xref: /dragonfly/sys/vfs/hammer2/hammer2_disk.h (revision 25a2db75)
1 /*
2  * Copyright (c) 2011-2012 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #ifndef VFS_HAMMER2_DISK_H_
36 #define VFS_HAMMER2_DISK_H_
37 
38 #ifndef _SYS_UUID_H_
39 #include <sys/uuid.h>
40 #endif
41 #ifndef _SYS_DMSG_H_
42 #include <sys/dmsg.h>
43 #endif
44 
45 /*
46  * The structures below represent the on-disk media structures for the HAMMER2
47  * filesystem.  Note that all fields for on-disk structures are naturally
48  * aligned.  The host endian format is typically used - compatibility is
49  * possible if the implementation detects reversed endian and adjusts accesses
50  * accordingly.
51  *
52  * HAMMER2 primarily revolves around the directory topology:  inodes,
53  * directory entries, and block tables.  Block device buffer cache buffers
54  * are always 64KB.  Logical file buffers are typically 16KB.  All data
55  * references utilize 64-bit byte offsets.
56  *
57  * Free block management is handled independently using blocks reserved by
58  * the media topology.
59  */
60 
61 /*
62  * The data at the end of a file or directory may be a fragment in order
63  * to optimize storage efficiency.  The minimum fragment size is 1KB.
64  * Since allocations are in powers of 2 fragments must also be sized in
65  * powers of 2 (1024, 2048, ... 65536).
66  *
67  * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
68  * which is 2^16.  Larger extents may be supported in the future.  Smaller
69  * fragments might be supported in the future (down to 64 bytes is possible),
70  * but probably will not be.
71  *
72  * A full indirect block use supports 1024 x 64-byte blockrefs in a 64KB
73  * buffer.  Indirect blocks down to 1KB are supported to keep small
74  * directories small.
75  *
76  * A maximally sized file (2^64-1 bytes) requires 5 indirect block levels.
77  * The hammer2_blockset in the volume header or file inode has another 8
78  * entries, giving us 66+3 = 69 bits of address space.  However, some bits
79  * are taken up by (potentially) requests for redundant copies.  HAMMER2
80  * currently supports up to 8 copies, which brings the address space down
81  * to 66 bits and gives us 2 bits of leeway.
82  */
83 #define HAMMER2_MIN_ALLOC	1024	/* minimum allocation size */
84 #define HAMMER2_MIN_RADIX	10	/* minimum allocation size 2^N */
85 #define HAMMER2_MAX_RADIX	16	/* maximum allocation size 2^N */
86 #define HAMMER2_KEY_RADIX	64	/* number of bits in key */
87 
88 /*
89  * MINALLOCSIZE		- The minimum allocation size.  This can be smaller
90  *		  	  or larger than the minimum physical IO size.
91  *
92  *			  NOTE: Should not be larger than 1K since inodes
93  *				are 1K.
94  *
95  * MINIOSIZE		- The minimum IO size.  This must be less than
96  *			  or equal to HAMMER2_PBUFSIZE.
97  *
98  *			  XXX currently must be set to MINALLOCSIZE until/if
99  *			      we deal with recursive buffer cache locks.
100  *
101  * HAMMER2_PBUFSIZE	- Topological block size used by files for all
102  *			  blocks except the block straddling EOF.
103  *
104  * HAMMER2_SEGSIZE	- Allocation map segment size, typically 2MB
105  */
106 
107 #define HAMMER2_SEGSIZE		(65536 * 8)
108 
109 #define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
110 #define HAMMER2_PBUFSIZE	65536
111 #define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
112 #define HAMMER2_LBUFSIZE	16384
113 
114 #if 0
115 #define HAMMER2_MINIORADIX	16	/* minimum phsical IO size */
116 #define HAMMER2_MINIOSIZE	65536
117 #endif
118 #define HAMMER2_MINIORADIX	HAMMER2_MINALLOCRADIX
119 #define HAMMER2_MINIOSIZE	HAMMER2_MINALLOCSIZE
120 
121 #define HAMMER2_MINALLOCRADIX	10	/* minimum block allocation size */
122 #define HAMMER2_MINALLOCSIZE	1024
123 #define HAMMER2_IND_BYTES_MIN	4096	/* first indirect layer only */
124 #define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
125 #define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
126 				 sizeof(hammer2_blockref_t))
127 #define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
128 				 sizeof(hammer2_blockref_t))
129 
130 /*
131  * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
132  * any element can occur at any index and holes can be anywhere.  As a
133  * future optimization we will be able to flag that such arrays are sorted
134  * and thus optimize lookups, but for now we don't.
135  *
136  * Inodes embed either 512 bytes of direct data or an array of 8 blockrefs,
137  * resulting in highly efficient storage for files <= 512 bytes and for files
138  * <= 512KB.  Up to 8 directory entries can be referenced from a directory
139  * without requiring an indirect block.
140  *
141  * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
142  * or 64KB (1024 blockrefs / ~64MB represented).
143  */
144 #define HAMMER2_SET_COUNT	8	/* direct entries */
145 #define HAMMER2_SET_RADIX	3
146 #define HAMMER2_EMBEDDED_BYTES	512
147 #define HAMMER2_EMBEDDED_RADIX	9
148 
149 #define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
150 #define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
151 #define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
152 
153 #define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
154 #define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
155 #define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
156 #define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
157 #define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
158 
159 #define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
160 
161 /*
162  * A HAMMER2 filesystem is always sized in multiples of 8MB.
163  *
164  * A 4MB segment is reserved at the beginning of each 2GB zone.  This segment
165  * contains the volume header (or backup volume header), the free block
166  * table, and possibly other information in the future.
167  *
168  * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
169  *
170  *	+-----------------------+
171  *      |	Volume Hdr	| block 0	volume header & alternates
172  *	+-----------------------+		(first four zones only)
173  *      | (A) FreeBlk layer0    | block 1	free block table
174  *      | (A) FreeBlk layer1    |
175  *      | (A) FreeBlk layer2    |
176  *      | (A) FreeBlk layer3    |
177  *      | (A) FreeBlk layer4[8] | (note: 8x64K -> 128x4K)
178  *	+-----------------------+
179  *      | (B) FreeBlk layer0    | block 13	free block table
180  *      | (B) FreeBlk layer1    |
181  *      | (B) FreeBlk layer2    |
182  *      | (B) FreeBlk layer3    |
183  *      | (B) FreeBlk layer4[8] |
184  *	+-----------------------+
185  *      | (C) FreeBlk layer0    | block 25	free block table
186  *      | (C) FreeBlk layer1    |
187  *      | (C) FreeBlk layer2    |
188  *      | (C) FreeBlk layer3    |
189  *      | (C) FreeBlk layer4[8] |
190  *	+-----------------------+
191  *      | (D) FreeBlk layer0    | block 37	free block table
192  *      | (D) FreeBlk layer1    |
193  *      | (D) FreeBlk layer2    |
194  *      | (D) FreeBlk layer3    |
195  *      | (D) FreeBlk layer4[8] |
196  *	+-----------------------+
197  *      |			| block 49...63
198  *      |	reserved	|
199  *      |			|
200  *	+-----------------------+
201  *
202  * The first few 2GB zones contain volume headers and volume header backups.
203  * After that the volume header block# is reserved.  The first 2GB zone
204  * contains all four FreeBlk layers, for example, but the layer1 FreeBlk
205  * is only needed once every 1TB.  The free block topology rotates between
206  * several groups {A,B,C,D} in order to ensure that the free block table
207  * is clean upon reboot after a crash or disk failure.
208  *
209  * The Free block table has a resolution of 1KB
210  */
211 #define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
212 #define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
213 #define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
214 #define HAMMER2_VOLUME_ALIGNMASK64     ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
215 
216 #define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
217 #define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
218 #define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
219 #define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
220 
221 #define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
222 #define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
223 #define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
224 #define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
225 #define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
226 
227 /*
228  * 64 x 64KB blocks are reserved at the base of each 2GB zone.  These blocks
229  * are used to store the volume header or volume header backups, allocation
230  * tree, and other information in the future.
231  *
232  * All specified blocks are not necessarily used in all 2GB zones.  However,
233  * dead areas are reserved and MUST NOT BE USED for other purposes.
234  *
235  * The freemap is arranged into four groups.  Modifications rotate through
236  * the groups on a block by block basis (so all the blocks are not necessarily
237  * synchronized to the same group).  Only three groups are actually necessary
238  * (stable, flushing, modifying).
239  *
240  * 64KB freemap indirect blocks are represented by layers 0, 1, 2, and 3.
241  * 4KB freemap leaf blocks each represent 16MB of storage so 128 x 4KB are
242  * needed per zone, which equates to 8 x 64KB layer4 blocks per zone.
243  */
244 #define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
245 #define HAMMER2_ZONE_FREEMAP_A		1	/* freemap layer group A */
246 #define HAMMER2_ZONE_FREEMAP_B		13	/* freemap layer group B */
247 #define HAMMER2_ZONE_FREEMAP_C		25	/* freemap layer group C */
248 #define HAMMER2_ZONE_FREEMAP_D		37	/* freemap layer group D */
249 
250 #define HAMMER2_ZONEFM_LAYER0		0	/* relative to FREEMAP_x */
251 #define HAMMER2_ZONEFM_LAYER1		1
252 #define HAMMER2_ZONEFM_LAYER2		2
253 #define HAMMER2_ZONEFM_LAYER3		3
254 #define HAMMER2_ZONEFM_LAYER4		4	/* 4-11 (8 64KB blocks) */
255 
256 #define HAMMER2_ZONE_BLOCK49		49	/* future */
257 #define HAMMER2_ZONE_BLOCK50		50	/* future */
258 #define HAMMER2_ZONE_BLOCK51		51	/* future */
259 #define HAMMER2_ZONE_BLOCK52		52	/* future */
260 #define HAMMER2_ZONE_BLOCK53		53	/* future */
261 #define HAMMER2_ZONE_BLOCK54		54	/* future */
262 #define HAMMER2_ZONE_BLOCK55		55	/* future */
263 #define HAMMER2_ZONE_BLOCK56		56	/* future */
264 #define HAMMER2_ZONE_BLOCK57		57	/* future */
265 #define HAMMER2_ZONE_BLOCK58		58	/* future */
266 #define HAMMER2_ZONE_BLOCK59		59	/* future */
267 
268 #define HAMMER2_ZONE_BLOCK60		60	/* future */
269 #define HAMMER2_ZONE_BLOCK61		61	/* future */
270 #define HAMMER2_ZONE_BLOCK62		62	/* future */
271 #define HAMMER2_ZONE_BLOCK63		63	/* future */
272 
273 /*
274  * Two linear areas can be reserved after the initial 2MB segment in the base
275  * zone (the one starting at offset 0).  These areas are NOT managed by the
276  * block allocator and do not fall under HAMMER2 crc checking rules based
277  * at the volume header (but can be self-CRCd internally, depending).
278  */
279 #define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
280 #define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
281 #define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
282 
283 #define HAMMER2_REDO_MIN_BYTES		HAMMER2_VOLUME_ALIGN
284 #define HAMMER2_REDO_NOM_BYTES		(256*1024*1024)
285 #define HAMMER2_REDO_MAX_BYTES		(1024*1024*1024)
286 
287 /*
288  * Most HAMMER2 types are implemented as unsigned 64-bit integers.
289  * Transaction ids are monotonic.
290  *
291  * We utilize 32-bit iSCSI CRCs.
292  */
293 typedef uint64_t hammer2_tid_t;
294 typedef uint64_t hammer2_off_t;
295 typedef uint64_t hammer2_key_t;
296 typedef uint32_t hammer2_crc32_t;
297 
298 /*
299  * Miscellanious ranges (all are unsigned).
300  */
301 #define HAMMER2_MIN_TID		1ULL
302 #define HAMMER2_MAX_TID		0xFFFFFFFFFFFFFFFFULL
303 #define HAMMER2_MIN_KEY		0ULL
304 #define HAMMER2_MAX_KEY		0xFFFFFFFFFFFFFFFFULL
305 #define HAMMER2_MIN_OFFSET	0ULL
306 #define HAMMER2_MAX_OFFSET	0xFFFFFFFFFFFFFFFFULL
307 
308 /*
309  * HAMMER2 data offset special cases and masking.
310  *
311  * All HAMMER2 data offsets have to be broken down into a 64K buffer base
312  * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
313  *
314  * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
315  * of the data offset field specifies how large the data chunk being pointed
316  * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
317  * needed in the low bits of the data offset field).  However, the practical
318  * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
319  * HAMMER2_MIN_RADIX to 10.  The maximum radix is currently 16 (64KB), but
320  * we fully intend to support larger extents in the future.
321  */
322 #define HAMMER2_OFF_BAD		((hammer2_off_t)-1)
323 #define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
324 #define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
325 #define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
326 #define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
327 #define HAMMER2_MAX_COPIES	6
328 
329 /*
330  * HAMMER2 directory support and pre-defined keys
331  */
332 #define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
333 #define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
334 #define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
335 #define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
336 #define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
337 
338 #define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
339 
340 /*
341  * The media block reference structure.  This forms the core of the HAMMER2
342  * media topology recursion.  This 64-byte data structure is embedded in the
343  * volume header, in inodes (which are also directory entries), and in
344  * indirect blocks.
345  *
346  * A blockref references a single media item, which typically can be a
347  * directory entry (aka inode), indirect block, or data block.
348  *
349  * The primary feature a blockref represents is the ability to validate
350  * the entire tree underneath it via its check code.  Any modification to
351  * anything propagates up the blockref tree all the way to the root, replacing
352  * the related blocks.  Propagations can shortcut to the volume root to
353  * implement the 'fast syncing' feature but this only delays the eventual
354  * propagation.
355  *
356  * The check code can be a simple 32-bit iscsi code, a 64-bit crc,
357  * or as complex as a 192 bit cryptographic hash.  192 bits is the maximum
358  * supported check code size, which is not sufficient for unverified dedup
359  * UNLESS one doesn't mind once-in-a-blue-moon data corruption (such as when
360  * farming web data).  HAMMER2 has an unverified dedup feature for just this
361  * purpose.
362  *
363  * --
364  *
365  * NOTE: The range of keys represented by the blockref is (key) to
366  *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
367  *	 blocks bottom-up, inserting a new root when radix expansion
368  *	 is required.
369  */
370 struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
371 	uint8_t		type;		/* type of underlying item */
372 	uint8_t		methods;	/* check method & compression method */
373 	uint8_t		copyid;		/* specify which copy this is */
374 	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
375 	uint8_t		vradix;		/* virtual data/meta-data size */
376 	uint8_t		flags;		/* blockref flags */
377 	uint8_t		reserved06;
378 	uint8_t		reserved07;
379 	hammer2_key_t	key;		/* key specification */
380 	hammer2_tid_t	mirror_tid;	/* propagate for mirror scan */
381 	hammer2_tid_t	modify_tid;	/* modifications sans propagation */
382 	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
383 	union {				/* check info */
384 		char	buf[24];
385 		struct {
386 			uint32_t value;
387 			uint32_t unused[5];
388 		} iscsi32;
389 		struct {
390 			uint64_t value;
391 			uint64_t unused[2];
392 		} crc64;
393 		struct {
394 			char data[24];
395 		} sha192;
396 
397 		/*
398 		 * Freemap hints are embedded in addition to the icrc32.
399 		 *
400 		 * biggest - largest possible allocation 2^N within sub-tree.
401 		 *	     typically initialized to 64 in freemap_blockref
402 		 *	     and to 54 in each blockref[] entry in the
403 		 *	     FREEMAP_ROOT indirect block.
404 		 *
405 		 *	     An allocation > 2^N is guaranteed to fail.  An
406 		 *	     allocation <= 2^N MAY fail, and if it does the
407 		 *	     biggest hint will be adjusted downward.
408 		 *
409 		 *	     Used when allocating space.
410 		 */
411 		struct {
412 			uint32_t icrc32;
413 			uint8_t biggest;
414 			uint8_t reserved05;
415 			uint8_t reserved06;
416 			uint8_t reserved07;
417 			uint64_t avail;		/* total available bytes */
418 			uint64_t unused;	/* unused must be 0 */
419 		} freemap;
420 	} check;
421 };
422 
423 typedef struct hammer2_blockref hammer2_blockref_t;
424 
425 #if 0
426 #define HAMMER2_BREF_SYNC1		0x01	/* modification synchronized */
427 #define HAMMER2_BREF_SYNC2		0x02	/* modification committed */
428 #define HAMMER2_BREF_DESYNCCHLD		0x04	/* desynchronize children */
429 #define HAMMER2_BREF_DELETED		0x80	/* indicates a deletion */
430 #endif
431 
432 #define HAMMER2_BLOCKREF_BYTES		64	/* blockref struct in bytes */
433 
434 #define HAMMER2_BREF_TYPE_EMPTY		0
435 #define HAMMER2_BREF_TYPE_INODE		1
436 #define HAMMER2_BREF_TYPE_INDIRECT	2
437 #define HAMMER2_BREF_TYPE_DATA		3
438 #define HAMMER2_BREF_TYPE_FREEMAP_ROOT	4
439 #define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
440 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
441 #define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
442 
443 #define HAMMER2_ENC_CHECK(n)		((n) << 4)
444 #define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
445 
446 #define HAMMER2_CHECK_NONE		0
447 #define HAMMER2_CHECK_ISCSI32		1
448 #define HAMMER2_CHECK_CRC64		2
449 #define HAMMER2_CHECK_SHA192		3
450 #define HAMMER2_CHECK_FREEMAP		4
451 
452 #define HAMMER2_ENC_COMP(n)		(n)
453 #define HAMMER2_DEC_COMP(n)		((n) & 15)
454 
455 #define HAMMER2_COMP_NONE		0
456 #define HAMMER2_COMP_AUTOZERO		1
457 
458 
459 /*
460  * HAMMER2 block references are collected into sets of 8 blockrefs.  These
461  * sets are fully associative, meaning the elements making up a set are
462  * not sorted in any way and may contain duplicate entries, holes, or
463  * entries which shortcut multiple levels of indirection.  Sets are used
464  * in various ways:
465  *
466  * (1) When redundancy is desired a set may contain several duplicate
467  *     entries pointing to different copies of the same data.  Up to 8 copies
468  *     are supported but the set structure becomes a bit inefficient once
469  *     you go over 4.
470  *
471  * (2) The blockrefs in a set can shortcut multiple levels of indirections
472  *     within the bounds imposed by the parent of set.
473  *
474  * When a set fills up another level of indirection is inserted, moving
475  * some or all of the set's contents into indirect blocks placed under the
476  * set.  This is a top-down approach in that indirect blocks are not created
477  * until the set actually becomes full (that is, the entries in the set can
478  * shortcut the indirect blocks when the set is not full).  Depending on how
479  * things are filled multiple indirect blocks will eventually be created.
480  *
481  * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
482  * are also treated as fully set-associative.
483  */
484 struct hammer2_blockset {
485 	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
486 };
487 
488 typedef struct hammer2_blockset hammer2_blockset_t;
489 
490 /*
491  * Catch programmer snafus
492  */
493 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
494 #error "hammer2 direct radix is incorrect"
495 #endif
496 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
497 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
498 #endif
499 #if (1 << HAMMER2_MIN_RADIX) != HAMMER2_MIN_ALLOC
500 #error "HAMMER2_MIN_RADIX and HAMMER2_MIN_ALLOC are inconsistent"
501 #endif
502 
503 /*
504  * The media indirect block structure.
505  */
506 struct hammer2_indblock_data {
507 	hammer2_blockref_t blockref[HAMMER2_IND_COUNT_MAX];
508 };
509 
510 typedef struct hammer2_indblock_data hammer2_indblock_data_t;
511 
512 /*
513  * In HAMMER2 inodes ARE directory entries, with a special exception for
514  * hardlinks.  The inode number is stored in the inode rather than being
515  * based on the location of the inode (since the location moves every time
516  * the inode or anything underneath the inode is modified).
517  *
518  * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
519  * for the filename, and 512 bytes worth of direct file data OR an embedded
520  * blockset.
521  *
522  * Directories represent one inode per blockref.  Inodes are not laid out
523  * as a file but instead are represented by the related blockrefs.  The
524  * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
525  * that blocksets are fully associative, so a certain degree efficiency is
526  * achieved just from that.
527  *
528  * Up to 512 bytes of direct data can be embedded in an inode, and since
529  * inodes are essentially directory entries this also means that small data
530  * files end up simply being laid out linearly in the directory, resulting
531  * in fewer seeks and highly optimal access.
532  *
533  * The compression mode can be changed at any time in the inode and is
534  * recorded on a blockref-by-blockref basis.
535  *
536  * Hardlinks are supported via the inode map.  Essentially the way a hardlink
537  * works is that all individual directory entries representing the same file
538  * are special cased and specify the same inode number.  The actual file
539  * is placed in the nearest parent directory that is parent to all instances
540  * of the hardlink.  If all hardlinks to a file are in the same directory
541  * the actual file will also be placed in that directory.  This file uses
542  * the inode number as the directory entry key and is invisible to normal
543  * directory scans.  Real directory entry keys are differentiated from the
544  * inode number key via bit 63.  Access to the hardlink silently looks up
545  * the real file and forwards all operations to that file.  Removal of the
546  * last hardlink also removes the real file.
547  *
548  * (attr_tid) is only updated when the inode's specific attributes or regular
549  * file size has changed, and affects path lookups and stat.  (attr_tid)
550  * represents a special cache coherency lock under the inode.  The inode
551  * blockref's modify_tid will always cover it.
552  *
553  * (dirent_tid) is only updated when an entry under a directory inode has
554  * been created, deleted, renamed, or had its attributes change, and affects
555  * directory lookups and scans.  (dirent_tid) represents another special cache
556  * coherency lock under the inode.  The inode blockref's modify_tid will
557  * always cover it.
558  */
559 #define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
560 #define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
561 #define HAMMER2_INODE_VERSION_ONE	1
562 
563 struct hammer2_inode_data {
564 	uint16_t	version;	/* 0000 inode data version */
565 	uint16_t	reserved02;	/* 0002 */
566 
567 	/*
568 	 * core inode attributes, inode type, misc flags
569 	 */
570 	uint32_t	uflags;		/* 0004 chflags */
571 	uint32_t	rmajor;		/* 0008 available for device nodes */
572 	uint32_t	rminor;		/* 000C available for device nodes */
573 	uint64_t	ctime;		/* 0010 inode change time */
574 	uint64_t	mtime;		/* 0018 modified time */
575 	uint64_t	atime;		/* 0020 access time (unsupported) */
576 	uint64_t	btime;		/* 0028 birth time */
577 	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
578 	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
579 
580 	uint8_t		type;		/* 0050 object type */
581 	uint8_t		op_flags;	/* 0051 operational flags */
582 	uint16_t	cap_flags;	/* 0052 capability flags */
583 	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
584 
585 	/*
586 	 * inode size, identification, localized recursive configuration
587 	 * for compression and backup copies.
588 	 */
589 	hammer2_tid_t	inum;		/* 0058 inode number */
590 	hammer2_off_t	size;		/* 0060 size of file */
591 	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
592 	hammer2_tid_t	iparent;	/* 0070 parent inum (recovery only) */
593 	hammer2_key_t	name_key;	/* 0078 full filename key */
594 	uint16_t	name_len;	/* 0080 filename length */
595 	uint8_t		ncopies;	/* 0082 ncopies to local media */
596 	uint8_t		comp_algo;	/* 0083 compression request & algo */
597 
598 	/*
599 	 * These fields are currently only applicable to PFSROOTs.
600 	 *
601 	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
602 	 *	 identify an instance of a PFS in the cluster because
603 	 *	 a mount may contain more than one copy of the PFS as
604 	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
605 	 *	 registration in the cluster.
606 	 */
607 	uint8_t		target_type;	/* 0084 hardlink target type */
608 	uint8_t		reserved85;	/* 0085 */
609 	uint8_t		reserved86;	/* 0086 */
610 	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
611 	uint64_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
612 	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
613 	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
614 
615 	/*
616 	 * Quotas and cumulative sub-tree counters.
617 	 */
618 	hammer2_off_t	data_quota;	/* 00B0 subtree quota in bytes */
619 	hammer2_off_t	data_count;	/* 00B8 subtree byte count */
620 	hammer2_off_t	inode_quota;	/* 00C0 subtree quota inode count */
621 	hammer2_off_t	inode_count;	/* 00C8 subtree inode count */
622 	hammer2_tid_t	attr_tid;	/* 00D0 attributes changed */
623 	hammer2_tid_t	dirent_tid;	/* 00D8 directory/attr changed */
624 	uint64_t	reservedE0;	/* 00E0 */
625 	uint64_t	reservedE8;	/* 00E8 */
626 	uint64_t	reservedF0;	/* 00F0 */
627 	uint64_t	reservedF8;	/* 00F8 */
628 
629 	unsigned char	filename[HAMMER2_INODE_MAXNAME];
630 					/* 0100-01FF (256 char, unterminated) */
631 	union {				/* 0200-03FF (64x8 = 512 bytes) */
632 		struct hammer2_blockset blockset;
633 		char data[HAMMER2_EMBEDDED_BYTES];
634 	} u;
635 };
636 
637 typedef struct hammer2_inode_data hammer2_inode_data_t;
638 
639 #define HAMMER2_OPFLAG_DIRECTDATA	0x01
640 #define HAMMER2_OPFLAG_PFSROOT		0x02
641 #define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
642 
643 #define HAMMER2_OBJTYPE_UNKNOWN		0
644 #define HAMMER2_OBJTYPE_DIRECTORY	1
645 #define HAMMER2_OBJTYPE_REGFILE		2
646 #define HAMMER2_OBJTYPE_FIFO		4
647 #define HAMMER2_OBJTYPE_CDEV		5
648 #define HAMMER2_OBJTYPE_BDEV		6
649 #define HAMMER2_OBJTYPE_SOFTLINK	7
650 #define HAMMER2_OBJTYPE_HARDLINK	8	/* dummy entry for hardlink */
651 #define HAMMER2_OBJTYPE_SOCKET		9
652 #define HAMMER2_OBJTYPE_WHITEOUT	10
653 
654 #define HAMMER2_COPYID_NONE		0
655 #define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
656 
657 /*
658  * PEER types identify connections and help cluster controller filter
659  * out unwanted SPANs.
660  */
661 #define HAMMER2_PEER_NONE		DMSG_PEER_NONE
662 #define HAMMER2_PEER_CLUSTER		DMSG_PEER_CLUSTER
663 #define HAMMER2_PEER_BLOCK		DMSG_PEER_BLOCK
664 #define HAMMER2_PEER_HAMMER2		DMSG_PEER_HAMMER2
665 
666 #define HAMMER2_COPYID_COUNT		DMSG_COPYID_COUNT
667 
668 /*
669  * PFS types identify a PFS on media and in LNK_SPAN messages.
670  */
671 #define HAMMER2_PFSTYPE_NONE		DMSG_PFSTYPE_NONE
672 #define HAMMER2_PFSTYPE_ADMIN		DMSG_PFSTYPE_ADMIN
673 #define HAMMER2_PFSTYPE_CLIENT		DMSG_PFSTYPE_CLIENT
674 #define HAMMER2_PFSTYPE_CACHE		DMSG_PFSTYPE_CACHE
675 #define HAMMER2_PFSTYPE_COPY		DMSG_PFSTYPE_COPY
676 #define HAMMER2_PFSTYPE_SLAVE		DMSG_PFSTYPE_SLAVE
677 #define HAMMER2_PFSTYPE_SOFT_SLAVE	DMSG_PFSTYPE_SOFT_SLAVE
678 #define HAMMER2_PFSTYPE_SOFT_MASTER	DMSG_PFSTYPE_SOFT_MASTER
679 #define HAMMER2_PFSTYPE_MASTER		DMSG_PFSTYPE_MASTER
680 #define HAMMER2_PFSTYPE_MAX		DMSG_PFSTYPE_MAX
681 
682 /*
683  *				Allocation Table
684  *
685  * In HAMMER2 the allocation table hangs off of the volume header and
686  * utilizes somewhat customized hammer2_blockref based indirect blocks
687  * until hitting the leaf bitmap.  BREF_TYPE_FREEMAP_ROOT and
688  * BREF_TYPE_FREEMAP_NODE represent the indirect blocks but are formatted
689  * the same as BREF_TYPE_INDIRECT except for the (biggest) and (avail)
690  * fields which use some of the check union space.  Thus a special CHECK
691  * id (CHECK_FREEMAP instead of CHECK_ISCSI32) is also specified for these
692  * babies.
693  *
694  * newfs_hammer2 builds the FREEMAP_ROOT block and assigns a radix of
695  * 34, 44, 54, or 64 depending on whether the freemap is to be fitted
696  * to the storage or is to maximized for (possibly) sparse storage.
697  * Other keybits specifications for FREEMAP_ROOT are illegal.  Even fitted
698  * storage is required to specify at least a keybits value of 34.
699  *
700  *	Total possible representation is 2^64 (16 Exabytes).
701  *	10: 1024 entries / 64KB			16EB (16PB per entry) layer0
702  *	10: 1024 entries / 64KB			16PB (16TB per entry) layer1
703  *	10: 1024 entries / 64KB			16TB (16GB per entry) layer2
704  *	10: 1024 entries / 64KB			16GB (16MB per entry) layer3
705  *	24: 16384 x 1KB allocgran / 4KB		16MB		      layer4
706  *
707  * To make the radix come out to exactly 64 the leaf bitmaps are arranged
708  * into 4KB buffers, with each buffer representing a freemap for 16MB worth
709  * of storage using a 1KB allocation granularity.  The leaf bitmaps are
710  * structures and not just a plain bitmap, hence the extra space needed to
711  * represent 16384 x 1KB blocks.
712  *
713  * The reserved area at the beginning of each 2GB zone is marked as being
714  * allocated on-the-fly and does not have to be pre-set in the freemap,
715  * which is just as well as that would require newfs_hammer2 to do a lot
716  * of writing otherwise.
717  *
718  * Indirect blocks are usually created with a semi-dynamic radix but in the
719  * case of freemap-related indirect blocks, the blocks use a static radix
720  * tree with associations to specific reserved blocks.
721  */
722 
723 /*
724  * 4KB -> hammer2_freemap_elm[256]
725  *
726  *	bitmap	   - 64 bits x 1KB representing 64KB.  A '1' bit represents
727  *		     an allocated block.
728  *
729  *	generation - Incremented upon any allocation.  Can't increment more
730  *		     than +64 per background freeing pass due to there being
731  *		     only 64 bits.
732  *
733  *	biggest0   - biggest hint (radix) for freemap_elm.  Represents up to
734  *		     64KB (radix 16).
735  *
736  *	biggest1   - biggest hint (radix) for aligned groups of 16 elements,
737  *		     stored in elm[0], elm[16], etc.  Represents up to 1MB.
738  *		     (radix 20)
739  *
740  *	biggest2   - biggest hint (radix) for aligned groups of 256 elements
741  *		     (i.e. the whole array, only used by elm[0]).
742  *		     Represents up to 16MB (radix 24).
743  *
744  * The hinting is used as part of the allocation mechanism to reduce scan
745  * time, which is particularly important as a filesystem approaches full.
746  * Fill ratios are handled at the indirect block level (in the blockrefs) and
747  * not here.
748  */
749 struct hammer2_freemap_elm {
750 	uint64_t	bitmap;
751 	uint8_t		generation;
752 	uint8_t		biggest0;
753 	uint8_t		biggest1;
754 	uint8_t		biggest2;
755 	uint32_t	reserved0C;
756 };
757 
758 typedef struct hammer2_freemap_elm hammer2_freemap_elm_t;
759 
760 #define HAMMER2_FREEMAP_LEAF_BYTES	4096
761 #define HAMMER2_FREEMAP_LEAF_ENTRIES	(HAMMER2_FREEMAP_LEAF_BYTES /	\
762 					 sizeof(hammer2_freemap_elm_t))
763 #define HAMMER2_FREEMAP_LEAF_RADIX	24
764 #define HAMMER2_FREEMAP_NODE_RADIX	10
765 #define HAMMER2_FREEMAP_ELM_RADIX	 5	/* 2^5 == 32 bits */
766 
767 #define HAMMER2_BIGF_KILLED		0x80
768 
769 /*
770  * Flags (8 bits) - blockref, for freemap only
771  *
772  * Note that the minimum chunk size is 1KB so we could theoretically have
773  * 10 bits here, but we might have some future extension that allows a
774  * chunk size down to 256 bytes and if so we will need bits 8 and 9.
775  */
776 #define HAMMER2_AVF_SELMASK		0x03	/* select group */
777 #define HAMMER2_AVF_ALL_ALLOC		0x04	/* indicate all allocated */
778 #define HAMMER2_AVF_ALL_FREE		0x08	/* indicate all free */
779 #define HAMMER2_AVF_RESERVED10		0x10
780 #define HAMMER2_AVF_RESERVED20		0x20
781 #define HAMMER2_AVF_RESERVED40		0x40
782 #define HAMMER2_AVF_RESERVED80		0x80
783 #define HAMMER2_AVF_AVMASK32		((uint32_t)0xFFFFFF00LU)
784 #define HAMMER2_AVF_AVMASK64		((uint64_t)0xFFFFFFFFFFFFFF00LLU)
785 
786 #define HAMMER2_AV_SELECT_A		0x00
787 #define HAMMER2_AV_SELECT_B		0x01
788 #define HAMMER2_AV_SELECT_C		0x02
789 #define HAMMER2_AV_SELECT_D		0x03
790 
791 /*
792  * The volume header eats a 64K block.  There is currently an issue where
793  * we want to try to fit all nominal filesystem updates in a 512-byte section
794  * but it may be a lost cause due to the need for a blockset.
795  *
796  * All information is stored in host byte order.  The volume header's magic
797  * number may be checked to determine the byte order.  If you wish to mount
798  * between machines w/ different endian modes you'll need filesystem code
799  * which acts on the media data consistently (either all one way or all the
800  * other).  Our code currently does not do that.
801  *
802  * A read-write mount may have to recover missing allocations by doing an
803  * incremental mirror scan looking for modifications made after alloc_tid.
804  * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
805  * operations are usually very, very fast.
806  *
807  * Read-only mounts do not need to do any recovery, access to the filesystem
808  * topology is always consistent after a crash (is always consistent, period).
809  * However, there may be shortcutted blockref updates present from deep in
810  * the tree which are stored in the volumeh eader and must be tracked on
811  * the fly.
812  *
813  * NOTE: The copyinfo[] array contains the configuration for both the
814  *	 cluster connections and any local media copies.  The volume
815  *	 header will be replicated for each local media copy.
816  *
817  *	 The mount command may specify multiple medias or just one and
818  *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
819  *	 array on mount.
820  *
821  * NOTE: root_blockref points to the super-root directory, not the root
822  *	 directory.  The root directory will be a subdirectory under the
823  *	 super-root.
824  *
825  *	 The super-root directory contains all root directories and all
826  *	 snapshots (readonly or writable).  It is possible to do a
827  *	 null-mount of the super-root using special path constructions
828  *	 relative to your mounted root.
829  *
830  * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
831  *	 a PFS, including mirroring and storage quota operations, and this is
832  *	 prefered over creating discrete PFSs in the super-root.  Instead
833  *	 the super-root is most typically used to create writable snapshots,
834  *	 alternative roots, and so forth.  The super-root is also used by
835  *	 the automatic snapshotting mechanism.
836  */
837 #define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
838 #define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
839 
840 struct hammer2_volume_data {
841 	/*
842 	 * sector #0 - 512 bytes
843 	 */
844 	uint64_t	magic;			/* 0000 Signature */
845 	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
846 	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
847 	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
848 	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
849 	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
850 
851 	uint32_t	version;		/* 0030 */
852 	uint32_t	flags;			/* 0034 */
853 	uint8_t		copyid;			/* 0038 copyid of phys vol */
854 	uint8_t		freemap_version;	/* 0039 freemap algorithm */
855 	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
856 	uint8_t		reserved003B;		/* 003B */
857 	uint32_t	reserved003C;		/* 003C */
858 
859 	uuid_t		fsid;			/* 0040 */
860 	uuid_t		fstype;			/* 0050 */
861 
862 	/*
863 	 * allocator_size is precalculated at newfs time and does not include
864 	 * reserved blocks, boot, or redo areas.
865 	 *
866 	 * Initial non-reserved-area allocations do not use the freemap
867 	 * but instead adjust alloc_iterator.  Dynamic allocations take
868 	 * over starting at (allocator_beg).  This makes newfs_hammer2's
869 	 * job a lot easier and can also serve as a testing jig.
870 	 */
871 	hammer2_off_t	allocator_size;		/* 0060 Total data space */
872 	hammer2_off_t   allocator_free;		/* 0068	Free space */
873 	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
874 	hammer2_tid_t	mirror_tid;		/* 0078 best committed tid */
875 	hammer2_tid_t	alloc_tid;		/* 0080 Alloctable modify tid */
876 	hammer2_blockref_t freemap_blockref;	/* 0088-00C7 */
877 
878 	/*
879 	 * Copyids are allocated dynamically from the copyexists bitmap.
880 	 * An id from the active copies set (up to 8, see copyinfo later on)
881 	 * may still exist after the copy set has been removed from the
882 	 * volume header and its bit will remain active in the bitmap and
883 	 * cannot be reused until it is 100% removed from the hierarchy.
884 	 */
885 	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
886 	char		reserved0140[248];	/* 00E8-01DF */
887 
888 	/*
889 	 * 32 bit CRC array at the end of the first 512 byte sector.
890 	 *
891 	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
892 	 *		   the other icrc's except the last one).
893 	 *
894 	 * icrc_sects[6] - Second 512-4 bytes of volume header, which is
895 	 *		   the blockset for the root.
896 	 */
897 	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
898 
899 	/*
900 	 * sector #1 - 512 bytes
901 	 *
902 	 * The entire sector is used by a blockset.
903 	 */
904 	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
905 
906 	/*
907 	 * sector #2-7
908 	 */
909 	char	sector2[512];			/* 0400-05FF reserved */
910 	char	sector3[512];			/* 0600-07FF reserved */
911 	char	sector4[512];			/* 0800-09FF reserved */
912 	char	sector5[512];			/* 0A00-0BFF reserved */
913 	char	sector6[512];			/* 0C00-0DFF reserved */
914 	char	sector7[512];			/* 0E00-0FFF reserved */
915 
916 	/*
917 	 * sector #8-71	- 32768 bytes
918 	 *
919 	 * Contains the configuration for up to 256 copyinfo targets.  These
920 	 * specify local and remote copies operating as masters or slaves.
921 	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
922 	 * indicates the local media).
923 	 *
924 	 * Each inode contains a set of up to 8 copyids, either inherited
925 	 * from its parent or explicitly specified in the inode, which
926 	 * indexes into this array.
927 	 */
928 						/* 1000-8FFF copyinfo config */
929 	dmsg_vol_data_t	copyinfo[HAMMER2_COPYID_COUNT];
930 
931 	/*
932 	 * Remaining sections are reserved for future use.
933 	 */
934 	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
935 
936 	/*
937 	 * icrc on entire volume header
938 	 */
939 	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
940 };
941 
942 typedef struct hammer2_volume_data hammer2_volume_data_t;
943 
944 /*
945  * Various parts of the volume header have their own iCRCs.
946  *
947  * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
948  * and not included the icrc calculation.
949  *
950  * The second 512 bytes also has its own iCRC but it is stored in the first
951  * 512 bytes so it covers the entire second 512 bytes.
952  *
953  * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
954  * which is where the iCRC for the whole volume is stored.  This is currently
955  * a catch-all for anything not individually iCRCd.
956  */
957 #define HAMMER2_VOL_ICRC_SECT0		7
958 #define HAMMER2_VOL_ICRC_SECT1		6
959 
960 #define HAMMER2_VOLUME_BYTES		65536
961 
962 #define HAMMER2_VOLUME_ICRC0_OFF	0
963 #define HAMMER2_VOLUME_ICRC1_OFF	512
964 #define HAMMER2_VOLUME_ICRCVH_OFF	0
965 
966 #define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
967 #define HAMMER2_VOLUME_ICRC1_SIZE	(512)
968 #define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
969 
970 #define HAMMER2_VOL_VERSION_MIN		1
971 #define HAMMER2_VOL_VERSION_DEFAULT	1
972 #define HAMMER2_VOL_VERSION_WIP 	2
973 
974 #define HAMMER2_NUM_VOLHDRS		4
975 
976 union hammer2_media_data {
977 	hammer2_volume_data_t	voldata;
978         hammer2_inode_data_t    ipdata;
979 	hammer2_indblock_data_t npdata;
980 	char			buf[HAMMER2_PBUFSIZE];
981 };
982 
983 typedef union hammer2_media_data hammer2_media_data_t;
984 
985 #endif
986