
1906 	 * This code also handles bytes == 0 (most dirents).
1907 	 */
1908 	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1909 	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1910 	    chain->data == NULL) {
1911 		KKASSERT(chain->dio == NULL);
1912 		goto skip2;
1913 	}
1914 
1915 	/*
1916 	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1917 	 * we've processed the uninitialized storage allocation.
1918 	 *
1919 	 * If this flag is already clear we are likely in a copy-on-write
1920 	 * situation but we have to be sure NOT to bzero the storage if
1921 	 * no data is present.
1922 	 */
1923 	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1924 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1925 		wasinitial = 1;
1926 	} else {
1927 		wasinitial = 0;
1928 	}
1929 
1930 	/*
1931 	 * Instantiate data buffer and possibly execute COW operation
1932 	 */
1933 	switch(chain->bref.type) {
1934 	case HAMMER2_BREF_TYPE_VOLUME:
1935 	case HAMMER2_BREF_TYPE_FREEMAP:
1936 		/*
1937 		 * The data is embedded, no copy-on-write operation is
1938 		 * needed.
1939 		 */
1940 		KKASSERT(chain->dio == NULL);
1941 		break;
1942 	case HAMMER2_BREF_TYPE_DIRENT:
1943 		/*
1944 		 * The data might be fully embedded.
1945 		 */
1946 		if (chain->bytes == 0) {
1947 			KKASSERT(chain->dio == NULL);
1948 			break;
1949 		}
1950 		/* fall through */
1951 	case HAMMER2_BREF_TYPE_INODE:
1952 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1953 	case HAMMER2_BREF_TYPE_DATA:
1954 	case HAMMER2_BREF_TYPE_INDIRECT:
1955 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1956 		/*
1957 		 * Perform the copy-on-write operation
1958 		 *
1959 		 * zero-fill or copy-on-write depending on whether
1960 		 * chain->data exists or not and set the dirty state for
1961 		 * the new buffer.  hammer2_io_new() will handle the
1962 		 * zero-fill.
1963 		 *
1964 		 * If a dedup_off was supplied this is an existing block
1965 		 * and no COW, copy, or further modification is required.
1966 		 */
1967 		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
1968 
1969 		if (wasinitial && dedup_off == 0) {
1970 			error = hammer2_io_new(hmp, chain->bref.type,
1971 					       chain->bref.data_off,
1972 					       chain->bytes, &dio);
1973 		} else {
1974 			error = hammer2_io_bread(hmp, chain->bref.type,
1975 						 chain->bref.data_off,
1976 						 chain->bytes, &dio);
1977 		}
1978 		hammer2_adjreadcounter(&chain->bref, chain->bytes);
1979 
1980 		/*
1981 		 * If an I/O error occurs make sure callers cannot accidently
1982 		 * modify the old buffer's contents and corrupt the filesystem.
1983 		 *
1984 		 * NOTE: hammer2_io_data() call issues bkvasync()
1985 		 */
1986 		if (error) {
1987 			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
1988 				hmp);
1989 			chain->error = HAMMER2_ERROR_EIO;
1990 			hammer2_io_brelse(&dio);
1991 			hammer2_io_brelse(&chain->dio);
1992 			chain->data = NULL;
1993 			break;
1994 		}
1995 		chain->error = 0;
1996 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1997 
1998 		if (chain->data) {
1999 			/*
2000 			 * COW (unless a dedup).
2001 			 */
2002 			KKASSERT(chain->dio != NULL);
2003 			if (chain->data != (void *)bdata && dedup_off == 0) {
2004 				bcopy(chain->data, bdata, chain->bytes);
2005 			}
2006 		} else if (wasinitial == 0) {
2007 			/*
2008 			 * We have a problem.  We were asked to COW but
2009 			 * we don't have any data to COW with!
2010 			 */
2011 			panic("hammer2_chain_modify: having a COW %p\n",
2012 			      chain);
2013 		}
2014 
2015 		/*
2016 		 * Retire the old buffer, replace with the new.  Dirty or
2017 		 * redirty the new buffer.
2018 		 *
2019 		 * WARNING! The system buffer cache may have already flushed
2020 		 *	    the buffer, so we must be sure to [re]dirty it
2021 		 *	    for further modification.
2022 		 *
2023 		 *	    If dedup_off was supplied, the caller is not
2024 		 *	    expected to make any further modification to the
2025 		 *	    buffer.
2026 		 *
2027 		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2028 		 *	    through NULL in order to optimize away unnecessary
2029 		 *	    diolk operations.
2030 		 */
2031 		{
2032 			hammer2_io_t *tio;
2033 
2034 			if ((tio = chain->dio) != NULL)
2035 				hammer2_io_bqrelse(&tio);
2036 			chain->data = (void *)bdata;
2037 			chain->dio = dio;
2038 			if (dedup_off == 0)
2039 				hammer2_io_setdirty(dio);
2040 		}
2041 		break;
2042 	default:
2043 		panic("hammer2_chain_modify: illegal non-embedded type %d",
2044 		      chain->bref.type);
2045 		break;
2046 
2047 	}
2048 skip2:
2049 	/*
2050 	 * setflush on parent indicating that the parent must recurse down
2051 	 * to us.  Do not call on chain itself which might already have it
2052 	 * set.
2053 	 */
2054 	if (chain->parent)
2055 		hammer2_chain_setflush(chain->parent);
2056 	lockmgr(&chain->diolk, LK_RELEASE);
2057 
2058 	return (chain->error);
2059 }
2060 
2061 /*
2062  * Modify the chain associated with an inode.
2063  */
2064 int
2065 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2066 			hammer2_tid_t mtid, int flags)
2067 {
2068 	int error;
2069 
2070 	hammer2_inode_modify(ip);
2071 	error = hammer2_chain_modify(chain, mtid, 0, flags);
2072 
2073 	return error;
2074 }
2075 
2076 /*
2077  * Volume header data locks
2078  */
2079 void
2080 hammer2_voldata_lock(hammer2_dev_t *hmp)
2081 {
2082 	lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2083 }
2084 
2085 void
2086 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2087 {
2088 	lockmgr(&hmp->vollk, LK_RELEASE);
2089 }
2090 
2091 void
2092 hammer2_voldata_modify(hammer2_dev_t *hmp)
2093 {
2094 	if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2095 		atomic_add_long(&hammer2_count_modified_chains, 1);
2096 		atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2097 		hammer2_pfs_memory_inc(hmp->vchain.pmp);
2098 	}
2099 }
2100 
2101 /*
2102  * This function returns the chain at the nearest key within the specified
2103  * range.  The returned chain will be referenced but not locked.
2104  *
2105  * This function will recurse through chain->rbtree as necessary and will
2106  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2107  * the iteration value is less than the current value of *key_nextp.
2108  *
2109  * The caller should use (*key_nextp) to calculate the actual range of
2110  * the returned element, which will be (key_beg to *key_nextp - 1), because
2111  * there might be another element which is superior to the returned element
2112  * and overlaps it.
2113  *
2114  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2115  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2116  * it will wind up being (key_end + 1).
2117  *
2118  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2119  *	     held through the operation.
2120  */
2121 struct hammer2_chain_find_info {
2122 	hammer2_chain_t		*best;
2123 	hammer2_key_t		key_beg;
2124 	hammer2_key_t		key_end;
2125 	hammer2_key_t		key_next;
2126 };
2127 
2128 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2129 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2130 
2131 static
2132 hammer2_chain_t *
2133 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2134 			  hammer2_key_t key_beg, hammer2_key_t key_end)
2135 {
2136 	struct hammer2_chain_find_info info;
2137 
2138 	info.best = NULL;
2139 	info.key_beg = key_beg;
2140 	info.key_end = key_end;
2141 	info.key_next = *key_nextp;
2142 
2143 	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2144 		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2145 		&info);
2146 	*key_nextp = info.key_next;
2147 #if 0
2148 	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2149 		parent, key_beg, key_end, *key_nextp);
2150 #endif
2151 
2152 	return (info.best);
2153 }
2154 
2155 static
2156 int
2157 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2158 {
2159 	struct hammer2_chain_find_info *info = data;
2160 	hammer2_key_t child_beg;
2161 	hammer2_key_t child_end;
2162 
2163 	child_beg = child->bref.key;
2164 	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2165 
2166 	if (child_end < info->key_beg)
2167 		return(-1);
2168 	if (child_beg > info->key_end)
2169 		return(1);
2170 	return(0);
2171 }
2172 
2173 static
2174 int
2175 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2176 {
2177 	struct hammer2_chain_find_info *info = data;
2178 	hammer2_chain_t *best;
2179 	hammer2_key_t child_end;
2180 
2181 	/*
2182 	 * WARNING! Layerq is scanned forwards, exact matches should keep
2183 	 *	    the existing info->best.
2184 	 */
2185 	if ((best = info->best) == NULL) {
2186 		/*
2187 		 * No previous best.  Assign best
2188 		 */
2189 		info->best = child;
2190 	} else if (best->bref.key <= info->key_beg &&
2191 		   child->bref.key <= info->key_beg) {
2192 		/*
2193 		 * Illegal overlap.
2194 		 */
2195 		KKASSERT(0);
2196 		/*info->best = child;*/
2197 	} else if (child->bref.key < best->bref.key) {
2198 		/*
2199 		 * Child has a nearer key and best is not flush with key_beg.
2200 		 * Set best to child.  Truncate key_next to the old best key.
2201 		 */
2202 		info->best = child;
2203 		if (info->key_next > best->bref.key || info->key_next == 0)
2204 			info->key_next = best->bref.key;
2205 	} else if (child->bref.key == best->bref.key) {
2206 		/*
2207 		 * If our current best is flush with the child then this
2208 		 * is an illegal overlap.
2209 		 *
2210 		 * key_next will automatically be limited to the smaller of
2211 		 * the two end-points.
2212 		 */
2213 		KKASSERT(0);
2214 		info->best = child;
2215 	} else {
2216 		/*
2217 		 * Keep the current best but truncate key_next to the child's
2218 		 * base.
2219 		 *
2220 		 * key_next will also automatically be limited to the smaller
2221 		 * of the two end-points (probably not necessary for this case
2222 		 * but we do it anyway).
2223 		 */
2224 		if (info->key_next > child->bref.key || info->key_next == 0)
2225 			info->key_next = child->bref.key;
2226 	}
2227 
2228 	/*
2229 	 * Always truncate key_next based on child's end-of-range.
2230 	 */
2231 	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2232 	if (child_end && (info->key_next > child_end || info->key_next == 0))
2233 		info->key_next = child_end;
2234 
2235 	return(0);
2236 }
2237 
2238 /*
2239  * Retrieve the specified chain from a media blockref, creating the
2240  * in-memory chain structure which reflects it.  The returned chain is
2241  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2242  * handle crc-checks and so forth, and should check chain->error before
2243  * assuming that the data is good.
2244  *
2245  * To handle insertion races pass the INSERT_RACE flag along with the
2246  * generation number of the core.  NULL will be returned if the generation
2247  * number changes before we have a chance to insert the chain.  Insert
2248  * races can occur because the parent might be held shared.
2249  *
2250  * Caller must hold the parent locked shared or exclusive since we may
2251  * need the parent's bref array to find our block.
2252  *
2253  * WARNING! chain->pmp is always set to NULL for any chain representing
2254  *	    part of the super-root topology.
2255  */
2256 hammer2_chain_t *
2257 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2258 		  hammer2_blockref_t *bref, int how)
2259 {
2260 	hammer2_dev_t *hmp = parent->hmp;
2261 	hammer2_chain_t *chain;
2262 	int error;
2263 
2264 	/*
2265 	 * Allocate a chain structure representing the existing media
2266 	 * entry.  Resulting chain has one ref and is not locked.
2267 	 */
2268 	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2269 		chain = hammer2_chain_alloc(hmp, NULL, bref);
2270 	else
2271 		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2272 	/* ref'd chain returned */
2273 
2274 	/*
2275 	 * Flag that the chain is in the parent's blockmap so delete/flush
2276 	 * knows what to do with it.
2277 	 */
2278 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2279 
2280 	/*
2281 	 * chain must be locked to avoid unexpected ripouts
2282 	 */
2283 	hammer2_chain_lock(chain, how);
2284 
2285 	/*
2286 	 * Link the chain into its parent.  A spinlock is required to safely
2287 	 * access the RBTREE, and it is possible to collide with another
2288 	 * hammer2_chain_get() operation because the caller might only hold
2289 	 * a shared lock on the parent.
2290 	 *
2291 	 * NOTE: Get races can occur quite often when we distribute
2292 	 *	 asynchronous read-aheads across multiple threads.
2293 	 */
2294 	KKASSERT(parent->refs > 0);
2295 	error = hammer2_chain_insert(parent, chain,
2296 				     HAMMER2_CHAIN_INSERT_SPIN |
2297 				     HAMMER2_CHAIN_INSERT_RACE,
2298 				     generation);
2299 	if (error) {
2300 		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2301 		/*kprintf("chain %p get race\n", chain);*/
2302 		hammer2_chain_unlock(chain);
2303 		hammer2_chain_drop(chain);
2304 		chain = NULL;
2305 	} else {
2306 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2307 	}
2308 
2309 	/*
2310 	 * Return our new chain referenced but not locked, or NULL if
2311 	 * a race occurred.
2312 	 */
2313 	return (chain);
2314 }
2315 
2316 /*
2317  * Lookup initialization/completion API
2318  */
2319 hammer2_chain_t *
2320 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2321 {
2322 	hammer2_chain_ref(parent);
2323 	if (flags & HAMMER2_LOOKUP_SHARED) {
2324 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2325 					   HAMMER2_RESOLVE_SHARED);
2326 	} else {
2327 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2328 	}
2329 	return (parent);
2330 }
2331 
2332 void
2333 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2334 {
2335 	if (parent) {
2336 		hammer2_chain_unlock(parent);
2337 		hammer2_chain_drop(parent);
2338 	}
2339 }
2340 
2341 /*
2342  * Take the locked chain and return a locked parent.  The chain remains
2343  * locked on return, but may have to be temporarily unlocked to acquire
2344  * the parent.  Because of this, (chain) must be stable and cannot be
2345  * deleted while it was temporarily unlocked (typically means that (chain)
2346  * is an inode).
2347  *
2348  * Pass HAMMER2_RESOLVE_* flags in flags.
2349  *
2350  * This will work even if the chain is errored, and the caller can check
2351  * parent->error on return if desired since the parent will be locked.
2352  *
2353  * This function handles the lock order reversal.
2354  */
2355 hammer2_chain_t *
2356 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2357 {
2358 	hammer2_chain_t *parent;
2359 
2360 	/*
2361 	 * Be careful of order, chain must be unlocked before parent
2362 	 * is locked below to avoid a deadlock.  Try it trivially first.
2363 	 */
2364 	parent = chain->parent;
2365 	if (parent == NULL)
2366 		panic("hammer2_chain_getparent: no parent");
2367 	hammer2_chain_ref(parent);
2368 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2369 		return parent;
2370 
2371 	for (;;) {
2372 		hammer2_chain_unlock(chain);
2373 		hammer2_chain_lock(parent, flags);
2374 		hammer2_chain_lock(chain, flags);
2375 
2376 		/*
2377 		 * Parent relinking races are quite common.  We have to get
2378 		 * it right or we will blow up the block table.
2379 		 */
2380 		if (chain->parent == parent)
2381 			break;
2382 		hammer2_chain_unlock(parent);
2383 		hammer2_chain_drop(parent);
2384 		cpu_ccfence();
2385 		parent = chain->parent;
2386 		if (parent == NULL)
2387 			panic("hammer2_chain_getparent: no parent");
2388 		hammer2_chain_ref(parent);
2389 	}
2390 	return parent;
2391 }
2392 
2393 /*
2394  * Take the locked chain and return a locked parent.  The chain is unlocked
2395  * and dropped.  *chainp is set to the returned parent as a convenience.
2396  * Pass HAMMER2_RESOLVE_* flags in flags.
2397  *
2398  * This will work even if the chain is errored, and the caller can check
2399  * parent->error on return if desired since the parent will be locked.
2400  *
2401  * The chain does NOT need to be stable.  We use a tracking structure
2402  * to track the expected parent if the chain is deleted out from under us.
2403  *
2404  * This function handles the lock order reversal.
2405  */
2406 hammer2_chain_t *
2407 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2408 {
2409 	hammer2_chain_t *chain;
2410 	hammer2_chain_t *parent;
2411 	struct hammer2_reptrack reptrack;
2412 	struct hammer2_reptrack **repp;
2413 
2414 	/*
2415 	 * Be careful of order, chain must be unlocked before parent
2416 	 * is locked below to avoid a deadlock.  Try it trivially first.
2417 	 */
2418 	chain = *chainp;
2419 	parent = chain->parent;
2420 	if (parent == NULL) {
2421 		hammer2_spin_unex(&chain->core.spin);
2422 		panic("hammer2_chain_repparent: no parent");
2423 	}
2424 	hammer2_chain_ref(parent);
2425 	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2426 		hammer2_chain_unlock(chain);
2427 		hammer2_chain_drop(chain);
2428 		*chainp = parent;
2429 
2430 		return parent;
2431 	}
2432 
2433 	/*
2434 	 * Ok, now it gets a bit nasty.  There are multiple situations where
2435 	 * the parent might be in the middle of a deletion, or where the child
2436 	 * (chain) might be deleted the instant we let go of its lock.
2437 	 * We can potentially end up in a no-win situation!
2438 	 *
2439 	 * In particular, the indirect_maintenance() case can cause these
2440 	 * situations.
2441 	 *
2442 	 * To deal with this we install a reptrack structure in the parent
2443 	 * This reptrack structure 'owns' the parent ref and will automatically
2444 	 * migrate to the parent's parent if the parent is deleted permanently.
2445 	 */
2446 	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2447 	reptrack.chain = parent;
2448 	hammer2_chain_ref(parent);		/* for the reptrack */
2449 
2450 	hammer2_spin_ex(&parent->core.spin);
2451 	reptrack.next = parent->core.reptrack;
2452 	parent->core.reptrack = &reptrack;
2453 	hammer2_spin_unex(&parent->core.spin);
2454 
2455 	hammer2_chain_unlock(chain);
2456 	hammer2_chain_drop(chain);
2457 	chain = NULL;	/* gone */
2458 
2459 	/*
2460 	 * At the top of this loop, chain is gone and parent is refd both
2461 	 * by us explicitly AND via our reptrack.  We are attempting to
2462 	 * lock parent.
2463 	 */
2464 	for (;;) {
2465 		hammer2_chain_lock(parent, flags);
2466 
2467 		if (reptrack.chain == parent)
2468 			break;
2469 		hammer2_chain_unlock(parent);
2470 		hammer2_chain_drop(parent);
2471 
2472 		kprintf("hammer2: debug REPTRACK %p->%p\n",
2473 			parent, reptrack.chain);
2474 		hammer2_spin_ex(&reptrack.spin);
2475 		parent = reptrack.chain;
2476 		hammer2_chain_ref(parent);
2477 		hammer2_spin_unex(&reptrack.spin);
2478 	}
2479 
2480 	/*
2481 	 * Once parent is locked and matches our reptrack, our reptrack
2482 	 * will be stable and we have our parent.  We can unlink our
2483 	 * reptrack.
2484 	 *
2485 	 * WARNING!  Remember that the chain lock might be shared.  Chains
2486 	 *	     locked shared have stable parent linkages.
2487 	 */
2488 	hammer2_spin_ex(&parent->core.spin);
2489 	repp = &parent->core.reptrack;
2490 	while (*repp != &reptrack)
2491 		repp = &(*repp)->next;
2492 	*repp = reptrack.next;
2493 	hammer2_spin_unex(&parent->core.spin);
2494 
2495 	hammer2_chain_drop(parent);	/* reptrack ref */
2496 	*chainp = parent;		/* return parent lock+ref */
2497 
2498 	return parent;
2499 }
2500 
2501 /*
2502  * Dispose of any linked reptrack structures in (chain) by shifting them to
2503  * (parent).  Both (chain) and (parent) must be exclusively locked.
2504  *
2505  * This is interlocked against any children of (chain) on the other side.
2506  * No children so remain as-of when this is called so we can test
2507  * core.reptrack without holding the spin-lock.
2508  *
2509  * Used whenever the caller intends to permanently delete chains related
2510  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2511  * where the chains underneath the node being deleted are given a new parent
2512  * above the node being deleted.
2513  */
2514 static
2515 void
2516 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2517 {
2518 	struct hammer2_reptrack *reptrack;
2519 
2520 	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2521 	while (chain->core.reptrack) {
2522 		hammer2_spin_ex(&parent->core.spin);
2523 		hammer2_spin_ex(&chain->core.spin);
2524 		reptrack = chain->core.reptrack;
2525 		if (reptrack == NULL) {
2526 			hammer2_spin_unex(&chain->core.spin);
2527 			hammer2_spin_unex(&parent->core.spin);
2528 			break;
2529 		}
2530 		hammer2_spin_ex(&reptrack->spin);
2531 		chain->core.reptrack = reptrack->next;
2532 		reptrack->chain = parent;
2533 		reptrack->next = parent->core.reptrack;
2534 		parent->core.reptrack = reptrack;
2535 		hammer2_chain_ref(parent);		/* reptrack */
2536 
2537 		hammer2_spin_unex(&chain->core.spin);
2538 		hammer2_spin_unex(&parent->core.spin);
2539 		kprintf("hammer2: debug repchange %p %p->%p\n",
2540 			reptrack, chain, parent);
2541 		hammer2_chain_drop(chain);		/* reptrack */
2542 	}
2543 }
2544 
2545 /*
2546  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2547  * (*parentp) typically points to an inode but can also point to a related
2548  * indirect block and this function will recurse upwards and find the inode
2549  * or the nearest undeleted indirect block covering the key range.
2550  *
2551  * This function unconditionally sets *errorp, replacing any previous value.
2552  *
2553  * (*parentp) must be exclusive or shared locked (depending on flags) and
2554  * referenced and can be an inode or an existing indirect block within the
2555  * inode.
2556  *
2557  * If (*parent) is errored out, this function will not attempt to recurse
2558  * the radix tree and will return NULL along with an appropriate *errorp.
2559  * If NULL is returned and *errorp is 0, the requested lookup could not be
2560  * located.
2561  *
2562  * On return (*parentp) will be modified to point at the deepest parent chain
2563  * element encountered during the search, as a helper for an insertion or
2564  * deletion.
2565  *
2566  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2567  * and referenced, and the old will be unlocked and dereferenced (no change
2568  * if they are both the same).  This is particularly important if the caller
2569  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2570  * is returned, as long as no error occurred.
2571  *
2572  * The matching chain will be returned locked according to flags.
2573  *
2574  * --
2575  *
2576  * NULL is returned if no match was found, but (*parentp) will still
2577  * potentially be adjusted.
2578  *
2579  * On return (*key_nextp) will point to an iterative value for key_beg.
2580  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2581  *
2582  * This function will also recurse up the chain if the key is not within the
2583  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2584  * can simply allow (*parentp) to float inside the loop.
2585  *
2586  * NOTE!  chain->data is not always resolved.  By default it will not be
2587  *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2588  *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2589  *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2590  *	  buffer).
2591  */
2592 
2593 hammer2_chain_t *
2594 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2595 		     hammer2_key_t key_beg, hammer2_key_t key_end,
2596 		     int *errorp, int flags)
2597 {
2598 	hammer2_dev_t *hmp;
2599 	hammer2_chain_t *parent;
2600 	hammer2_chain_t *chain;
2601 	hammer2_blockref_t *base;
2602 	hammer2_blockref_t *bref;
2603 	hammer2_blockref_t bcopy;
2604 	hammer2_key_t scan_beg;
2605 	hammer2_key_t scan_end;
2606 	int count = 0;
2607 	int how_always = HAMMER2_RESOLVE_ALWAYS;
2608 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2609 	int how;
2610 	int generation;
2611 	int maxloops = 300000;
2612 	volatile hammer2_mtx_t save_mtx;
2613 
2614 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2615 		how_maybe = how_always;
2616 		how = HAMMER2_RESOLVE_ALWAYS;
2617 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2618 		how = HAMMER2_RESOLVE_NEVER;
2619 	} else {
2620 		how = HAMMER2_RESOLVE_MAYBE;
2621 	}
2622 	if (flags & HAMMER2_LOOKUP_SHARED) {
2623 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2624 		how_always |= HAMMER2_RESOLVE_SHARED;
2625 		how |= HAMMER2_RESOLVE_SHARED;
2626 	}
2627 
2628 	/*
2629 	 * Recurse (*parentp) upward if necessary until the parent completely
2630 	 * encloses the key range or we hit the inode.
2631 	 *
2632 	 * Handle races against the flusher deleting indirect nodes on its
2633 	 * way back up by continuing to recurse upward past the deletion.
2634 	 */
2635 	parent = *parentp;
2636 	hmp = parent->hmp;
2637 	*errorp = 0;
2638 
2639 	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2640 	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2641 		scan_beg = parent->bref.key;
2642 		scan_end = scan_beg +
2643 			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2644 		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2645 			if (key_beg >= scan_beg && key_end <= scan_end)
2646 				break;
2647 		}
2648 		parent = hammer2_chain_repparent(parentp, how_maybe);
2649 	}
2650 again:
2651 	if (--maxloops == 0)
2652 		panic("hammer2_chain_lookup: maxloops");
2653 	/*
2654 	 * Locate the blockref array.  Currently we do a fully associative
2655 	 * search through the array.
2656 	 */
2657 	switch(parent->bref.type) {
2658 	case HAMMER2_BREF_TYPE_INODE:
2659 		/*
2660 		 * Special shortcut for embedded data returns the inode
2661 		 * itself.  Callers must detect this condition and access
2662 		 * the embedded data (the strategy code does this for us).
2663 		 *
2664 		 * This is only applicable to regular files and softlinks.
2665 		 *
2666 		 * We need a second lock on parent.  Since we already have
2667 		 * a lock we must pass LOCKAGAIN to prevent unexpected
2668 		 * blocking (we don't want to block on a second shared
2669 		 * ref if an exclusive lock is pending)
2670 		 */
2671 		if (parent->data->ipdata.meta.op_flags &
2672 		    HAMMER2_OPFLAG_DIRECTDATA) {
2673 			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2674 				chain = NULL;
2675 				*key_nextp = key_end + 1;
2676 				goto done;
2677 			}
2678 			hammer2_chain_ref(parent);
2679 			hammer2_chain_lock(parent, how_always |
2680 						   HAMMER2_RESOLVE_LOCKAGAIN);
2681 			*key_nextp = key_end + 1;
2682 			return (parent);
2683 		}
2684 		base = &parent->data->ipdata.u.blockset.blockref[0];
2685 		count = HAMMER2_SET_COUNT;
2686 		break;
2687 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2688 	case HAMMER2_BREF_TYPE_INDIRECT:
2689 		/*
2690 		 * Handle MATCHIND on the parent
2691 		 */
2692 		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2693 			scan_beg = parent->bref.key;
2694 			scan_end = scan_beg +
2695 			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2696 			if (key_beg == scan_beg && key_end == scan_end) {
2697 				chain = parent;
2698 				hammer2_chain_ref(chain);
2699 				hammer2_chain_lock(chain, how_maybe);
2700 				*key_nextp = scan_end + 1;
2701 				goto done;
2702 			}
2703 		}
2704 
2705 		/*
2706 		 * Optimize indirect blocks in the INITIAL state to avoid
2707 		 * I/O.
2708 		 */
2709 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2710 			base = NULL;
2711 		} else {
2712 			if (parent->data == NULL) {
2713 				kprintf("parent->data is NULL %p\n", parent);
2714 				while (1)
2715 					tsleep(parent, 0, "xxx", 0);
2716 			}
2717 			base = &parent->data->npdata[0];
2718 		}
2719 		count = parent->bytes / sizeof(hammer2_blockref_t);
2720 		break;
2721 	case HAMMER2_BREF_TYPE_VOLUME:
2722 		base = &parent->data->voldata.sroot_blockset.blockref[0];
2723 		count = HAMMER2_SET_COUNT;
2724 		break;
2725 	case HAMMER2_BREF_TYPE_FREEMAP:
2726 		base = &parent->data->blkset.blockref[0];
2727 		count = HAMMER2_SET_COUNT;
2728 		break;
2729 	default:
2730 		kprintf("hammer2_chain_lookup: unrecognized "
2731 			"blockref(B) type: %d",
2732 			parent->bref.type);
2733 		while (1)
2734 			tsleep(&base, 0, "dead", 0);
2735 		panic("hammer2_chain_lookup: unrecognized "
2736 		      "blockref(B) type: %d",
2737 		      parent->bref.type);
2738 		base = NULL;	/* safety */
2739 		count = 0;	/* safety */
2740 	}
2741 
2742 	/*
2743 	 * No lookup is possible if the parent is errored.  We delayed
2744 	 * this check as long as we could to ensure that the parent backup,
2745 	 * embedded data, and MATCHIND code could still execute.
2746 	 */
2747 	if (parent->error) {
2748 		*errorp = parent->error;
2749 		return NULL;
2750 	}
2751 
2752 	/*
2753 	 * Merged scan to find next candidate.
2754 	 *
2755 	 * hammer2_base_*() functions require the parent->core.live_* fields
2756 	 * to be synchronized.
2757 	 *
2758 	 * We need to hold the spinlock to access the block array and RB tree
2759 	 * and to interlock chain creation.
2760 	 */
2761 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2762 		hammer2_chain_countbrefs(parent, base, count);
2763 
2764 	/*
2765 	 * Combined search
2766 	 */
2767 	hammer2_spin_ex(&parent->core.spin);
2768 	chain = hammer2_combined_find(parent, base, count,
2769 				      key_nextp,
2770 				      key_beg, key_end,
2771 				      &bref);
2772 	generation = parent->core.generation;
2773 
2774 	/*
2775 	 * Exhausted parent chain, iterate.
2776 	 */
2777 	if (bref == NULL) {
2778 		KKASSERT(chain == NULL);
2779 		hammer2_spin_unex(&parent->core.spin);
2780 		if (key_beg == key_end)	/* short cut single-key case */
2781 			return (NULL);
2782 
2783 		/*
2784 		 * Stop if we reached the end of the iteration.
2785 		 */
2786 		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2787 		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2788 			return (NULL);
2789 		}
2790 
2791 		/*
2792 		 * Calculate next key, stop if we reached the end of the
2793 		 * iteration, otherwise go up one level and loop.
2794 		 */
2795 		key_beg = parent->bref.key +
2796 			  ((hammer2_key_t)1 << parent->bref.keybits);
2797 		if (key_beg == 0 || key_beg > key_end)
2798 			return (NULL);
2799 		parent = hammer2_chain_repparent(parentp, how_maybe);
2800 		goto again;
2801 	}
2802 
2803 	/*
2804 	 * Selected from blockref or in-memory chain.
2805 	 */
2806 	bcopy = *bref;
2807 	if (chain == NULL) {
2808 		hammer2_spin_unex(&parent->core.spin);
2809 		if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2810 		    bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2811 			chain = hammer2_chain_get(parent, generation,
2812 						  &bcopy, how_maybe);
2813 		} else {
2814 			chain = hammer2_chain_get(parent, generation,
2815 						  &bcopy, how);
2816 		}
2817 		if (chain == NULL)
2818 			goto again;
2819 	} else {
2820 		hammer2_chain_ref(chain);
2821 		hammer2_spin_unex(&parent->core.spin);
2822 
2823 		/*
2824 		 * chain is referenced but not locked.  We must lock the
2825 		 * chain to obtain definitive state.
2826 		 */
2827 		if (bcopy.type == HAMMER2_BREF_TYPE_INDIRECT ||
2828 		    bcopy.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2829 			hammer2_chain_lock(chain, how_maybe);
2830 		} else {
2831 			hammer2_chain_lock(chain, how);
2832 		}
2833 		KKASSERT(chain->parent == parent);
2834 	}
2835 	if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
2836 	    chain->parent != parent) {
2837 		hammer2_chain_unlock(chain);
2838 		hammer2_chain_drop(chain);
2839 		chain = NULL;	/* SAFETY */
2840 		goto again;
2841 	}
2842 
2843 
2844 	/*
2845 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2846 	 *
2847 	 * NOTE: Chain's key range is not relevant as there might be
2848 	 *	 one-offs within the range that are not deleted.
2849 	 *
2850 	 * NOTE: Lookups can race delete-duplicate because
2851 	 *	 delete-duplicate does not lock the parent's core
2852 	 *	 (they just use the spinlock on the core).
2853 	 */
2854 	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2855 		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2856 			chain->bref.data_off, chain->bref.type,
2857 			chain->bref.key);
2858 		hammer2_chain_unlock(chain);
2859 		hammer2_chain_drop(chain);
2860 		chain = NULL;	/* SAFETY */
2861 		key_beg = *key_nextp;
2862 		if (key_beg == 0 || key_beg > key_end)
2863 			return(NULL);
2864 		goto again;
2865 	}
2866 
2867 	/*
2868 	 * If the chain element is an indirect block it becomes the new
2869 	 * parent and we loop on it.  We must maintain our top-down locks
2870 	 * to prevent the flusher from interfering (i.e. doing a
2871 	 * delete-duplicate and leaving us recursing down a deleted chain).
2872 	 *
2873 	 * The parent always has to be locked with at least RESOLVE_MAYBE
2874 	 * so we can access its data.  It might need a fixup if the caller
2875 	 * passed incompatible flags.  Be careful not to cause a deadlock
2876 	 * as a data-load requires an exclusive lock.
2877 	 *
2878 	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2879 	 * range is within the requested key range we return the indirect
2880 	 * block and do NOT loop.  This is usually only used to acquire
2881 	 * freemap nodes.
2882 	 */
2883 	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2884 	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2885 		save_mtx = parent->lock;
2886 		hammer2_chain_unlock(parent);
2887 		hammer2_chain_drop(parent);
2888 		*parentp = parent = chain;
2889 		chain = NULL;	/* SAFETY */
2890 		goto again;
2891 	}
2892 done:
2893 	/*
2894 	 * All done, return the locked chain.
2895 	 *
2896 	 * If the caller does not want a locked chain, replace the lock with
2897 	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2898 	 * lock in the first place for situations where the data does not
2899 	 * need to be resolved.
2900 	 *
2901 	 * NOTE! A chain->error must be tested by the caller upon return.
2902 	 *	 *errorp is only set based on issues which occur while
2903 	 *	 trying to reach the chain.
2904 	 */
2905 	return (chain);
2906 }
2907 
2908 /*
2909  * After having issued a lookup we can iterate all matching keys.
2910  *
2911  * If chain is non-NULL we continue the iteration from just after it's index.
2912  *
2913  * If chain is NULL we assume the parent was exhausted and continue the
2914  * iteration at the next parent.
2915  *
2916  * If a fatal error occurs (typically an I/O error), a dummy chain is
2917  * returned with chain->error and error-identifying information set.  This
2918  * chain will assert if you try to do anything fancy with it.
2919  *
2920  * XXX Depending on where the error occurs we should allow continued iteration.
2921  *
2922  * parent must be locked on entry and remains locked throughout.  chain's
2923  * lock status must match flags.  Chain is always at least referenced.
2924  *
2925  * WARNING!  The MATCHIND flag does not apply to this function.
2926  */
2927 hammer2_chain_t *
2928 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2929 		   hammer2_key_t *key_nextp,
2930 		   hammer2_key_t key_beg, hammer2_key_t key_end,
2931 		   int *errorp, int flags)
2932 {
2933 	hammer2_chain_t *parent;
2934 	int how_maybe;
2935 
2936 	/*
2937 	 * Calculate locking flags for upward recursion.
2938 	 */
2939 	how_maybe = HAMMER2_RESOLVE_MAYBE;
2940 	if (flags & HAMMER2_LOOKUP_SHARED)
2941 		how_maybe |= HAMMER2_RESOLVE_SHARED;
2942 
2943 	parent = *parentp;
2944 	*errorp = 0;
2945 
2946 	/*
2947 	 * Calculate the next index and recalculate the parent if necessary.
2948 	 */
2949 	if (chain) {
2950 		key_beg = chain->bref.key +
2951 			  ((hammer2_key_t)1 << chain->bref.keybits);
2952 		hammer2_chain_unlock(chain);
2953 		hammer2_chain_drop(chain);
2954 
2955 		/*
2956 		 * chain invalid past this point, but we can still do a
2957 		 * pointer comparison w/parent.
2958 		 *
2959 		 * Any scan where the lookup returned degenerate data embedded
2960 		 * in the inode has an invalid index and must terminate.
2961 		 */
2962 		if (chain == parent)
2963 			return(NULL);
2964 		if (key_beg == 0 || key_beg > key_end)
2965 			return(NULL);
2966 		chain = NULL;
2967 	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2968 		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2969 		/*
2970 		 * We reached the end of the iteration.
2971 		 */
2972 		return (NULL);
2973 	} else {
2974 		/*
2975 		 * Continue iteration with next parent unless the current
2976 		 * parent covers the range.
2977 		 *
2978 		 * (This also handles the case of a deleted, empty indirect
2979 		 * node).
2980 		 */
2981 		key_beg = parent->bref.key +
2982 			  ((hammer2_key_t)1 << parent->bref.keybits);
2983 		if (key_beg == 0 || key_beg > key_end)
2984 			return (NULL);
2985 		parent = hammer2_chain_repparent(parentp, how_maybe);
2986 	}
2987 
2988 	/*
2989 	 * And execute
2990 	 */
2991 	return (hammer2_chain_lookup(parentp, key_nextp,
2992 				     key_beg, key_end,
2993 				     errorp, flags));
2994 }
2995 
2996 /*
2997  * Caller wishes to iterate chains under parent, loading new chains into
2998  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
2999  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3000  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3001  * with the returned chain for the scan.  The returned *chainp will be
3002  * locked and referenced.  Any prior contents will be unlocked and dropped.
3003  *
3004  * Caller should check the return value.  A normal scan EOF will return
3005  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3006  * error trying to access parent data.  Any error in the returned chain
3007  * must be tested separately by the caller.
3008  *
3009  * (*chainp) is dropped on each scan, but will only be set if the returned
3010  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3011  * returned via *chainp.  The caller will get their bref only.
3012  *
3013  * The raw scan function is similar to lookup/next but does not seek to a key.
3014  * Blockrefs are iterated via first_bref = (parent, NULL) and
3015  * next_chain = (parent, bref).
3016  *
3017  * The passed-in parent must be locked and its data resolved.  The function
3018  * nominally returns a locked and referenced *chainp != NULL for chains
3019  * the caller might need to recurse on (and will dipose of any *chainp passed
3020  * in).  The caller must check the chain->bref.type either way.
3021  */
3022 int
3023 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3024 		   hammer2_blockref_t *bref, int *firstp,
3025 		   int flags)
3026 {
3027 	hammer2_dev_t *hmp;
3028 	hammer2_blockref_t *base;
3029 	hammer2_blockref_t *bref_ptr;
3030 	hammer2_key_t key;
3031 	hammer2_key_t next_key;
3032 	hammer2_chain_t *chain = NULL;
3033 	int count = 0;
3034 	int how_always = HAMMER2_RESOLVE_ALWAYS;
3035 	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3036 	int how;
3037 	int generation;
3038 	int maxloops = 300000;
3039 	int error;
3040 
3041 	hmp = parent->hmp;
3042 	error = 0;
3043 
3044 	/*
3045 	 * Scan flags borrowed from lookup.
3046 	 */
3047 	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3048 		how_maybe = how_always;
3049 		how = HAMMER2_RESOLVE_ALWAYS;
3050 	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3051 		how = HAMMER2_RESOLVE_NEVER;
3052 	} else {
3053 		how = HAMMER2_RESOLVE_MAYBE;
3054 	}
3055 	if (flags & HAMMER2_LOOKUP_SHARED) {
3056 		how_maybe |= HAMMER2_RESOLVE_SHARED;
3057 		how_always |= HAMMER2_RESOLVE_SHARED;
3058 		how |= HAMMER2_RESOLVE_SHARED;
3059 	}
3060 
3061 	/*
3062 	 * Calculate key to locate first/next element, unlocking the previous
3063 	 * element as we go.  Be careful, the key calculation can overflow.
3064 	 *
3065 	 * (also reset bref to NULL)
3066 	 */
3067 	if (*firstp) {
3068 		key = 0;
3069 		*firstp = 0;
3070 	} else {
3071 		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3072 		if ((chain = *chainp) != NULL) {
3073 			*chainp = NULL;
3074 			hammer2_chain_unlock(chain);
3075 			hammer2_chain_drop(chain);
3076 			chain = NULL;
3077 		}
3078 		if (key == 0) {
3079 			error |= HAMMER2_ERROR_EOF;
3080 			goto done;
3081 		}
3082 	}
3083 
3084 again:
3085 	if (parent->error) {
3086 		error = parent->error;
3087 		goto done;
3088 	}
3089 	if (--maxloops == 0)
3090 		panic("hammer2_chain_scan: maxloops");
3091 
3092 	/*
3093 	 * Locate the blockref array.  Currently we do a fully associative
3094 	 * search through the array.
3095 	 */
3096 	switch(parent->bref.type) {
3097 	case HAMMER2_BREF_TYPE_INODE:
3098 		/*
3099 		 * An inode with embedded data has no sub-chains.
3100 		 *
3101 		 * WARNING! Bulk scan code may pass a static chain marked
3102 		 *	    as BREF_TYPE_INODE with a copy of the volume
3103 		 *	    root blockset to snapshot the volume.
3104 		 */
3105 		if (parent->data->ipdata.meta.op_flags &
3106 		    HAMMER2_OPFLAG_DIRECTDATA) {
3107 			error |= HAMMER2_ERROR_EOF;
3108 			goto done;
3109 		}
3110 		base = &parent->data->ipdata.u.blockset.blockref[0];
3111 		count = HAMMER2_SET_COUNT;
3112 		break;
3113 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3114 	case HAMMER2_BREF_TYPE_INDIRECT:
3115 		/*
3116 		 * Optimize indirect blocks in the INITIAL state to avoid
3117 		 * I/O.
3118 		 */
3119 		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3120 			base = NULL;
3121 		} else {
3122 			if (parent->data == NULL)
3123 				panic("parent->data is NULL");
3124 			base = &parent->data->npdata[0];
3125 		}
3126 		count = parent->bytes / sizeof(hammer2_blockref_t);
3127 		break;
3128 	case HAMMER2_BREF_TYPE_VOLUME:
3129 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3130 		count = HAMMER2_SET_COUNT;
3131 		break;
3132 	case HAMMER2_BREF_TYPE_FREEMAP:
3133 		base = &parent->data->blkset.blockref[0];
3134 		count = HAMMER2_SET_COUNT;
3135 		break;
3136 	default:
3137 		panic("hammer2_chain_lookup: unrecognized blockref type: %d",
3138 		      parent->bref.type);
3139 		base = NULL;	/* safety */
3140 		count = 0;	/* safety */
3141 	}
3142 
3143 	/*
3144 	 * Merged scan to find next candidate.
3145 	 *
3146 	 * hammer2_base_*() functions require the parent->core.live_* fields
3147 	 * to be synchronized.
3148 	 *
3149 	 * We need to hold the spinlock to access the block array and RB tree
3150 	 * and to interlock chain creation.
3151 	 */
3152 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3153 		hammer2_chain_countbrefs(parent, base, count);
3154 
3155 	next_key = 0;
3156 	bref_ptr = NULL;
3157 	hammer2_spin_ex(&parent->core.spin);
3158 	chain = hammer2_combined_find(parent, base, count,
3159 				      &next_key,
3160 				      key, HAMMER2_KEY_MAX,
3161 				      &bref_ptr);
3162 	generation = parent->core.generation;
3163 
3164 	/*
3165 	 * Exhausted parent chain, we're done.
3166 	 */
3167 	if (bref_ptr == NULL) {
3168 		hammer2_spin_unex(&parent->core.spin);
3169 		KKASSERT(chain == NULL);
3170 		error |= HAMMER2_ERROR_EOF;
3171 		goto done;
3172 	}
3173 
3174 	/*
3175 	 * Copy into the supplied stack-based blockref.
3176 	 */
3177 	*bref = *bref_ptr;
3178 
3179 	/*
3180 	 * Selected from blockref or in-memory chain.
3181 	 */
3182 	if (chain == NULL) {
3183 		switch(bref->type) {
3184 		case HAMMER2_BREF_TYPE_INODE:
3185 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3186 		case HAMMER2_BREF_TYPE_INDIRECT:
3187 		case HAMMER2_BREF_TYPE_VOLUME:
3188 		case HAMMER2_BREF_TYPE_FREEMAP:
3189 			/*
3190 			 * Recursion, always get the chain
3191 			 */
3192 			hammer2_spin_unex(&parent->core.spin);
3193 			chain = hammer2_chain_get(parent, generation,
3194 						  bref, how);
3195 			if (chain == NULL)
3196 				goto again;
3197 			break;
3198 		default:
3199 			/*
3200 			 * No recursion, do not waste time instantiating
3201 			 * a chain, just iterate using the bref.
3202 			 */
3203 			hammer2_spin_unex(&parent->core.spin);
3204 			break;
3205 		}
3206 	} else {
3207 		/*
3208 		 * Recursion or not we need the chain in order to supply
3209 		 * the bref.
3210 		 */
3211 		hammer2_chain_ref(chain);
3212 		hammer2_spin_unex(&parent->core.spin);
3213 		hammer2_chain_lock(chain, how);
3214 	}
3215 	if (chain &&
3216 	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3217 	     chain->parent != parent)) {
3218 		hammer2_chain_unlock(chain);
3219 		hammer2_chain_drop(chain);
3220 		chain = NULL;
3221 		goto again;
3222 	}
3223 
3224 	/*
3225 	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3226 	 *
3227 	 * NOTE: chain's key range is not relevant as there might be
3228 	 *	 one-offs within the range that are not deleted.
3229 	 *
3230 	 * NOTE: XXX this could create problems with scans used in
3231 	 *	 situations other than mount-time recovery.
3232 	 *
3233 	 * NOTE: Lookups can race delete-duplicate because
3234 	 *	 delete-duplicate does not lock the parent's core
3235 	 *	 (they just use the spinlock on the core).
3236 	 */
3237 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3238 		hammer2_chain_unlock(chain);
3239 		hammer2_chain_drop(chain);
3240 		chain = NULL;
3241 
3242 		key = next_key;
3243 		if (key == 0) {
3244 			error |= HAMMER2_ERROR_EOF;
3245 			goto done;
3246 		}
3247 		goto again;
3248 	}
3249 
3250 done:
3251 	/*
3252 	 * All done, return the bref or NULL, supply chain if necessary.
3253 	 */
3254 	if (chain)
3255 		*chainp = chain;
3256 	return (error);
3257 }
3258 
3259 /*
3260  * Create and return a new hammer2 system memory structure of the specified
3261  * key, type and size and insert it under (*parentp).  This is a full
3262  * insertion, based on the supplied key/keybits, and may involve creating
3263  * indirect blocks and moving other chains around via delete/duplicate.
3264  *
3265  * This call can be made with parent == NULL as long as a non -1 methods
3266  * is supplied.  hmp must also be supplied in this situation (otherwise
3267  * hmp is extracted from the supplied parent).  The chain will be detached
3268  * from the topology.  A later call with both parent and chain can be made
3269  * to attach it.
3270  *
3271  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3272  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3273  * FULL.  This typically means that the caller is creating the chain after
3274  * doing a hammer2_chain_lookup().
3275  *
3276  * (*parentp) must be exclusive locked and may be replaced on return
3277  * depending on how much work the function had to do.
3278  *
3279  * (*parentp) must not be errored or this function will assert.
3280  *
3281  * (*chainp) usually starts out NULL and returns the newly created chain,
3282  * but if the caller desires the caller may allocate a disconnected chain
3283  * and pass it in instead.
3284  *
3285  * This function should NOT be used to insert INDIRECT blocks.  It is
3286  * typically used to create/insert inodes and data blocks.
3287  *
3288  * Caller must pass-in an exclusively locked parent the new chain is to
3289  * be inserted under, and optionally pass-in a disconnected, exclusively
3290  * locked chain to insert (else we create a new chain).  The function will
3291  * adjust (*parentp) as necessary, create or connect the chain, and
3292  * return an exclusively locked chain in *chainp.
3293  *
3294  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3295  * and will be reassigned.
3296  *
3297  * NOTE: returns HAMMER_ERROR_* flags
3298  */
3299 int
3300 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3301 		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3302 		     hammer2_key_t key, int keybits, int type, size_t bytes,
3303 		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3304 {
3305 	hammer2_chain_t *chain;
3306 	hammer2_chain_t *parent;
3307 	hammer2_blockref_t *base;
3308 	hammer2_blockref_t dummy;
3309 	int allocated = 0;
3310 	int error = 0;
3311 	int count;
3312 	int maxloops = 300000;
3313 
3314 	/*
3315 	 * Topology may be crossing a PFS boundary.
3316 	 */
3317 	parent = *parentp;
3318 	if (parent) {
3319 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3320 		KKASSERT(parent->error == 0);
3321 		hmp = parent->hmp;
3322 	}
3323 	chain = *chainp;
3324 
3325 	if (chain == NULL) {
3326 		/*
3327 		 * First allocate media space and construct the dummy bref,
3328 		 * then allocate the in-memory chain structure.  Set the
3329 		 * INITIAL flag for fresh chains which do not have embedded
3330 		 * data.
3331 		 *
3332 		 * XXX for now set the check mode of the child based on
3333 		 *     the parent or, if the parent is an inode, the
3334 		 *     specification in the inode.
3335 		 */
3336 		bzero(&dummy, sizeof(dummy));
3337 		dummy.type = type;
3338 		dummy.key = key;
3339 		dummy.keybits = keybits;
3340 		dummy.data_off = hammer2_getradix(bytes);
3341 
3342 		/*
3343 		 * Inherit methods from parent by default.  Primarily used
3344 		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3345 		 * a non-NONE check algorithm.
3346 		 */
3347 		if (methods == -1)
3348 			dummy.methods = parent->bref.methods;
3349 		else
3350 			dummy.methods = (uint8_t)methods;
3351 
3352 		if (type != HAMMER2_BREF_TYPE_DATA &&
3353 		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3354 			dummy.methods |=
3355 				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3356 		}
3357 
3358 		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3359 
3360 		/*
3361 		 * Lock the chain manually, chain_lock will load the chain
3362 		 * which we do NOT want to do.  (note: chain->refs is set
3363 		 * to 1 by chain_alloc() for us, but lockcnt is not).
3364 		 */
3365 		chain->lockcnt = 1;
3366 		hammer2_mtx_ex(&chain->lock);
3367 		allocated = 1;
3368 		++curthread->td_tracker;
3369 
3370 		/*
3371 		 * Set INITIAL to optimize I/O.  The flag will generally be
3372 		 * processed when we call hammer2_chain_modify().
3373 		 *
3374 		 * Recalculate bytes to reflect the actual media block
3375 		 * allocation.  Handle special case radix 0 == 0 bytes.
3376 		 */
3377 		bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3378 		if (bytes)
3379 			bytes = (hammer2_off_t)1 << bytes;
3380 		chain->bytes = bytes;
3381 
3382 		switch(type) {
3383 		case HAMMER2_BREF_TYPE_VOLUME:
3384 		case HAMMER2_BREF_TYPE_FREEMAP:
3385 			panic("hammer2_chain_create: called with volume type");
3386 			break;
3387 		case HAMMER2_BREF_TYPE_INDIRECT:
3388 			panic("hammer2_chain_create: cannot be used to"
3389 			      "create indirect block");
3390 			break;
3391 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3392 			panic("hammer2_chain_create: cannot be used to"
3393 			      "create freemap root or node");
3394 			break;
3395 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3396 			KKASSERT(bytes == sizeof(chain->data->bmdata));
3397 			/* fall through */
3398 		case HAMMER2_BREF_TYPE_DIRENT:
3399 		case HAMMER2_BREF_TYPE_INODE:
3400 		case HAMMER2_BREF_TYPE_DATA:
3401 		default:
3402 			/*
3403 			 * leave chain->data NULL, set INITIAL
3404 			 */
3405 			KKASSERT(chain->data == NULL);
3406 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3407 			break;
3408 		}
3409 	} else {
3410 		/*
3411 		 * We are reattaching a previously deleted chain, possibly
3412 		 * under a new parent and possibly with a new key/keybits.
3413 		 * The chain does not have to be in a modified state.  The
3414 		 * UPDATE flag will be set later on in this routine.
3415 		 *
3416 		 * Do NOT mess with the current state of the INITIAL flag.
3417 		 */
3418 		chain->bref.key = key;
3419 		chain->bref.keybits = keybits;
3420 		if (chain->flags & HAMMER2_CHAIN_DELETED)
3421 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3422 		KKASSERT(chain->parent == NULL);
3423 	}
3424 
3425 	/*
3426 	 * Set the appropriate bref flag if requested.
3427 	 *
3428 	 * NOTE! Callers can call this function to move chains without
3429 	 *	 knowing about special flags, so don't clear bref flags
3430 	 *	 here!
3431 	 */
3432 	if (flags & HAMMER2_INSERT_PFSROOT)
3433 		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3434 
3435 	if (parent == NULL)
3436 		goto skip;
3437 
3438 	/*
3439 	 * Calculate how many entries we have in the blockref array and
3440 	 * determine if an indirect block is required when inserting into
3441 	 * the parent.
3442 	 */
3443 again:
3444 	if (--maxloops == 0)
3445 		panic("hammer2_chain_create: maxloops");
3446 
3447 	switch(parent->bref.type) {
3448 	case HAMMER2_BREF_TYPE_INODE:
3449 		if ((parent->data->ipdata.meta.op_flags &
3450 		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3451 			kprintf("hammer2: parent set for direct-data! "
3452 				"pkey=%016jx ckey=%016jx\n",
3453 				parent->bref.key,
3454 				chain->bref.key);
3455 	        }
3456 		KKASSERT((parent->data->ipdata.meta.op_flags &
3457 			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3458 		KKASSERT(parent->data != NULL);
3459 		base = &parent->data->ipdata.u.blockset.blockref[0];
3460 		count = HAMMER2_SET_COUNT;
3461 		break;
3462 	case HAMMER2_BREF_TYPE_INDIRECT:
3463 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3464 		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3465 			base = NULL;
3466 		else
3467 			base = &parent->data->npdata[0];
3468 		count = parent->bytes / sizeof(hammer2_blockref_t);
3469 		break;
3470 	case HAMMER2_BREF_TYPE_VOLUME:
3471 		KKASSERT(parent->data != NULL);
3472 		base = &parent->data->voldata.sroot_blockset.blockref[0];
3473 		count = HAMMER2_SET_COUNT;
3474 		break;
3475 	case HAMMER2_BREF_TYPE_FREEMAP:
3476 		KKASSERT(parent->data != NULL);
3477 		base = &parent->data->blkset.blockref[0];
3478 		count = HAMMER2_SET_COUNT;
3479 		break;
3480 	default:
3481 		panic("hammer2_chain_create: unrecognized blockref type: %d",
3482 		      parent->bref.type);
3483 		base = NULL;
3484 		count = 0;
3485 		break;
3486 	}
3487 
3488 	/*
3489 	 * Make sure we've counted the brefs
3490 	 */
3491 	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3492 		hammer2_chain_countbrefs(parent, base, count);
3493 
3494 	KASSERT(parent->core.live_count >= 0 &&
3495 		parent->core.live_count <= count,
3496 		("bad live_count %d/%d (%02x, %d)",
3497 			parent->core.live_count, count,
3498 			parent->bref.type, parent->bytes));
3499 
3500 	/*
3501 	 * If no free blockref could be found we must create an indirect
3502 	 * block and move a number of blockrefs into it.  With the parent
3503 	 * locked we can safely lock each child in order to delete+duplicate
3504 	 * it without causing a deadlock.
3505 	 *
3506 	 * This may return the new indirect block or the old parent depending
3507 	 * on where the key falls.  NULL is returned on error.
3508 	 */
3509 	if (parent->core.live_count == count) {
3510 		hammer2_chain_t *nparent;
3511 
3512 		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3513 
3514 		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3515 							mtid, type, &error);
3516 		if (nparent == NULL) {
3517 			if (allocated)
3518 				hammer2_chain_drop(chain);
3519 			chain = NULL;
3520 			goto done;
3521 		}
3522 		if (parent != nparent) {
3523 			hammer2_chain_unlock(parent);
3524 			hammer2_chain_drop(parent);
3525 			parent = *parentp = nparent;
3526 		}
3527 		goto again;
3528 	}
3529 
3530 	/*
3531 	 * fall through if parent, or skip to here if no parent.
3532 	 */
3533 skip:
3534 	if (chain->flags & HAMMER2_CHAIN_DELETED)
3535 		kprintf("Inserting deleted chain @%016jx\n",
3536 			chain->bref.key);
3537 
3538 	/*
3539 	 * Link the chain into its parent.
3540 	 */
3541 	if (chain->parent != NULL)
3542 		panic("hammer2: hammer2_chain_create: chain already connected");
3543 	KKASSERT(chain->parent == NULL);
3544 	if (parent) {
3545 		KKASSERT(parent->core.live_count < count);
3546 		hammer2_chain_insert(parent, chain,
3547 				     HAMMER2_CHAIN_INSERT_SPIN |
3548 				     HAMMER2_CHAIN_INSERT_LIVE,
3549 				     0);
3550 	}
3551 
3552 	if (allocated) {
3553 		/*
3554 		 * Mark the newly created chain modified.  This will cause
3555 		 * UPDATE to be set and process the INITIAL flag.
3556 		 *
3557 		 * Device buffers are not instantiated for DATA elements
3558 		 * as these are handled by logical buffers.
3559 		 *
3560 		 * Indirect and freemap node indirect blocks are handled
3561 		 * by hammer2_chain_create_indirect() and not by this
3562 		 * function.
3563 		 *
3564 		 * Data for all other bref types is expected to be
3565 		 * instantiated (INODE, LEAF).
3566 		 */
3567 		switch(chain->bref.type) {
3568 		case HAMMER2_BREF_TYPE_DATA:
3569 		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3570 		case HAMMER2_BREF_TYPE_DIRENT:
3571 		case HAMMER2_BREF_TYPE_INODE:
3572 			error = hammer2_chain_modify(chain, mtid, dedup_off,
3573 						     HAMMER2_MODIFY_OPTDATA);
3574 			break;
3575 		default:
3576 			/*
3577 			 * Remaining types are not supported by this function.
3578 			 * In particular, INDIRECT and LEAF_NODE types are
3579 			 * handled by create_indirect().
3580 			 */
3581 			panic("hammer2_chain_create: bad type: %d",
3582 			      chain->bref.type);
3583 			/* NOT REACHED */
3584 			break;
3585 		}
3586 	} else {
3587 		/*
3588 		 * When reconnecting a chain we must set UPDATE and
3589 		 * setflush so the flush recognizes that it must update
3590 		 * the bref in the parent.
3591 		 */
3592 		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3593 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3594 	}
3595 
3596 	/*
3597 	 * We must setflush(parent) to ensure that it recurses through to
3598 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3599 	 * already set in the chain (so it won't recurse up to set it in the
3600 	 * parent).
3601 	 */
3602 	if (parent)
3603 		hammer2_chain_setflush(parent);
3604 
3605 done:
3606 	*chainp = chain;
3607 
3608 	return (error);
3609 }
3610 
3611 /*
3612  * Move the chain from its old parent to a new parent.  The chain must have
3613  * already been deleted or already disconnected (or never associated) with
3614  * a parent.  The chain is reassociated with the new parent and the deleted
3615  * flag will be cleared (no longer deleted).  The chain's modification state
3616  * is not altered.
3617  *
3618  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3619  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3620  * FULL.  This typically means that the caller is creating the chain after
3621  * doing a hammer2_chain_lookup().
3622  *
3623  * Neither (parent) or (chain) can be errored.
3624  *
3625  * If (parent) is non-NULL then the chain is inserted under the parent.
3626  *
3627  * If (parent) is NULL then the newly duplicated chain is not inserted
3628  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3629  * passing into hammer2_chain_create() after this function returns).
3630  *
3631  * WARNING! This function calls create which means it can insert indirect
3632  *	    blocks.  This can cause other unrelated chains in the parent to
3633  *	    be moved to a newly inserted indirect block in addition to the
3634  *	    specific chain.
3635  */
3636 void
3637 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3638 		     hammer2_tid_t mtid, int flags)
3639 {
3640 	hammer2_blockref_t *bref;
3641 	hammer2_dev_t *hmp;
3642 	hammer2_chain_t *parent;
3643 	size_t bytes;
3644 
3645 	/*
3646 	 * WARNING!  We should never resolve DATA to device buffers
3647 	 *	     (XXX allow it if the caller did?), and since
3648 	 *	     we currently do not have the logical buffer cache
3649 	 *	     buffer in-hand to fix its cached physical offset
3650 	 *	     we also force the modify code to not COW it. XXX
3651 	 *
3652 	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3653 	 *	     is good and can be renamed.  The content, however, may
3654 	 *	     be inaccessible.
3655 	 */
3656 	hmp = chain->hmp;
3657 	KKASSERT(chain->parent == NULL);
3658 	/*KKASSERT(chain->error == 0); allow */
3659 
3660 	/*
3661 	 * Now create a duplicate of the chain structure, associating
3662 	 * it with the same core, making it the same size, pointing it
3663 	 * to the same bref (the same media block).
3664 	 *
3665 	 * NOTE: Handle special radix == 0 case (means 0 bytes).
3666 	 */
3667 	bref = &chain->bref;
3668 	bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3669 	if (bytes)
3670 		bytes = (hammer2_off_t)1 << bytes;
3671 
3672 	/*
3673 	 * If parent is not NULL the duplicated chain will be entered under
3674 	 * the parent and the UPDATE bit set to tell flush to update
3675 	 * the blockref.
3676 	 *
3677 	 * We must setflush(parent) to ensure that it recurses through to
3678 	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3679 	 * already set in the chain (so it won't recurse up to set it in the
3680 	 * parent).
3681 	 *
3682 	 * Having both chains locked is extremely important for atomicy.
3683 	 */
3684 	if (parentp && (parent = *parentp) != NULL) {
3685 		KKASSERT(hammer2_mtx_owned(&parent->lock));
3686 		KKASSERT(parent->refs > 0);
3687 		KKASSERT(parent->error == 0);
3688 
3689 		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3690 				     HAMMER2_METH_DEFAULT,
3691 				     bref->key, bref->keybits, bref->type,
3692 				     chain->bytes, mtid, 0, flags);
3693 		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3694 		hammer2_chain_setflush(*parentp);
3695 	}
3696 }
3697 
3698 /*
3699  * This works in tandem with delete_obref() to install a blockref in
3700  * (typically) an indirect block that is associated with the chain being
3701  * moved to *parentp.
3702  *
3703  * The reason we need this function is that the caller needs to maintain
3704  * the blockref as it was, and not generate a new blockref for what might
3705  * be a modified chain.  Otherwise stuff will leak into the flush that
3706  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3707  *
3708  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3709  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3710  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3711  * it does.  Otherwise we can end up in a situation where H2 is unable to
3712  * clean up the in-memory chain topology.
3713  *
3714  * The reason for this is that flushes do not generally flush through
3715  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3716  * or sideq to properly flush and dispose of the related inode chain's flags.
3717  * Situations where the inode is not actually modified by the frontend,
3718  * but where we have to move the related chains around as we insert or cleanup
3719  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3720  * inode chain that does not have a hammer2_inode_t associated with it.
3721  */
3722 void
3723 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3724 			   hammer2_tid_t mtid, int flags,
3725 			   hammer2_blockref_t *obref)
3726 {
3727 	hammer2_chain_rename(parentp, chain, mtid, flags);
3728 
3729 	if (obref->type) {
3730 		hammer2_blockref_t *tbase;
3731 		int tcount;
3732 
3733 		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3734 		hammer2_chain_modify(*parentp, mtid, 0, 0);
3735 		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3736 		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3737 		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3738 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3739 						      HAMMER2_CHAIN_UPDATE);
3740 		} else {
3741 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3742 		}
3743 	}
3744 }
3745 
3746 /*
3747  * Helper function for deleting chains.
3748  *
3749  * The chain is removed from the live view (the RBTREE) as well as the parent's
3750  * blockmap.  Both chain and its parent must be locked.
3751  *
3752  * parent may not be errored.  chain can be errored.
3753  */
3754 static int
3755 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3756 			     hammer2_tid_t mtid, int flags,
3757 			     hammer2_blockref_t *obref)
3758 {
3759 	hammer2_dev_t *hmp;
3760 	int error = 0;
3761 
3762 	KKASSERT((chain->flags & (HAMMER2_CHAIN_DELETED |
3763 				  HAMMER2_CHAIN_FICTITIOUS)) == 0);
3764 	KKASSERT(chain->parent == parent);
3765 	hmp = chain->hmp;
3766 
3767 	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3768 		/*
3769 		 * Chain is blockmapped, so there must be a parent.
3770 		 * Atomically remove the chain from the parent and remove
3771 		 * the blockmap entry.  The parent must be set modified
3772 		 * to remove the blockmap entry.
3773 		 */
3774 		hammer2_blockref_t *base;
3775 		int count;
3776 
3777 		KKASSERT(parent != NULL);
3778 		KKASSERT(parent->error == 0);
3779 		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3780 		error = hammer2_chain_modify(parent, mtid, 0, 0);
3781 		if (error)
3782 			goto done;
3783 
3784 		/*
3785 		 * Calculate blockmap pointer
3786 		 */
3787 		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3788 		hammer2_spin_ex(&chain->core.spin);
3789 		hammer2_spin_ex(&parent->core.spin);
3790 
3791 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3792 		atomic_add_int(&parent->core.live_count, -1);
3793 		++parent->core.generation;
3794 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3795 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3796 		--parent->core.chain_count;
3797 		chain->parent = NULL;
3798 
3799 		switch(parent->bref.type) {
3800 		case HAMMER2_BREF_TYPE_INODE:
3801 			/*
3802 			 * Access the inode's block array.  However, there
3803 			 * is no block array if the inode is flagged
3804 			 * DIRECTDATA.
3805 			 */
3806 			if (parent->data &&
3807 			    (parent->data->ipdata.meta.op_flags &
3808 			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3809 				base =
3810 				   &parent->data->ipdata.u.blockset.blockref[0];
3811 			} else {
3812 				base = NULL;
3813 			}
3814 			count = HAMMER2_SET_COUNT;
3815 			break;
3816 		case HAMMER2_BREF_TYPE_INDIRECT:
3817 		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3818 			if (parent->data)
3819 				base = &parent->data->npdata[0];
3820 			else
3821 				base = NULL;
3822 			count = parent->bytes / sizeof(hammer2_blockref_t);
3823 			break;
3824 		case HAMMER2_BREF_TYPE_VOLUME:
3825 			base = &parent->data->voldata.
3826 					sroot_blockset.blockref[0];
3827 			count = HAMMER2_SET_COUNT;
3828 			break;
3829 		case HAMMER2_BREF_TYPE_FREEMAP:
3830 			base = &parent->data->blkset.blockref[0];
3831 			count = HAMMER2_SET_COUNT;
3832 			break;
3833 		default:
3834 			base = NULL;
3835 			count = 0;
3836 			panic("hammer2_flush_pass2: "
3837 			      "unrecognized blockref type: %d",
3838 			      parent->bref.type);
3839 		}
3840 
3841 		/*
3842 		 * delete blockmapped chain from its parent.
3843 		 *
3844 		 * The parent is not affected by any statistics in chain
3845 		 * which are pending synchronization.  That is, there is
3846 		 * nothing to undo in the parent since they have not yet
3847 		 * been incorporated into the parent.
3848 		 *
3849 		 * The parent is affected by statistics stored in inodes.
3850 		 * Those have already been synchronized, so they must be
3851 		 * undone.  XXX split update possible w/delete in middle?
3852 		 */
3853 		if (base) {
3854 			hammer2_base_delete(parent, base, count, chain, obref);
3855 		}
3856 		hammer2_spin_unex(&parent->core.spin);
3857 		hammer2_spin_unex(&chain->core.spin);
3858 	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3859 		/*
3860 		 * Chain is not blockmapped but a parent is present.
3861 		 * Atomically remove the chain from the parent.  There is
3862 		 * no blockmap entry to remove.
3863 		 *
3864 		 * Because chain was associated with a parent but not
3865 		 * synchronized, the chain's *_count_up fields contain
3866 		 * inode adjustment statistics which must be undone.
3867 		 */
3868 		hammer2_spin_ex(&chain->core.spin);
3869 		hammer2_spin_ex(&parent->core.spin);
3870 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3871 		atomic_add_int(&parent->core.live_count, -1);
3872 		++parent->core.generation;
3873 		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3874 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3875 		--parent->core.chain_count;
3876 		chain->parent = NULL;
3877 		hammer2_spin_unex(&parent->core.spin);
3878 		hammer2_spin_unex(&chain->core.spin);
3879 	} else {
3880 		/*
3881 		 * Chain is not blockmapped and has no parent.  This
3882 		 * is a degenerate case.
3883 		 */
3884 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3885 	}
3886 done:
3887 	return error;
3888 }
3889 
3890 /*
3891  * Create an indirect block that covers one or more of the elements in the
3892  * current parent.  Either returns the existing parent with no locking or
3893  * ref changes or returns the new indirect block locked and referenced
3894  * and leaving the original parent lock/ref intact as well.
3895  *
3896  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3897  *
3898  * The returned chain depends on where the specified key falls.
3899  *
3900  * The key/keybits for the indirect mode only needs to follow three rules:
3901  *
3902  * (1) That all elements underneath it fit within its key space and
3903  *
3904  * (2) That all elements outside it are outside its key space.
3905  *
3906  * (3) When creating the new indirect block any elements in the current
3907  *     parent that fit within the new indirect block's keyspace must be
3908  *     moved into the new indirect block.
3909  *
3910  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3911  *     keyspace the the current parent, but lookup/iteration rules will
3912  *     ensure (and must ensure) that rule (2) for all parents leading up
3913  *     to the nearest inode or the root volume header is adhered to.  This
3914  *     is accomplished by always recursing through matching keyspaces in
3915  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3916  *
3917  * The current implementation calculates the current worst-case keyspace by
3918  * iterating the current parent and then divides it into two halves, choosing
3919  * whichever half has the most elements (not necessarily the half containing
3920  * the requested key).
3921  *
3922  * We can also opt to use the half with the least number of elements.  This
3923  * causes lower-numbered keys (aka logical file offsets) to recurse through
3924  * fewer indirect blocks and higher-numbered keys to recurse through more.
3925  * This also has the risk of not moving enough elements to the new indirect
3926  * block and being forced to create several indirect blocks before the element
3927  * can be inserted.
3928  *
3929  * Must be called with an exclusively locked parent.
3930  *
3931  * NOTE: *errorp set to HAMMER_ERROR_* flags
3932  */
3933 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3934 				hammer2_key_t *keyp, int keybits,
3935 				hammer2_blockref_t *base, int count);
3936 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3937 				hammer2_key_t *keyp, int keybits,
3938 				hammer2_blockref_t *base, int count,
3939 				int ncount);
3940 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3941 				hammer2_key_t *keyp, int keybits,
3942 				hammer2_blockref_t *base, int count,
3943 				int ncount);
3944 static
3945 hammer2_chain_t *
3946 hammer2_chain_create_indirect(hammer2_chain_t *parent,
3947 			      hammer2_key_t create_key, int create_bits,
3948 			      hammer2_tid_t mtid, int for_type, int *errorp)
3949 {
3950 	hammer2_dev_t *hmp;
3951 	hammer2_blockref_t *base;
3952 	hammer2_blockref_t *bref;
3953 	hammer2_blockref_t bcopy;
3954 	hammer2_chain_t *chain;
3955 	hammer2_chain_t *ichain;
3956 	hammer2_chain_t dummy;
3957 	hammer2_key_t key = create_key;
3958 	hammer2_key_t key_beg;
3959 	hammer2_key_t key_end;
3960 	hammer2_key_t key_next;
3961 	int keybits = create_bits;
3962 	int count;
3963 	int ncount;
3964 	int nbytes;
3965 	int loops;
3966 	int error;
3967 	int reason;
3968 	int generation;
3969 	int maxloops = 300000;
3970 
3971 	/*
3972 	 * Calculate the base blockref pointer or NULL if the chain
3973 	 * is known to be empty.  We need to calculate the array count
3974 	 * for RB lookups either way.
3975 	 */
3976 	hmp = parent->hmp;
3977 	KKASSERT(hammer2_mtx_owned(&parent->lock));
3978 
3979 	/*
3980 	 * Pre-modify the parent now to avoid having to deal with error
3981 	 * processing if we tried to later (in the middle of our loop).
3982 	 *
3983 	 * We are going to be moving bref's around, the indirect blocks
3984 	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
3985 	 */
3986 	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3987 	if (*errorp) {
3988 		kprintf("hammer2_create_indirect: error %08x %s\n",
3989 			*errorp, hammer2_error_str(*errorp));
3990 		return NULL;
3991 	}
3992 	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3993 
3994 	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
3995 	base = hammer2_chain_base_and_count(parent, &count);
3996 
3997 	/*
3998 	 * dummy used in later chain allocation (no longer used for lookups).
3999 	 */
4000 	bzero(&dummy, sizeof(dummy));
4001 
4002 	/*
4003 	 * How big should our new indirect block be?  It has to be at least
4004 	 * as large as its parent for splits to work properly.
4005 	 *
4006 	 * The freemap uses a specific indirect block size.  The number of
4007 	 * levels are built dynamically and ultimately depend on the size
4008 	 * volume.  Because freemap blocks are taken from the reserved areas
4009 	 * of the volume our goal is efficiency (fewer levels) and not so
4010 	 * much to save disk space.
4011 	 *
4012 	 * The first indirect block level for a directory usually uses
4013 	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4014 	 * the hash mechanism, this typically gives us a nominal
4015 	 * 32 * 4 entries with one level of indirection.
4016 	 *
4017 	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4018 	 * indirect blocks.  The initial 4 entries in the inode gives us
4019 	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4020 	 * of indirection gives us 137GB, and so forth.  H2 can support
4021 	 * huge file sizes but they are not typical, so we try to stick
4022 	 * with compactness and do not use a larger indirect block size.
4023 	 *
4024 	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4025 	 * due to the way indirect blocks are created this usually winds
4026 	 * up being extremely inefficient for small files.  Even though
4027 	 * 16KB requires more levels of indirection for very large files,
4028 	 * the 16KB records can be ganged together into 64KB DIOs.
4029 	 */
4030 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4031 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4032 		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4033 	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4034 		if (parent->data->ipdata.meta.type ==
4035 		    HAMMER2_OBJTYPE_DIRECTORY)
4036 			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4037 		else
4038 			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4039 
4040 	} else {
4041 		nbytes = HAMMER2_IND_BYTES_NOM;
4042 	}
4043 	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4044 		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4045 			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4046 		nbytes = count * sizeof(hammer2_blockref_t);
4047 	}
4048 	ncount = nbytes / sizeof(hammer2_blockref_t);
4049 
4050 	/*
4051 	 * When creating an indirect block for a freemap node or leaf
4052 	 * the key/keybits must be fitted to static radix levels because
4053 	 * particular radix levels use particular reserved blocks in the
4054 	 * related zone.
4055 	 *
4056 	 * This routine calculates the key/radix of the indirect block
4057 	 * we need to create, and whether it is on the high-side or the
4058 	 * low-side.
4059 	 */
4060 	switch(for_type) {
4061 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4062 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4063 		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4064 						       base, count);
4065 		break;
4066 	case HAMMER2_BREF_TYPE_DATA:
4067 		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4068 						    base, count, ncount);
4069 		break;
4070 	case HAMMER2_BREF_TYPE_DIRENT:
4071 	case HAMMER2_BREF_TYPE_INODE:
4072 		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4073 						   base, count, ncount);
4074 		break;
4075 	default:
4076 		panic("illegal indirect block for bref type %d", for_type);
4077 		break;
4078 	}
4079 
4080 	/*
4081 	 * Normalize the key for the radix being represented, keeping the
4082 	 * high bits and throwing away the low bits.
4083 	 */
4084 	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4085 
4086 	/*
4087 	 * Ok, create our new indirect block
4088 	 */
4089 	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4090 	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4091 		dummy.bref.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4092 	} else {
4093 		dummy.bref.type = HAMMER2_BREF_TYPE_INDIRECT;
4094 	}
4095 	dummy.bref.key = key;
4096 	dummy.bref.keybits = keybits;
4097 	dummy.bref.data_off = hammer2_getradix(nbytes);
4098 	dummy.bref.methods =
4099 		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4100 		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4101 
4102 	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy.bref);
4103 	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4104 	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4105 	/* ichain has one ref at this point */
4106 
4107 	/*
4108 	 * We have to mark it modified to allocate its block, but use
4109 	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4110 	 * it won't be acted upon by the flush code.
4111 	 *
4112 	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4113 	 * be able to move the original blockref.
4114 	 */
4115 	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4116 	if (*errorp) {
4117 		kprintf("hammer2_alloc_indirect: error %08x %s\n",
4118 			*errorp, hammer2_error_str(*errorp));
4119 		hammer2_chain_unlock(ichain);
4120 		hammer2_chain_drop(ichain);
4121 		return NULL;
4122 	}
4123 	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4124 
4125 	/*
4126 	 * Iterate the original parent and move the matching brefs into
4127 	 * the new indirect block.
4128 	 *
4129 	 * XXX handle flushes.
4130 	 */
4131 	key_beg = 0;
4132 	key_end = HAMMER2_KEY_MAX;
4133 	key_next = 0;	/* avoid gcc warnings */
4134 	hammer2_spin_ex(&parent->core.spin);
4135 	loops = 0;
4136 	reason = 0;
4137 
4138 	for (;;) {
4139 		/*
4140 		 * Parent may have been modified, relocating its block array.
4141 		 * Reload the base pointer.
4142 		 */
4143 		base = hammer2_chain_base_and_count(parent, &count);
4144 
4145 		if (++loops > 100000) {
4146 		    hammer2_spin_unex(&parent->core.spin);
4147 		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4148 			  reason, parent, base, count, key_next);
4149 		}
4150 
4151 		/*
4152 		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4153 		 *	 is not referenced or locked which means that we
4154 		 *	 cannot safely check its flagged / deletion status
4155 		 *	 until we lock it.
4156 		 */
4157 		chain = hammer2_combined_find(parent, base, count,
4158 					      &key_next,
4159 					      key_beg, key_end,
4160 					      &bref);
4161 		generation = parent->core.generation;
4162 		if (bref == NULL)
4163 			break;
4164 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4165 
4166 		/*
4167 		 * Skip keys that are not within the key/radix of the new
4168 		 * indirect block.  They stay in the parent.
4169 		 */
4170 		if ((~(((hammer2_key_t)1 << keybits) - 1) &
4171 		    (key ^ bref->key)) != 0) {
4172 			goto next_key_spinlocked;
4173 		}
4174 
4175 		/*
4176 		 * Load the new indirect block by acquiring the related
4177 		 * chains (potentially from media as it might not be
4178 		 * in-memory).  Then move it to the new parent (ichain).
4179 		 *
4180 		 * chain is referenced but not locked.  We must lock the
4181 		 * chain to obtain definitive state.
4182 		 */
4183 		bcopy = *bref;
4184 		if (chain) {
4185 			/*
4186 			 * Use chain already present in the RBTREE
4187 			 */
4188 			hammer2_chain_ref(chain);
4189 			hammer2_spin_unex(&parent->core.spin);
4190 			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4191 		} else {
4192 			/*
4193 			 * Get chain for blockref element.  _get returns NULL
4194 			 * on insertion race.
4195 			 */
4196 			hammer2_spin_unex(&parent->core.spin);
4197 			chain = hammer2_chain_get(parent, generation, &bcopy,
4198 						  HAMMER2_RESOLVE_NEVER);
4199 			if (chain == NULL) {
4200 				reason = 1;
4201 				hammer2_spin_ex(&parent->core.spin);
4202 				continue;
4203 			}
4204 		}
4205 
4206 		/*
4207 		 * This is always live so if the chain has been deleted
4208 		 * we raced someone and we have to retry.
4209 		 *
4210 		 * NOTE: Lookups can race delete-duplicate because
4211 		 *	 delete-duplicate does not lock the parent's core
4212 		 *	 (they just use the spinlock on the core).
4213 		 *
4214 		 *	 (note reversed logic for this one)
4215 		 */
4216 		if (bcmp(&bcopy, &chain->bref, sizeof(bcopy)) ||
4217 		    chain->parent != parent ||
4218 		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4219 			hammer2_chain_unlock(chain);
4220 			hammer2_chain_drop(chain);
4221 			if (hammer2_debug & 0x0040) {
4222 				kprintf("LOST PARENT RETRY "
4223 				"RETRY (%p,%p)->%p %08x\n",
4224 				parent, chain->parent, chain, chain->flags);
4225 			}
4226 			hammer2_spin_ex(&parent->core.spin);
4227 			continue;
4228 		}
4229 
4230 		/*
4231 		 * Shift the chain to the indirect block.
4232 		 *
4233 		 * WARNING! No reason for us to load chain data, pass NOSTATS
4234 		 *	    to prevent delete/insert from trying to access
4235 		 *	    inode stats (and thus asserting if there is no
4236 		 *	    chain->data loaded).
4237 		 *
4238 		 * WARNING! The (parent, chain) deletion may modify the parent
4239 		 *	    and invalidate the base pointer.
4240 		 *
4241 		 * WARNING! Parent must already be marked modified, so we
4242 		 *	    can assume that chain_delete always suceeds.
4243 		 *
4244 		 * WARNING! hammer2_chain_repchange() does not have to be
4245 		 *	    called (and doesn't work anyway because we are
4246 		 *	    only doing a partial shift).  A recursion that is
4247 		 *	    in-progress can continue at the current parent
4248 		 *	    and will be able to properly find its next key.
4249 		 */
4250 		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4251 						   &bcopy);
4252 		KKASSERT(error == 0);
4253 		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bcopy);
4254 		hammer2_chain_unlock(chain);
4255 		hammer2_chain_drop(chain);
4256 		KKASSERT(parent->refs > 0);
4257 		chain = NULL;
4258 		base = NULL;	/* safety */
4259 		hammer2_spin_ex(&parent->core.spin);
4260 next_key_spinlocked:
4261 		if (--maxloops == 0)
4262 			panic("hammer2_chain_create_indirect: maxloops");
4263 		reason = 4;
4264 		if (key_next == 0 || key_next > key_end)
4265 			break;
4266 		key_beg = key_next;
4267 		/* loop */
4268 	}
4269 	hammer2_spin_unex(&parent->core.spin);
4270 
4271 	/*
4272 	 * Insert the new indirect block into the parent now that we've
4273 	 * cleared out some entries in the parent.  We calculated a good
4274 	 * insertion index in the loop above (ichain->index).
4275 	 *
4276 	 * We don't have to set UPDATE here because we mark ichain
4277 	 * modified down below (so the normal modified -> flush -> set-moved
4278 	 * sequence applies).
4279 	 *
4280 	 * The insertion shouldn't race as this is a completely new block
4281 	 * and the parent is locked.
4282 	 */
4283 	base = NULL;	/* safety, parent modify may change address */
4284 	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4285 	KKASSERT(parent->core.live_count < count);
4286 	hammer2_chain_insert(parent, ichain,
4287 			     HAMMER2_CHAIN_INSERT_SPIN |
4288 			     HAMMER2_CHAIN_INSERT_LIVE,
4289 			     0);
4290 
4291 	/*
4292 	 * Make sure flushes propogate after our manual insertion.
4293 	 */
4294 	hammer2_chain_setflush(ichain);
4295 	hammer2_chain_setflush(parent);
4296 
4297 	/*
4298 	 * Figure out what to return.
4299 	 */
4300 	if (~(((hammer2_key_t)1 << keybits) - 1) &
4301 		   (create_key ^ key)) {
4302 		/*
4303 		 * Key being created is outside the key range,
4304 		 * return the original parent.
4305 		 */
4306 		hammer2_chain_unlock(ichain);
4307 		hammer2_chain_drop(ichain);
4308 	} else {
4309 		/*
4310 		 * Otherwise its in the range, return the new parent.
4311 		 * (leave both the new and old parent locked).
4312 		 */
4313 		parent = ichain;
4314 	}
4315 
4316 	return(parent);
4317 }
4318 
4319 /*
4320  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4321  *
4322  * Returns non-zero if (chain) is deleted, either due to being empty or
4323  * because its children were safely moved into the parent.
4324  */
4325 int
4326 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4327 				   hammer2_chain_t *chain)
4328 {
4329 	hammer2_blockref_t *chain_base;
4330 	hammer2_blockref_t *base;
4331 	hammer2_blockref_t *bref;
4332 	hammer2_blockref_t bcopy;
4333 	hammer2_key_t key_next;
4334 	hammer2_key_t key_beg;
4335 	hammer2_key_t key_end;
4336 	hammer2_chain_t *sub;
4337 	int chain_count;
4338 	int count;
4339 	int error;
4340 	int generation;
4341 
4342 	/*
4343 	 * Make sure we have an accurate live_count
4344 	 */
4345 	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4346 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4347 		base = &chain->data->npdata[0];
4348 		count = chain->bytes / sizeof(hammer2_blockref_t);
4349 		hammer2_chain_countbrefs(chain, base, count);
4350 	}
4351 
4352 	/*
4353 	 * If the indirect block is empty we can delete it.
4354 	 * (ignore deletion error)
4355 	 */
4356 	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4357 		hammer2_chain_delete(parent, chain,
4358 				     chain->bref.modify_tid,
4359 				     HAMMER2_DELETE_PERMANENT);
4360 		hammer2_chain_repchange(parent, chain);
4361 		return 1;
4362 	}
4363 
4364 	base = hammer2_chain_base_and_count(parent, &count);
4365 
4366 	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4367 			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4368 		hammer2_chain_countbrefs(parent, base, count);
4369 	}
4370 
4371 	/*
4372 	 * Determine if we can collapse chain into parent, calculate
4373 	 * hysteresis for chain emptiness.
4374 	 */
4375 	if (parent->core.live_count + chain->core.live_count - 1 > count)
4376 		return 0;
4377 	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4378 	if (chain->core.live_count > chain_count * 3 / 4)
4379 		return 0;
4380 
4381 	/*
4382 	 * Ok, theoretically we can collapse chain's contents into
4383 	 * parent.  chain is locked, but any in-memory children of chain
4384 	 * are not.  For this to work, we must be able to dispose of any
4385 	 * in-memory children of chain.
4386 	 *
4387 	 * For now require that there are no in-memory children of chain.
4388 	 *
4389 	 * WARNING! Both chain and parent must remain locked across this
4390 	 *	    entire operation.
4391 	 */
4392 
4393 	/*
4394 	 * Parent must be marked modified.  Don't try to collapse it if we
4395 	 * can't mark it modified.  Once modified, destroy chain to make room
4396 	 * and to get rid of what will be a conflicting key (this is included
4397 	 * in the calculation above).  Finally, move the children of chain
4398 	 * into chain's parent.
4399 	 *
4400 	 * This order creates an accounting problem for bref.embed.stats
4401 	 * because we destroy chain before we remove its children.  Any
4402 	 * elements whos blockref is already synchronized will be counted
4403 	 * twice.  To deal with the problem we clean out chain's stats prior
4404 	 * to deleting it.
4405 	 */
4406 	error = hammer2_chain_modify(parent, 0, 0, 0);
4407 	if (error) {
4408 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4409 			    hammer2_error_str(error));
4410 		return 0;
4411 	}
4412 	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4413 	if (error) {
4414 		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4415 			    hammer2_error_str(error));
4416 		return 0;
4417 	}
4418 
4419 	chain->bref.embed.stats.inode_count = 0;
4420 	chain->bref.embed.stats.data_count = 0;
4421 	error = hammer2_chain_delete(parent, chain,
4422 				     chain->bref.modify_tid,
4423 				     HAMMER2_DELETE_PERMANENT);
4424 	KKASSERT(error == 0);
4425 
4426 	/*
4427 	 * The combined_find call requires core.spin to be held.  One would
4428 	 * think there wouldn't be any conflicts since we hold chain
4429 	 * exclusively locked, but the caching mechanism for 0-ref children
4430 	 * does not require a chain lock.
4431 	 */
4432 	hammer2_spin_ex(&chain->core.spin);
4433 
4434 	key_next = 0;
4435 	key_beg = 0;
4436 	key_end = HAMMER2_KEY_MAX;
4437 	for (;;) {
4438 		chain_base = &chain->data->npdata[0];
4439 		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4440 		sub = hammer2_combined_find(chain, chain_base, chain_count,
4441 					    &key_next,
4442 					    key_beg, key_end,
4443 					    &bref);
4444 		generation = chain->core.generation;
4445 		if (bref == NULL)
4446 			break;
4447 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4448 
4449 		bcopy = *bref;
4450 		if (sub) {
4451 			hammer2_chain_ref(sub);
4452 			hammer2_spin_unex(&chain->core.spin);
4453 			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4454 		} else {
4455 			hammer2_spin_unex(&chain->core.spin);
4456 			sub = hammer2_chain_get(chain, generation, &bcopy,
4457 						HAMMER2_RESOLVE_NEVER);
4458 			if (sub == NULL) {
4459 				hammer2_spin_ex(&chain->core.spin);
4460 				continue;
4461 			}
4462 		}
4463 		if (bcmp(&bcopy, &sub->bref, sizeof(bcopy)) ||
4464 		    sub->parent != chain ||
4465 		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4466 			hammer2_chain_unlock(sub);
4467 			hammer2_chain_drop(sub);
4468 			hammer2_spin_ex(&chain->core.spin);
4469 			sub = NULL;	/* safety */
4470 			continue;
4471 		}
4472 		error = hammer2_chain_delete_obref(chain, sub,
4473 						   sub->bref.modify_tid, 0,
4474 						   &bcopy);
4475 		KKASSERT(error == 0);
4476 		hammer2_chain_rename_obref(&parent, sub,
4477 				     sub->bref.modify_tid,
4478 				     HAMMER2_INSERT_SAMEPARENT, &bcopy);
4479 		hammer2_chain_unlock(sub);
4480 		hammer2_chain_drop(sub);
4481 		hammer2_spin_ex(&chain->core.spin);
4482 
4483 		if (key_next == 0)
4484 			break;
4485 		key_beg = key_next;
4486 	}
4487 	hammer2_spin_unex(&chain->core.spin);
4488 
4489 	hammer2_chain_repchange(parent, chain);
4490 
4491 	return 1;
4492 }
4493 
4494 /*
4495  * Freemap indirect blocks
4496  *
4497  * Calculate the keybits and highside/lowside of the freemap node the
4498  * caller is creating.
4499  *
4500  * This routine will specify the next higher-level freemap key/radix
4501  * representing the lowest-ordered set.  By doing so, eventually all
4502  * low-ordered sets will be moved one level down.
4503  *
4504  * We have to be careful here because the freemap reserves a limited
4505  * number of blocks for a limited number of levels.  So we can't just
4506  * push indiscriminately.
4507  */
4508 int
4509 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4510 			     int keybits, hammer2_blockref_t *base, int count)
4511 {
4512 	hammer2_chain_t *chain;
4513 	hammer2_blockref_t *bref;
4514 	hammer2_key_t key;
4515 	hammer2_key_t key_beg;
4516 	hammer2_key_t key_end;
4517 	hammer2_key_t key_next;
4518 	int locount;
4519 	int hicount;
4520 	int maxloops = 300000;
4521 
4522 	key = *keyp;
4523 	locount = 0;
4524 	hicount = 0;
4525 	keybits = 64;
4526 
4527 	/*
4528 	 * Calculate the range of keys in the array being careful to skip
4529 	 * slots which are overridden with a deletion.
4530 	 */
4531 	key_beg = 0;
4532 	key_end = HAMMER2_KEY_MAX;
4533 	hammer2_spin_ex(&parent->core.spin);
4534 
4535 	for (;;) {
4536 		if (--maxloops == 0) {
4537 			panic("indkey_freemap shit %p %p:%d\n",
4538 			      parent, base, count);
4539 		}
4540 		chain = hammer2_combined_find(parent, base, count,
4541 					      &key_next,
4542 					      key_beg, key_end,
4543 					      &bref);
4544 
4545 		/*
4546 		 * Exhausted search
4547 		 */
4548 		if (bref == NULL)
4549 			break;
4550 
4551 		/*
4552 		 * Skip deleted chains.
4553 		 */
4554 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4555 			if (key_next == 0 || key_next > key_end)
4556 				break;
4557 			key_beg = key_next;
4558 			continue;
4559 		}
4560 
4561 		/*
4562 		 * Use the full live (not deleted) element for the scan
4563 		 * iteration.  HAMMER2 does not allow partial replacements.
4564 		 *
4565 		 * XXX should be built into hammer2_combined_find().
4566 		 */
4567 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4568 
4569 		if (keybits > bref->keybits) {
4570 			key = bref->key;
4571 			keybits = bref->keybits;
4572 		} else if (keybits == bref->keybits && bref->key < key) {
4573 			key = bref->key;
4574 		}
4575 		if (key_next == 0)
4576 			break;
4577 		key_beg = key_next;
4578 	}
4579 	hammer2_spin_unex(&parent->core.spin);
4580 
4581 	/*
4582 	 * Return the keybits for a higher-level FREEMAP_NODE covering
4583 	 * this node.
4584 	 */
4585 	switch(keybits) {
4586 	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4587 		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4588 		break;
4589 	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4590 		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4591 		break;
4592 	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4593 		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4594 		break;
4595 	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4596 		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4597 		break;
4598 	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4599 		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4600 		break;
4601 	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4602 		panic("hammer2_chain_indkey_freemap: level too high");
4603 		break;
4604 	default:
4605 		panic("hammer2_chain_indkey_freemap: bad radix");
4606 		break;
4607 	}
4608 	*keyp = key;
4609 
4610 	return (keybits);
4611 }
4612 
4613 /*
4614  * File indirect blocks
4615  *
4616  * Calculate the key/keybits for the indirect block to create by scanning
4617  * existing keys.  The key being created is also passed in *keyp and can be
4618  * inside or outside the indirect block.  Regardless, the indirect block
4619  * must hold at least two keys in order to guarantee sufficient space.
4620  *
4621  * We use a modified version of the freemap's fixed radix tree, but taylored
4622  * for file data.  Basically we configure an indirect block encompassing the
4623  * smallest key.
4624  */
4625 static int
4626 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4627 			    int keybits, hammer2_blockref_t *base, int count,
4628 			    int ncount)
4629 {
4630 	hammer2_chain_t *chain;
4631 	hammer2_blockref_t *bref;
4632 	hammer2_key_t key;
4633 	hammer2_key_t key_beg;
4634 	hammer2_key_t key_end;
4635 	hammer2_key_t key_next;
4636 	int nradix;
4637 	int locount;
4638 	int hicount;
4639 	int maxloops = 300000;
4640 
4641 	key = *keyp;
4642 	locount = 0;
4643 	hicount = 0;
4644 	keybits = 64;
4645 
4646 	/*
4647 	 * Calculate the range of keys in the array being careful to skip
4648 	 * slots which are overridden with a deletion.
4649 	 *
4650 	 * Locate the smallest key.
4651 	 */
4652 	key_beg = 0;
4653 	key_end = HAMMER2_KEY_MAX;
4654 	hammer2_spin_ex(&parent->core.spin);
4655 
4656 	for (;;) {
4657 		if (--maxloops == 0) {
4658 			panic("indkey_freemap shit %p %p:%d\n",
4659 			      parent, base, count);
4660 		}
4661 		chain = hammer2_combined_find(parent, base, count,
4662 					      &key_next,
4663 					      key_beg, key_end,
4664 					      &bref);
4665 
4666 		/*
4667 		 * Exhausted search
4668 		 */
4669 		if (bref == NULL)
4670 			break;
4671 
4672 		/*
4673 		 * Skip deleted chains.
4674 		 */
4675 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4676 			if (key_next == 0 || key_next > key_end)
4677 				break;
4678 			key_beg = key_next;
4679 			continue;
4680 		}
4681 
4682 		/*
4683 		 * Use the full live (not deleted) element for the scan
4684 		 * iteration.  HAMMER2 does not allow partial replacements.
4685 		 *
4686 		 * XXX should be built into hammer2_combined_find().
4687 		 */
4688 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4689 
4690 		if (keybits > bref->keybits) {
4691 			key = bref->key;
4692 			keybits = bref->keybits;
4693 		} else if (keybits == bref->keybits && bref->key < key) {
4694 			key = bref->key;
4695 		}
4696 		if (key_next == 0)
4697 			break;
4698 		key_beg = key_next;
4699 	}
4700 	hammer2_spin_unex(&parent->core.spin);
4701 
4702 	/*
4703 	 * Calculate the static keybits for a higher-level indirect block
4704 	 * that contains the key.
4705 	 */
4706 	*keyp = key;
4707 
4708 	switch(ncount) {
4709 	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4710 		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4711 		break;
4712 	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4713 		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4714 		break;
4715 	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4716 		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4717 		break;
4718 	default:
4719 		panic("bad ncount %d\n", ncount);
4720 		nradix = 0;
4721 		break;
4722 	}
4723 
4724 	/*
4725 	 * The largest radix that can be returned for an indirect block is
4726 	 * 63 bits.  (The largest practical indirect block radix is actually
4727 	 * 62 bits because the top-level inode or volume root contains four
4728 	 * entries, but allow 63 to be returned).
4729 	 */
4730 	if (nradix >= 64)
4731 		nradix = 63;
4732 
4733 	return keybits + nradix;
4734 }
4735 
4736 #if 1
4737 
4738 /*
4739  * Directory indirect blocks.
4740  *
4741  * Covers both the inode index (directory of inodes), and directory contents
4742  * (filenames hardlinked to inodes).
4743  *
4744  * Because directory keys are hashed we generally try to cut the space in
4745  * half.  We accomodate the inode index (which tends to have linearly
4746  * increasing inode numbers) by ensuring that the keyspace is at least large
4747  * enough to fill up the indirect block being created.
4748  */
4749 static int
4750 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4751 			 int keybits, hammer2_blockref_t *base, int count,
4752 			 int ncount)
4753 {
4754 	hammer2_blockref_t *bref;
4755 	hammer2_chain_t	*chain;
4756 	hammer2_key_t key_beg;
4757 	hammer2_key_t key_end;
4758 	hammer2_key_t key_next;
4759 	hammer2_key_t key;
4760 	int nkeybits;
4761 	int locount;
4762 	int hicount;
4763 	int maxloops = 300000;
4764 
4765 	/*
4766 	 * NOTE: We can't take a shortcut here anymore for inodes because
4767 	 *	 the root directory can contain a mix of inodes and directory
4768 	 *	 entries (we used to just return 63 if parent->bref.type was
4769 	 *	 HAMMER2_BREF_TYPE_INODE.
4770 	 */
4771 	key = *keyp;
4772 	locount = 0;
4773 	hicount = 0;
4774 
4775 	/*
4776 	 * Calculate the range of keys in the array being careful to skip
4777 	 * slots which are overridden with a deletion.
4778 	 */
4779 	key_beg = 0;
4780 	key_end = HAMMER2_KEY_MAX;
4781 	hammer2_spin_ex(&parent->core.spin);
4782 
4783 	for (;;) {
4784 		if (--maxloops == 0) {
4785 			panic("indkey_freemap shit %p %p:%d\n",
4786 			      parent, base, count);
4787 		}
4788 		chain = hammer2_combined_find(parent, base, count,
4789 					      &key_next,
4790 					      key_beg, key_end,
4791 					      &bref);
4792 
4793 		/*
4794 		 * Exhausted search
4795 		 */
4796 		if (bref == NULL)
4797 			break;
4798 
4799 		/*
4800 		 * Deleted object
4801 		 */
4802 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4803 			if (key_next == 0 || key_next > key_end)
4804 				break;
4805 			key_beg = key_next;
4806 			continue;
4807 		}
4808 
4809 		/*
4810 		 * Use the full live (not deleted) element for the scan
4811 		 * iteration.  HAMMER2 does not allow partial replacements.
4812 		 *
4813 		 * XXX should be built into hammer2_combined_find().
4814 		 */
4815 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4816 
4817 		/*
4818 		 * Expand our calculated key range (key, keybits) to fit
4819 		 * the scanned key.  nkeybits represents the full range
4820 		 * that we will later cut in half (two halves @ nkeybits - 1).
4821 		 */
4822 		nkeybits = keybits;
4823 		if (nkeybits < bref->keybits) {
4824 			if (bref->keybits > 64) {
4825 				kprintf("bad bref chain %p bref %p\n",
4826 					chain, bref);
4827 				Debugger("fubar");
4828 			}
4829 			nkeybits = bref->keybits;
4830 		}
4831 		while (nkeybits < 64 &&
4832 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
4833 		        (key ^ bref->key)) != 0) {
4834 			++nkeybits;
4835 		}
4836 
4837 		/*
4838 		 * If the new key range is larger we have to determine
4839 		 * which side of the new key range the existing keys fall
4840 		 * under by checking the high bit, then collapsing the
4841 		 * locount into the hicount or vise-versa.
4842 		 */
4843 		if (keybits != nkeybits) {
4844 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4845 				hicount += locount;
4846 				locount = 0;
4847 			} else {
4848 				locount += hicount;
4849 				hicount = 0;
4850 			}
4851 			keybits = nkeybits;
4852 		}
4853 
4854 		/*
4855 		 * The newly scanned key will be in the lower half or the
4856 		 * upper half of the (new) key range.
4857 		 */
4858 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4859 			++hicount;
4860 		else
4861 			++locount;
4862 
4863 		if (key_next == 0)
4864 			break;
4865 		key_beg = key_next;
4866 	}
4867 	hammer2_spin_unex(&parent->core.spin);
4868 	bref = NULL;	/* now invalid (safety) */
4869 
4870 	/*
4871 	 * Adjust keybits to represent half of the full range calculated
4872 	 * above (radix 63 max) for our new indirect block.
4873 	 */
4874 	--keybits;
4875 
4876 	/*
4877 	 * Expand keybits to hold at least ncount elements.  ncount will be
4878 	 * a power of 2.  This is to try to completely fill leaf nodes (at
4879 	 * least for keys which are not hashes).
4880 	 *
4881 	 * We aren't counting 'in' or 'out', we are counting 'high side'
4882 	 * and 'low side' based on the bit at (1LL << keybits).  We want
4883 	 * everything to be inside in these cases so shift it all to
4884 	 * the low or high side depending on the new high bit.
4885 	 */
4886 	while (((hammer2_key_t)1 << keybits) < ncount) {
4887 		++keybits;
4888 		if (key & ((hammer2_key_t)1 << keybits)) {
4889 			hicount += locount;
4890 			locount = 0;
4891 		} else {
4892 			locount += hicount;
4893 			hicount = 0;
4894 		}
4895 	}
4896 
4897 	if (hicount > locount)
4898 		key |= (hammer2_key_t)1 << keybits;
4899 	else
4900 		key &= ~(hammer2_key_t)1 << keybits;
4901 
4902 	*keyp = key;
4903 
4904 	return (keybits);
4905 }
4906 
4907 #else
4908 
4909 /*
4910  * Directory indirect blocks.
4911  *
4912  * Covers both the inode index (directory of inodes), and directory contents
4913  * (filenames hardlinked to inodes).
4914  *
4915  * Because directory keys are hashed we generally try to cut the space in
4916  * half.  We accomodate the inode index (which tends to have linearly
4917  * increasing inode numbers) by ensuring that the keyspace is at least large
4918  * enough to fill up the indirect block being created.
4919  */
4920 static int
4921 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4922 			 int keybits, hammer2_blockref_t *base, int count,
4923 			 int ncount)
4924 {
4925 	hammer2_blockref_t *bref;
4926 	hammer2_chain_t	*chain;
4927 	hammer2_key_t key_beg;
4928 	hammer2_key_t key_end;
4929 	hammer2_key_t key_next;
4930 	hammer2_key_t key;
4931 	int nkeybits;
4932 	int locount;
4933 	int hicount;
4934 	int maxloops = 300000;
4935 
4936 	/*
4937 	 * Shortcut if the parent is the inode.  In this situation the
4938 	 * parent has 4+1 directory entries and we are creating an indirect
4939 	 * block capable of holding many more.
4940 	 */
4941 	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4942 		return 63;
4943 	}
4944 
4945 	key = *keyp;
4946 	locount = 0;
4947 	hicount = 0;
4948 
4949 	/*
4950 	 * Calculate the range of keys in the array being careful to skip
4951 	 * slots which are overridden with a deletion.
4952 	 */
4953 	key_beg = 0;
4954 	key_end = HAMMER2_KEY_MAX;
4955 	hammer2_spin_ex(&parent->core.spin);
4956 
4957 	for (;;) {
4958 		if (--maxloops == 0) {
4959 			panic("indkey_freemap shit %p %p:%d\n",
4960 			      parent, base, count);
4961 		}
4962 		chain = hammer2_combined_find(parent, base, count,
4963 					      &key_next,
4964 					      key_beg, key_end,
4965 					      &bref);
4966 
4967 		/*
4968 		 * Exhausted search
4969 		 */
4970 		if (bref == NULL)
4971 			break;
4972 
4973 		/*
4974 		 * Deleted object
4975 		 */
4976 		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4977 			if (key_next == 0 || key_next > key_end)
4978 				break;
4979 			key_beg = key_next;
4980 			continue;
4981 		}
4982 
4983 		/*
4984 		 * Use the full live (not deleted) element for the scan
4985 		 * iteration.  HAMMER2 does not allow partial replacements.
4986 		 *
4987 		 * XXX should be built into hammer2_combined_find().
4988 		 */
4989 		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4990 
4991 		/*
4992 		 * Expand our calculated key range (key, keybits) to fit
4993 		 * the scanned key.  nkeybits represents the full range
4994 		 * that we will later cut in half (two halves @ nkeybits - 1).
4995 		 */
4996 		nkeybits = keybits;
4997 		if (nkeybits < bref->keybits) {
4998 			if (bref->keybits > 64) {
4999 				kprintf("bad bref chain %p bref %p\n",
5000 					chain, bref);
5001 				Debugger("fubar");
5002 			}
5003 			nkeybits = bref->keybits;
5004 		}
5005 		while (nkeybits < 64 &&
5006 		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
5007 		        (key ^ bref->key)) != 0) {
5008 			++nkeybits;
5009 		}
5010 
5011 		/*
5012 		 * If the new key range is larger we have to determine
5013 		 * which side of the new key range the existing keys fall
5014 		 * under by checking the high bit, then collapsing the
5015 		 * locount into the hicount or vise-versa.
5016 		 */
5017 		if (keybits != nkeybits) {
5018 			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5019 				hicount += locount;
5020 				locount = 0;
5021 			} else {
5022 				locount += hicount;
5023 				hicount = 0;
5024 			}
5025 			keybits = nkeybits;
5026 		}
5027 
5028 		/*
5029 		 * The newly scanned key will be in the lower half or the
5030 		 * upper half of the (new) key range.
5031 		 */
5032 		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5033 			++hicount;
5034 		else
5035 			++locount;
5036 
5037 		if (key_next == 0)
5038 			break;
5039 		key_beg = key_next;
5040 	}
5041 	hammer2_spin_unex(&parent->core.spin);
5042 	bref = NULL;	/* now invalid (safety) */
5043 
5044 	/*
5045 	 * Adjust keybits to represent half of the full range calculated
5046 	 * above (radix 63 max) for our new indirect block.
5047 	 */
5048 	--keybits;
5049 
5050 	/*
5051 	 * Expand keybits to hold at least ncount elements.  ncount will be
5052 	 * a power of 2.  This is to try to completely fill leaf nodes (at
5053 	 * least for keys which are not hashes).
5054 	 *
5055 	 * We aren't counting 'in' or 'out', we are counting 'high side'
5056 	 * and 'low side' based on the bit at (1LL << keybits).  We want
5057 	 * everything to be inside in these cases so shift it all to
5058 	 * the low or high side depending on the new high bit.
5059 	 */
5060 	while (((hammer2_key_t)1 << keybits) < ncount) {
5061 		++keybits;
5062 		if (key & ((hammer2_key_t)1 << keybits)) {
5063 			hicount += locount;
5064 			locount = 0;
5065 		} else {
5066 			locount += hicount;
5067 			hicount = 0;
5068 		}
5069 	}
5070 
5071 	if (hicount > locount)
5072 		key |= (hammer2_key_t)1 << keybits;
5073 	else
5074 		key &= ~(hammer2_key_t)1 << keybits;
5075 
5076 	*keyp = key;
5077 
5078 	return (keybits);
5079 }
5080 
5081 #endif
5082 
5083 /*
5084  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5085  * it exists.
5086  *
5087  * Both parent and chain must be locked exclusively.
5088  *
5089  * This function will modify the parent if the blockref requires removal
5090  * from the parent's block table.
5091  *
5092  * This function is NOT recursive.  Any entity already pushed into the
5093  * chain (such as an inode) may still need visibility into its contents,
5094  * as well as the ability to read and modify the contents.  For example,
5095  * for an unlinked file which is still open.
5096  *
5097  * Also note that the flusher is responsible for cleaning up empty
5098  * indirect blocks.
5099  */
5100 int
5101 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5102 		     hammer2_tid_t mtid, int flags)
5103 {
5104 	int error = 0;
5105 
5106 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5107 
5108 	/*
5109 	 * Nothing to do if already marked.
5110 	 *
5111 	 * We need the spinlock on the core whos RBTREE contains chain
5112 	 * to protect against races.
5113 	 */
5114 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5115 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5116 			 chain->parent == parent);
5117 		error = _hammer2_chain_delete_helper(parent, chain,
5118 						     mtid, flags, NULL);
5119 	}
5120 
5121 	/*
5122 	 * Permanent deletions mark the chain as destroyed.
5123 	 *
5124 	 * NOTE: We do not setflush the chain unless the deletion is
5125 	 *	 permanent, since the deletion of a chain does not actually
5126 	 *	 require it to be flushed.
5127 	 */
5128 	if (error == 0) {
5129 		if (flags & HAMMER2_DELETE_PERMANENT) {
5130 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5131 			hammer2_chain_setflush(chain);
5132 		}
5133 	}
5134 
5135 	return error;
5136 }
5137 
5138 static int
5139 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5140 		     hammer2_tid_t mtid, int flags,
5141 		     hammer2_blockref_t *obref)
5142 {
5143 	int error = 0;
5144 
5145 	KKASSERT(hammer2_mtx_owned(&chain->lock));
5146 
5147 	/*
5148 	 * Nothing to do if already marked.
5149 	 *
5150 	 * We need the spinlock on the core whos RBTREE contains chain
5151 	 * to protect against races.
5152 	 */
5153 	obref->type = 0;
5154 	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5155 		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5156 			 chain->parent == parent);
5157 		error = _hammer2_chain_delete_helper(parent, chain,
5158 						     mtid, flags, obref);
5159 	}
5160 
5161 	/*
5162 	 * Permanent deletions mark the chain as destroyed.
5163 	 *
5164 	 * NOTE: We do not setflush the chain unless the deletion is
5165 	 *	 permanent, since the deletion of a chain does not actually
5166 	 *	 require it to be flushed.
5167 	 */
5168 	if (error == 0) {
5169 		if (flags & HAMMER2_DELETE_PERMANENT) {
5170 			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5171 			hammer2_chain_setflush(chain);
5172 		}
5173 	}
5174 
5175 	return error;
5176 }
5177 
5178 /*
5179  * Returns the index of the nearest element in the blockref array >= elm.
5180  * Returns (count) if no element could be found.
5181  *
5182  * Sets *key_nextp to the next key for loop purposes but does not modify
5183  * it if the next key would be higher than the current value of *key_nextp.
5184  * Note that *key_nexp can overflow to 0, which should be tested by the
5185  * caller.
5186  *
5187  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5188  *	     held through the operation.
5189  */
5190 static int
5191 hammer2_base_find(hammer2_chain_t *parent,
5192 		  hammer2_blockref_t *base, int count,
5193 		  hammer2_key_t *key_nextp,
5194 		  hammer2_key_t key_beg, hammer2_key_t key_end)
5195 {
5196 	hammer2_blockref_t *scan;
5197 	hammer2_key_t scan_end;
5198 	int i;
5199 	int limit;
5200 
5201 	/*
5202 	 * Require the live chain's already have their core's counted
5203 	 * so we can optimize operations.
5204 	 */
5205         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5206 
5207 	/*
5208 	 * Degenerate case
5209 	 */
5210 	if (count == 0 || base == NULL)
5211 		return(count);
5212 
5213 	/*
5214 	 * Sequential optimization using parent->cache_index.  This is
5215 	 * the most likely scenario.
5216 	 *
5217 	 * We can avoid trailing empty entries on live chains, otherwise
5218 	 * we might have to check the whole block array.
5219 	 */
5220 	i = parent->cache_index;	/* SMP RACE OK */
5221 	cpu_ccfence();
5222 	limit = parent->core.live_zero;
5223 	if (i >= limit)
5224 		i = limit - 1;
5225 	if (i < 0)
5226 		i = 0;
5227 	KKASSERT(i < count);
5228 
5229 	/*
5230 	 * Search backwards
5231 	 */
5232 	scan = &base[i];
5233 	while (i > 0 && (scan->type == 0 || scan->key > key_beg)) {
5234 		--scan;
5235 		--i;
5236 	}
5237 	parent->cache_index = i;
5238 
5239 	/*
5240 	 * Search forwards, stop when we find a scan element which
5241 	 * encloses the key or until we know that there are no further
5242 	 * elements.
5243 	 */
5244 	while (i < count) {
5245 		if (scan->type != 0) {
5246 			scan_end = scan->key +
5247 				   ((hammer2_key_t)1 << scan->keybits) - 1;
5248 			if (scan->key > key_beg || scan_end >= key_beg)
5249 				break;
5250 		}
5251 		if (i >= limit)
5252 			return (count);
5253 		++scan;
5254 		++i;
5255 	}
5256 	if (i != count) {
5257 		parent->cache_index = i;
5258 		if (i >= limit) {
5259 			i = count;
5260 		} else {
5261 			scan_end = scan->key +
5262 				   ((hammer2_key_t)1 << scan->keybits);
5263 			if (scan_end && (*key_nextp > scan_end ||
5264 					 *key_nextp == 0)) {
5265 				*key_nextp = scan_end;
5266 			}
5267 		}
5268 	}
5269 	return (i);
5270 }
5271 
5272 /*
5273  * Do a combined search and return the next match either from the blockref
5274  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5275  * both cases, or sets it to NULL if the search exhausted.  Only returns
5276  * a non-NULL chain if the search matched from the in-memory chain.
5277  *
5278  * When no in-memory chain has been found and a non-NULL bref is returned
5279  * in *bresp.
5280  *
5281  *
5282  * The returned chain is not locked or referenced.  Use the returned bref
5283  * to determine if the search exhausted or not.  Iterate if the base find
5284  * is chosen but matches a deleted chain.
5285  *
5286  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5287  *	     held through the operation.
5288  */
5289 hammer2_chain_t *
5290 hammer2_combined_find(hammer2_chain_t *parent,
5291 		      hammer2_blockref_t *base, int count,
5292 		      hammer2_key_t *key_nextp,
5293 		      hammer2_key_t key_beg, hammer2_key_t key_end,
5294 		      hammer2_blockref_t **bresp)
5295 {
5296 	hammer2_blockref_t *bref;
5297 	hammer2_chain_t *chain;
5298 	int i;
5299 
5300 	/*
5301 	 * Lookup in block array and in rbtree.
5302 	 */
5303 	*key_nextp = key_end + 1;
5304 	i = hammer2_base_find(parent, base, count, key_nextp,
5305 			      key_beg, key_end);
5306 	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5307 
5308 	/*
5309 	 * Neither matched
5310 	 */
5311 	if (i == count && chain == NULL) {
5312 		*bresp = NULL;
5313 		return(NULL);
5314 	}
5315 
5316 	/*
5317 	 * Only chain matched.
5318 	 */
5319 	if (i == count) {
5320 		bref = &chain->bref;
5321 		goto found;
5322 	}
5323 
5324 	/*
5325 	 * Only blockref matched.
5326 	 */
5327 	if (chain == NULL) {
5328 		bref = &base[i];
5329 		goto found;
5330 	}
5331 
5332 	/*
5333 	 * Both in-memory and blockref matched, select the nearer element.
5334 	 *
5335 	 * If both are flush with the left-hand side or both are the
5336 	 * same distance away, select the chain.  In this situation the
5337 	 * chain must have been loaded from the matching blockmap.
5338 	 */
5339 	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5340 	    chain->bref.key == base[i].key) {
5341 		KKASSERT(chain->bref.key == base[i].key);
5342 		bref = &chain->bref;
5343 		goto found;
5344 	}
5345 
5346 	/*
5347 	 * Select the nearer key
5348 	 */
5349 	if (chain->bref.key < base[i].key) {
5350 		bref = &chain->bref;
5351 	} else {
5352 		bref = &base[i];
5353 		chain = NULL;
5354 	}
5355 
5356 	/*
5357 	 * If the bref is out of bounds we've exhausted our search.
5358 	 */
5359 found:
5360 	if (bref->key > key_end) {
5361 		*bresp = NULL;
5362 		chain = NULL;
5363 	} else {
5364 		*bresp = bref;
5365 	}
5366 	return(chain);
5367 }
5368 
5369 /*
5370  * Locate the specified block array element and delete it.  The element
5371  * must exist.
5372  *
5373  * The spin lock on the related chain must be held.
5374  *
5375  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5376  *	 need to be adjusted when we commit the media change.
5377  */
5378 void
5379 hammer2_base_delete(hammer2_chain_t *parent,
5380 		    hammer2_blockref_t *base, int count,
5381 		    hammer2_chain_t *chain,
5382 		    hammer2_blockref_t *obref)
5383 {
5384 	hammer2_blockref_t *elm = &chain->bref;
5385 	hammer2_blockref_t *scan;
5386 	hammer2_key_t key_next;
5387 	int i;
5388 
5389 	/*
5390 	 * Delete element.  Expect the element to exist.
5391 	 *
5392 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5393 	 *     re-flushed in some cases.
5394 	 */
5395 	key_next = 0; /* max range */
5396 	i = hammer2_base_find(parent, base, count, &key_next,
5397 			      elm->key, elm->key);
5398 	scan = &base[i];
5399 	if (i == count || scan->type == 0 ||
5400 	    scan->key != elm->key ||
5401 	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5402 	     scan->keybits != elm->keybits)) {
5403 		hammer2_spin_unex(&parent->core.spin);
5404 		panic("delete base %p element not found at %d/%d elm %p\n",
5405 		      base, i, count, elm);
5406 		return;
5407 	}
5408 
5409 	/*
5410 	 * Update stats and zero the entry.
5411 	 *
5412 	 * NOTE: Handle radix == 0 (0 bytes) case.
5413 	 */
5414 	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5415 		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5416 				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5417 	}
5418 	switch(scan->type) {
5419 	case HAMMER2_BREF_TYPE_INODE:
5420 		--parent->bref.embed.stats.inode_count;
5421 		/* fall through */
5422 	case HAMMER2_BREF_TYPE_DATA:
5423 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5424 			atomic_set_int(&chain->flags,
5425 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5426 		} else {
5427 			if (parent->bref.leaf_count)
5428 				--parent->bref.leaf_count;
5429 		}
5430 		/* fall through */
5431 	case HAMMER2_BREF_TYPE_INDIRECT:
5432 		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5433 			parent->bref.embed.stats.data_count -=
5434 				scan->embed.stats.data_count;
5435 			parent->bref.embed.stats.inode_count -=
5436 				scan->embed.stats.inode_count;
5437 		}
5438 		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5439 			break;
5440 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5441 			atomic_set_int(&chain->flags,
5442 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5443 		} else {
5444 			if (parent->bref.leaf_count <= scan->leaf_count)
5445 				parent->bref.leaf_count = 0;
5446 			else
5447 				parent->bref.leaf_count -= scan->leaf_count;
5448 		}
5449 		break;
5450 	case HAMMER2_BREF_TYPE_DIRENT:
5451 		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5452 			atomic_set_int(&chain->flags,
5453 				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5454 		} else {
5455 			if (parent->bref.leaf_count)
5456 				--parent->bref.leaf_count;
5457 		}
5458 	default:
5459 		break;
5460 	}
5461 
5462 	if (obref)
5463 		*obref = *scan;
5464 	bzero(scan, sizeof(*scan));
5465 
5466 	/*
5467 	 * We can only optimize parent->core.live_zero for live chains.
5468 	 */
5469 	if (parent->core.live_zero == i + 1) {
5470 		while (--i >= 0 && base[i].type == 0)
5471 			;
5472 		parent->core.live_zero = i + 1;
5473 	}
5474 
5475 	/*
5476 	 * Clear appropriate blockmap flags in chain.
5477 	 */
5478 	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5479 					HAMMER2_CHAIN_BMAPUPD);
5480 }
5481 
5482 /*
5483  * Insert the specified element.  The block array must not already have the
5484  * element and must have space available for the insertion.
5485  *
5486  * The spin lock on the related chain must be held.
5487  *
5488  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5489  *	 need to be adjusted when we commit the media change.
5490  */
5491 void
5492 hammer2_base_insert(hammer2_chain_t *parent,
5493 		    hammer2_blockref_t *base, int count,
5494 		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5495 {
5496 	hammer2_key_t key_next;
5497 	hammer2_key_t xkey;
5498 	int i;
5499 	int j;
5500 	int k;
5501 	int l;
5502 	int u = 1;
5503 
5504 	/*
5505 	 * Insert new element.  Expect the element to not already exist
5506 	 * unless we are replacing it.
5507 	 *
5508 	 * XXX see caller, flush code not yet sophisticated enough to prevent
5509 	 *     re-flushed in some cases.
5510 	 */
5511 	key_next = 0; /* max range */
5512 	i = hammer2_base_find(parent, base, count, &key_next,
5513 			      elm->key, elm->key);
5514 
5515 	/*
5516 	 * Shortcut fill optimization, typical ordered insertion(s) may not
5517 	 * require a search.
5518 	 */
5519 	KKASSERT(i >= 0 && i <= count);
5520 
5521 	/*
5522 	 * Set appropriate blockmap flags in chain (if not NULL)
5523 	 */
5524 	if (chain)
5525 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5526 
5527 	/*
5528 	 * Update stats and zero the entry
5529 	 */
5530 	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5531 		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5532 				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5533 	}
5534 	switch(elm->type) {
5535 	case HAMMER2_BREF_TYPE_INODE:
5536 		++parent->bref.embed.stats.inode_count;
5537 		/* fall through */
5538 	case HAMMER2_BREF_TYPE_DATA:
5539 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5540 			++parent->bref.leaf_count;
5541 		/* fall through */
5542 	case HAMMER2_BREF_TYPE_INDIRECT:
5543 		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5544 			parent->bref.embed.stats.data_count +=
5545 				elm->embed.stats.data_count;
5546 			parent->bref.embed.stats.inode_count +=
5547 				elm->embed.stats.inode_count;
5548 		}
5549 		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5550 			break;
5551 		if (parent->bref.leaf_count + elm->leaf_count <
5552 		    HAMMER2_BLOCKREF_LEAF_MAX) {
5553 			parent->bref.leaf_count += elm->leaf_count;
5554 		} else {
5555 			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5556 		}
5557 		break;
5558 	case HAMMER2_BREF_TYPE_DIRENT:
5559 		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5560 			++parent->bref.leaf_count;
5561 		break;
5562 	default:
5563 		break;
5564 	}
5565 
5566 
5567 	/*
5568 	 * We can only optimize parent->core.live_zero for live chains.
5569 	 */
5570 	if (i == count && parent->core.live_zero < count) {
5571 		i = parent->core.live_zero++;
5572 		base[i] = *elm;
5573 		return;
5574 	}
5575 
5576 	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5577 	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5578 		hammer2_spin_unex(&parent->core.spin);
5579 		panic("insert base %p overlapping elements at %d elm %p\n",
5580 		      base, i, elm);
5581 	}
5582 
5583 	/*
5584 	 * Try to find an empty slot before or after.
5585 	 */
5586 	j = i;
5587 	k = i;
5588 	while (j > 0 || k < count) {
5589 		--j;
5590 		if (j >= 0 && base[j].type == 0) {
5591 			if (j == i - 1) {
5592 				base[j] = *elm;
5593 			} else {
5594 				bcopy(&base[j+1], &base[j],
5595 				      (i - j - 1) * sizeof(*base));
5596 				base[i - 1] = *elm;
5597 			}
5598 			goto validate;
5599 		}
5600 		++k;
5601 		if (k < count && base[k].type == 0) {
5602 			bcopy(&base[i], &base[i+1],
5603 			      (k - i) * sizeof(hammer2_blockref_t));
5604 			base[i] = *elm;
5605 
5606 			/*
5607 			 * We can only update parent->core.live_zero for live
5608 			 * chains.
5609 			 */
5610 			if (parent->core.live_zero <= k)
5611 				parent->core.live_zero = k + 1;
5612 			u = 2;
5613 			goto validate;
5614 		}
5615 	}
5616 	panic("hammer2_base_insert: no room!");
5617 
5618 	/*
5619 	 * Debugging
5620 	 */
5621 validate:
5622 	key_next = 0;
5623 	for (l = 0; l < count; ++l) {
5624 		if (base[l].type) {
5625 			key_next = base[l].key +
5626 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5627 			break;
5628 		}
5629 	}
5630 	while (++l < count) {
5631 		if (base[l].type) {
5632 			if (base[l].key <= key_next)
5633 				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5634 			key_next = base[l].key +
5635 				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5636 
5637 		}
5638 	}
5639 
5640 }
5641 
5642 #if 0
5643 
5644 /*
5645  * Sort the blockref array for the chain.  Used by the flush code to
5646  * sort the blockref[] array.
5647  *
5648  * The chain must be exclusively locked AND spin-locked.
5649  */
5650 typedef hammer2_blockref_t *hammer2_blockref_p;
5651 
5652 static
5653 int
5654 hammer2_base_sort_callback(const void *v1, const void *v2)
5655 {
5656 	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5657 	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5658 
5659 	/*
5660 	 * Make sure empty elements are placed at the end of the array
5661 	 */
5662 	if (bref1->type == 0) {
5663 		if (bref2->type == 0)
5664 			return(0);
5665 		return(1);
5666 	} else if (bref2->type == 0) {
5667 		return(-1);
5668 	}
5669 
5670 	/*
5671 	 * Sort by key
5672 	 */
5673 	if (bref1->key < bref2->key)
5674 		return(-1);
5675 	if (bref1->key > bref2->key)
5676 		return(1);
5677 	return(0);
5678 }
5679 
5680 void
5681 hammer2_base_sort(hammer2_chain_t *chain)
5682 {
5683 	hammer2_blockref_t *base;
5684 	int count;
5685 
5686 	switch(chain->bref.type) {
5687 	case HAMMER2_BREF_TYPE_INODE:
5688 		/*
5689 		 * Special shortcut for embedded data returns the inode
5690 		 * itself.  Callers must detect this condition and access
5691 		 * the embedded data (the strategy code does this for us).
5692 		 *
5693 		 * This is only applicable to regular files and softlinks.
5694 		 */
5695 		if (chain->data->ipdata.meta.op_flags &
5696 		    HAMMER2_OPFLAG_DIRECTDATA) {
5697 			return;
5698 		}
5699 		base = &chain->data->ipdata.u.blockset.blockref[0];
5700 		count = HAMMER2_SET_COUNT;
5701 		break;
5702 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5703 	case HAMMER2_BREF_TYPE_INDIRECT:
5704 		/*
5705 		 * Optimize indirect blocks in the INITIAL state to avoid
5706 		 * I/O.
5707 		 */
5708 		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5709 		base = &chain->data->npdata[0];
5710 		count = chain->bytes / sizeof(hammer2_blockref_t);
5711 		break;
5712 	case HAMMER2_BREF_TYPE_VOLUME:
5713 		base = &chain->data->voldata.sroot_blockset.blockref[0];
5714 		count = HAMMER2_SET_COUNT;
5715 		break;
5716 	case HAMMER2_BREF_TYPE_FREEMAP:
5717 		base = &chain->data->blkset.blockref[0];
5718 		count = HAMMER2_SET_COUNT;
5719 		break;
5720 	default:
5721 		kprintf("hammer2_chain_lookup: unrecognized "
5722 			"blockref(A) type: %d",
5723 		        chain->bref.type);
5724 		while (1)
5725 			tsleep(&base, 0, "dead", 0);
5726 		panic("hammer2_chain_lookup: unrecognized "
5727 		      "blockref(A) type: %d",
5728 		      chain->bref.type);
5729 		base = NULL;	/* safety */
5730 		count = 0;	/* safety */
5731 	}
5732 	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5733 }
5734 
5735 #endif
5736 
5737 /*
5738  * Chain memory management
5739  */
5740 void
5741 hammer2_chain_wait(hammer2_chain_t *chain)
5742 {
5743 	tsleep(chain, 0, "chnflw", 1);
5744 }
5745 
5746 const hammer2_media_data_t *
5747 hammer2_chain_rdata(hammer2_chain_t *chain)
5748 {
5749 	KKASSERT(chain->data != NULL);
5750 	return (chain->data);
5751 }
5752 
5753 hammer2_media_data_t *
5754 hammer2_chain_wdata(hammer2_chain_t *chain)
5755 {
5756 	KKASSERT(chain->data != NULL);
5757 	return (chain->data);
5758 }
5759 
5760 /*
5761  * Set the check data for a chain.  This can be a heavy-weight operation
5762  * and typically only runs on-flush.  For file data check data is calculated
5763  * when the logical buffers are flushed.
5764  */
5765 void
5766 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5767 {
5768 	chain->bref.flags &= ~HAMMER2_BREF_FLAG_ZERO;
5769 
5770 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5771 	case HAMMER2_CHECK_NONE:
5772 		break;
5773 	case HAMMER2_CHECK_DISABLED:
5774 		break;
5775 	case HAMMER2_CHECK_ISCSI32:
5776 		chain->bref.check.iscsi32.value =
5777 			hammer2_icrc32(bdata, chain->bytes);
5778 		break;
5779 	case HAMMER2_CHECK_XXHASH64:
5780 		chain->bref.check.xxhash64.value =
5781 			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5782 		break;
5783 	case HAMMER2_CHECK_SHA192:
5784 		{
5785 			SHA256_CTX hash_ctx;
5786 			union {
5787 				uint8_t digest[SHA256_DIGEST_LENGTH];
5788 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5789 			} u;
5790 
5791 			SHA256_Init(&hash_ctx);
5792 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5793 			SHA256_Final(u.digest, &hash_ctx);
5794 			u.digest64[2] ^= u.digest64[3];
5795 			bcopy(u.digest,
5796 			      chain->bref.check.sha192.data,
5797 			      sizeof(chain->bref.check.sha192.data));
5798 		}
5799 		break;
5800 	case HAMMER2_CHECK_FREEMAP:
5801 		chain->bref.check.freemap.icrc32 =
5802 			hammer2_icrc32(bdata, chain->bytes);
5803 		break;
5804 	default:
5805 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5806 			chain->bref.methods);
5807 		break;
5808 	}
5809 }
5810 
5811 /*
5812  * Characterize a failed check code and try to trace back to the inode.
5813  */
5814 static void
5815 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5816 				  int bits)
5817 {
5818 	hammer2_chain_t *lchain;
5819 	hammer2_chain_t *ochain;
5820 
5821 	kprintf("chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5822 		"(flags=%08x, bref/data ",
5823 		chain->bref.data_off,
5824 		chain->bref.type,
5825 		hammer2_bref_type_str(&chain->bref),
5826 		chain->bref.methods,
5827 		chain->flags);
5828 	if (bits == 32) {
5829 		kprintf("%08x/%08x)\n",
5830 			chain->bref.check.iscsi32.value,
5831 			(uint32_t)check);
5832 	} else {
5833 		kprintf("%016jx/%016jx)\n",
5834 			chain->bref.check.xxhash64.value,
5835 			check);
5836 	}
5837 
5838 	/*
5839 	 * Run up the chains to try to find the governing inode so we
5840 	 * can report it.
5841 	 *
5842 	 * XXX This error reporting is not really MPSAFE
5843 	 */
5844 	ochain = chain;
5845 	lchain = chain;
5846 	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5847 		lchain = chain;
5848 		chain = chain->parent;
5849 	}
5850 
5851 	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5852 	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5853 	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5854 		kprintf("   Resides at/in inode %ld\n",
5855 			chain->bref.key);
5856 	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5857 		kprintf("   Resides in inode index - CRITICAL!!!\n");
5858 	} else {
5859 		kprintf("   Resides in root index - CRITICAL!!!\n");
5860 	}
5861 	if (ochain->hmp) {
5862 		const char *pfsname = "UNKNOWN";
5863 		int i;
5864 
5865 		if (ochain->pmp) {
5866 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5867 				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5868 				    ochain->pmp->pfs_names[i]) {
5869 					pfsname = ochain->pmp->pfs_names[i];
5870 					break;
5871 				}
5872 			}
5873 		}
5874 		kprintf("   In pfs %s on device %s\n",
5875 			pfsname, ochain->hmp->devrepname);
5876 	}
5877 }
5878 
5879 int
5880 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5881 {
5882 	uint32_t check32;
5883 	uint64_t check64;
5884 	int r;
5885 
5886 	if (chain->bref.flags & HAMMER2_BREF_FLAG_ZERO)
5887 		return 1;
5888 
5889 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5890 	case HAMMER2_CHECK_NONE:
5891 		r = 1;
5892 		break;
5893 	case HAMMER2_CHECK_DISABLED:
5894 		r = 1;
5895 		break;
5896 	case HAMMER2_CHECK_ISCSI32:
5897 		check32 = hammer2_icrc32(bdata, chain->bytes);
5898 		r = (chain->bref.check.iscsi32.value == check32);
5899 		if (r == 0) {
5900 			hammer2_characterize_failed_chain(chain, check32, 32);
5901 		}
5902 		hammer2_process_icrc32 += chain->bytes;
5903 		break;
5904 	case HAMMER2_CHECK_XXHASH64:
5905 		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5906 		r = (chain->bref.check.xxhash64.value == check64);
5907 		if (r == 0) {
5908 			hammer2_characterize_failed_chain(chain, check64, 64);
5909 		}
5910 		hammer2_process_xxhash64 += chain->bytes;
5911 		break;
5912 	case HAMMER2_CHECK_SHA192:
5913 		{
5914 			SHA256_CTX hash_ctx;
5915 			union {
5916 				uint8_t digest[SHA256_DIGEST_LENGTH];
5917 				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5918 			} u;
5919 
5920 			SHA256_Init(&hash_ctx);
5921 			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5922 			SHA256_Final(u.digest, &hash_ctx);
5923 			u.digest64[2] ^= u.digest64[3];
5924 			if (bcmp(u.digest,
5925 				 chain->bref.check.sha192.data,
5926 			         sizeof(chain->bref.check.sha192.data)) == 0) {
5927 				r = 1;
5928 			} else {
5929 				r = 0;
5930 				kprintf("chain %016jx.%02x meth=%02x "
5931 					"CHECK FAIL\n",
5932 					chain->bref.data_off,
5933 					chain->bref.type,
5934 					chain->bref.methods);
5935 			}
5936 		}
5937 		break;
5938 	case HAMMER2_CHECK_FREEMAP:
5939 		r = (chain->bref.check.freemap.icrc32 ==
5940 		     hammer2_icrc32(bdata, chain->bytes));
5941 		if (r == 0) {
5942 			kprintf("chain %016jx.%02x meth=%02x "
5943 				"CHECK FAIL\n",
5944 				chain->bref.data_off,
5945 				chain->bref.type,
5946 				chain->bref.methods);
5947 			kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5948 				chain->bref.check.freemap.icrc32,
5949 				hammer2_icrc32(bdata, chain->bytes),
5950 					       chain->bytes);
5951 			if (chain->dio)
5952 				kprintf("dio %p buf %016jx,%d bdata %p/%p\n",
5953 					chain->dio, chain->dio->bp->b_loffset,
5954 					chain->dio->bp->b_bufsize, bdata,
5955 					chain->dio->bp->b_data);
5956 		}
5957 
5958 		break;
5959 	default:
5960 		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5961 			chain->bref.methods);
5962 		r = 1;
5963 		break;
5964 	}
5965 	return r;
5966 }
5967 
5968 /*
5969  * Acquire the chain and parent representing the specified inode for the
5970  * device at the specified cluster index.
5971  *
5972  * The flags passed in are LOOKUP flags, not RESOLVE flags.
5973  *
5974  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
5975  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
5976  * if the parent itself could not be resolved.
5977  *
5978  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
5979  * They will be unlocked and released by this function.  The *parentp and
5980  * *chainp representing the located inode are returned locked.
5981  */
5982 int
5983 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5984 			 int clindex, int flags,
5985 			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5986 {
5987 	hammer2_chain_t *parent;
5988 	hammer2_chain_t *rchain;
5989 	hammer2_key_t key_dummy;
5990 	hammer2_inode_t *ip;
5991 	int resolve_flags;
5992 	int error;
5993 
5994 	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5995 			HAMMER2_RESOLVE_SHARED : 0;
5996 
5997 	/*
5998 	 * Caller expects us to replace these.
5999 	 */
6000 	if (*chainp) {
6001 		hammer2_chain_unlock(*chainp);
6002 		hammer2_chain_drop(*chainp);
6003 		*chainp = NULL;
6004 	}
6005 	if (*parentp) {
6006 		hammer2_chain_unlock(*parentp);
6007 		hammer2_chain_drop(*parentp);
6008 		*parentp = NULL;
6009 	}
6010 
6011 	/*
6012 	 * Be very careful, this is a backend function and we CANNOT
6013 	 * lock any frontend inode structure we find.  But we have to
6014 	 * look the inode up this way first in case it exists but is
6015 	 * detached from the radix tree.
6016 	 */
6017 	ip = hammer2_inode_lookup(pmp, inum);
6018 	if (ip) {
6019 		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6020 						       parentp,
6021 						       resolve_flags);
6022 		hammer2_inode_drop(ip);
6023 		if (*chainp)
6024 			return 0;
6025 		hammer2_chain_unlock(*chainp);
6026 		hammer2_chain_drop(*chainp);
6027 		*chainp = NULL;
6028 		if (*parentp) {
6029 			hammer2_chain_unlock(*parentp);
6030 			hammer2_chain_drop(*parentp);
6031 			*parentp = NULL;
6032 		}
6033 	}
6034 
6035 	/*
6036 	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6037 	 * inodes from root directory entries in the key lookup).
6038 	 */
6039 	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6040 	rchain = NULL;
6041 	if (parent) {
6042 		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6043 					      inum, inum,
6044 					      &error, flags);
6045 	} else {
6046 		error = HAMMER2_ERROR_EIO;
6047 	}
6048 	*parentp = parent;
6049 	*chainp = rchain;
6050 
6051 	return error;
6052 }
6053 
6054 /*
6055  * Used by the bulkscan code to snapshot the synchronized storage for
6056  * a volume, allowing it to be scanned concurrently against normal
6057  * operation.
6058  */
6059 hammer2_chain_t *
6060 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6061 {
6062 	hammer2_chain_t *copy;
6063 
6064 	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6065 	copy->data = kmalloc(sizeof(copy->data->voldata),
6066 			     hmp->mchain,
6067 			     M_WAITOK | M_ZERO);
6068 	hammer2_voldata_lock(hmp);
6069 	copy->data->voldata = hmp->volsync;
6070 	hammer2_voldata_unlock(hmp);
6071 
6072 	return copy;
6073 }
6074 
6075 void
6076 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6077 {
6078 	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6079 	KKASSERT(copy->data);
6080 	kfree(copy->data, copy->hmp->mchain);
6081 	copy->data = NULL;
6082 	atomic_add_long(&hammer2_chain_allocs, -1);
6083 	hammer2_chain_drop(copy);
6084 }
6085 
6086 /*
6087  * Returns non-zero if the chain (INODE or DIRENT) matches the
6088  * filename.
6089  */
6090 int
6091 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6092 			  size_t name_len)
6093 {
6094 	const hammer2_inode_data_t *ripdata;
6095 	const hammer2_dirent_head_t *den;
6096 
6097 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6098 		ripdata = &chain->data->ipdata;
6099 		if (ripdata->meta.name_len == name_len &&
6100 		    bcmp(ripdata->filename, name, name_len) == 0) {
6101 			return 1;
6102 		}
6103 	}
6104 	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6105 	   chain->bref.embed.dirent.namlen == name_len) {
6106 		den = &chain->bref.embed.dirent;
6107 		if (name_len > sizeof(chain->bref.check.buf) &&
6108 		    bcmp(chain->data->buf, name, name_len) == 0) {
6109 			return 1;
6110 		}
6111 		if (name_len <= sizeof(chain->bref.check.buf) &&
6112 		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6113 			return 1;
6114 		}
6115 	}
6116 	return 0;
6117 }
6118