xref: /dragonfly/sys/vfs/hammer2/hammer2_freemap.c (revision 5ca0a96d)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/fcntl.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/mount.h>
42 #include <sys/vnode.h>
43 #include <sys/mountctl.h>
44 
45 #include "hammer2.h"
46 
47 #define FREEMAP_DEBUG	0
48 
49 struct hammer2_fiterate {
50 	hammer2_off_t	bpref;
51 	hammer2_off_t	bnext;
52 	int		loops;
53 	int		relaxed;
54 };
55 
56 typedef struct hammer2_fiterate hammer2_fiterate_t;
57 
58 static int hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
59 			hammer2_blockref_t *bref, int radix,
60 			hammer2_fiterate_t *iter, hammer2_tid_t mtid);
61 static void hammer2_freemap_init(hammer2_dev_t *hmp,
62 			hammer2_key_t key, hammer2_chain_t *chain);
63 static int hammer2_bmap_alloc(hammer2_dev_t *hmp,
64 			hammer2_bmap_data_t *bmap, uint16_t class,
65 			int n, int sub_key, int radix, hammer2_key_t *basep);
66 static int hammer2_freemap_iterate(hammer2_chain_t **parentp,
67 			hammer2_chain_t **chainp,
68 			hammer2_fiterate_t *iter);
69 
70 /*
71  * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF
72  * bref.  Return a combined media offset and physical size radix.  Freemap
73  * chains use fixed storage offsets in the 4MB reserved area at the
74  * beginning of each 2GB zone
75  *
76  * Rotate between four possibilities.  Theoretically this means we have three
77  * good freemaps in case of a crash which we can use as a base for the fixup
78  * scan at mount-time.
79  */
80 static
81 int
82 hammer2_freemap_reserve(hammer2_chain_t *chain, int radix)
83 {
84 	hammer2_blockref_t *bref = &chain->bref;
85 	hammer2_off_t off;
86 	int index;
87 	int index_inc;
88 	size_t bytes;
89 
90 	/*
91 	 * Physical allocation size.
92 	 */
93 	bytes = (size_t)1 << radix;
94 
95 	/*
96 	 * Calculate block selection index 0..7 of current block.  If this
97 	 * is the first allocation of the block (verses a modification of an
98 	 * existing block), we use index 0, otherwise we use the next rotating
99 	 * index.
100 	 */
101 	if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
102 		index = 0;
103 	} else {
104 		off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
105 		      HAMMER2_SEGMASK;
106 		off = off / HAMMER2_PBUFSIZE;
107 		KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 &&
108 			 off < HAMMER2_ZONE_FREEMAP_END);
109 		index = (int)(off - HAMMER2_ZONE_FREEMAP_00) /
110 			HAMMER2_ZONE_FREEMAP_INC;
111 		KKASSERT(index >= 0 && index < HAMMER2_NFREEMAPS);
112 		if (++index == HAMMER2_NFREEMAPS)
113 			index = 0;
114 	}
115 
116 	/*
117 	 * Calculate the block offset of the reserved block.  This will
118 	 * point into the 4MB reserved area at the base of the appropriate
119 	 * 2GB zone, once added to the FREEMAP_x selection above.
120 	 */
121 	index_inc = index * HAMMER2_ZONE_FREEMAP_INC;
122 
123 	switch(bref->keybits) {
124 	/* case HAMMER2_FREEMAP_LEVEL6_RADIX: not applicable */
125 	case HAMMER2_FREEMAP_LEVEL5_RADIX:	/* 4EB */
126 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
127 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
128 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL5_RADIX) +
129 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
130 		       HAMMER2_ZONEFM_LEVEL5) * HAMMER2_PBUFSIZE;
131 		break;
132 	case HAMMER2_FREEMAP_LEVEL4_RADIX:	/* 16PB */
133 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
134 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
135 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) +
136 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
137 		       HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE;
138 		break;
139 	case HAMMER2_FREEMAP_LEVEL3_RADIX:	/* 64TB */
140 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
141 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
142 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) +
143 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
144 		       HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE;
145 		break;
146 	case HAMMER2_FREEMAP_LEVEL2_RADIX:	/* 256GB */
147 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
148 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
149 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) +
150 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
151 		       HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE;
152 		break;
153 	case HAMMER2_FREEMAP_LEVEL1_RADIX:	/* 1GB */
154 		KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
155 		KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
156 		off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
157 		      (index_inc + HAMMER2_ZONE_FREEMAP_00 +
158 		       HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE;
159 		break;
160 	default:
161 		panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits);
162 		/* NOT REACHED */
163 		off = (hammer2_off_t)-1;
164 		break;
165 	}
166 	bref->data_off = off | radix;
167 #if FREEMAP_DEBUG
168 	kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n",
169 		bref->type, bref->key, bref->keybits, bref->data_off);
170 #endif
171 	return (0);
172 }
173 
174 /*
175  * Normal freemap allocator
176  *
177  * Use available hints to allocate space using the freemap.  Create missing
178  * freemap infrastructure on-the-fly as needed (including marking initial
179  * allocations using the iterator as allocated, instantiating new 2GB zones,
180  * and dealing with the end-of-media edge case).
181  *
182  * ip and bpref are only used as a heuristic to determine locality of
183  * reference.  bref->key may also be used heuristically.
184  *
185  * This function is a NOP if bytes is 0.
186  */
187 int
188 hammer2_freemap_alloc(hammer2_chain_t *chain, size_t bytes)
189 {
190 	hammer2_dev_t *hmp = chain->hmp;
191 	hammer2_blockref_t *bref = &chain->bref;
192 	hammer2_chain_t *parent;
193 	hammer2_tid_t mtid;
194 	int radix;
195 	int error;
196 	unsigned int hindex;
197 	hammer2_fiterate_t iter;
198 
199 	/*
200 	 * If allocating or downsizing to zero we just get rid of whatever
201 	 * data_off we had.
202 	 */
203 	if (bytes == 0) {
204 		chain->bref.data_off = 0;
205 		return 0;
206 	}
207 
208 	KKASSERT(hmp->spmp);
209 	mtid = hammer2_trans_sub(hmp->spmp);
210 
211 	/*
212 	 * Validate the allocation size.  It must be a power of 2.
213 	 *
214 	 * For now require that the caller be aware of the minimum
215 	 * allocation (1K).
216 	 */
217 	radix = hammer2_getradix(bytes);
218 	KKASSERT((size_t)1 << radix == bytes);
219 
220 	if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
221 	    bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
222 		/*
223 		 * Freemap blocks themselves are assigned from the reserve
224 		 * area, not allocated from the freemap.
225 		 */
226 		error = hammer2_freemap_reserve(chain, radix);
227 
228 		return error;
229 	}
230 
231 	KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX);
232 
233 	/*
234 	 * Calculate the starting point for our allocation search.
235 	 *
236 	 * Each freemap leaf is dedicated to a specific freemap_radix.
237 	 * The freemap_radix can be more fine-grained than the device buffer
238 	 * radix which results in inodes being grouped together in their
239 	 * own segment, terminal-data (16K or less) and initial indirect
240 	 * block being grouped together, and then full-indirect and full-data
241 	 * blocks (64K) being grouped together.
242 	 *
243 	 * The single most important aspect of this is the inode grouping
244 	 * because that is what allows 'find' and 'ls' and other filesystem
245 	 * topology operations to run fast.
246 	 */
247 #if 0
248 	if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX)
249 		bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX;
250 	else if (trans->tmp_bpref)
251 		bpref = trans->tmp_bpref;
252 	else if (trans->tmp_ip)
253 		bpref = trans->tmp_ip->chain->bref.data_off;
254 	else
255 #endif
256 	/*
257 	 * Heuristic tracking index.  We would like one for each distinct
258 	 * bref type if possible.  heur_freemap[] has room for two classes
259 	 * for each type.  At a minimum we have to break-up our heuristic
260 	 * by device block sizes.
261 	 */
262 	hindex = HAMMER2_PBUFRADIX - HAMMER2_LBUFRADIX;
263 	KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX);
264 	hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX;
265 	hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1;
266 	KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_SIZE);
267 
268 	iter.bpref = hmp->heur_freemap[hindex];
269 	iter.relaxed = hmp->freemap_relaxed;
270 
271 	/*
272 	 * Make sure bpref is in-bounds.  It's ok if bpref covers a zone's
273 	 * reserved area, the try code will iterate past it.
274 	 */
275 	if (iter.bpref > hmp->total_size)
276 		iter.bpref = hmp->total_size - 1;
277 
278 	/*
279 	 * Iterate the freemap looking for free space before and after.
280 	 */
281 	parent = &hmp->fchain;
282 	hammer2_chain_ref(parent);
283 	hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
284 	error = HAMMER2_ERROR_EAGAIN;
285 	iter.bnext = iter.bpref;
286 	iter.loops = 0;
287 
288 	while (error == HAMMER2_ERROR_EAGAIN) {
289 		error = hammer2_freemap_try_alloc(&parent, bref, radix,
290 						  &iter, mtid);
291 	}
292 	hmp->freemap_relaxed |= iter.relaxed;	/* heuristical, SMP race ok */
293 	hmp->heur_freemap[hindex] = iter.bnext;
294 	hammer2_chain_unlock(parent);
295 	hammer2_chain_drop(parent);
296 
297 	return (error);
298 }
299 
300 static int
301 hammer2_freemap_try_alloc(hammer2_chain_t **parentp,
302 			  hammer2_blockref_t *bref, int radix,
303 			  hammer2_fiterate_t *iter, hammer2_tid_t mtid)
304 {
305 	hammer2_dev_t *hmp = (*parentp)->hmp;
306 	hammer2_off_t l0size;
307 	hammer2_off_t l1size;
308 	hammer2_off_t l1mask;
309 	hammer2_key_t key_dummy;
310 	hammer2_chain_t *chain;
311 	hammer2_off_t key;
312 	size_t bytes;
313 	uint16_t class;
314 	int error;
315 
316 	/*
317 	 * Calculate the number of bytes being allocated, the number
318 	 * of contiguous bits of bitmap being allocated, and the bitmap
319 	 * mask.
320 	 *
321 	 * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the
322 	 *	    mask calculation.
323 	 */
324 	bytes = (size_t)1 << radix;
325 	class = (bref->type << 8) | HAMMER2_PBUFRADIX;
326 
327 	/*
328 	 * Lookup the level1 freemap chain, creating and initializing one
329 	 * if necessary.  Intermediate levels will be created automatically
330 	 * when necessary by hammer2_chain_create().
331 	 */
332 	key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX);
333 	l0size = HAMMER2_FREEMAP_LEVEL0_SIZE;
334 	l1size = HAMMER2_FREEMAP_LEVEL1_SIZE;
335 	l1mask = l1size - 1;
336 
337 	chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask,
338 				     &error,
339 				     HAMMER2_LOOKUP_ALWAYS |
340 				     HAMMER2_LOOKUP_MATCHIND);
341 
342 	if (chain == NULL) {
343 		/*
344 		 * Create the missing leaf, be sure to initialize
345 		 * the auxillary freemap tracking information in
346 		 * the bref.check.freemap structure.
347 		 */
348 #if 0
349 		kprintf("freemap create L1 @ %016jx bpref %016jx\n",
350 			key, iter->bpref);
351 #endif
352 		error = hammer2_chain_create(parentp, &chain, NULL, hmp->spmp,
353 				     HAMMER2_METH_DEFAULT,
354 				     key, HAMMER2_FREEMAP_LEVEL1_RADIX,
355 				     HAMMER2_BREF_TYPE_FREEMAP_LEAF,
356 				     HAMMER2_FREEMAP_LEVELN_PSIZE,
357 				     mtid, 0, 0);
358 		KKASSERT(error == 0);
359 		if (error == 0) {
360 			hammer2_chain_modify(chain, mtid, 0, 0);
361 			bzero(&chain->data->bmdata[0],
362 			      HAMMER2_FREEMAP_LEVELN_PSIZE);
363 			chain->bref.check.freemap.bigmask = (uint32_t)-1;
364 			chain->bref.check.freemap.avail = l1size;
365 			/* bref.methods should already be inherited */
366 
367 			hammer2_freemap_init(hmp, key, chain);
368 		}
369 	} else if (chain->error) {
370 		/*
371 		 * Error during lookup.
372 		 */
373 		kprintf("hammer2_freemap_try_alloc: %016jx: error %s\n",
374 			(intmax_t)bref->data_off,
375 			hammer2_error_str(chain->error));
376 		error = HAMMER2_ERROR_EIO;
377 	} else if ((chain->bref.check.freemap.bigmask &
378 		   ((size_t)1 << radix)) == 0) {
379 		/*
380 		 * Already flagged as not having enough space
381 		 */
382 		error = HAMMER2_ERROR_ENOSPC;
383 	} else {
384 		/*
385 		 * Modify existing chain to setup for adjustment.
386 		 */
387 		hammer2_chain_modify(chain, mtid, 0, 0);
388 	}
389 
390 	/*
391 	 * Scan 4MB entries.
392 	 */
393 	if (error == 0) {
394 		hammer2_bmap_data_t *bmap;
395 		hammer2_key_t base_key;
396 		int count;
397 		int start;
398 		int n;
399 
400 		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
401 		start = (int)((iter->bnext - key) >>
402 			      HAMMER2_FREEMAP_LEVEL0_RADIX);
403 		KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT);
404 		hammer2_chain_modify(chain, mtid, 0, 0);
405 
406 		error = HAMMER2_ERROR_ENOSPC;
407 		for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
408 			int availchk;
409 
410 			if (start + count >= HAMMER2_FREEMAP_COUNT &&
411 			    start - count < 0) {
412 				break;
413 			}
414 
415 			/*
416 			 * Calculate bmap pointer from thart starting index
417 			 * forwards.
418 			 *
419 			 * NOTE: bmap pointer is invalid if n >= FREEMAP_COUNT.
420 			 */
421 			n = start + count;
422 			bmap = &chain->data->bmdata[n];
423 
424 			if (n >= HAMMER2_FREEMAP_COUNT) {
425 				availchk = 0;
426 			} else if (bmap->avail) {
427 				availchk = 1;
428 			} else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
429 			          (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
430 				availchk = 1;
431 			} else {
432 				availchk = 0;
433 			}
434 
435 			/*
436 			 * Try to allocate from a matching freemap class
437 			 * superblock.  If we are in relaxed mode we allocate
438 			 * from any freemap class superblock.
439 			 */
440 			if (availchk &&
441 			    (bmap->class == 0 || bmap->class == class ||
442 			     iter->relaxed)) {
443 				base_key = key + n * l0size;
444 				error = hammer2_bmap_alloc(hmp, bmap,
445 							   class, n,
446 							   (int)bref->key,
447 							   radix,
448 							   &base_key);
449 				if (error != HAMMER2_ERROR_ENOSPC) {
450 					key = base_key;
451 					break;
452 				}
453 			}
454 
455 			/*
456 			 * Calculate bmap pointer from thart starting index
457 			 * backwards (locality).
458 			 *
459 			 * Must recalculate after potentially having called
460 			 * hammer2_bmap_alloc() above in case chain was
461 			 * reallocated.
462 			 *
463 			 * NOTE: bmap pointer is invalid if n < 0.
464 			 */
465 			n = start - count;
466 			bmap = &chain->data->bmdata[n];
467 			if (n < 0) {
468 				availchk = 0;
469 			} else if (bmap->avail) {
470 				availchk = 1;
471 			} else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
472 			          (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
473 				availchk = 1;
474 			} else {
475 				availchk = 0;
476 			}
477 
478 			/*
479 			 * Try to allocate from a matching freemap class
480 			 * superblock.  If we are in relaxed mode we allocate
481 			 * from any freemap class superblock.
482 			 */
483 			if (availchk &&
484 			    (bmap->class == 0 || bmap->class == class ||
485 			    iter->relaxed)) {
486 				base_key = key + n * l0size;
487 				error = hammer2_bmap_alloc(hmp, bmap,
488 							   class, n,
489 							   (int)bref->key,
490 							   radix,
491 							   &base_key);
492 				if (error != HAMMER2_ERROR_ENOSPC) {
493 					key = base_key;
494 					break;
495 				}
496 			}
497 		}
498 
499 		/*
500 		 * We only know for sure that we can clear the bitmap bit
501 		 * if we scanned the entire array (start == 0).
502 		 */
503 		if (error == HAMMER2_ERROR_ENOSPC && start == 0) {
504 			chain->bref.check.freemap.bigmask &=
505 				(uint32_t)~((size_t)1 << radix);
506 		}
507 		/* XXX also scan down from original count */
508 	}
509 
510 	if (error == 0) {
511 		/*
512 		 * Assert validity.  Must be beyond the static allocator used
513 		 * by newfs_hammer2 (and thus also beyond the aux area),
514 		 * not go past the volume size, and must not be in the
515 		 * reserved segment area for a zone.
516 		 */
517 		KKASSERT(key >= hmp->voldata.allocator_beg &&
518 			 key + bytes <= hmp->total_size);
519 		KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
520 		bref->data_off = key | radix;
521 
522 		/*
523 		 * Record dedupability.  The dedup bits are cleared
524 		 * when bulkfree transitions the freemap from 11->10,
525 		 * and asserted to be clear on the 10->00 transition.
526 		 *
527 		 * We must record the bitmask with the chain locked
528 		 * at the time we set the allocation bits to avoid
529 		 * racing a bulkfree.
530 		 */
531 		if (bref->type == HAMMER2_BREF_TYPE_DATA)
532 			hammer2_io_dedup_set(hmp, bref);
533 #if 0
534 		kprintf("alloc cp=%p %016jx %016jx using %016jx\n",
535 			chain,
536 			bref->key, bref->data_off, chain->bref.data_off);
537 #endif
538 	} else if (error == HAMMER2_ERROR_ENOSPC) {
539 		/*
540 		 * Return EAGAIN with next iteration in iter->bnext, or
541 		 * return ENOSPC if the allocation map has been exhausted.
542 		 */
543 		error = hammer2_freemap_iterate(parentp, &chain, iter);
544 	}
545 
546 	/*
547 	 * Cleanup
548 	 */
549 	if (chain) {
550 		hammer2_chain_unlock(chain);
551 		hammer2_chain_drop(chain);
552 	}
553 	return (error);
554 }
555 
556 /*
557  * Allocate (1<<radix) bytes from the bmap whos base data offset is (*basep).
558  *
559  * If the linear iterator is mid-block we use it directly (the bitmap should
560  * already be marked allocated), otherwise we search for a block in the
561  * bitmap that fits the allocation request.
562  *
563  * A partial bitmap allocation sets the minimum bitmap granularity (16KB)
564  * to fully allocated and adjusts the linear allocator to allow the
565  * remaining space to be allocated.
566  *
567  * sub_key is the lower 32 bits of the chain->bref.key for the chain whos
568  * bref is being allocated.  If the radix represents an allocation >= 16KB
569  * (aka HAMMER2_FREEMAP_BLOCK_RADIX) we try to use this key to select the
570  * blocks directly out of the bmap.
571  */
572 static
573 int
574 hammer2_bmap_alloc(hammer2_dev_t *hmp, hammer2_bmap_data_t *bmap,
575 		   uint16_t class, int n, int sub_key,
576 		   int radix, hammer2_key_t *basep)
577 {
578 	size_t size;
579 	size_t bgsize;
580 	int bmradix;
581 	hammer2_bitmap_t bmmask;
582 	int offset;
583 	int i;
584 	int j;
585 
586 	/*
587 	 * Take into account 2-bits per block when calculating bmradix.
588 	 */
589 	size = (size_t)1 << radix;
590 
591 	if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) {
592 		bmradix = 2;
593 		/* (16K) 2 bits per allocation block */
594 	} else {
595 		bmradix = (hammer2_bitmap_t)2 <<
596 			  (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
597 		/* (32K-256K) 4, 8, 16, 32 bits per allocation block */
598 	}
599 
600 	/*
601 	 * Use the linear iterator to pack small allocations, otherwise
602 	 * fall-back to finding a free 16KB chunk.  The linear iterator
603 	 * is only valid when *NOT* on a freemap chunking boundary (16KB).
604 	 * If it is the bitmap must be scanned.  It can become invalid
605 	 * once we pack to the boundary.  We adjust it after a bitmap
606 	 * allocation only for sub-16KB allocations (so the perfectly good
607 	 * previous value can still be used for fragments when 16KB+
608 	 * allocations are made inbetween fragmentary allocations).
609 	 *
610 	 * Beware of hardware artifacts when bmradix == 64 (intermediate
611 	 * result can wind up being '1' instead of '0' if hardware masks
612 	 * bit-count & 63).
613 	 *
614 	 * NOTE: j needs to be even in the j= calculation.  As an artifact
615 	 *	 of the /2 division, our bitmask has to clear bit 0.
616 	 *
617 	 * NOTE: TODO this can leave little unallocatable fragments lying
618 	 *	 around.
619 	 */
620 	if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <=
621 	    HAMMER2_FREEMAP_BLOCK_SIZE &&
622 	    (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) &&
623 	    bmap->linear < HAMMER2_SEGSIZE) {
624 		/*
625 		 * Use linear iterator if it is not block-aligned to avoid
626 		 * wasting space.
627 		 *
628 		 * Calculate the bitmapq[] index (i) and calculate the
629 		 * shift count within the 64-bit bitmapq[] entry.
630 		 *
631 		 * The freemap block size is 16KB, but each bitmap
632 		 * entry is two bits so use a little trick to get
633 		 * a (j) shift of 0, 2, 4, ... 62 in 16KB chunks.
634 		 */
635 		KKASSERT(bmap->linear >= 0 &&
636 			 bmap->linear + size <= HAMMER2_SEGSIZE &&
637 			 (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0);
638 		offset = bmap->linear;
639 		i = offset / (HAMMER2_SEGSIZE / HAMMER2_BMAP_ELEMENTS);
640 		j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 62;
641 		bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
642 			 HAMMER2_BMAP_ALLONES :
643 			 ((hammer2_bitmap_t)1 << bmradix) - 1;
644 		bmmask <<= j;
645 		bmap->linear = offset + size;
646 	} else {
647 		/*
648 		 * Try to index a starting point based on sub_key.  This
649 		 * attempts to restore sequential block ordering on-disk
650 		 * whenever possible, even if data is committed out of
651 		 * order.
652 		 *
653 		 * i - Index bitmapq[], full data range represented is
654 		 *     HAMMER2_BMAP_SIZE.
655 		 *
656 		 * j - Index within bitmapq[i], full data range represented is
657 		 *     HAMMER2_BMAP_INDEX_SIZE.
658 		 *
659 		 * WARNING!
660 		 */
661 		i = -1;
662 		j = -1;
663 
664 		switch(class >> 8) {
665 		case HAMMER2_BREF_TYPE_DATA:
666 			if (radix >= HAMMER2_FREEMAP_BLOCK_RADIX) {
667 				i = (sub_key & HAMMER2_BMAP_MASK) /
668 				    (HAMMER2_BMAP_SIZE / HAMMER2_BMAP_ELEMENTS);
669 				j = (sub_key & HAMMER2_BMAP_INDEX_MASK) /
670 				    (HAMMER2_BMAP_INDEX_SIZE /
671 				     HAMMER2_BMAP_BLOCKS_PER_ELEMENT);
672 				j = j * 2;
673 			}
674 			break;
675 		case HAMMER2_BREF_TYPE_INODE:
676 			break;
677 		default:
678 			break;
679 		}
680 		if (i >= 0) {
681 			KKASSERT(i < HAMMER2_BMAP_ELEMENTS &&
682 				 j < 2 * HAMMER2_BMAP_BLOCKS_PER_ELEMENT);
683 			KKASSERT(j + bmradix <= HAMMER2_BMAP_BITS_PER_ELEMENT);
684 			bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
685 				 HAMMER2_BMAP_ALLONES :
686 				 ((hammer2_bitmap_t)1 << bmradix) - 1;
687 			bmmask <<= j;
688 
689 			if ((bmap->bitmapq[i] & bmmask) == 0)
690 				goto success;
691 		}
692 
693 		/*
694 		 * General element scan.
695 		 *
696 		 * WARNING: (j) is iterating a bit index (by 2's)
697 		 */
698 		for (i = 0; i < HAMMER2_BMAP_ELEMENTS; ++i) {
699 			bmmask = (bmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
700 				 HAMMER2_BMAP_ALLONES :
701 				 ((hammer2_bitmap_t)1 << bmradix) - 1;
702 			for (j = 0;
703 			     j < HAMMER2_BMAP_BITS_PER_ELEMENT;
704 			     j += bmradix) {
705 				if ((bmap->bitmapq[i] & bmmask) == 0)
706 					goto success;
707 				bmmask <<= bmradix;
708 			}
709 		}
710 		/*fragments might remain*/
711 		/*KKASSERT(bmap->avail == 0);*/
712 		return (HAMMER2_ERROR_ENOSPC);
713 success:
714 		offset = i * (HAMMER2_SEGSIZE / HAMMER2_BMAP_ELEMENTS) +
715 			 (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2));
716 		if (size & HAMMER2_FREEMAP_BLOCK_MASK)
717 			bmap->linear = offset + size;
718 	}
719 
720 	/* 8 x (64/2) -> 256 x 16K -> 4MB */
721 	KKASSERT(i >= 0 && i < HAMMER2_BMAP_ELEMENTS);
722 
723 	/*
724 	 * Optimize the buffer cache to avoid unnecessary read-before-write
725 	 * operations.
726 	 *
727 	 * The device block size could be larger than the allocation size
728 	 * so the actual bitmap test is somewhat more involved.  We have
729 	 * to use a compatible buffer size for this operation.
730 	 */
731 	if ((bmap->bitmapq[i] & bmmask) == 0 &&
732 	    HAMMER2_PBUFSIZE != size) {
733 		size_t psize = HAMMER2_PBUFSIZE;
734 		hammer2_off_t pmask = (hammer2_off_t)psize - 1;
735 		int pbmradix = (hammer2_bitmap_t)2 <<
736 					(HAMMER2_PBUFRADIX -
737 			       HAMMER2_FREEMAP_BLOCK_RADIX);
738 		hammer2_bitmap_t pbmmask;
739 		int pradix = hammer2_getradix(psize);
740 
741 		pbmmask = (pbmradix == HAMMER2_BMAP_BITS_PER_ELEMENT) ?
742 			HAMMER2_BMAP_ALLONES :
743 			((hammer2_bitmap_t)1 << pbmradix) - 1;
744 		while ((pbmmask & bmmask) == 0)
745 			pbmmask <<= pbmradix;
746 
747 #if 0
748 		kprintf("%016jx mask %016jx %016jx %016jx (%zd/%zd)\n",
749 			*basep + offset, bmap->bitmapq[i],
750 			pbmmask, bmmask, size, psize);
751 #endif
752 
753 		if ((bmap->bitmapq[i] & pbmmask) == 0) {
754 			hammer2_io_t *dio;
755 
756 			hammer2_io_newnz(hmp, class >> 8,
757 					(*basep + (offset & ~pmask)) |
758 					pradix, psize, &dio);
759 			hammer2_io_putblk(&dio);
760 		}
761 	}
762 
763 #if 0
764 	/*
765 	 * When initializing a new inode segment also attempt to initialize
766 	 * an adjacent segment.  Be careful not to index beyond the array
767 	 * bounds.
768 	 *
769 	 * We do this to try to localize inode accesses to improve
770 	 * directory scan rates.  XXX doesn't improve scan rates.
771 	 */
772 	if (size == HAMMER2_INODE_BYTES) {
773 		if (n & 1) {
774 			if (bmap[-1].radix == 0 && bmap[-1].avail)
775 				bmap[-1].radix = radix;
776 		} else {
777 			if (bmap[1].radix == 0 && bmap[1].avail)
778 				bmap[1].radix = radix;
779 		}
780 	}
781 #endif
782 	/*
783 	 * Calculate the bitmap-granular change in bgsize for the volume
784 	 * header.  We cannot use the fine-grained change here because
785 	 * the bulkfree code can't undo it.  If the bitmap element is already
786 	 * marked allocated it has already been accounted for.
787 	 */
788 	if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
789 		if (bmap->bitmapq[i] & bmmask)
790 			bgsize = 0;
791 		else
792 			bgsize = HAMMER2_FREEMAP_BLOCK_SIZE;
793 	} else {
794 		bgsize = size;
795 	}
796 
797 	/*
798 	 * Adjust the bitmap, set the class (it might have been 0),
799 	 * and available bytes, update the allocation offset (*basep)
800 	 * from the L0 base to the actual offset.
801 	 *
802 	 * Do not override the class if doing a relaxed class allocation.
803 	 *
804 	 * avail must reflect the bitmap-granular availability.  The allocator
805 	 * tests will also check the linear iterator.
806 	 */
807 	bmap->bitmapq[i] |= bmmask;
808 	if (bmap->class == 0)
809 		bmap->class = class;
810 	bmap->avail -= bgsize;
811 	*basep += offset;
812 
813 	/*
814 	 * Adjust the volume header's allocator_free parameter.  This
815 	 * parameter has to be fixed up by bulkfree which has no way to
816 	 * figure out sub-16K chunking, so it must be adjusted by the
817 	 * bitmap-granular size.
818 	 */
819 	if (bgsize) {
820 		hammer2_voldata_lock(hmp);
821 		hammer2_voldata_modify(hmp);
822 		hmp->voldata.allocator_free -= bgsize;
823 		hammer2_voldata_unlock(hmp);
824 	}
825 
826 	return(0);
827 }
828 
829 /*
830  * Initialize a freemap for the storage area (in bytes) that begins at (key).
831  */
832 static
833 void
834 hammer2_freemap_init(hammer2_dev_t *hmp, hammer2_key_t key,
835 		     hammer2_chain_t *chain)
836 {
837 	hammer2_off_t l1size;
838 	hammer2_off_t lokey;
839 	hammer2_off_t hikey;
840 	hammer2_bmap_data_t *bmap;
841 	int count;
842 
843 	/*
844 	 * LEVEL1 is 1GB, there are two level1 1GB freemaps per 2GB zone.
845 	 */
846 	l1size = HAMMER2_FREEMAP_LEVEL1_SIZE;
847 
848 	/*
849 	 * Calculate the portion of the 1GB map that should be initialized
850 	 * as free.  Portions below or after will be initialized as allocated.
851 	 * SEGMASK-align the areas so we don't have to worry about sub-scans
852 	 * or endianess when using memset.
853 	 *
854 	 * WARNING! It is possible for lokey to be larger than hikey if the
855 	 *	    entire 2GB segment is within the static allocation.
856 	 */
857 	/*
858 	 * (1) Ensure that all statically allocated space from newfs_hammer2
859 	 *     is marked allocated, and take it up to the level1 base for
860 	 *     this key.
861 	 */
862 	lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) &
863 		~HAMMER2_SEGMASK64;
864 	if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX))
865 		lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX);
866 
867 	/*
868 	 * (2) Ensure that the reserved area is marked allocated (typically
869 	 *     the first 4MB of each 2GB area being represented).  Since
870 	 *     each LEAF represents 1GB of storage and the zone is 2GB, we
871 	 *     have to adjust lowkey upward every other LEAF sequentially.
872 	 */
873 	if (lokey < H2FMZONEBASE(key) + HAMMER2_ZONE_SEG64)
874 		lokey = H2FMZONEBASE(key) + HAMMER2_ZONE_SEG64;
875 
876 	/*
877 	 * (3) Ensure that any trailing space at the end-of-volume is marked
878 	 *     allocated.
879 	 */
880 	hikey = key + HAMMER2_FREEMAP_LEVEL1_SIZE;
881 	if (hikey > hmp->total_size) {
882 		hikey = hmp->total_size & ~HAMMER2_SEGMASK64;
883 	}
884 
885 	/*
886 	 * Heuristic highest possible value
887 	 */
888 	chain->bref.check.freemap.avail = HAMMER2_FREEMAP_LEVEL1_SIZE;
889 	bmap = &chain->data->bmdata[0];
890 
891 	/*
892 	 * Initialize bitmap (bzero'd by caller)
893 	 */
894 	for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
895 		if (key < lokey || key >= hikey) {
896 			memset(bmap->bitmapq, -1,
897 			       sizeof(bmap->bitmapq));
898 			bmap->avail = 0;
899 			bmap->linear = HAMMER2_SEGSIZE;
900 			chain->bref.check.freemap.avail -=
901 				HAMMER2_FREEMAP_LEVEL0_SIZE;
902 		} else {
903 			bmap->avail = HAMMER2_FREEMAP_LEVEL0_SIZE;
904 		}
905 		key += HAMMER2_FREEMAP_LEVEL0_SIZE;
906 		++bmap;
907 	}
908 }
909 
910 /*
911  * The current Level 1 freemap has been exhausted, iterate to the next
912  * one, return ENOSPC if no freemaps remain.
913  *
914  * At least two loops are required.  If we are not in relaxed mode and
915  * we run out of storage we enter relaxed mode and do a third loop.
916  * The relaxed mode is recorded back in the hmp so once we enter the mode
917  * we remain relaxed until stuff begins to get freed and only do 2 loops.
918  *
919  * XXX this should rotate back to the beginning to handle freed-up space
920  * XXX or use intermediate entries to locate free space. TODO
921  */
922 static int
923 hammer2_freemap_iterate(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
924 			hammer2_fiterate_t *iter)
925 {
926 	hammer2_dev_t *hmp = (*parentp)->hmp;
927 
928 	iter->bnext &= ~HAMMER2_FREEMAP_LEVEL1_MASK;
929 	iter->bnext += HAMMER2_FREEMAP_LEVEL1_SIZE;
930 	if (iter->bnext >= hmp->total_size) {
931 		iter->bnext = 0;
932 		if (++iter->loops >= 2) {
933 			if (iter->relaxed == 0)
934 				iter->relaxed = 1;
935 			else
936 				return (HAMMER2_ERROR_ENOSPC);
937 		}
938 	}
939 	return(HAMMER2_ERROR_EAGAIN);
940 }
941 
942 /*
943  * Adjust the bit-pattern for data in the freemap bitmap according to
944  * (how).  This code is called from on-mount recovery to fixup (mark
945  * as allocated) blocks whos freemap upates might not have been committed
946  * in the last crash and is used by the bulk freemap scan to stage frees.
947  *
948  * WARNING! Cannot be called with a empty-data bref (radix == 0).
949  *
950  * XXX currently disabled when how == 0 (the normal real-time case).  At
951  * the moment we depend on the bulk freescan to actually free blocks.  It
952  * will still call this routine with a non-zero how to stage possible frees
953  * and to do the actual free.
954  */
955 void
956 hammer2_freemap_adjust(hammer2_dev_t *hmp, hammer2_blockref_t *bref,
957 		       int how)
958 {
959 	hammer2_off_t data_off = bref->data_off;
960 	hammer2_chain_t *chain;
961 	hammer2_chain_t *parent;
962 	hammer2_bmap_data_t *bmap;
963 	hammer2_key_t key;
964 	hammer2_key_t key_dummy;
965 	hammer2_off_t l0size;
966 	hammer2_off_t l1size;
967 	hammer2_off_t l1mask;
968 	hammer2_tid_t mtid;
969 	hammer2_bitmap_t *bitmap;
970 	const hammer2_bitmap_t bmmask00 = 0;
971 	hammer2_bitmap_t bmmask01;
972 	hammer2_bitmap_t bmmask10;
973 	hammer2_bitmap_t bmmask11;
974 	size_t bytes;
975 	uint16_t class;
976 	int radix;
977 	int start;
978 	int count;
979 	int modified = 0;
980 	int error;
981 	size_t bgsize = 0;
982 
983 	KKASSERT(how == HAMMER2_FREEMAP_DORECOVER);
984 
985 	KKASSERT(hmp->spmp);
986 	mtid = hammer2_trans_sub(hmp->spmp);
987 
988 	radix = (int)data_off & HAMMER2_OFF_MASK_RADIX;
989 	KKASSERT(radix != 0);
990 	data_off &= ~HAMMER2_OFF_MASK_RADIX;
991 	KKASSERT(radix <= HAMMER2_RADIX_MAX);
992 
993 	if (radix)
994 		bytes = (size_t)1 << radix;
995 	else
996 		bytes = 0;
997 	class = (bref->type << 8) | HAMMER2_PBUFRADIX;
998 
999 	/*
1000 	 * We can't adjust the freemap for data allocations made by
1001 	 * newfs_hammer2.
1002 	 */
1003 	if (data_off < hmp->voldata.allocator_beg)
1004 		return;
1005 
1006 	KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
1007 
1008 	/*
1009 	 * Lookup the level1 freemap chain.  The chain must exist.
1010 	 */
1011 	key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX);
1012 	l0size = HAMMER2_FREEMAP_LEVEL0_SIZE;
1013 	l1size = HAMMER2_FREEMAP_LEVEL1_SIZE;
1014 	l1mask = l1size - 1;
1015 
1016 	parent = &hmp->fchain;
1017 	hammer2_chain_ref(parent);
1018 	hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1019 
1020 	chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask,
1021 				     &error,
1022 				     HAMMER2_LOOKUP_ALWAYS |
1023 				     HAMMER2_LOOKUP_MATCHIND);
1024 
1025 	/*
1026 	 * Stop early if we are trying to free something but no leaf exists.
1027 	 */
1028 	if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) {
1029 		kprintf("hammer2_freemap_adjust: %016jx: no chain\n",
1030 			(intmax_t)bref->data_off);
1031 		goto done;
1032 	}
1033 	if (chain->error) {
1034 		kprintf("hammer2_freemap_adjust: %016jx: error %s\n",
1035 			(intmax_t)bref->data_off,
1036 			hammer2_error_str(chain->error));
1037 		hammer2_chain_unlock(chain);
1038 		hammer2_chain_drop(chain);
1039 		chain = NULL;
1040 		goto done;
1041 	}
1042 
1043 	/*
1044 	 * Create any missing leaf(s) if we are doing a recovery (marking
1045 	 * the block(s) as being allocated instead of being freed).  Be sure
1046 	 * to initialize the auxillary freemap tracking info in the
1047 	 * bref.check.freemap structure.
1048 	 */
1049 	if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) {
1050 		error = hammer2_chain_create(&parent, &chain, NULL, hmp->spmp,
1051 				     HAMMER2_METH_DEFAULT,
1052 				     key, HAMMER2_FREEMAP_LEVEL1_RADIX,
1053 				     HAMMER2_BREF_TYPE_FREEMAP_LEAF,
1054 				     HAMMER2_FREEMAP_LEVELN_PSIZE,
1055 				     mtid, 0, 0);
1056 
1057 		if (hammer2_debug & 0x0040) {
1058 			kprintf("fixup create chain %p %016jx:%d\n",
1059 				chain, chain->bref.key, chain->bref.keybits);
1060 		}
1061 
1062 		if (error == 0) {
1063 			error = hammer2_chain_modify(chain, mtid, 0, 0);
1064 			KKASSERT(error == 0);
1065 			bzero(&chain->data->bmdata[0],
1066 			      HAMMER2_FREEMAP_LEVELN_PSIZE);
1067 			chain->bref.check.freemap.bigmask = (uint32_t)-1;
1068 			chain->bref.check.freemap.avail = l1size;
1069 			/* bref.methods should already be inherited */
1070 
1071 			hammer2_freemap_init(hmp, key, chain);
1072 		}
1073 		/* XXX handle error */
1074 	}
1075 
1076 #if FREEMAP_DEBUG
1077 	kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n",
1078 		chain->bref.type, chain->bref.key,
1079 		chain->bref.keybits, chain->bref.data_off);
1080 #endif
1081 
1082 	/*
1083 	 * Calculate the bitmask (runs in 2-bit pairs).
1084 	 */
1085 	start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2;
1086 	bmmask01 = (hammer2_bitmap_t)1 << start;
1087 	bmmask10 = (hammer2_bitmap_t)2 << start;
1088 	bmmask11 = (hammer2_bitmap_t)3 << start;
1089 
1090 	/*
1091 	 * Fixup the bitmap.  Partial blocks cannot be fully freed unless
1092 	 * a bulk scan is able to roll them up.
1093 	 */
1094 	if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
1095 		count = 1;
1096 		if (how == HAMMER2_FREEMAP_DOREALFREE)
1097 			how = HAMMER2_FREEMAP_DOMAYFREE;
1098 	} else {
1099 		count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
1100 	}
1101 
1102 	/*
1103 	 * [re]load the bmap and bitmap pointers.  Each bmap entry covers
1104 	 * a 4MB swath.  The bmap itself (LEVEL1) covers 2GB.
1105 	 *
1106 	 * Be sure to reset the linear iterator to ensure that the adjustment
1107 	 * is not ignored.
1108 	 */
1109 again:
1110 	bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) &
1111 				    (HAMMER2_FREEMAP_COUNT - 1)];
1112 	bitmap = &bmap->bitmapq[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7];
1113 
1114 	if (modified)
1115 		bmap->linear = 0;
1116 
1117 	while (count) {
1118 		KKASSERT(bmmask11);
1119 		if (how == HAMMER2_FREEMAP_DORECOVER) {
1120 			/*
1121 			 * Recovery request, mark as allocated.
1122 			 */
1123 			if ((*bitmap & bmmask11) != bmmask11) {
1124 				if (modified == 0) {
1125 					hammer2_chain_modify(chain, mtid, 0, 0);
1126 					modified = 1;
1127 					goto again;
1128 				}
1129 				if ((*bitmap & bmmask11) == bmmask00) {
1130 					bmap->avail -=
1131 						HAMMER2_FREEMAP_BLOCK_SIZE;
1132 					bgsize += HAMMER2_FREEMAP_BLOCK_SIZE;
1133 				}
1134 				if (bmap->class == 0)
1135 					bmap->class = class;
1136 				*bitmap |= bmmask11;
1137 				if (hammer2_debug & 0x0040) {
1138 					kprintf("hammer2_freemap_adjust: "
1139 						"fixup type=%02x "
1140 						"block=%016jx/%zd\n",
1141 						bref->type, data_off, bytes);
1142 				}
1143 			} else {
1144 				/*
1145 				kprintf("hammer2_freemap_adjust:  good "
1146 					"type=%02x block=%016jx/%zd\n",
1147 					bref->type, data_off, bytes);
1148 				*/
1149 			}
1150 		}
1151 #if 0
1152 		/*
1153 		 * XXX this stuff doesn't work, avail is miscalculated and
1154 		 * code 10 means something else now.
1155 		 */
1156 		else if ((*bitmap & bmmask11) == bmmask11) {
1157 			/*
1158 			 * Mayfree/Realfree request and bitmap is currently
1159 			 * marked as being fully allocated.
1160 			 */
1161 			if (!modified) {
1162 				hammer2_chain_modify(chain, 0);
1163 				modified = 1;
1164 				goto again;
1165 			}
1166 			if (how == HAMMER2_FREEMAP_DOREALFREE)
1167 				*bitmap &= ~bmmask11;
1168 			else
1169 				*bitmap = (*bitmap & ~bmmask11) | bmmask10;
1170 		} else if ((*bitmap & bmmask11) == bmmask10) {
1171 			/*
1172 			 * Mayfree/Realfree request and bitmap is currently
1173 			 * marked as being possibly freeable.
1174 			 */
1175 			if (how == HAMMER2_FREEMAP_DOREALFREE) {
1176 				if (!modified) {
1177 					hammer2_chain_modify(chain, 0);
1178 					modified = 1;
1179 					goto again;
1180 				}
1181 				*bitmap &= ~bmmask11;
1182 			}
1183 		} else {
1184 			/*
1185 			 * 01 - Not implemented, currently illegal state
1186 			 * 00 - Not allocated at all, illegal free.
1187 			 */
1188 			panic("hammer2_freemap_adjust: "
1189 			      "Illegal state %08x(%08x)",
1190 			      *bitmap, *bitmap & bmmask11);
1191 		}
1192 #endif
1193 		--count;
1194 		bmmask01 <<= 2;
1195 		bmmask10 <<= 2;
1196 		bmmask11 <<= 2;
1197 	}
1198 #if HAMMER2_BMAP_ELEMENTS != 8
1199 #error "hammer2_freemap.c: HAMMER2_BMAP_ELEMENTS expected to be 8"
1200 #endif
1201 	if (how == HAMMER2_FREEMAP_DOREALFREE && modified) {
1202 		bmap->avail += 1 << radix;
1203 		KKASSERT(bmap->avail <= HAMMER2_SEGSIZE);
1204 		if (bmap->avail == HAMMER2_SEGSIZE &&
1205 		    bmap->bitmapq[0] == 0 &&
1206 		    bmap->bitmapq[1] == 0 &&
1207 		    bmap->bitmapq[2] == 0 &&
1208 		    bmap->bitmapq[3] == 0 &&
1209 		    bmap->bitmapq[4] == 0 &&
1210 		    bmap->bitmapq[5] == 0 &&
1211 		    bmap->bitmapq[6] == 0 &&
1212 		    bmap->bitmapq[7] == 0) {
1213 			key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX);
1214 			kprintf("Freeseg %016jx\n", (intmax_t)key);
1215 			bmap->class = 0;
1216 		}
1217 	}
1218 
1219 	/*
1220 	 * chain->bref.check.freemap.bigmask (XXX)
1221 	 *
1222 	 * Setting bigmask is a hint to the allocation code that there might
1223 	 * be something allocatable.  We also set this in recovery... it
1224 	 * doesn't hurt and we might want to use the hint for other validation
1225 	 * operations later on.
1226 	 *
1227 	 * We could calculate the largest possible allocation and set the
1228 	 * radii that could fit, but its easier just to set bigmask to -1.
1229 	 */
1230 	if (modified) {
1231 		chain->bref.check.freemap.bigmask = -1;
1232 		hmp->freemap_relaxed = 0;	/* reset heuristic */
1233 	}
1234 
1235 	hammer2_chain_unlock(chain);
1236 	hammer2_chain_drop(chain);
1237 done:
1238 	hammer2_chain_unlock(parent);
1239 	hammer2_chain_drop(parent);
1240 
1241 	if (bgsize) {
1242 		hammer2_voldata_lock(hmp);
1243 		hammer2_voldata_modify(hmp);
1244 		hmp->voldata.allocator_free -= bgsize;
1245 		hammer2_voldata_unlock(hmp);
1246 	}
1247 }
1248 
1249 /*
1250  * Validate the freemap, in three stages.
1251  *
1252  * stage-1	ALLOCATED     -> POSSIBLY FREE
1253  *		POSSIBLY FREE -> POSSIBLY FREE (type corrected)
1254  *
1255  *	This transitions bitmap entries from ALLOCATED to POSSIBLY FREE.
1256  *	The POSSIBLY FREE state does not mean that a block is actually free
1257  *	and may be transitioned back to ALLOCATED in stage-2.
1258  *
1259  *	This is typically done during normal filesystem operations when
1260  *	something is deleted or a block is replaced.
1261  *
1262  *	This is done by bulkfree in-bulk after a memory-bounded meta-data
1263  *	scan to try to determine what might be freeable.
1264  *
1265  *	This can be done unconditionally through a freemap scan when the
1266  *	intention is to brute-force recover the proper state of the freemap.
1267  *
1268  * stage-2	POSSIBLY FREE -> ALLOCATED	(scan metadata topology)
1269  *
1270  *	This is done by bulkfree during a meta-data scan to ensure that
1271  *	all blocks still actually allocated by the filesystem are marked
1272  *	as such.
1273  *
1274  *	NOTE! Live filesystem transitions to POSSIBLY FREE can occur while
1275  *	      the bulkfree stage-2 and stage-3 is running.  The live filesystem
1276  *	      will use the alternative POSSIBLY FREE type (2) to prevent
1277  *	      stage-3 from improperly transitioning unvetted possibly-free
1278  *	      blocks to FREE.
1279  *
1280  * stage-3	POSSIBLY FREE (type 1) -> FREE	(scan freemap)
1281  *
1282  *	This is done by bulkfree to finalize POSSIBLY FREE states.
1283  *
1284  */
1285