1 /* 2 * Copyright (c) 2011-2014 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@dragonflybsd.org> 6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 3. Neither the name of The DragonFly Project nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific, prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #ifndef _VFS_HAMMER2_DISK_H_ 37 #define _VFS_HAMMER2_DISK_H_ 38 39 #ifndef _SYS_UUID_H_ 40 #include <sys/uuid.h> 41 #endif 42 #ifndef _SYS_DMSG_H_ 43 #include <sys/dmsg.h> 44 #endif 45 46 /* 47 * The structures below represent the on-disk media structures for the HAMMER2 48 * filesystem. Note that all fields for on-disk structures are naturally 49 * aligned. The host endian format is typically used - compatibility is 50 * possible if the implementation detects reversed endian and adjusts accesses 51 * accordingly. 52 * 53 * HAMMER2 primarily revolves around the directory topology: inodes, 54 * directory entries, and block tables. Block device buffer cache buffers 55 * are always 64KB. Logical file buffers are typically 16KB. All data 56 * references utilize 64-bit byte offsets. 57 * 58 * Free block management is handled independently using blocks reserved by 59 * the media topology. 60 */ 61 62 /* 63 * The data at the end of a file or directory may be a fragment in order 64 * to optimize storage efficiency. The minimum fragment size is 1KB. 65 * Since allocations are in powers of 2 fragments must also be sized in 66 * powers of 2 (1024, 2048, ... 65536). 67 * 68 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K), 69 * which is 2^16. Larger extents may be supported in the future. Smaller 70 * fragments might be supported in the future (down to 64 bytes is possible), 71 * but probably will not be. 72 * 73 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB 74 * buffer. Indirect blocks down to 1KB are supported to keep small 75 * directories small. 76 * 77 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels 78 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk). 79 * 80 * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70. 81 * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk) 82 * 83 * The actual depth depends on copies redundancy and whether the filesystem 84 * has chosen to use a smaller indirect block size at the top level or not. 85 */ 86 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */ 87 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */ 88 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */ 89 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */ 90 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */ 91 92 /* 93 * MINALLOCSIZE - The minimum allocation size. This can be smaller 94 * or larger than the minimum physical IO size. 95 * 96 * NOTE: Should not be larger than 1K since inodes 97 * are 1K. 98 * 99 * MINIOSIZE - The minimum IO size. This must be less than 100 * or equal to HAMMER2_LBUFSIZE. 101 * 102 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups. 103 * 104 * HAMMER2_PBUFSIZE - Topological block size used by files for all 105 * blocks except the block straddling EOF. 106 * 107 * HAMMER2_SEGSIZE - Allocation map segment size, typically 2MB 108 * (space represented by a level0 bitmap). 109 */ 110 111 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX) 112 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX 113 114 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */ 115 #define HAMMER2_PBUFSIZE 65536 116 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */ 117 #define HAMMER2_LBUFSIZE 16384 118 119 /* 120 * Generally speaking we want to use 16K and 64K I/Os 121 */ 122 #define HAMMER2_MINIORADIX HAMMER2_LBUFRADIX 123 #define HAMMER2_MINIOSIZE HAMMER2_LBUFSIZE 124 125 #define HAMMER2_IND_BYTES_MIN HAMMER2_LBUFSIZE 126 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE 127 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \ 128 sizeof(hammer2_blockref_t)) 129 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \ 130 sizeof(hammer2_blockref_t)) 131 132 /* 133 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that 134 * any element can occur at any index and holes can be anywhere. As a 135 * future optimization we will be able to flag that such arrays are sorted 136 * and thus optimize lookups, but for now we don't. 137 * 138 * Inodes embed either 512 bytes of direct data or an array of 8 blockrefs, 139 * resulting in highly efficient storage for files <= 512 bytes and for files 140 * <= 512KB. Up to 8 directory entries can be referenced from a directory 141 * without requiring an indirect block. 142 * 143 * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented), 144 * or 64KB (1024 blockrefs / ~64MB represented). 145 */ 146 #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */ 147 #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX) 148 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */ 149 #define HAMMER2_EMBEDDED_RADIX 9 150 151 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1) 152 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1) 153 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1) 154 155 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK) 156 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE) 157 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK) 158 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE) 159 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK) 160 161 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5" 162 163 /* 164 * A HAMMER2 filesystem is always sized in multiples of 8MB. 165 * 166 * A 4MB segment is reserved at the beginning of each 2GB zone. This segment 167 * contains the volume header (or backup volume header), the free block 168 * table, and possibly other information in the future. 169 * 170 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows: 171 * 172 * +-----------------------+ 173 * | Volume Hdr | block 0 volume header & alternates 174 * +-----------------------+ (first four zones only) 175 * | FreeBlk Section A | block 1-4 176 * +-----------------------+ 177 * | FreeBlk Section B | block 5-8 178 * +-----------------------+ 179 * | FreeBlk Section C | block 9-12 180 * +-----------------------+ 181 * | FreeBlk Section D | block 13-16 182 * +-----------------------+ 183 * | | block 17...63 184 * | reserved | 185 * | | 186 * +-----------------------+ 187 * 188 * The first few 2GB zones contain volume headers and volume header backups. 189 * After that the volume header block# is reserved for future use. Similarly, 190 * there are many blocks related to various Freemap levels which are not 191 * used in every segment and those are also reserved for future use. 192 * 193 * Freemap (see the FREEMAP document) 194 * 195 * The freemap utilizes blocks #1-16 in 8 sets of 4 blocks. Each block in 196 * a set represents a level of depth in the freemap topology. Eight sets 197 * exist to prevent live updates from disturbing the state of the freemap 198 * were a crash/reboot to occur. That is, a live update is not committed 199 * until the update's flush reaches the volume root. There are FOUR volume 200 * roots representing the last four synchronization points, so the freemap 201 * must be consistent no matter which volume root is chosen by the mount 202 * code. 203 * 204 * Each freemap set is 4 x 64K blocks and represents the 2GB, 2TB, 2PB, 205 * and 2EB indirect map. The volume header itself has a set of 8 freemap 206 * blockrefs representing another 3 bits, giving us a total 64 bits of 207 * representable address space. 208 * 209 * The Level 0 64KB block represents 2GB of storage represented by 210 * (64 x struct hammer2_bmap_data). Each structure represents 2MB of storage 211 * and has a 256 bit bitmap, using 2 bits to represent a 16KB chunk of 212 * storage. These 2 bits represent the following states: 213 * 214 * 00 Free 215 * 01 (reserved) (Possibly partially allocated) 216 * 10 Possibly free 217 * 11 Allocated 218 * 219 * One important thing to note here is that the freemap resolution is 16KB, 220 * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps 221 * track of sub-allocations in memory, which means that on a unmount or reboot 222 * the entire 16KB of a partially allocated block will be considered fully 223 * allocated. It is possible for fragmentation to build up over time, but 224 * defragmentation is fairly easy to accomplish since all modifications 225 * allocate a new block. 226 * 227 * The Second thing to note is that due to the way snapshots and inode 228 * replication works, deleting a file cannot immediately free the related 229 * space. Furthermore, deletions often do not bother to traverse the 230 * block subhierarchy being deleted. And to go even further, whole 231 * sub-directory trees can be deleted simply by deleting the directory inode 232 * at the top. So even though we have a symbol to represent a 'possibly free' 233 * block (binary 10), only the bulk free scanning code can actually use it. 234 * Normal 'rm's or other deletions do not. 235 * 236 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX 237 * (i.e. a multiple of 2MB). VOLUME_ALIGN must be >= ZONE_SEG. 238 * 239 * In Summary: 240 * 241 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block 242 * from the next set). The new copy is reused until a flush occurs at 243 * which point the next modification will then rotate to the next set. 244 * 245 * (2) A total of 10 freemap sets is required. 246 * 247 * - 8 sets - 2 sets per volume header backup x 4 volume header backups 248 * - 2 sets used as backing store for the bulk freemap scan. 249 * - The freemap recovery scan which runs on-mount just uses the inactive 250 * set for whichever volume header was selected by the mount code. 251 * 252 */ 253 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024) 254 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 255 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 256 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK) 257 258 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN) 259 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 260 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 261 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK) 262 263 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024) 264 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1) 265 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024) 266 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG) 267 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE) 268 269 #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */ 270 271 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */ 272 #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */ 273 #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */ 274 #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */ 275 #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */ 276 #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */ 277 #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */ 278 #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */ 279 #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */ 280 #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */ 281 282 #define HAMMER2_ZONE_UNUSED41 41 283 #define HAMMER2_ZONE_UNUSED42 42 284 #define HAMMER2_ZONE_UNUSED43 43 285 #define HAMMER2_ZONE_UNUSED44 44 286 #define HAMMER2_ZONE_UNUSED45 45 287 #define HAMMER2_ZONE_UNUSED46 46 288 #define HAMMER2_ZONE_UNUSED47 47 289 #define HAMMER2_ZONE_UNUSED48 48 290 #define HAMMER2_ZONE_UNUSED49 49 291 #define HAMMER2_ZONE_UNUSED50 50 292 #define HAMMER2_ZONE_UNUSED51 51 293 #define HAMMER2_ZONE_UNUSED52 52 294 #define HAMMER2_ZONE_UNUSED53 53 295 #define HAMMER2_ZONE_UNUSED54 54 296 #define HAMMER2_ZONE_UNUSED55 55 297 #define HAMMER2_ZONE_UNUSED56 56 298 #define HAMMER2_ZONE_UNUSED57 57 299 #define HAMMER2_ZONE_UNUSED58 58 300 #define HAMMER2_ZONE_UNUSED59 59 301 #define HAMMER2_ZONE_UNUSED60 60 302 #define HAMMER2_ZONE_UNUSED61 61 303 #define HAMMER2_ZONE_UNUSED62 62 304 #define HAMMER2_ZONE_UNUSED63 63 305 #define HAMMER2_ZONE_END 64 /* non-inclusive */ 306 307 #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */ 308 309 /* relative to FREEMAP_x */ 310 #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */ 311 #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */ 312 #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */ 313 #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */ 314 #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */ 315 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */ 316 317 /* 318 * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs, 319 * 32KB indirect block for freemap (LEVELN_PSIZE below). 320 * 321 * Leaf entry represents 4MB of storage broken down into a 512-bit 322 * bitmap, 2-bits per entry. So course bitmap item represents 16KB. 323 */ 324 #if HAMMER2_SET_COUNT != 4 325 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4" 326 #endif 327 #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */ 328 #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */ 329 #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */ 330 #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */ 331 #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */ 332 #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */ 333 #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (128by in l-1 leaf) */ 334 335 #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */ 336 337 #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \ 338 HAMMER2_FREEMAP_LEVEL5_RADIX) 339 #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \ 340 HAMMER2_FREEMAP_LEVEL4_RADIX) 341 #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \ 342 HAMMER2_FREEMAP_LEVEL3_RADIX) 343 #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \ 344 HAMMER2_FREEMAP_LEVEL2_RADIX) 345 #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \ 346 HAMMER2_FREEMAP_LEVEL1_RADIX) 347 #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \ 348 HAMMER2_FREEMAP_LEVEL0_RADIX) 349 350 #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1) 351 #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1) 352 #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1) 353 #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1) 354 #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1) 355 #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1) 356 357 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \ 358 sizeof(hammer2_bmap_data_t)) 359 360 /* 361 * 16KB bitmap granularity (x2 bits per entry). 362 */ 363 #define HAMMER2_FREEMAP_BLOCK_RADIX 14 364 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX) 365 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1) 366 367 /* 368 * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE. 369 * 370 * 8 x 64-bit elements, 2 bits per block. 371 * 32 blocks (radix 5) per element. 372 * representing INDEX_SIZE bytes worth of storage per element. 373 */ 374 375 typedef uint64_t hammer2_bitmap_t; 376 377 #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1) 378 #define HAMMER2_BMAP_ELEMENTS 8 379 #define HAMMER2_BMAP_BITS_PER_ELEMENT 64 380 #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */ 381 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX) 382 383 #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \ 384 HAMMER2_BMAP_BLOCKS_PER_ELEMENT) 385 #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1) 386 387 /* 388 * Two linear areas can be reserved after the initial 2MB segment in the base 389 * zone (the one starting at offset 0). These areas are NOT managed by the 390 * block allocator and do not fall under HAMMER2 crc checking rules based 391 * at the volume header (but can be self-CRCd internally, depending). 392 */ 393 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN 394 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024) 395 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024) 396 397 #define HAMMER2_REDO_MIN_BYTES HAMMER2_VOLUME_ALIGN 398 #define HAMMER2_REDO_NOM_BYTES (256*1024*1024) 399 #define HAMMER2_REDO_MAX_BYTES (1024*1024*1024) 400 401 /* 402 * Most HAMMER2 types are implemented as unsigned 64-bit integers. 403 * Transaction ids are monotonic. 404 * 405 * We utilize 32-bit iSCSI CRCs. 406 */ 407 typedef uint64_t hammer2_tid_t; 408 typedef uint64_t hammer2_off_t; 409 typedef uint64_t hammer2_key_t; 410 typedef uint32_t hammer2_crc32_t; 411 412 /* 413 * Miscellanious ranges (all are unsigned). 414 */ 415 #define HAMMER2_TID_MIN 1ULL 416 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL 417 #define HAMMER2_KEY_MIN 0ULL 418 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL 419 #define HAMMER2_OFFSET_MIN 0ULL 420 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL 421 422 /* 423 * HAMMER2 data offset special cases and masking. 424 * 425 * All HAMMER2 data offsets have to be broken down into a 64K buffer base 426 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO). 427 * 428 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits 429 * of the data offset field specifies how large the data chunk being pointed 430 * to as a power of 2. The theoretical minimum radix is thus 6 (The space 431 * needed in the low bits of the data offset field). However, the practical 432 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets 433 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but 434 * we fully intend to support larger extents in the future. 435 */ 436 #define HAMMER2_OFF_BAD ((hammer2_off_t)-1) 437 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL 438 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64) 439 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64) 440 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL 441 #define HAMMER2_MAX_COPIES 6 442 443 /* 444 * HAMMER2 directory support and pre-defined keys 445 */ 446 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL 447 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL 448 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL 449 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL 450 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */ 451 452 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */ 453 #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */ 454 455 /************************************************************************ 456 * DMSG SUPPORT * 457 ************************************************************************ 458 * LNK_VOLCONF 459 * 460 * All HAMMER2 directories directly under the super-root on your local 461 * media can be mounted separately, even if they share the same physical 462 * device. 463 * 464 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2 465 * cluster via local media. The local media does not have to participate 466 * in the cluster, other than to provide the hammer2_volconf[] array and 467 * root inode for the mount. 468 * 469 * This is important: The mount device path you specify serves to bootstrap 470 * your entry into the cluster, but your mount will make active connections 471 * to ALL copy elements in the hammer2_volconf[] array which match the 472 * PFSID of the directory in the super-root that you specified. The local 473 * media path does not have to be mentioned in this array but becomes part 474 * of the cluster based on its type and access rights. ALL ELEMENTS ARE 475 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM. 476 * 477 * The actual cluster may be far larger than the elements you list in the 478 * hammer2_volconf[] array. You list only the elements you wish to 479 * directly connect to and you are able to access the rest of the cluster 480 * indirectly through those connections. 481 * 482 * WARNING! This structure must be exactly 128 bytes long for its config 483 * array to fit in the volume header. 484 */ 485 struct hammer2_volconf { 486 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */ 487 uint8_t inprog; /* 01 operation in progress, or 0 */ 488 uint8_t chain_to; /* 02 operation chaining to, or 0 */ 489 uint8_t chain_from; /* 03 operation chaining from, or 0 */ 490 uint16_t flags; /* 04-05 flags field */ 491 uint8_t error; /* 06 last operational error */ 492 uint8_t priority; /* 07 priority and round-robin flag */ 493 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */ 494 uint8_t reserved08[23]; /* 09-1F */ 495 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */ 496 uint8_t label[16]; /* 30-3F import/export label */ 497 uint8_t path[64]; /* 40-7F target specification string or key */ 498 } __packed; 499 500 typedef struct hammer2_volconf hammer2_volconf_t; 501 502 #define DMSG_VOLF_ENABLED 0x0001 503 #define DMSG_VOLF_INPROG 0x0002 504 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */ 505 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */ 506 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */ 507 508 struct dmsg_lnk_hammer2_volconf { 509 dmsg_hdr_t head; 510 hammer2_volconf_t copy; /* copy spec */ 511 int32_t index; 512 int32_t unused01; 513 uuid_t mediaid; 514 int64_t reserved02[32]; 515 } __packed; 516 517 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t; 518 519 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \ 520 dmsg_lnk_hammer2_volconf) 521 522 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf) 523 524 /* 525 * The media block reference structure. This forms the core of the HAMMER2 526 * media topology recursion. This 128-byte data structure is embedded in the 527 * volume header, in inodes (which are also directory entries), and in 528 * indirect blocks. 529 * 530 * A blockref references a single media item, which typically can be a 531 * directory entry (aka inode), indirect block, or data block. 532 * 533 * The primary feature a blockref represents is the ability to validate 534 * the entire tree underneath it via its check code. Any modification to 535 * anything propagates up the blockref tree all the way to the root, replacing 536 * the related blocks and compounding the generated check code. 537 * 538 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as 539 * complex as a 512 bit cryptographic hash. I originally used a 64-byte 540 * blockref but later expanded it to 128 bytes to be able to support the 541 * larger check code as well as to embed statistics for quota operation. 542 * 543 * Simple check codes are not sufficient for unverified dedup. Even with 544 * a maximally-sized check code unverified dedup should only be used in 545 * in subdirectory trees where you do not need 100% data integrity. 546 * 547 * Unverified dedup is deduping based on meta-data only without verifying 548 * that the data blocks are actually identical. Verified dedup guarantees 549 * integrity but is a far more I/O-expensive operation. 550 * 551 * -- 552 * 553 * mirror_tid - per cluster node modified (propagated upward by flush) 554 * modify_tid - clc record modified (not propagated). 555 * update_tid - clc record updated (propagated upward on verification) 556 * 557 * CLC - Stands for 'Cluster Level Change', identifiers which are identical 558 * within the topology across all cluster nodes (when fully 559 * synchronized). 560 * 561 * NOTE: The range of keys represented by the blockref is (key) to 562 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates 563 * blocks bottom-up, inserting a new root when radix expansion 564 * is required. 565 * 566 * RESERVED FIELDS 567 * 568 * A number of blockref fields are reserved and should generally be set to 569 * 0 for future compatibility. 570 * 571 * FUTURE BLOCKREF EXPANSION 572 * 573 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code. 574 */ 575 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */ 576 uint8_t type; /* type of underlying item */ 577 uint8_t methods; /* check method & compression method */ 578 uint8_t copyid; /* specify which copy this is */ 579 uint8_t keybits; /* #of keybits masked off 0=leaf */ 580 uint8_t vradix; /* virtual data/meta-data size */ 581 uint8_t flags; /* blockref flags */ 582 uint8_t reserved06; 583 uint8_t reserved07; 584 hammer2_key_t key; /* key specification */ 585 hammer2_tid_t mirror_tid; /* media flush topology & freemap */ 586 hammer2_tid_t modify_tid; /* clc modify (not propagated) */ 587 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/ 588 hammer2_key_t data_count; /* statistics aggregation */ 589 hammer2_key_t inode_count; /* statistics aggregation */ 590 hammer2_tid_t update_tid; /* clc modify (propagated upward) */ 591 union { /* check info */ 592 char buf[64]; 593 struct { 594 uint32_t value; 595 uint32_t reserved[15]; 596 } iscsi32; 597 struct { 598 uint64_t value; 599 uint64_t reserved[7]; 600 } crc64; 601 struct { 602 char data[24]; 603 char reserved[40]; 604 } sha192; 605 struct { 606 char data[32]; 607 char reserved[32]; 608 } sha256; 609 struct { 610 char data[64]; 611 } sha512; 612 613 /* 614 * Freemap hints are embedded in addition to the icrc32. 615 * 616 * bigmask - Radixes available for allocation (0-31). 617 * Heuristical (may be permissive but not 618 * restrictive). Typically only radix values 619 * 10-16 are used (i.e. (1<<10) through (1<<16)). 620 * 621 * avail - Total available space remaining, in bytes 622 */ 623 struct { 624 uint32_t icrc32; 625 uint32_t bigmask; /* available radixes */ 626 uint64_t avail; /* total available bytes */ 627 char reserved[48]; 628 } freemap; 629 } check; 630 } __packed; 631 632 typedef struct hammer2_blockref hammer2_blockref_t; 633 634 #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */ 635 636 /* 637 * On-media and off-media blockref types. 638 * 639 * types >= 128 are pseudo values that should never be present on-media. 640 */ 641 #define HAMMER2_BREF_TYPE_EMPTY 0 642 #define HAMMER2_BREF_TYPE_INODE 1 643 #define HAMMER2_BREF_TYPE_INDIRECT 2 644 #define HAMMER2_BREF_TYPE_DATA 3 645 #define HAMMER2_BREF_TYPE_UNUSED04 4 646 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5 647 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6 648 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */ 649 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */ 650 651 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */ 652 #define HAMMER2_BREF_FLAG_ZERO 0x02 653 654 /* 655 * Encode/decode check mode and compression mode for 656 * bref.methods. The compression level is not encoded in 657 * bref.methods. 658 */ 659 #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4) 660 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15) 661 #define HAMMER2_ENC_COMP(n) ((n) & 15) 662 #define HAMMER2_DEC_COMP(n) ((n) & 15) 663 664 #define HAMMER2_CHECK_NONE 0 665 #define HAMMER2_CHECK_DISABLED 1 666 #define HAMMER2_CHECK_ISCSI32 2 667 #define HAMMER2_CHECK_CRC64 3 668 #define HAMMER2_CHECK_SHA192 4 669 #define HAMMER2_CHECK_FREEMAP 5 670 671 /* user-specifiable check modes only */ 672 #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \ 673 "crc64", "sha192" } 674 #define HAMMER2_CHECK_STRINGS_COUNT 5 675 676 /* 677 * Encode/decode check or compression algorithm request in 678 * ipdata->meta.check_algo and ipdata->meta.comp_algo. 679 */ 680 #define HAMMER2_ENC_ALGO(n) (n) 681 #define HAMMER2_DEC_ALGO(n) ((n) & 15) 682 #define HAMMER2_ENC_LEVEL(n) ((n) << 4) 683 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15) 684 685 #define HAMMER2_COMP_NONE 0 686 #define HAMMER2_COMP_AUTOZERO 1 687 #define HAMMER2_COMP_LZ4 2 688 #define HAMMER2_COMP_ZLIB 3 689 690 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4 691 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" } 692 #define HAMMER2_COMP_STRINGS_COUNT 4 693 694 695 /* 696 * HAMMER2 block references are collected into sets of 4 blockrefs. These 697 * sets are fully associative, meaning the elements making up a set are 698 * not sorted in any way and may contain duplicate entries, holes, or 699 * entries which shortcut multiple levels of indirection. Sets are used 700 * in various ways: 701 * 702 * (1) When redundancy is desired a set may contain several duplicate 703 * entries pointing to different copies of the same data. Up to 4 copies 704 * are supported. 705 * 706 * (2) The blockrefs in a set can shortcut multiple levels of indirections 707 * within the bounds imposed by the parent of set. 708 * 709 * When a set fills up another level of indirection is inserted, moving 710 * some or all of the set's contents into indirect blocks placed under the 711 * set. This is a top-down approach in that indirect blocks are not created 712 * until the set actually becomes full (that is, the entries in the set can 713 * shortcut the indirect blocks when the set is not full). Depending on how 714 * things are filled multiple indirect blocks will eventually be created. 715 * 716 * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and 717 * are also treated as fully set-associative. 718 */ 719 struct hammer2_blockset { 720 hammer2_blockref_t blockref[HAMMER2_SET_COUNT]; 721 }; 722 723 typedef struct hammer2_blockset hammer2_blockset_t; 724 725 /* 726 * Catch programmer snafus 727 */ 728 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT 729 #error "hammer2 direct radix is incorrect" 730 #endif 731 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE 732 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent" 733 #endif 734 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN 735 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent" 736 #endif 737 738 /* 739 * hammer2_bmap_data - A freemap entry in the LEVEL1 block. 740 * 741 * Each 128-byte entry contains the bitmap and meta-data required to manage 742 * a LEVEL0 (128KB) block of storage. The storage is managed in 128 x 1KB 743 * chunks. 744 * 745 * A smaller allocation granularity is supported via a linear iterator and/or 746 * must otherwise be tracked in ram. 747 * 748 * (data structure must be 128 bytes exactly) 749 * 750 * linear - A BYTE linear allocation offset used for sub-16KB allocations 751 * only. May contain values between 0 and 2MB. Must be ignored 752 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be 753 * used to sub-allocate within the 16KB block (which is already 754 * marked as allocated in the bitmap). 755 * 756 * Sub-allocations need only be 1KB-aligned and do not have to be 757 * size-aligned, and 16KB or larger allocations do not update this 758 * field, resulting in pretty good packing. 759 * 760 * Please note that file data granularity may be limited by 761 * other issues such as buffer cache direct-mapping and the 762 * desire to support sector sizes up to 16KB (so H2 only issues 763 * I/O's in multiples of 16KB anyway). 764 * 765 * class - Clustering class. Cleared to 0 only if the entire leaf becomes 766 * free. Used to cluster device buffers so all elements must have 767 * the same device block size, but may mix logical sizes. 768 * 769 * Typically integrated with the blockref type in the upper 8 bits 770 * to localize inodes and indrect blocks, improving bulk free scans 771 * and directory scans. 772 * 773 * bitmap - Two bits per 16KB allocation block arranged in arrays of 774 * 32-bit elements, 256x2 bits representing ~4MB worth of media 775 * storage. Bit patterns are as follows: 776 * 777 * 00 Unallocated 778 * 01 (reserved) 779 * 10 Possibly free 780 * 11 Allocated 781 */ 782 struct hammer2_bmap_data { 783 int32_t linear; /* 00 linear sub-granular allocation offset */ 784 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */ 785 uint8_t reserved06; /* 06 */ 786 uint8_t reserved07; /* 07 */ 787 uint32_t reserved08; /* 08 */ 788 uint32_t reserved0C; /* 0C */ 789 uint32_t reserved10; /* 10 */ 790 uint32_t reserved14; /* 14 */ 791 uint32_t reserved18; /* 18 */ 792 uint32_t avail; /* 1C */ 793 uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */ 794 /* 40-7F 512 bits manages 4MB of storage */ 795 hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS]; 796 } __packed; 797 798 typedef struct hammer2_bmap_data hammer2_bmap_data_t; 799 800 /* 801 * In HAMMER2 inodes ARE directory entries, with a special exception for 802 * hardlinks. The inode number is stored in the inode rather than being 803 * based on the location of the inode (since the location moves every time 804 * the inode or anything underneath the inode is modified). 805 * 806 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes 807 * for the filename, and 512 bytes worth of direct file data OR an embedded 808 * blockset. The in-memory hammer2_inode structure contains only the mostly- 809 * node-independent meta-data portion (some flags are node-specific and will 810 * not be synchronized). The rest of the inode is node-specific and chain I/O 811 * is required to obtain it. 812 * 813 * Directories represent one inode per blockref. Inodes are not laid out 814 * as a file but instead are represented by the related blockrefs. The 815 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember 816 * that blocksets are fully associative, so a certain degree efficiency is 817 * achieved just from that. 818 * 819 * Up to 512 bytes of direct data can be embedded in an inode, and since 820 * inodes are essentially directory entries this also means that small data 821 * files end up simply being laid out linearly in the directory, resulting 822 * in fewer seeks and highly optimal access. 823 * 824 * The compression mode can be changed at any time in the inode and is 825 * recorded on a blockref-by-blockref basis. 826 * 827 * Hardlinks are supported via the inode map. Essentially the way a hardlink 828 * works is that all individual directory entries representing the same file 829 * are special cased and specify the same inode number. The actual file 830 * is placed in the nearest parent directory that is parent to all instances 831 * of the hardlink. If all hardlinks to a file are in the same directory 832 * the actual file will also be placed in that directory. This file uses 833 * the inode number as the directory entry key and is invisible to normal 834 * directory scans. Real directory entry keys are differentiated from the 835 * inode number key via bit 63. Access to the hardlink silently looks up 836 * the real file and forwards all operations to that file. Removal of the 837 * last hardlink also removes the real file. 838 * 839 * (attr_tid) is only updated when the inode's specific attributes or regular 840 * file size has changed, and affects path lookups and stat. (attr_tid) 841 * represents a special cache coherency lock under the inode. The inode 842 * blockref's modify_tid will always cover it. 843 * 844 * (dirent_tid) is only updated when an entry under a directory inode has 845 * been created, deleted, renamed, or had its attributes change, and affects 846 * directory lookups and scans. (dirent_tid) represents another special cache 847 * coherency lock under the inode. The inode blockref's modify_tid will 848 * always cover it. 849 */ 850 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */ 851 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */ 852 #define HAMMER2_INODE_VERSION_ONE 1 853 854 #define HAMMER2_INODE_HIDDENDIR 16 /* special inode */ 855 #define HAMMER2_INODE_START 1024 /* dynamically allocated */ 856 857 struct hammer2_inode_meta { 858 uint16_t version; /* 0000 inode data version */ 859 uint8_t reserved02; /* 0002 */ 860 uint8_t pfs_subtype; /* 0003 pfs sub-type */ 861 862 /* 863 * core inode attributes, inode type, misc flags 864 */ 865 uint32_t uflags; /* 0004 chflags */ 866 uint32_t rmajor; /* 0008 available for device nodes */ 867 uint32_t rminor; /* 000C available for device nodes */ 868 uint64_t ctime; /* 0010 inode change time */ 869 uint64_t mtime; /* 0018 modified time */ 870 uint64_t atime; /* 0020 access time (unsupported) */ 871 uint64_t btime; /* 0028 birth time */ 872 uuid_t uid; /* 0030 uid / degenerate unix uid */ 873 uuid_t gid; /* 0040 gid / degenerate unix gid */ 874 875 uint8_t type; /* 0050 object type */ 876 uint8_t op_flags; /* 0051 operational flags */ 877 uint16_t cap_flags; /* 0052 capability flags */ 878 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */ 879 880 /* 881 * inode size, identification, localized recursive configuration 882 * for compression and backup copies. 883 */ 884 hammer2_tid_t inum; /* 0058 inode number */ 885 hammer2_off_t size; /* 0060 size of file */ 886 uint64_t nlinks; /* 0068 hard links (typ only dirs) */ 887 hammer2_tid_t iparent; /* 0070 parent inum (recovery only) */ 888 hammer2_key_t name_key; /* 0078 full filename key */ 889 uint16_t name_len; /* 0080 filename length */ 890 uint8_t ncopies; /* 0082 ncopies to local media */ 891 uint8_t comp_algo; /* 0083 compression request & algo */ 892 893 /* 894 * These fields are currently only applicable to PFSROOTs. 895 * 896 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely 897 * identify an instance of a PFS in the cluster because 898 * a mount may contain more than one copy of the PFS as 899 * a separate node. {pfs_clid, pfs_fsid} must be used for 900 * registration in the cluster. 901 */ 902 uint8_t target_type; /* 0084 hardlink target type */ 903 uint8_t check_algo; /* 0085 check code request & algo */ 904 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */ 905 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */ 906 uint64_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */ 907 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */ 908 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */ 909 910 /* 911 * Quotas and aggregate sub-tree inode and data counters. Note that 912 * quotas are not replicated downward, they are explicitly set by 913 * the sysop and in-memory structures keep track of inheritence. 914 */ 915 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */ 916 hammer2_key_t unusedB8; /* 00B8 subtree byte count */ 917 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */ 918 hammer2_key_t unusedC8; /* 00C8 subtree inode count */ 919 hammer2_tid_t attr_tid; /* 00D0 attributes changed */ 920 hammer2_tid_t dirent_tid; /* 00D8 directory/attr changed */ 921 922 /* 923 * Tracks (possibly degenerate) free areas covering all sub-tree 924 * allocations under inode, not counting the inode itself. 925 * 0/0 indicates empty entry. fully set-associative. 926 * 927 * (not yet implemented) 928 */ 929 uint64_t decrypt_check; /* 00E0 decryption validator */ 930 hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */ 931 } __packed; 932 933 typedef struct hammer2_inode_meta hammer2_inode_meta_t; 934 935 struct hammer2_inode_data { 936 hammer2_inode_meta_t meta; /* 0000-00FF */ 937 unsigned char filename[HAMMER2_INODE_MAXNAME]; 938 /* 0100-01FF (256 char, unterminated) */ 939 union { /* 0200-03FF (64x8 = 512 bytes) */ 940 struct hammer2_blockset blockset; 941 char data[HAMMER2_EMBEDDED_BYTES]; 942 } u; 943 } __packed; 944 945 typedef struct hammer2_inode_data hammer2_inode_data_t; 946 947 #define HAMMER2_OPFLAG_DIRECTDATA 0x01 948 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */ 949 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */ 950 951 #define HAMMER2_OBJTYPE_UNKNOWN 0 952 #define HAMMER2_OBJTYPE_DIRECTORY 1 953 #define HAMMER2_OBJTYPE_REGFILE 2 954 #define HAMMER2_OBJTYPE_FIFO 4 955 #define HAMMER2_OBJTYPE_CDEV 5 956 #define HAMMER2_OBJTYPE_BDEV 6 957 #define HAMMER2_OBJTYPE_SOFTLINK 7 958 #define HAMMER2_OBJTYPE_HARDLINK 8 /* dummy entry for hardlink */ 959 #define HAMMER2_OBJTYPE_SOCKET 9 960 #define HAMMER2_OBJTYPE_WHITEOUT 10 961 962 #define HAMMER2_COPYID_NONE 0 963 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1) 964 965 #define HAMMER2_COPYID_COUNT 256 966 967 /* 968 * PFS types identify the role of a PFS within a cluster. The PFS types 969 * is stored on media and in LNK_SPAN messages and used in other places. 970 * 971 * The low 4 bits specify the current active type while the high 4 bits 972 * specify the transition target if the PFS is being upgraded or downgraded, 973 * If the upper 4 bits are not zero it may effect how a PFS is used during 974 * the transition. 975 * 976 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until 977 * at least all MASTERs have updated their pfs_nmasters field. And upgrading 978 * a SLAVE to a MASTER cannot complete until the new prospective master has 979 * been fully synchronized (though theoretically full synchronization is 980 * not required if a (new) quorum of other masters are fully synchronized). 981 * 982 * It generally does not matter which PFS element you actually mount, you 983 * are mounting 'the cluster'. So, for example, a network mount will mount 984 * a DUMMY PFS type on a memory filesystem. However, there are two exceptions. 985 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs 986 * must be directly mounted. 987 */ 988 #define HAMMER2_PFSTYPE_NONE 0x00 989 #define HAMMER2_PFSTYPE_CACHE 0x01 990 #define HAMMER2_PFSTYPE_UNUSED02 0x02 991 #define HAMMER2_PFSTYPE_SLAVE 0x03 992 #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04 993 #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05 994 #define HAMMER2_PFSTYPE_MASTER 0x06 995 #define HAMMER2_PFSTYPE_UNUSED07 0x07 996 #define HAMMER2_PFSTYPE_SUPROOT 0x08 997 #define HAMMER2_PFSTYPE_DUMMY 0x09 998 #define HAMMER2_PFSTYPE_MAX 16 999 1000 #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */ 1001 #define HAMMER2_PFSTRAN_CACHE 0x10 1002 #define HAMMER2_PFSTRAN_UNMUSED20 0x20 1003 #define HAMMER2_PFSTRAN_SLAVE 0x30 1004 #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40 1005 #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50 1006 #define HAMMER2_PFSTRAN_MASTER 0x60 1007 #define HAMMER2_PFSTRAN_UNUSED70 0x70 1008 #define HAMMER2_PFSTRAN_SUPROOT 0x80 1009 #define HAMMER2_PFSTRAN_DUMMY 0x90 1010 1011 #define HAMMER2_PFS_DEC(n) ((n) & 0x0F) 1012 #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F) 1013 #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4) 1014 1015 #define HAMMER2_PFSSUBTYPE_NONE 0 1016 #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */ 1017 #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */ 1018 1019 /* 1020 * PFS mode of operation is a bitmask. This is typically not stored 1021 * on-media, but defined here because the field may be used in dmsgs. 1022 */ 1023 #define HAMMER2_PFSMODE_QUORUM 0x01 1024 #define HAMMER2_PFSMODE_RW 0x02 1025 1026 /* 1027 * Allocation Table 1028 * 1029 */ 1030 1031 1032 /* 1033 * Flags (8 bits) - blockref, for freemap only 1034 * 1035 * Note that the minimum chunk size is 1KB so we could theoretically have 1036 * 10 bits here, but we might have some future extension that allows a 1037 * chunk size down to 256 bytes and if so we will need bits 8 and 9. 1038 */ 1039 #define HAMMER2_AVF_SELMASK 0x03 /* select group */ 1040 #define HAMMER2_AVF_ALL_ALLOC 0x04 /* indicate all allocated */ 1041 #define HAMMER2_AVF_ALL_FREE 0x08 /* indicate all free */ 1042 #define HAMMER2_AVF_RESERVED10 0x10 1043 #define HAMMER2_AVF_RESERVED20 0x20 1044 #define HAMMER2_AVF_RESERVED40 0x40 1045 #define HAMMER2_AVF_RESERVED80 0x80 1046 #define HAMMER2_AVF_AVMASK32 ((uint32_t)0xFFFFFF00LU) 1047 #define HAMMER2_AVF_AVMASK64 ((uint64_t)0xFFFFFFFFFFFFFF00LLU) 1048 1049 #define HAMMER2_AV_SELECT_A 0x00 1050 #define HAMMER2_AV_SELECT_B 0x01 1051 #define HAMMER2_AV_SELECT_C 0x02 1052 #define HAMMER2_AV_SELECT_D 0x03 1053 1054 /* 1055 * The volume header eats a 64K block. There is currently an issue where 1056 * we want to try to fit all nominal filesystem updates in a 512-byte section 1057 * but it may be a lost cause due to the need for a blockset. 1058 * 1059 * All information is stored in host byte order. The volume header's magic 1060 * number may be checked to determine the byte order. If you wish to mount 1061 * between machines w/ different endian modes you'll need filesystem code 1062 * which acts on the media data consistently (either all one way or all the 1063 * other). Our code currently does not do that. 1064 * 1065 * A read-write mount may have to recover missing allocations by doing an 1066 * incremental mirror scan looking for modifications made after alloc_tid. 1067 * If alloc_tid == last_tid then no recovery operation is needed. Recovery 1068 * operations are usually very, very fast. 1069 * 1070 * Read-only mounts do not need to do any recovery, access to the filesystem 1071 * topology is always consistent after a crash (is always consistent, period). 1072 * However, there may be shortcutted blockref updates present from deep in 1073 * the tree which are stored in the volumeh eader and must be tracked on 1074 * the fly. 1075 * 1076 * NOTE: The copyinfo[] array contains the configuration for both the 1077 * cluster connections and any local media copies. The volume 1078 * header will be replicated for each local media copy. 1079 * 1080 * The mount command may specify multiple medias or just one and 1081 * allow HAMMER2 to pick up the others when it checks the copyinfo[] 1082 * array on mount. 1083 * 1084 * NOTE: root_blockref points to the super-root directory, not the root 1085 * directory. The root directory will be a subdirectory under the 1086 * super-root. 1087 * 1088 * The super-root directory contains all root directories and all 1089 * snapshots (readonly or writable). It is possible to do a 1090 * null-mount of the super-root using special path constructions 1091 * relative to your mounted root. 1092 * 1093 * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were 1094 * a PFS, including mirroring and storage quota operations, and this is 1095 * prefered over creating discrete PFSs in the super-root. Instead 1096 * the super-root is most typically used to create writable snapshots, 1097 * alternative roots, and so forth. The super-root is also used by 1098 * the automatic snapshotting mechanism. 1099 */ 1100 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU 1101 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU 1102 1103 struct hammer2_volume_data { 1104 /* 1105 * sector #0 - 512 bytes 1106 */ 1107 uint64_t magic; /* 0000 Signature */ 1108 hammer2_off_t boot_beg; /* 0008 Boot area (future) */ 1109 hammer2_off_t boot_end; /* 0010 (size = end - beg) */ 1110 hammer2_off_t aux_beg; /* 0018 Aux area (future) */ 1111 hammer2_off_t aux_end; /* 0020 (size = end - beg) */ 1112 hammer2_off_t volu_size; /* 0028 Volume size, bytes */ 1113 1114 uint32_t version; /* 0030 */ 1115 uint32_t flags; /* 0034 */ 1116 uint8_t copyid; /* 0038 copyid of phys vol */ 1117 uint8_t freemap_version; /* 0039 freemap algorithm */ 1118 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */ 1119 uint8_t reserved003B; /* 003B */ 1120 uint32_t reserved003C; /* 003C */ 1121 1122 uuid_t fsid; /* 0040 */ 1123 uuid_t fstype; /* 0050 */ 1124 1125 /* 1126 * allocator_size is precalculated at newfs time and does not include 1127 * reserved blocks, boot, or redo areas. 1128 * 1129 * Initial non-reserved-area allocations do not use the freemap 1130 * but instead adjust alloc_iterator. Dynamic allocations take 1131 * over starting at (allocator_beg). This makes newfs_hammer2's 1132 * job a lot easier and can also serve as a testing jig. 1133 */ 1134 hammer2_off_t allocator_size; /* 0060 Total data space */ 1135 hammer2_off_t allocator_free; /* 0068 Free space */ 1136 hammer2_off_t allocator_beg; /* 0070 Initial allocations */ 1137 1138 /* 1139 * mirror_tid reflects the highest committed change for this 1140 * block device regardless of whether it is to the super-root 1141 * or to a PFS or whatever. 1142 * 1143 * freemap_tid reflects the highest committed freemap change for 1144 * this block device. 1145 */ 1146 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */ 1147 hammer2_tid_t reserved0080; /* 0080 */ 1148 hammer2_tid_t reserved0088; /* 0088 */ 1149 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */ 1150 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */ 1151 hammer2_tid_t reserved00A0[5]; /* 00A0-00C7 */ 1152 1153 /* 1154 * Copyids are allocated dynamically from the copyexists bitmap. 1155 * An id from the active copies set (up to 8, see copyinfo later on) 1156 * may still exist after the copy set has been removed from the 1157 * volume header and its bit will remain active in the bitmap and 1158 * cannot be reused until it is 100% removed from the hierarchy. 1159 */ 1160 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */ 1161 char reserved0140[248]; /* 00E8-01DF */ 1162 1163 /* 1164 * 32 bit CRC array at the end of the first 512 byte sector. 1165 * 1166 * icrc_sects[7] - First 512-4 bytes of volume header (including all 1167 * the other icrc's except this one). 1168 * 1169 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is 1170 * the blockset for the root. 1171 * 1172 * icrc_sects[5] - Sector 2 1173 * icrc_sects[4] - Sector 3 1174 * icrc_sects[3] - Sector 4 (the freemap blockset) 1175 */ 1176 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */ 1177 1178 /* 1179 * sector #1 - 512 bytes 1180 * 1181 * The entire sector is used by a blockset. 1182 */ 1183 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */ 1184 1185 /* 1186 * sector #2-7 1187 */ 1188 char sector2[512]; /* 0400-05FF reserved */ 1189 char sector3[512]; /* 0600-07FF reserved */ 1190 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */ 1191 char sector5[512]; /* 0A00-0BFF reserved */ 1192 char sector6[512]; /* 0C00-0DFF reserved */ 1193 char sector7[512]; /* 0E00-0FFF reserved */ 1194 1195 /* 1196 * sector #8-71 - 32768 bytes 1197 * 1198 * Contains the configuration for up to 256 copyinfo targets. These 1199 * specify local and remote copies operating as masters or slaves. 1200 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255 1201 * indicates the local media). 1202 * 1203 * Each inode contains a set of up to 8 copyids, either inherited 1204 * from its parent or explicitly specified in the inode, which 1205 * indexes into this array. 1206 */ 1207 /* 1000-8FFF copyinfo config */ 1208 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT]; 1209 1210 /* 1211 * Remaining sections are reserved for future use. 1212 */ 1213 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */ 1214 1215 /* 1216 * icrc on entire volume header 1217 */ 1218 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/ 1219 } __packed; 1220 1221 typedef struct hammer2_volume_data hammer2_volume_data_t; 1222 1223 /* 1224 * Various parts of the volume header have their own iCRCs. 1225 * 1226 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes 1227 * and not included the icrc calculation. 1228 * 1229 * The second 512 bytes also has its own iCRC but it is stored in the first 1230 * 512 bytes so it covers the entire second 512 bytes. 1231 * 1232 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes, 1233 * which is where the iCRC for the whole volume is stored. This is currently 1234 * a catch-all for anything not individually iCRCd. 1235 */ 1236 #define HAMMER2_VOL_ICRC_SECT0 7 1237 #define HAMMER2_VOL_ICRC_SECT1 6 1238 1239 #define HAMMER2_VOLUME_BYTES 65536 1240 1241 #define HAMMER2_VOLUME_ICRC0_OFF 0 1242 #define HAMMER2_VOLUME_ICRC1_OFF 512 1243 #define HAMMER2_VOLUME_ICRCVH_OFF 0 1244 1245 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4) 1246 #define HAMMER2_VOLUME_ICRC1_SIZE (512) 1247 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4) 1248 1249 #define HAMMER2_VOL_VERSION_MIN 1 1250 #define HAMMER2_VOL_VERSION_DEFAULT 1 1251 #define HAMMER2_VOL_VERSION_WIP 2 1252 1253 #define HAMMER2_NUM_VOLHDRS 4 1254 1255 union hammer2_media_data { 1256 hammer2_volume_data_t voldata; 1257 hammer2_inode_data_t ipdata; 1258 hammer2_blockset_t blkset; 1259 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX]; 1260 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT]; 1261 char buf[HAMMER2_PBUFSIZE]; 1262 } __packed; 1263 1264 typedef union hammer2_media_data hammer2_media_data_t; 1265 1266 #endif /* !_VFS_HAMMER2_DISK_H_ */ 1267