1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 /*
37  * This module handles low level logical file I/O (strategy) which backs
38  * the logical buffer cache.
39  *
40  * [De]compression, zero-block, check codes, and buffer cache operations
41  * for file data is handled here.
42  *
43  * Live dedup makes its home here as well.
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/fcntl.h>
50 #include <sys/buf.h>
51 #include <sys/proc.h>
52 #include <sys/namei.h>
53 #include <sys/mount.h>
54 #include <sys/vnode.h>
55 #include <sys/mountctl.h>
56 #include <sys/dirent.h>
57 #include <sys/uio.h>
58 #include <sys/objcache.h>
59 #include <sys/event.h>
60 #include <sys/file.h>
61 #include <vfs/fifofs/fifo.h>
62 
63 #include "hammer2.h"
64 #include "hammer2_lz4.h"
65 
66 #include "zlib/hammer2_zlib.h"
67 
68 struct objcache *cache_buffer_read;
69 struct objcache *cache_buffer_write;
70 
71 /*
72  * Strategy code (async logical file buffer I/O from system)
73  *
74  * Except for the transaction init (which should normally not block),
75  * we essentially run the strategy operation asynchronously via a XOP.
76  *
77  * WARNING! The XOP deals with buffer synchronization.  It is not synchronized
78  *	    to the current cpu.
79  *
80  * XXX This isn't supposed to be able to deadlock against vfs_sync vfsync()
81  *     calls but it has in the past when multiple flushes are queued.
82  *
83  * XXX We currently terminate the transaction once we get a quorum, otherwise
84  *     the frontend can stall, but this can leave the remaining nodes with
85  *     a potential flush conflict.  We need to delay flushes on those nodes
86  *     until running transactions complete separately from the normal
87  *     transaction sequencing.  FIXME TODO.
88  */
89 static void hammer2_strategy_xop_read(hammer2_thread_t *thr,
90 				hammer2_xop_t *arg);
91 static void hammer2_strategy_xop_write(hammer2_thread_t *thr,
92 				hammer2_xop_t *arg);
93 static int hammer2_strategy_read(struct vop_strategy_args *ap);
94 static int hammer2_strategy_write(struct vop_strategy_args *ap);
95 static void hammer2_strategy_read_completion(hammer2_chain_t *chain,
96 				char *data, struct bio *bio);
97 
98 static hammer2_off_t hammer2_dedup_lookup(hammer2_dev_t *hmp,
99 			char **datap, int pblksize);
100 
101 int
102 hammer2_vop_strategy(struct vop_strategy_args *ap)
103 {
104 	struct bio *biop;
105 	struct buf *bp;
106 	int error;
107 
108 	biop = ap->a_bio;
109 	bp = biop->bio_buf;
110 
111 	switch(bp->b_cmd) {
112 	case BUF_CMD_READ:
113 		error = hammer2_strategy_read(ap);
114 		++hammer2_iod_file_read;
115 		break;
116 	case BUF_CMD_WRITE:
117 		error = hammer2_strategy_write(ap);
118 		++hammer2_iod_file_write;
119 		break;
120 	default:
121 		bp->b_error = error = EINVAL;
122 		bp->b_flags |= B_ERROR;
123 		biodone(biop);
124 		break;
125 	}
126 	return (error);
127 }
128 
129 /*
130  * Return the largest contiguous physical disk range for the logical
131  * request, in bytes.
132  *
133  * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
134  *
135  * Basically disabled, the logical buffer write thread has to deal with
136  * buffers one-at-a-time.  Note that this should not prevent cluster_read()
137  * from reading-ahead, it simply prevents it from trying form a single
138  * cluster buffer for the logical request.  H2 already uses 64KB buffers!
139  */
140 int
141 hammer2_vop_bmap(struct vop_bmap_args *ap)
142 {
143 	*ap->a_doffsetp = NOOFFSET;
144 	if (ap->a_runp)
145 		*ap->a_runp = 0;
146 	if (ap->a_runb)
147 		*ap->a_runb = 0;
148 	return (EOPNOTSUPP);
149 }
150 
151 /****************************************************************************
152  *				READ SUPPORT				    *
153  ****************************************************************************/
154 /*
155  * Callback used in read path in case that a block is compressed with LZ4.
156  */
157 static
158 void
159 hammer2_decompress_LZ4_callback(const char *data, u_int bytes, struct bio *bio)
160 {
161 	struct buf *bp;
162 	char *compressed_buffer;
163 	int compressed_size;
164 	int result;
165 
166 	bp = bio->bio_buf;
167 
168 #if 0
169 	if bio->bio_caller_info2.index &&
170 	      bio->bio_caller_info1.uvalue32 !=
171 	      crc32(bp->b_data, bp->b_bufsize) --- return error
172 #endif
173 
174 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
175 	compressed_size = *(const int *)data;
176 	KKASSERT((uint32_t)compressed_size <= bytes - sizeof(int));
177 
178 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
179 	result = LZ4_decompress_safe(__DECONST(char *, &data[sizeof(int)]),
180 				     compressed_buffer,
181 				     compressed_size,
182 				     bp->b_bufsize);
183 	if (result < 0) {
184 		kprintf("READ PATH: Error during decompression."
185 			"bio %016jx/%d\n",
186 			(intmax_t)bio->bio_offset, bytes);
187 		/* make sure it isn't random garbage */
188 		bzero(compressed_buffer, bp->b_bufsize);
189 	}
190 	KKASSERT(result <= bp->b_bufsize);
191 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
192 	if (result < bp->b_bufsize)
193 		bzero(bp->b_data + result, bp->b_bufsize - result);
194 	objcache_put(cache_buffer_read, compressed_buffer);
195 	bp->b_resid = 0;
196 	bp->b_flags |= B_AGE;
197 }
198 
199 /*
200  * Callback used in read path in case that a block is compressed with ZLIB.
201  * It is almost identical to LZ4 callback, so in theory they can be unified,
202  * but we didn't want to make changes in bio structure for that.
203  */
204 static
205 void
206 hammer2_decompress_ZLIB_callback(const char *data, u_int bytes, struct bio *bio)
207 {
208 	struct buf *bp;
209 	char *compressed_buffer;
210 	z_stream strm_decompress;
211 	int result;
212 	int ret;
213 
214 	bp = bio->bio_buf;
215 
216 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
217 	strm_decompress.avail_in = 0;
218 	strm_decompress.next_in = Z_NULL;
219 
220 	ret = inflateInit(&strm_decompress);
221 
222 	if (ret != Z_OK)
223 		kprintf("HAMMER2 ZLIB: Fatal error in inflateInit.\n");
224 
225 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
226 	strm_decompress.next_in = __DECONST(char *, data);
227 
228 	/* XXX supply proper size, subset of device bp */
229 	strm_decompress.avail_in = bytes;
230 	strm_decompress.next_out = compressed_buffer;
231 	strm_decompress.avail_out = bp->b_bufsize;
232 
233 	ret = inflate(&strm_decompress, Z_FINISH);
234 	if (ret != Z_STREAM_END) {
235 		kprintf("HAMMER2 ZLIB: Fatar error during decompression.\n");
236 		bzero(compressed_buffer, bp->b_bufsize);
237 	}
238 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
239 	result = bp->b_bufsize - strm_decompress.avail_out;
240 	if (result < bp->b_bufsize)
241 		bzero(bp->b_data + result, strm_decompress.avail_out);
242 	objcache_put(cache_buffer_read, compressed_buffer);
243 	ret = inflateEnd(&strm_decompress);
244 
245 	bp->b_resid = 0;
246 	bp->b_flags |= B_AGE;
247 }
248 
249 /*
250  * Logical buffer I/O, async read.
251  */
252 static
253 int
254 hammer2_strategy_read(struct vop_strategy_args *ap)
255 {
256 	hammer2_xop_strategy_t *xop;
257 	struct buf *bp;
258 	struct bio *bio;
259 	struct bio *nbio;
260 	hammer2_inode_t *ip;
261 	hammer2_key_t lbase;
262 
263 	bio = ap->a_bio;
264 	bp = bio->bio_buf;
265 	ip = VTOI(ap->a_vp);
266 	nbio = push_bio(bio);
267 
268 	lbase = bio->bio_offset;
269 	KKASSERT(((int)lbase & HAMMER2_PBUFMASK) == 0);
270 
271 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_STRATEGY);
272 	xop->finished = 0;
273 	xop->bio = bio;
274 	xop->lbase = lbase;
275 	hammer2_mtx_init(&xop->lock, "h2bior");
276 	hammer2_xop_start(&xop->head, hammer2_strategy_xop_read);
277 	/* asynchronous completion */
278 
279 	return(0);
280 }
281 
282 /*
283  * Per-node XOP (threaded), do a synchronous lookup of the chain and
284  * its data.  The frontend is asynchronous, so we are also responsible
285  * for racing to terminate the frontend.
286  */
287 static
288 void
289 hammer2_strategy_xop_read(hammer2_thread_t *thr, hammer2_xop_t *arg)
290 {
291 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
292 	hammer2_chain_t *parent;
293 	hammer2_chain_t *chain;
294 	hammer2_key_t key_dummy;
295 	hammer2_key_t lbase;
296 	struct bio *bio;
297 	struct buf *bp;
298 	int error;
299 
300 	/*
301 	 * Note that we can race completion of the bio supplied by
302 	 * the front-end so we cannot access it until we determine
303 	 * that we are the ones finishing it up.
304 	 */
305 	lbase = xop->lbase;
306 
307 	/*
308 	 * This is difficult to optimize.  The logical buffer might be
309 	 * partially dirty (contain dummy zero-fill pages), which would
310 	 * mess up our crc calculation if we were to try a direct read.
311 	 * So for now we always double-buffer through the underlying
312 	 * storage.
313 	 *
314 	 * If not for the above problem we could conditionalize on
315 	 * (1) 64KB buffer, (2) one chain (not multi-master) and
316 	 * (3) !hammer2_double_buffer, and issue a direct read into the
317 	 * logical buffer.
318 	 */
319 	parent = hammer2_inode_chain(xop->head.ip1, thr->clindex,
320 				     HAMMER2_RESOLVE_ALWAYS |
321 				     HAMMER2_RESOLVE_SHARED);
322 	if (parent) {
323 		chain = hammer2_chain_lookup(&parent, &key_dummy,
324 					     lbase, lbase,
325 					     &error,
326 					     HAMMER2_LOOKUP_ALWAYS |
327 					     HAMMER2_LOOKUP_SHARED);
328 		if (chain)
329 			error = chain->error;
330 	} else {
331 		error = HAMMER2_ERROR_EIO;
332 		chain = NULL;
333 	}
334 	error = hammer2_xop_feed(&xop->head, chain, thr->clindex, error);
335 	if (chain) {
336 		hammer2_chain_unlock(chain);
337 		hammer2_chain_drop(chain);
338 	}
339 	if (parent) {
340 		hammer2_chain_unlock(parent);
341 		hammer2_chain_drop(parent);
342 	}
343 	chain = NULL;	/* safety */
344 	parent = NULL;	/* safety */
345 
346 	/*
347 	 * Race to finish the frontend.  First-to-complete.  bio is only
348 	 * valid if we are determined to be the ones able to complete
349 	 * the operation.
350 	 */
351 	if (xop->finished)
352 		return;
353 	hammer2_mtx_ex(&xop->lock);
354 	if (xop->finished) {
355 		hammer2_mtx_unlock(&xop->lock);
356 		return;
357 	}
358 	bio = xop->bio;
359 	bp = bio->bio_buf;
360 	bkvasync(bp);
361 
362 	/*
363 	 * Async operation has not completed and we now own the lock.
364 	 * Determine if we can complete the operation by issuing the
365 	 * frontend collection non-blocking.
366 	 *
367 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
368 	 * buffer hints to the OS that the logical buffer should not be
369 	 * swapcached (since the device buffer can be).
370 	 *
371 	 * Also note that even for compressed data we would rather the
372 	 * kernel cache/swapcache device buffers more and (decompressed)
373 	 * logical buffers less, since that will significantly improve
374 	 * the amount of end-user data that can be cached.
375 	 *
376 	 * NOTE: The chain->data for xop->head.cluster.focus will be
377 	 *	 synchronized to the current cpu by xop_collect(),
378 	 *	 but other chains in the cluster might not be.
379 	 */
380 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
381 
382 	switch(error) {
383 	case 0:
384 		xop->finished = 1;
385 		hammer2_mtx_unlock(&xop->lock);
386 		bp->b_flags |= B_NOTMETA;
387 		chain = xop->head.cluster.focus;
388 		hammer2_strategy_read_completion(chain, (char *)chain->data,
389 						 xop->bio);
390 		biodone(bio);
391 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
392 		break;
393 	case HAMMER2_ERROR_ENOENT:
394 		xop->finished = 1;
395 		hammer2_mtx_unlock(&xop->lock);
396 		bp->b_flags |= B_NOTMETA;
397 		bp->b_resid = 0;
398 		bp->b_error = 0;
399 		bzero(bp->b_data, bp->b_bcount);
400 		biodone(bio);
401 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
402 		break;
403 	case HAMMER2_ERROR_EINPROGRESS:
404 		hammer2_mtx_unlock(&xop->lock);
405 		break;
406 	default:
407 		kprintf("strategy_xop_read: error %08x loff=%016jx\n",
408 			error, bp->b_loffset);
409 		xop->finished = 1;
410 		hammer2_mtx_unlock(&xop->lock);
411 		bp->b_flags |= B_ERROR;
412 		bp->b_error = EIO;
413 		biodone(bio);
414 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
415 		break;
416 	}
417 }
418 
419 static
420 void
421 hammer2_strategy_read_completion(hammer2_chain_t *chain, char *data,
422 				 struct bio *bio)
423 {
424 	struct buf *bp = bio->bio_buf;
425 
426 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
427 		/*
428 		 * Copy from in-memory inode structure.
429 		 */
430 		bcopy(((hammer2_inode_data_t *)data)->u.data,
431 		      bp->b_data, HAMMER2_EMBEDDED_BYTES);
432 		bzero(bp->b_data + HAMMER2_EMBEDDED_BYTES,
433 		      bp->b_bcount - HAMMER2_EMBEDDED_BYTES);
434 		bp->b_resid = 0;
435 		bp->b_error = 0;
436 	} else if (chain->bref.type == HAMMER2_BREF_TYPE_DATA) {
437 		/*
438 		 * Data is on-media, record for live dedup.  Release the
439 		 * chain (try to free it) when done.  The data is still
440 		 * cached by both the buffer cache in front and the
441 		 * block device behind us.  This leaves more room in the
442 		 * LRU chain cache for meta-data chains which we really
443 		 * want to retain.
444 		 *
445 		 * NOTE: Deduplication cannot be safely recorded for
446 		 *	 records without a check code.
447 		 */
448 		hammer2_dedup_record(chain, NULL, data);
449 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
450 
451 		/*
452 		 * Decompression and copy.
453 		 */
454 		switch (HAMMER2_DEC_COMP(chain->bref.methods)) {
455 		case HAMMER2_COMP_LZ4:
456 			hammer2_decompress_LZ4_callback(data, chain->bytes,
457 							bio);
458 			/* b_resid set by call */
459 			break;
460 		case HAMMER2_COMP_ZLIB:
461 			hammer2_decompress_ZLIB_callback(data, chain->bytes,
462 							 bio);
463 			/* b_resid set by call */
464 			break;
465 		case HAMMER2_COMP_NONE:
466 			KKASSERT(chain->bytes <= bp->b_bcount);
467 			bcopy(data, bp->b_data, chain->bytes);
468 			if (chain->bytes < bp->b_bcount) {
469 				bzero(bp->b_data + chain->bytes,
470 				      bp->b_bcount - chain->bytes);
471 			}
472 			bp->b_resid = 0;
473 			bp->b_error = 0;
474 			break;
475 		default:
476 			panic("hammer2_strategy_read: "
477 			      "unknown compression type");
478 		}
479 	} else {
480 		panic("hammer2_strategy_read: unknown bref type");
481 	}
482 }
483 
484 /****************************************************************************
485  *				WRITE SUPPORT				    *
486  ****************************************************************************/
487 
488 /*
489  * Functions for compression in threads,
490  * from hammer2_vnops.c
491  */
492 static void hammer2_write_file_core(char *data, hammer2_inode_t *ip,
493 				hammer2_chain_t **parentp,
494 				hammer2_key_t lbase, int ioflag, int pblksize,
495 				hammer2_tid_t mtid, int *errorp);
496 static void hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
497 				hammer2_chain_t **parentp,
498 				hammer2_key_t lbase, int ioflag, int pblksize,
499 				hammer2_tid_t mtid, int *errorp,
500 				int comp_algo, int check_algo);
501 static void hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
502 				hammer2_chain_t **parentp,
503 				hammer2_key_t lbase, int ioflag, int pblksize,
504 				hammer2_tid_t mtid, int *errorp,
505 				int check_algo);
506 static int test_block_zeros(const char *buf, size_t bytes);
507 static void zero_write(char *data, hammer2_inode_t *ip,
508 				hammer2_chain_t **parentp,
509 				hammer2_key_t lbase,
510 				hammer2_tid_t mtid, int *errorp);
511 static void hammer2_write_bp(hammer2_chain_t *chain, char *data,
512 				int ioflag, int pblksize,
513 				hammer2_tid_t mtid, int *errorp,
514 				int check_algo);
515 
516 static
517 int
518 hammer2_strategy_write(struct vop_strategy_args *ap)
519 {
520 	hammer2_xop_strategy_t *xop;
521 	hammer2_pfs_t *pmp;
522 	struct bio *bio;
523 	struct buf *bp;
524 	hammer2_inode_t *ip;
525 
526 	bio = ap->a_bio;
527 	bp = bio->bio_buf;
528 	ip = VTOI(ap->a_vp);
529 	pmp = ip->pmp;
530 
531 	hammer2_lwinprog_ref(pmp);
532 	hammer2_trans_assert_strategy(pmp);
533 	hammer2_trans_init(pmp, HAMMER2_TRANS_BUFCACHE);
534 
535 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
536 				    HAMMER2_XOP_STRATEGY);
537 	xop->finished = 0;
538 	xop->bio = bio;
539 	xop->lbase = bio->bio_offset;
540 	hammer2_mtx_init(&xop->lock, "h2biow");
541 	hammer2_xop_start(&xop->head, hammer2_strategy_xop_write);
542 	/* asynchronous completion */
543 
544 	hammer2_lwinprog_wait(pmp, hammer2_flush_pipe);
545 
546 	return(0);
547 }
548 
549 /*
550  * Per-node XOP (threaded).  Write the logical buffer to the media.
551  *
552  * This is a bit problematic because there may be multiple target and
553  * any of them may be able to release the bp.  In addition, if our
554  * particulr target is offline we don't want to block the bp (and thus
555  * the frontend).  To accomplish this we copy the data to the per-thr
556  * scratch buffer.
557  */
558 static
559 void
560 hammer2_strategy_xop_write(hammer2_thread_t *thr, hammer2_xop_t *arg)
561 {
562 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
563 	hammer2_chain_t *parent;
564 	hammer2_key_t lbase;
565 	hammer2_inode_t *ip;
566 	struct bio *bio;
567 	struct buf *bp;
568 	int error;
569 	int lblksize;
570 	int pblksize;
571 	hammer2_off_t bio_offset;
572 	char *bio_data;
573 
574 	/*
575 	 * We can only access the bp/bio if the frontend has not yet
576 	 * completed.
577 	 */
578 	if (xop->finished)
579 		return;
580 	hammer2_mtx_sh(&xop->lock);
581 	if (xop->finished) {
582 		hammer2_mtx_unlock(&xop->lock);
583 		return;
584 	}
585 
586 	lbase = xop->lbase;
587 	bio = xop->bio;			/* ephermal */
588 	bp = bio->bio_buf;		/* ephermal */
589 	ip = xop->head.ip1;		/* retained by ref */
590 	bio_offset = bio->bio_offset;
591 	bio_data = thr->scratch;
592 
593 	/* hammer2_trans_init(parent->hmp->spmp, HAMMER2_TRANS_BUFCACHE); */
594 
595 	lblksize = hammer2_calc_logical(ip, bio->bio_offset, &lbase, NULL);
596 	pblksize = hammer2_calc_physical(ip, lbase);
597 	bkvasync(bp);
598 	bcopy(bp->b_data, bio_data, lblksize);
599 
600 	hammer2_mtx_unlock(&xop->lock);
601 	bp = NULL;	/* safety, illegal to access after unlock */
602 	bio = NULL;	/* safety, illegal to access after unlock */
603 
604 	/*
605 	 * Actual operation
606 	 */
607 	parent = hammer2_inode_chain(ip, thr->clindex, HAMMER2_RESOLVE_ALWAYS);
608 	hammer2_write_file_core(bio_data, ip, &parent,
609 				lbase, IO_ASYNC, pblksize,
610 				xop->head.mtid, &error);
611 	if (parent) {
612 		hammer2_chain_unlock(parent);
613 		hammer2_chain_drop(parent);
614 		parent = NULL;	/* safety */
615 	}
616 	hammer2_xop_feed(&xop->head, NULL, thr->clindex, error);
617 
618 	/*
619 	 * Try to complete the operation on behalf of the front-end.
620 	 */
621 	if (xop->finished)
622 		return;
623 	hammer2_mtx_ex(&xop->lock);
624 	if (xop->finished) {
625 		hammer2_mtx_unlock(&xop->lock);
626 		return;
627 	}
628 
629 	/*
630 	 * Async operation has not completed and we now own the lock.
631 	 * Determine if we can complete the operation by issuing the
632 	 * frontend collection non-blocking.
633 	 *
634 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
635 	 * buffer hints to the OS that the logical buffer should not be
636 	 * swapcached (since the device buffer can be).
637 	 */
638 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
639 
640 	if (error == HAMMER2_ERROR_EINPROGRESS) {
641 		hammer2_mtx_unlock(&xop->lock);
642 		return;
643 	}
644 
645 	/*
646 	 * Async operation has completed.
647 	 */
648 	xop->finished = 1;
649 	hammer2_mtx_unlock(&xop->lock);
650 
651 	bio = xop->bio;		/* now owned by us */
652 	bp = bio->bio_buf;	/* now owned by us */
653 
654 	if (error == HAMMER2_ERROR_ENOENT || error == 0) {
655 		bp->b_flags |= B_NOTMETA;
656 		bp->b_resid = 0;
657 		bp->b_error = 0;
658 		biodone(bio);
659 	} else {
660 		kprintf("strategy_xop_write: error %d loff=%016jx\n",
661 			error, bp->b_loffset);
662 		bp->b_flags |= B_ERROR;
663 		bp->b_error = EIO;
664 		biodone(bio);
665 	}
666 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
667 	hammer2_trans_assert_strategy(ip->pmp);
668 	hammer2_lwinprog_drop(ip->pmp);
669 	hammer2_trans_done(ip->pmp);
670 }
671 
672 /*
673  * Wait for pending I/O to complete
674  */
675 void
676 hammer2_bioq_sync(hammer2_pfs_t *pmp)
677 {
678 	hammer2_lwinprog_wait(pmp, 0);
679 }
680 
681 /*
682  * Assign physical storage at (cparent, lbase), returning a suitable chain
683  * and setting *errorp appropriately.
684  *
685  * If no error occurs, the returned chain will be in a modified state.
686  *
687  * If an error occurs, the returned chain may or may not be NULL.  If
688  * not-null any chain->error (if not 0) will also be rolled up into *errorp.
689  * So the caller only needs to test *errorp.
690  *
691  * cparent can wind up being anything.
692  *
693  * If datap is not NULL, *datap points to the real data we intend to write.
694  * If we can dedup the storage location we set *datap to NULL to indicate
695  * to the caller that a dedup occurred.
696  *
697  * NOTE: Special case for data embedded in inode.
698  */
699 static
700 hammer2_chain_t *
701 hammer2_assign_physical(hammer2_inode_t *ip, hammer2_chain_t **parentp,
702 			hammer2_key_t lbase, int pblksize,
703 			hammer2_tid_t mtid, char **datap, int *errorp)
704 {
705 	hammer2_chain_t *chain;
706 	hammer2_key_t key_dummy;
707 	hammer2_off_t dedup_off;
708 	int pradix = hammer2_getradix(pblksize);
709 
710 	/*
711 	 * Locate the chain associated with lbase, return a locked chain.
712 	 * However, do not instantiate any data reference (which utilizes a
713 	 * device buffer) because we will be using direct IO via the
714 	 * logical buffer cache buffer.
715 	 */
716 	KKASSERT(pblksize >= HAMMER2_ALLOC_MIN);
717 
718 	chain = hammer2_chain_lookup(parentp, &key_dummy,
719 				     lbase, lbase,
720 				     errorp,
721 				     HAMMER2_LOOKUP_NODATA);
722 
723 	/*
724 	 * The lookup code should not return a DELETED chain to us, unless
725 	 * its a short-file embedded in the inode.  Then it is possible for
726 	 * the lookup to return a deleted inode.
727 	 */
728 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED) &&
729 	    chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
730 		kprintf("assign physical deleted chain @ "
731 			"%016jx (%016jx.%02x) ip %016jx\n",
732 			lbase, chain->bref.data_off, chain->bref.type,
733 			ip->meta.inum);
734 		Debugger("bleh");
735 	}
736 
737 	if (chain == NULL) {
738 		/*
739 		 * We found a hole, create a new chain entry.
740 		 *
741 		 * NOTE: DATA chains are created without device backing
742 		 *	 store (nor do we want any).
743 		 */
744 		dedup_off = hammer2_dedup_lookup((*parentp)->hmp, datap,
745 						 pblksize);
746 		*errorp |= hammer2_chain_create(parentp, &chain,
747 					        ip->pmp,
748 				       HAMMER2_ENC_CHECK(ip->meta.check_algo) |
749 				       HAMMER2_ENC_COMP(HAMMER2_COMP_NONE),
750 					        lbase, HAMMER2_PBUFRADIX,
751 					        HAMMER2_BREF_TYPE_DATA,
752 					        pblksize, mtid,
753 					        dedup_off, 0);
754 		if (chain == NULL)
755 			goto failed;
756 		/*ip->delta_dcount += pblksize;*/
757 	} else if (chain->error == 0) {
758 		switch (chain->bref.type) {
759 		case HAMMER2_BREF_TYPE_INODE:
760 			/*
761 			 * The data is embedded in the inode, which requires
762 			 * a bit more finess.
763 			 */
764 			*errorp |= hammer2_chain_modify_ip(ip, chain, mtid, 0);
765 			break;
766 		case HAMMER2_BREF_TYPE_DATA:
767 			dedup_off = hammer2_dedup_lookup(chain->hmp, datap,
768 							 pblksize);
769 			if (chain->bytes != pblksize) {
770 				*errorp |= hammer2_chain_resize(chain,
771 						     mtid, dedup_off,
772 						     pradix,
773 						     HAMMER2_MODIFY_OPTDATA);
774 				if (*errorp)
775 					break;
776 			}
777 
778 			/*
779 			 * DATA buffers must be marked modified whether the
780 			 * data is in a logical buffer or not.  We also have
781 			 * to make this call to fixup the chain data pointers
782 			 * after resizing in case this is an encrypted or
783 			 * compressed buffer.
784 			 */
785 			*errorp |= hammer2_chain_modify(chain, mtid, dedup_off,
786 						        HAMMER2_MODIFY_OPTDATA);
787 			break;
788 		default:
789 			panic("hammer2_assign_physical: bad type");
790 			/* NOT REACHED */
791 			break;
792 		}
793 	} else {
794 		*errorp = chain->error;
795 	}
796 failed:
797 	return (chain);
798 }
799 
800 /*
801  * hammer2_write_file_core() - hammer2_write_thread() helper
802  *
803  * The core write function which determines which path to take
804  * depending on compression settings.  We also have to locate the
805  * related chains so we can calculate and set the check data for
806  * the blockref.
807  */
808 static
809 void
810 hammer2_write_file_core(char *data, hammer2_inode_t *ip,
811 			hammer2_chain_t **parentp,
812 			hammer2_key_t lbase, int ioflag, int pblksize,
813 			hammer2_tid_t mtid, int *errorp)
814 {
815 	hammer2_chain_t *chain;
816 	char *bdata;
817 
818 	*errorp = 0;
819 
820 	switch(HAMMER2_DEC_ALGO(ip->meta.comp_algo)) {
821 	case HAMMER2_COMP_NONE:
822 		/*
823 		 * We have to assign physical storage to the buffer
824 		 * we intend to dirty or write now to avoid deadlocks
825 		 * in the strategy code later.
826 		 *
827 		 * This can return NOOFFSET for inode-embedded data.
828 		 * The strategy code will take care of it in that case.
829 		 */
830 		bdata = data;
831 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
832 						mtid, &bdata, errorp);
833 		if (*errorp) {
834 			/* skip modifications */
835 		} else if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
836 			hammer2_inode_data_t *wipdata;
837 
838 			wipdata = &chain->data->ipdata;
839 			KKASSERT(wipdata->meta.op_flags &
840 				 HAMMER2_OPFLAG_DIRECTDATA);
841 			bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
842 			++hammer2_iod_file_wembed;
843 		} else if (bdata == NULL) {
844 			/*
845 			 * Copy of data already present on-media.
846 			 */
847 			chain->bref.methods =
848 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
849 				HAMMER2_ENC_CHECK(ip->meta.check_algo);
850 			hammer2_chain_setcheck(chain, data);
851 		} else {
852 			hammer2_write_bp(chain, data, ioflag, pblksize,
853 					 mtid, errorp, ip->meta.check_algo);
854 		}
855 		if (chain) {
856 			hammer2_chain_unlock(chain);
857 			hammer2_chain_drop(chain);
858 		}
859 		break;
860 	case HAMMER2_COMP_AUTOZERO:
861 		/*
862 		 * Check for zero-fill only
863 		 */
864 		hammer2_zero_check_and_write(data, ip, parentp,
865 					     lbase, ioflag, pblksize,
866 					     mtid, errorp,
867 					     ip->meta.check_algo);
868 		break;
869 	case HAMMER2_COMP_LZ4:
870 	case HAMMER2_COMP_ZLIB:
871 	default:
872 		/*
873 		 * Check for zero-fill and attempt compression.
874 		 */
875 		hammer2_compress_and_write(data, ip, parentp,
876 					   lbase, ioflag, pblksize,
877 					   mtid, errorp,
878 					   ip->meta.comp_algo,
879 					   ip->meta.check_algo);
880 		break;
881 	}
882 }
883 
884 /*
885  * Helper
886  *
887  * Generic function that will perform the compression in compression
888  * write path. The compression algorithm is determined by the settings
889  * obtained from inode.
890  */
891 static
892 void
893 hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
894 	hammer2_chain_t **parentp,
895 	hammer2_key_t lbase, int ioflag, int pblksize,
896 	hammer2_tid_t mtid, int *errorp, int comp_algo, int check_algo)
897 {
898 	hammer2_chain_t *chain;
899 	int comp_size;
900 	int comp_block_size;
901 	char *comp_buffer;
902 	char *bdata;
903 
904 	/*
905 	 * An all-zeros write creates a hole unless the check code
906 	 * is disabled.  When the check code is disabled all writes
907 	 * are done in-place, including any all-zeros writes.
908 	 *
909 	 * NOTE: A snapshot will still force a copy-on-write
910 	 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
911 	 */
912 	if (check_algo != HAMMER2_CHECK_NONE &&
913 	    test_block_zeros(data, pblksize)) {
914 		zero_write(data, ip, parentp, lbase, mtid, errorp);
915 		return;
916 	}
917 
918 	/*
919 	 * Compression requested.  Try to compress the block.  We store
920 	 * the data normally if we cannot sufficiently compress it.
921 	 *
922 	 * We have a heuristic to detect files which are mostly
923 	 * uncompressable and avoid the compression attempt in that
924 	 * case.  If the compression heuristic is turned off, we always
925 	 * try to compress.
926 	 */
927 	comp_size = 0;
928 	comp_buffer = NULL;
929 
930 	KKASSERT(pblksize / 2 <= 32768);
931 
932 	if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0 ||
933 	    hammer2_always_compress) {
934 		z_stream strm_compress;
935 		int comp_level;
936 		int ret;
937 
938 		switch(HAMMER2_DEC_ALGO(comp_algo)) {
939 		case HAMMER2_COMP_LZ4:
940 			/*
941 			 * We need to prefix with the size, LZ4
942 			 * doesn't do it for us.  Add the related
943 			 * overhead.
944 			 *
945 			 * NOTE: The LZ4 code seems to assume at least an
946 			 *	 8-byte buffer size granularity and may
947 			 *	 overrun the buffer if given a 4-byte
948 			 *	 granularity.
949 			 */
950 			comp_buffer = objcache_get(cache_buffer_write,
951 						   M_INTWAIT);
952 			comp_size = LZ4_compress_limitedOutput(
953 					data,
954 					&comp_buffer[sizeof(int)],
955 					pblksize,
956 					pblksize / 2 - sizeof(int64_t));
957 			*(int *)comp_buffer = comp_size;
958 			if (comp_size)
959 				comp_size += sizeof(int);
960 			break;
961 		case HAMMER2_COMP_ZLIB:
962 			comp_level = HAMMER2_DEC_LEVEL(comp_algo);
963 			if (comp_level == 0)
964 				comp_level = 6;	/* default zlib compression */
965 			else if (comp_level < 6)
966 				comp_level = 6;
967 			else if (comp_level > 9)
968 				comp_level = 9;
969 			ret = deflateInit(&strm_compress, comp_level);
970 			if (ret != Z_OK) {
971 				kprintf("HAMMER2 ZLIB: fatal error "
972 					"on deflateInit.\n");
973 			}
974 
975 			comp_buffer = objcache_get(cache_buffer_write,
976 						   M_INTWAIT);
977 			strm_compress.next_in = data;
978 			strm_compress.avail_in = pblksize;
979 			strm_compress.next_out = comp_buffer;
980 			strm_compress.avail_out = pblksize / 2;
981 			ret = deflate(&strm_compress, Z_FINISH);
982 			if (ret == Z_STREAM_END) {
983 				comp_size = pblksize / 2 -
984 					    strm_compress.avail_out;
985 			} else {
986 				comp_size = 0;
987 			}
988 			ret = deflateEnd(&strm_compress);
989 			break;
990 		default:
991 			kprintf("Error: Unknown compression method.\n");
992 			kprintf("Comp_method = %d.\n", comp_algo);
993 			break;
994 		}
995 	}
996 
997 	if (comp_size == 0) {
998 		/*
999 		 * compression failed or turned off
1000 		 */
1001 		comp_block_size = pblksize;	/* safety */
1002 		if (++ip->comp_heuristic > 128)
1003 			ip->comp_heuristic = 8;
1004 	} else {
1005 		/*
1006 		 * compression succeeded
1007 		 */
1008 		ip->comp_heuristic = 0;
1009 		if (comp_size <= 1024) {
1010 			comp_block_size = 1024;
1011 		} else if (comp_size <= 2048) {
1012 			comp_block_size = 2048;
1013 		} else if (comp_size <= 4096) {
1014 			comp_block_size = 4096;
1015 		} else if (comp_size <= 8192) {
1016 			comp_block_size = 8192;
1017 		} else if (comp_size <= 16384) {
1018 			comp_block_size = 16384;
1019 		} else if (comp_size <= 32768) {
1020 			comp_block_size = 32768;
1021 		} else {
1022 			panic("hammer2: WRITE PATH: "
1023 			      "Weird comp_size value.");
1024 			/* NOT REACHED */
1025 			comp_block_size = pblksize;
1026 		}
1027 
1028 		/*
1029 		 * Must zero the remainder or dedup (which operates on a
1030 		 * physical block basis) will not find matches.
1031 		 */
1032 		if (comp_size < comp_block_size) {
1033 			bzero(comp_buffer + comp_size,
1034 			      comp_block_size - comp_size);
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * Assign physical storage, data will be set to NULL if a live-dedup
1040 	 * was successful.
1041 	 */
1042 	bdata = comp_size ? comp_buffer : data;
1043 	chain = hammer2_assign_physical(ip, parentp, lbase, comp_block_size,
1044 					mtid, &bdata, errorp);
1045 
1046 	if (*errorp) {
1047 		goto done;
1048 	}
1049 
1050 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1051 		hammer2_inode_data_t *wipdata;
1052 
1053 		*errorp = hammer2_chain_modify_ip(ip, chain, mtid, 0);
1054 		if (*errorp == 0) {
1055 			wipdata = &chain->data->ipdata;
1056 			KKASSERT(wipdata->meta.op_flags &
1057 				 HAMMER2_OPFLAG_DIRECTDATA);
1058 			bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1059 			++hammer2_iod_file_wembed;
1060 		}
1061 	} else if (bdata == NULL) {
1062 		/*
1063 		 * Live deduplication, a copy of the data is already present
1064 		 * on the media.
1065 		 */
1066 		if (comp_size) {
1067 			chain->bref.methods =
1068 				HAMMER2_ENC_COMP(comp_algo) +
1069 				HAMMER2_ENC_CHECK(check_algo);
1070 		} else {
1071 			chain->bref.methods =
1072 				HAMMER2_ENC_COMP(
1073 					HAMMER2_COMP_NONE) +
1074 				HAMMER2_ENC_CHECK(check_algo);
1075 		}
1076 		bdata = comp_size ? comp_buffer : data;
1077 		hammer2_chain_setcheck(chain, bdata);
1078 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1079 	} else {
1080 		hammer2_io_t *dio;
1081 
1082 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1083 
1084 		switch(chain->bref.type) {
1085 		case HAMMER2_BREF_TYPE_INODE:
1086 			panic("hammer2_write_bp: unexpected inode\n");
1087 			break;
1088 		case HAMMER2_BREF_TYPE_DATA:
1089 			/*
1090 			 * Optimize out the read-before-write
1091 			 * if possible.
1092 			 */
1093 			*errorp = hammer2_io_newnz(chain->hmp,
1094 						   chain->bref.type,
1095 						   chain->bref.data_off,
1096 						   chain->bytes,
1097 						   &dio);
1098 			if (*errorp) {
1099 				hammer2_io_brelse(&dio);
1100 				kprintf("hammer2: WRITE PATH: "
1101 					"dbp bread error\n");
1102 				break;
1103 			}
1104 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1105 
1106 			/*
1107 			 * When loading the block make sure we don't
1108 			 * leave garbage after the compressed data.
1109 			 */
1110 			if (comp_size) {
1111 				chain->bref.methods =
1112 					HAMMER2_ENC_COMP(comp_algo) +
1113 					HAMMER2_ENC_CHECK(check_algo);
1114 				bcopy(comp_buffer, bdata, comp_size);
1115 			} else {
1116 				chain->bref.methods =
1117 					HAMMER2_ENC_COMP(
1118 						HAMMER2_COMP_NONE) +
1119 					HAMMER2_ENC_CHECK(check_algo);
1120 				bcopy(data, bdata, pblksize);
1121 			}
1122 
1123 			/*
1124 			 * The flush code doesn't calculate check codes for
1125 			 * file data (doing so can result in excessive I/O),
1126 			 * so we do it here.
1127 			 */
1128 			hammer2_chain_setcheck(chain, bdata);
1129 
1130 			/*
1131 			 * Device buffer is now valid, chain is no longer in
1132 			 * the initial state.
1133 			 *
1134 			 * (No blockref table worries with file data)
1135 			 */
1136 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1137 			hammer2_dedup_record(chain, dio, bdata);
1138 
1139 			/* Now write the related bdp. */
1140 			if (ioflag & IO_SYNC) {
1141 				/*
1142 				 * Synchronous I/O requested.
1143 				 */
1144 				hammer2_io_bwrite(&dio);
1145 			/*
1146 			} else if ((ioflag & IO_DIRECT) &&
1147 				   loff + n == pblksize) {
1148 				hammer2_io_bdwrite(&dio);
1149 			*/
1150 			} else if (ioflag & IO_ASYNC) {
1151 				hammer2_io_bawrite(&dio);
1152 			} else {
1153 				hammer2_io_bdwrite(&dio);
1154 			}
1155 			break;
1156 		default:
1157 			panic("hammer2_write_bp: bad chain type %d\n",
1158 				chain->bref.type);
1159 			/* NOT REACHED */
1160 			break;
1161 		}
1162 	}
1163 done:
1164 	if (chain) {
1165 		hammer2_chain_unlock(chain);
1166 		hammer2_chain_drop(chain);
1167 	}
1168 	if (comp_buffer)
1169 		objcache_put(cache_buffer_write, comp_buffer);
1170 }
1171 
1172 /*
1173  * Helper
1174  *
1175  * Function that performs zero-checking and writing without compression,
1176  * it corresponds to default zero-checking path.
1177  */
1178 static
1179 void
1180 hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
1181 	hammer2_chain_t **parentp,
1182 	hammer2_key_t lbase, int ioflag, int pblksize,
1183 	hammer2_tid_t mtid, int *errorp,
1184 	int check_algo)
1185 {
1186 	hammer2_chain_t *chain;
1187 	char *bdata;
1188 
1189 	if (check_algo != HAMMER2_CHECK_NONE &&
1190 	    test_block_zeros(data, pblksize)) {
1191 		/*
1192 		 * An all-zeros write creates a hole unless the check code
1193 		 * is disabled.  When the check code is disabled all writes
1194 		 * are done in-place, including any all-zeros writes.
1195 		 *
1196 		 * NOTE: A snapshot will still force a copy-on-write
1197 		 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
1198 		 */
1199 		zero_write(data, ip, parentp, lbase, mtid, errorp);
1200 	} else {
1201 		/*
1202 		 * Normal write
1203 		 */
1204 		bdata = data;
1205 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
1206 						mtid, &bdata, errorp);
1207 		if (*errorp) {
1208 			/* do nothing */
1209 		} else if (bdata) {
1210 			hammer2_write_bp(chain, data, ioflag, pblksize,
1211 					 mtid, errorp, check_algo);
1212 		} else {
1213 			/* dedup occurred */
1214 			chain->bref.methods =
1215 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1216 				HAMMER2_ENC_CHECK(check_algo);
1217 			hammer2_chain_setcheck(chain, data);
1218 		}
1219 		if (chain) {
1220 			hammer2_chain_unlock(chain);
1221 			hammer2_chain_drop(chain);
1222 		}
1223 	}
1224 }
1225 
1226 /*
1227  * Helper
1228  *
1229  * A function to test whether a block of data contains only zeros,
1230  * returns TRUE (non-zero) if the block is all zeros.
1231  */
1232 static
1233 int
1234 test_block_zeros(const char *buf, size_t bytes)
1235 {
1236 	size_t i;
1237 
1238 	for (i = 0; i < bytes; i += sizeof(long)) {
1239 		if (*(const long *)(buf + i) != 0)
1240 			return (0);
1241 	}
1242 	return (1);
1243 }
1244 
1245 /*
1246  * Helper
1247  *
1248  * Function to "write" a block that contains only zeros.
1249  */
1250 static
1251 void
1252 zero_write(char *data, hammer2_inode_t *ip,
1253 	   hammer2_chain_t **parentp,
1254 	   hammer2_key_t lbase, hammer2_tid_t mtid, int *errorp)
1255 {
1256 	hammer2_chain_t *chain;
1257 	hammer2_key_t key_dummy;
1258 
1259 	chain = hammer2_chain_lookup(parentp, &key_dummy,
1260 				     lbase, lbase,
1261 				     errorp,
1262 				     HAMMER2_LOOKUP_NODATA);
1263 	if (chain) {
1264 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1265 			hammer2_inode_data_t *wipdata;
1266 
1267 			if (*errorp == 0) {
1268 				*errorp = hammer2_chain_modify_ip(ip, chain,
1269 								  mtid, 0);
1270 			}
1271 			if (*errorp == 0) {
1272 				wipdata = &chain->data->ipdata;
1273 				KKASSERT(wipdata->meta.op_flags &
1274 					 HAMMER2_OPFLAG_DIRECTDATA);
1275 				bzero(wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1276 				++hammer2_iod_file_wembed;
1277 			}
1278 		} else {
1279 			/* chain->error ok for deletion */
1280 			hammer2_chain_delete(*parentp, chain,
1281 					     mtid, HAMMER2_DELETE_PERMANENT);
1282 			++hammer2_iod_file_wzero;
1283 		}
1284 		hammer2_chain_unlock(chain);
1285 		hammer2_chain_drop(chain);
1286 	} else {
1287 		++hammer2_iod_file_wzero;
1288 	}
1289 }
1290 
1291 /*
1292  * Helper
1293  *
1294  * Function to write the data as it is, without performing any sort of
1295  * compression. This function is used in path without compression and
1296  * default zero-checking path.
1297  */
1298 static
1299 void
1300 hammer2_write_bp(hammer2_chain_t *chain, char *data, int ioflag,
1301 		 int pblksize,
1302 		 hammer2_tid_t mtid, int *errorp, int check_algo)
1303 {
1304 	hammer2_inode_data_t *wipdata;
1305 	hammer2_io_t *dio;
1306 	char *bdata;
1307 	int error;
1308 
1309 	error = 0;	/* XXX TODO below */
1310 
1311 	KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1312 
1313 	switch(chain->bref.type) {
1314 	case HAMMER2_BREF_TYPE_INODE:
1315 		wipdata = &chain->data->ipdata;
1316 		KKASSERT(wipdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1317 		bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1318 		error = 0;
1319 		++hammer2_iod_file_wembed;
1320 		break;
1321 	case HAMMER2_BREF_TYPE_DATA:
1322 		error = hammer2_io_newnz(chain->hmp,
1323 					 chain->bref.type,
1324 					 chain->bref.data_off,
1325 					 chain->bytes, &dio);
1326 		if (error) {
1327 			hammer2_io_bqrelse(&dio);
1328 			kprintf("hammer2: WRITE PATH: "
1329 				"dbp bread error\n");
1330 			break;
1331 		}
1332 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1333 
1334 		chain->bref.methods = HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1335 				      HAMMER2_ENC_CHECK(check_algo);
1336 		bcopy(data, bdata, chain->bytes);
1337 
1338 		/*
1339 		 * The flush code doesn't calculate check codes for
1340 		 * file data (doing so can result in excessive I/O),
1341 		 * so we do it here.
1342 		 */
1343 		hammer2_chain_setcheck(chain, bdata);
1344 
1345 		/*
1346 		 * Device buffer is now valid, chain is no longer in
1347 		 * the initial state.
1348 		 *
1349 		 * (No blockref table worries with file data)
1350 		 */
1351 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1352 		hammer2_dedup_record(chain, dio, bdata);
1353 
1354 		if (ioflag & IO_SYNC) {
1355 			/*
1356 			 * Synchronous I/O requested.
1357 			 */
1358 			hammer2_io_bwrite(&dio);
1359 		/*
1360 		} else if ((ioflag & IO_DIRECT) &&
1361 			   loff + n == pblksize) {
1362 			hammer2_io_bdwrite(&dio);
1363 		*/
1364 		} else if (ioflag & IO_ASYNC) {
1365 			hammer2_io_bawrite(&dio);
1366 		} else {
1367 			hammer2_io_bdwrite(&dio);
1368 		}
1369 		break;
1370 	default:
1371 		panic("hammer2_write_bp: bad chain type %d\n",
1372 		      chain->bref.type);
1373 		/* NOT REACHED */
1374 		error = 0;
1375 		break;
1376 	}
1377 	*errorp = error;
1378 }
1379 
1380 /*
1381  * LIVE DEDUP HEURISTICS
1382  *
1383  * Record media and crc information for possible dedup operation.  Note
1384  * that the dedup mask bits must also be set in the related DIO for a dedup
1385  * to be fully validated (which is handled in the freemap allocation code).
1386  *
1387  * WARNING! This code is SMP safe but the heuristic allows SMP collisions.
1388  *	    All fields must be loaded into locals and validated.
1389  *
1390  * WARNING! Should only be used for file data and directory entries,
1391  *	    hammer2_chain_modify() only checks for the dedup case on data
1392  *	    chains.  Also, dedup data can only be recorded for committed
1393  *	    chains (so NOT strategy writes which can undergo further
1394  *	    modification after the fact!).
1395  */
1396 void
1397 hammer2_dedup_record(hammer2_chain_t *chain, hammer2_io_t *dio, char *data)
1398 {
1399 	hammer2_dev_t *hmp;
1400 	hammer2_dedup_t *dedup;
1401 	uint64_t crc;
1402 	uint64_t mask;
1403 	int best = 0;
1404 	int i;
1405 	int dticks;
1406 
1407 	/*
1408 	 * We can only record a dedup if we have media data to test against.
1409 	 * If dedup is not enabled, return early, which allows a chain to
1410 	 * remain marked MODIFIED (which might have benefits in special
1411 	 * situations, though typically it does not).
1412 	 */
1413 	if (hammer2_dedup_enable == 0)
1414 		return;
1415 	if (dio == NULL) {
1416 		dio = chain->dio;
1417 		if (dio == NULL)
1418 			return;
1419 	}
1420 
1421 	hmp = chain->hmp;
1422 
1423 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
1424 	case HAMMER2_CHECK_ISCSI32:
1425 		/*
1426 		 * XXX use the built-in crc (the dedup lookup sequencing
1427 		 * needs to be fixed so the check code is already present
1428 		 * when dedup_lookup is called)
1429 		 */
1430 #if 0
1431 		crc = (uint64_t)(uint32_t)chain->bref.check.iscsi32.value;
1432 #endif
1433 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1434 		break;
1435 	case HAMMER2_CHECK_XXHASH64:
1436 		crc = chain->bref.check.xxhash64.value;
1437 		break;
1438 	case HAMMER2_CHECK_SHA192:
1439 		/*
1440 		 * XXX use the built-in crc (the dedup lookup sequencing
1441 		 * needs to be fixed so the check code is already present
1442 		 * when dedup_lookup is called)
1443 		 */
1444 #if 0
1445 		crc = ((uint64_t *)chain->bref.check.sha192.data)[0] ^
1446 		      ((uint64_t *)chain->bref.check.sha192.data)[1] ^
1447 		      ((uint64_t *)chain->bref.check.sha192.data)[2];
1448 #endif
1449 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1450 		break;
1451 	default:
1452 		/*
1453 		 * Cannot dedup without a check code
1454 		 *
1455 		 * NOTE: In particular, CHECK_NONE allows a sector to be
1456 		 *	 overwritten without copy-on-write, recording
1457 		 *	 a dedup block for a CHECK_NONE object would be
1458 		 *	 a disaster!
1459 		 */
1460 		return;
1461 	}
1462 
1463 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEDUPABLE);
1464 
1465 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1466 	for (i = 0; i < 4; ++i) {
1467 		if (dedup[i].data_crc == crc) {
1468 			best = i;
1469 			break;
1470 		}
1471 		dticks = (int)(dedup[i].ticks - dedup[best].ticks);
1472 		if (dticks < 0 || dticks > hz * 60 * 30)
1473 			best = i;
1474 	}
1475 	dedup += best;
1476 	if (hammer2_debug & 0x40000) {
1477 		kprintf("REC %04x %016jx %016jx\n",
1478 			(int)(dedup - hmp->heur_dedup),
1479 			crc,
1480 			chain->bref.data_off);
1481 	}
1482 	dedup->ticks = ticks;
1483 	dedup->data_off = chain->bref.data_off;
1484 	dedup->data_crc = crc;
1485 
1486 	/*
1487 	 * Set the valid bits for the dedup only after we know the data
1488 	 * buffer has been updated.  The alloc bits were set (and the valid
1489 	 * bits cleared) when the media was allocated.
1490 	 *
1491 	 * This is done in two stages becuase the bulkfree code can race
1492 	 * the gap between allocation and data population.  Both masks must
1493 	 * be set before a bcmp/dedup operation is able to use the block.
1494 	 */
1495 	mask = hammer2_dedup_mask(dio, chain->bref.data_off, chain->bytes);
1496 	atomic_set_64(&dio->dedup_valid, mask);
1497 
1498 #if 0
1499 	/*
1500 	 * XXX removed. MODIFIED is an integral part of the flush code,
1501 	 * lets not just clear it
1502 	 */
1503 	/*
1504 	 * Once we record the dedup the chain must be marked clean to
1505 	 * prevent reuse of the underlying block.   Remember that this
1506 	 * write occurs when the buffer cache is flushed (i.e. on sync(),
1507 	 * fsync(), filesystem periodic sync, or when the kernel needs to
1508 	 * flush a buffer), and not whenever the user write()s.
1509 	 */
1510 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1511 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1512 		atomic_add_long(&hammer2_count_modified_chains, -1);
1513 		if (chain->pmp)
1514 			hammer2_pfs_memory_wakeup(chain->pmp);
1515 	}
1516 #endif
1517 }
1518 
1519 static
1520 hammer2_off_t
1521 hammer2_dedup_lookup(hammer2_dev_t *hmp, char **datap, int pblksize)
1522 {
1523 	hammer2_dedup_t *dedup;
1524 	hammer2_io_t *dio;
1525 	hammer2_off_t off;
1526 	uint64_t crc;
1527 	uint64_t mask;
1528 	char *data;
1529 	char *dtmp;
1530 	int i;
1531 
1532 	if (hammer2_dedup_enable == 0)
1533 		return 0;
1534 	data = *datap;
1535 	if (data == NULL)
1536 		return 0;
1537 
1538 	/*
1539 	 * XXX use the built-in crc (the dedup lookup sequencing
1540 	 * needs to be fixed so the check code is already present
1541 	 * when dedup_lookup is called)
1542 	 */
1543 	crc = XXH64(data, pblksize, XXH_HAMMER2_SEED);
1544 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1545 
1546 	if (hammer2_debug & 0x40000) {
1547 		kprintf("LOC %04x/4 %016jx\n",
1548 			(int)(dedup - hmp->heur_dedup),
1549 			crc);
1550 	}
1551 
1552 	for (i = 0; i < 4; ++i) {
1553 		off = dedup[i].data_off;
1554 		cpu_ccfence();
1555 		if (dedup[i].data_crc != crc)
1556 			continue;
1557 		if ((1 << (int)(off & HAMMER2_OFF_MASK_RADIX)) != pblksize)
1558 			continue;
1559 		dio = hammer2_io_getquick(hmp, off, pblksize);
1560 		if (dio) {
1561 			dtmp = hammer2_io_data(dio, off),
1562 			mask = hammer2_dedup_mask(dio, off, pblksize);
1563 			if ((dio->dedup_alloc & mask) == mask &&
1564 			    (dio->dedup_valid & mask) == mask &&
1565 			    bcmp(data, dtmp, pblksize) == 0) {
1566 				if (hammer2_debug & 0x40000) {
1567 					kprintf("DEDUP SUCCESS %016jx\n",
1568 						(intmax_t)off);
1569 				}
1570 				hammer2_io_putblk(&dio);
1571 				*datap = NULL;
1572 				dedup[i].ticks = ticks;   /* update use */
1573 				atomic_add_long(&hammer2_iod_file_wdedup,
1574 						pblksize);
1575 
1576 				return off;		/* RETURN */
1577 			}
1578 			hammer2_io_putblk(&dio);
1579 		}
1580 	}
1581 	return 0;
1582 }
1583 
1584 /*
1585  * Poof.  Races are ok, if someone gets in and reuses a dedup offset
1586  * before or while we are clearing it they will also recover the freemap
1587  * entry (set it to fully allocated), so a bulkfree race can only set it
1588  * to a possibly-free state.
1589  *
1590  * XXX ok, well, not really sure races are ok but going to run with it
1591  *     for the moment.
1592  */
1593 void
1594 hammer2_dedup_clear(hammer2_dev_t *hmp)
1595 {
1596 	int i;
1597 
1598 	for (i = 0; i < HAMMER2_DEDUP_HEUR_SIZE; ++i) {
1599 		hmp->heur_dedup[i].data_off = 0;
1600 		hmp->heur_dedup[i].ticks = ticks - 1;
1601 	}
1602 }
1603