xref: /dragonfly/sys/vfs/hammer2/hammer2_vfsops.c (revision cf37dc20)
1 /*
2  * Copyright (c) 2011-2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/nlookup.h>
39 #include <sys/vnode.h>
40 #include <sys/mount.h>
41 #include <sys/fcntl.h>
42 #include <sys/buf.h>
43 #include <sys/uuid.h>
44 #include <sys/vfsops.h>
45 #include <sys/sysctl.h>
46 #include <sys/socket.h>
47 #include <sys/objcache.h>
48 
49 #include <sys/proc.h>
50 #include <sys/namei.h>
51 #include <sys/mountctl.h>
52 #include <sys/dirent.h>
53 #include <sys/uio.h>
54 
55 #include <sys/mutex.h>
56 #include <sys/mutex2.h>
57 
58 #include "hammer2.h"
59 #include "hammer2_disk.h"
60 #include "hammer2_mount.h"
61 #include "hammer2_lz4.h"
62 
63 #include "zlib/hammer2_zlib.h"
64 
65 #define REPORT_REFS_ERRORS 1	/* XXX remove me */
66 
67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache");
68 
69 struct hammer2_sync_info {
70 	int error;
71 	int waitfor;
72 };
73 
74 TAILQ_HEAD(hammer2_mntlist, hammer2_dev);
75 TAILQ_HEAD(hammer2_pfslist, hammer2_pfs);
76 static struct hammer2_mntlist hammer2_mntlist;
77 static struct hammer2_pfslist hammer2_pfslist;
78 static struct lock hammer2_mntlk;
79 
80 int hammer2_debug;
81 int hammer2_cluster_enable = 1;
82 int hammer2_hardlink_enable = 1;
83 int hammer2_flush_pipe = 100;
84 int hammer2_synchronous_flush = 1;
85 int hammer2_dio_count;
86 long hammer2_limit_dirty_chains;
87 long hammer2_count_modified_chains;
88 long hammer2_iod_file_read;
89 long hammer2_iod_meta_read;
90 long hammer2_iod_indr_read;
91 long hammer2_iod_fmap_read;
92 long hammer2_iod_volu_read;
93 long hammer2_iod_file_write;
94 long hammer2_iod_file_wembed;
95 long hammer2_iod_file_wzero;
96 long hammer2_iod_file_wdedup;
97 long hammer2_iod_meta_write;
98 long hammer2_iod_indr_write;
99 long hammer2_iod_fmap_write;
100 long hammer2_iod_volu_write;
101 long hammer2_ioa_file_read;
102 long hammer2_ioa_meta_read;
103 long hammer2_ioa_indr_read;
104 long hammer2_ioa_fmap_read;
105 long hammer2_ioa_volu_read;
106 long hammer2_ioa_fmap_write;
107 long hammer2_ioa_file_write;
108 long hammer2_ioa_meta_write;
109 long hammer2_ioa_indr_write;
110 long hammer2_ioa_volu_write;
111 
112 MALLOC_DECLARE(M_HAMMER2_CBUFFER);
113 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer",
114 		"Buffer used for compression.");
115 
116 MALLOC_DECLARE(M_HAMMER2_DEBUFFER);
117 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer",
118 		"Buffer used for decompression.");
119 
120 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem");
121 
122 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW,
123 	   &hammer2_debug, 0, "");
124 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_enable, CTLFLAG_RW,
125 	   &hammer2_cluster_enable, 0, "");
126 SYSCTL_INT(_vfs_hammer2, OID_AUTO, hardlink_enable, CTLFLAG_RW,
127 	   &hammer2_hardlink_enable, 0, "");
128 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW,
129 	   &hammer2_flush_pipe, 0, "");
130 SYSCTL_INT(_vfs_hammer2, OID_AUTO, synchronous_flush, CTLFLAG_RW,
131 	   &hammer2_synchronous_flush, 0, "");
132 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW,
133 	   &hammer2_limit_dirty_chains, 0, "");
134 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW,
135 	   &hammer2_count_modified_chains, 0, "");
136 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD,
137 	   &hammer2_dio_count, 0, "");
138 
139 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW,
140 	   &hammer2_iod_file_read, 0, "");
141 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW,
142 	   &hammer2_iod_meta_read, 0, "");
143 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW,
144 	   &hammer2_iod_indr_read, 0, "");
145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW,
146 	   &hammer2_iod_fmap_read, 0, "");
147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW,
148 	   &hammer2_iod_volu_read, 0, "");
149 
150 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW,
151 	   &hammer2_iod_file_write, 0, "");
152 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW,
153 	   &hammer2_iod_file_wembed, 0, "");
154 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW,
155 	   &hammer2_iod_file_wzero, 0, "");
156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW,
157 	   &hammer2_iod_file_wdedup, 0, "");
158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW,
159 	   &hammer2_iod_meta_write, 0, "");
160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW,
161 	   &hammer2_iod_indr_write, 0, "");
162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW,
163 	   &hammer2_iod_fmap_write, 0, "");
164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW,
165 	   &hammer2_iod_volu_write, 0, "");
166 
167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_read, CTLFLAG_RW,
168 	   &hammer2_ioa_file_read, 0, "");
169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_read, CTLFLAG_RW,
170 	   &hammer2_ioa_meta_read, 0, "");
171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_read, CTLFLAG_RW,
172 	   &hammer2_ioa_indr_read, 0, "");
173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_read, CTLFLAG_RW,
174 	   &hammer2_ioa_fmap_read, 0, "");
175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_read, CTLFLAG_RW,
176 	   &hammer2_ioa_volu_read, 0, "");
177 
178 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_write, CTLFLAG_RW,
179 	   &hammer2_ioa_file_write, 0, "");
180 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_write, CTLFLAG_RW,
181 	   &hammer2_ioa_meta_write, 0, "");
182 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_write, CTLFLAG_RW,
183 	   &hammer2_ioa_indr_write, 0, "");
184 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_write, CTLFLAG_RW,
185 	   &hammer2_ioa_fmap_write, 0, "");
186 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_write, CTLFLAG_RW,
187 	   &hammer2_ioa_volu_write, 0, "");
188 
189 static int hammer2_vfs_init(struct vfsconf *conf);
190 static int hammer2_vfs_uninit(struct vfsconf *vfsp);
191 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
192 				struct ucred *cred);
193 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *,
194 				struct vnode *, struct ucred *);
195 static int hammer2_recovery(hammer2_dev_t *hmp);
196 static int hammer2_vfs_unmount(struct mount *mp, int mntflags);
197 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp);
198 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp,
199 				struct ucred *cred);
200 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp,
201 				struct ucred *cred);
202 static int hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
203 				ino_t ino, struct vnode **vpp);
204 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
205 				struct fid *fhp, struct vnode **vpp);
206 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp);
207 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
208 				int *exflagsp, struct ucred **credanonp);
209 
210 static int hammer2_install_volume_header(hammer2_dev_t *hmp);
211 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
212 
213 static void hammer2_update_pmps(hammer2_dev_t *hmp);
214 
215 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp);
216 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp,
217 				hammer2_dev_t *hmp);
218 
219 /*
220  * HAMMER2 vfs operations.
221  */
222 static struct vfsops hammer2_vfsops = {
223 	.vfs_init	= hammer2_vfs_init,
224 	.vfs_uninit	= hammer2_vfs_uninit,
225 	.vfs_sync	= hammer2_vfs_sync,
226 	.vfs_mount	= hammer2_vfs_mount,
227 	.vfs_unmount	= hammer2_vfs_unmount,
228 	.vfs_root 	= hammer2_vfs_root,
229 	.vfs_statfs	= hammer2_vfs_statfs,
230 	.vfs_statvfs	= hammer2_vfs_statvfs,
231 	.vfs_vget	= hammer2_vfs_vget,
232 	.vfs_vptofh	= hammer2_vfs_vptofh,
233 	.vfs_fhtovp	= hammer2_vfs_fhtovp,
234 	.vfs_checkexp	= hammer2_vfs_checkexp
235 };
236 
237 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", "");
238 
239 VFS_SET(hammer2_vfsops, hammer2, 0);
240 MODULE_VERSION(hammer2, 1);
241 
242 static
243 int
244 hammer2_vfs_init(struct vfsconf *conf)
245 {
246 	static struct objcache_malloc_args margs_read;
247 	static struct objcache_malloc_args margs_write;
248 	static struct objcache_malloc_args margs_vop;
249 
250 	int error;
251 
252 	error = 0;
253 
254 	if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref))
255 		error = EINVAL;
256 	if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data))
257 		error = EINVAL;
258 	if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data))
259 		error = EINVAL;
260 
261 	if (error)
262 		kprintf("HAMMER2 structure size mismatch; cannot continue.\n");
263 
264 	margs_read.objsize = 65536;
265 	margs_read.mtype = M_HAMMER2_DEBUFFER;
266 
267 	margs_write.objsize = 32768;
268 	margs_write.mtype = M_HAMMER2_CBUFFER;
269 
270 	margs_vop.objsize = sizeof(hammer2_xop_t);
271 	margs_vop.mtype = M_HAMMER2;
272 
273 	/*
274 	 * Note thaht for the XOPS cache we want backing store allocations
275 	 * to use M_ZERO.  This is not allowed in objcache_get() (to avoid
276 	 * confusion), so use the backing store function that does it.  This
277 	 * means that initial XOPS objects are zerod but REUSED objects are
278 	 * not.  So we are responsible for cleaning the object up sufficiently
279 	 * for our needs before objcache_put()ing it back (typically just the
280 	 * FIFO indices).
281 	 */
282 	cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc,
283 				0, 1, NULL, NULL, NULL,
284 				objcache_malloc_alloc,
285 				objcache_malloc_free,
286 				&margs_read);
287 	cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc,
288 				0, 1, NULL, NULL, NULL,
289 				objcache_malloc_alloc,
290 				objcache_malloc_free,
291 				&margs_write);
292 	cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc,
293 				0, 1, NULL, NULL, NULL,
294 				objcache_malloc_alloc_zero,
295 				objcache_malloc_free,
296 				&margs_vop);
297 
298 
299 	lockinit(&hammer2_mntlk, "mntlk", 0, 0);
300 	TAILQ_INIT(&hammer2_mntlist);
301 	TAILQ_INIT(&hammer2_pfslist);
302 
303 	hammer2_limit_dirty_chains = desiredvnodes / 10;
304 
305 	return (error);
306 }
307 
308 static
309 int
310 hammer2_vfs_uninit(struct vfsconf *vfsp __unused)
311 {
312 	objcache_destroy(cache_buffer_read);
313 	objcache_destroy(cache_buffer_write);
314 	objcache_destroy(cache_xops);
315 	return 0;
316 }
317 
318 /*
319  * Core PFS allocator.  Used to allocate the pmp structure for PFS cluster
320  * mounts and the spmp structure for media (hmp) structures.
321  *
322  * pmp->modify_tid tracks new modify_tid transaction ids for front-end
323  * transactions.  Note that synchronization does not use this field.
324  * (typically frontend operations and synchronization cannot run on the
325  * same PFS node at the same time).
326  *
327  * XXX check locking
328  */
329 hammer2_pfs_t *
330 hammer2_pfsalloc(hammer2_chain_t *chain, const hammer2_inode_data_t *ripdata,
331 		 hammer2_tid_t modify_tid)
332 {
333 	hammer2_inode_t *iroot;
334 	hammer2_pfs_t *pmp;
335 	int count;
336 	int i;
337 	int j;
338 
339 	/*
340 	 * Locate or create the PFS based on the cluster id.  If ripdata
341 	 * is NULL this is a spmp which is unique and is always allocated.
342 	 */
343 	if (ripdata) {
344 		TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
345 			if (bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid,
346 				 sizeof(pmp->pfs_clid)) == 0) {
347 					break;
348 			}
349 		}
350 	} else {
351 		pmp = NULL;
352 	}
353 
354 	if (pmp == NULL) {
355 		pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO);
356 		hammer2_trans_manage_init(pmp);
357 		kmalloc_create(&pmp->minode, "HAMMER2-inodes");
358 		kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg");
359 		lockinit(&pmp->lock, "pfslk", 0, 0);
360 		lockinit(&pmp->lock_nlink, "h2nlink", 0, 0);
361 		spin_init(&pmp->inum_spin, "hm2pfsalloc_inum");
362 		spin_init(&pmp->xop_spin, "h2xop");
363 		RB_INIT(&pmp->inum_tree);
364 		TAILQ_INIT(&pmp->sideq);
365 		spin_init(&pmp->list_spin, "hm2pfsalloc_list");
366 
367 		/*
368 		 * Distribute backend operations to threads
369 		 */
370 		for (j = 0; j < HAMMER2_MAXCLUSTER; ++j)
371 			TAILQ_INIT(&pmp->xopq[j]);
372 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
373 			hammer2_xop_group_init(pmp, &pmp->xop_groups[j]);
374 
375 		/*
376 		 * Save the last media transaction id for the flusher.  Set
377 		 * initial
378 		 */
379 		if (ripdata)
380 			pmp->pfs_clid = ripdata->meta.pfs_clid;
381 		TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry);
382 
383 		/*
384 		 * The synchronization thread may start too early, make
385 		 * sure it stays frozen until we are ready to let it go.
386 		 * XXX
387 		 */
388 		/*
389 		pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN |
390 					 HAMMER2_THREAD_REMASTER;
391 		*/
392 	}
393 
394 	/*
395 	 * Create the PFS's root inode.
396 	 */
397 	if ((iroot = pmp->iroot) == NULL) {
398 		iroot = hammer2_inode_get(pmp, NULL, NULL, -1);
399 		pmp->iroot = iroot;
400 		hammer2_inode_ref(iroot);
401 		hammer2_inode_unlock(iroot);
402 	}
403 
404 	/*
405 	 * Stop here if no chain is passed in.
406 	 */
407 	if (chain == NULL)
408 		goto done;
409 
410 	/*
411 	 * When a chain is passed in we must add it to the PFS's root
412 	 * inode, update pmp->pfs_types[], and update the syncronization
413 	 * threads.
414 	 *
415 	 * At the moment empty spots can develop due to removals or failures.
416 	 * Ultimately we want to re-fill these spots but doing so might
417 	 * confused running code. XXX
418 	 */
419 	hammer2_inode_ref(iroot);
420 	hammer2_mtx_ex(&iroot->lock);
421 	j = iroot->cluster.nchains;
422 
423 	kprintf("add PFS to pmp %p[%d]\n", pmp, j);
424 
425 	if (j == HAMMER2_MAXCLUSTER) {
426 		kprintf("hammer2_mount: cluster full!\n");
427 		/* XXX fatal error? */
428 	} else {
429 		KKASSERT(chain->pmp == NULL);
430 		chain->pmp = pmp;
431 		hammer2_chain_ref(chain);
432 		iroot->cluster.array[j].chain = chain;
433 		pmp->pfs_types[j] = ripdata->meta.pfs_type;
434 		pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2);
435 		pmp->pfs_hmps[j] = chain->hmp;
436 
437 		/*
438 		 * If the PFS is already mounted we must account
439 		 * for the mount_count here.
440 		 */
441 		if (pmp->mp)
442 			++chain->hmp->mount_count;
443 
444 		/*
445 		 * May have to fixup dirty chain tracking.  Previous
446 		 * pmp was NULL so nothing to undo.
447 		 */
448 		if (chain->flags & HAMMER2_CHAIN_MODIFIED)
449 			hammer2_pfs_memory_inc(pmp);
450 		++j;
451 	}
452 	iroot->cluster.nchains = j;
453 
454 	/*
455 	 * Update nmasters from any PFS inode which is part of the cluster.
456 	 * It is possible that this will result in a value which is too
457 	 * high.  MASTER PFSs are authoritative for pfs_nmasters and will
458 	 * override this value later on.
459 	 *
460 	 * (This informs us of masters that might not currently be
461 	 *  discoverable by this mount).
462 	 */
463 	if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) {
464 		pmp->pfs_nmasters = ripdata->meta.pfs_nmasters;
465 	}
466 
467 	/*
468 	 * Count visible masters.  Masters are usually added with
469 	 * ripdata->meta.pfs_nmasters set to 1.  This detects when there
470 	 * are more (XXX and must update the master inodes).
471 	 */
472 	count = 0;
473 	for (i = 0; i < iroot->cluster.nchains; ++i) {
474 		if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER)
475 			++count;
476 	}
477 	if (pmp->pfs_nmasters < count)
478 		pmp->pfs_nmasters = count;
479 
480 	/*
481 	 * Create missing synchronization and support threads.
482 	 *
483 	 * Single-node masters (including snapshots) have nothing to
484 	 * synchronize and do not require this thread.
485 	 *
486 	 * Multi-node masters or any number of soft masters, slaves, copy,
487 	 * or other PFS types need the thread.
488 	 *
489 	 * Each thread is responsible for its particular cluster index.
490 	 * We use independent threads so stalls or mismatches related to
491 	 * any given target do not affect other targets.
492 	 */
493 	for (i = 0; i < iroot->cluster.nchains; ++i) {
494 		/*
495 		 * Single-node masters (including snapshots) have nothing
496 		 * to synchronize and will make direct xops support calls,
497 		 * thus they do not require this thread.
498 		 *
499 		 * Note that there can be thousands of snapshots.  We do not
500 		 * want to create thousands of threads.
501 		 */
502 		if (pmp->pfs_nmasters <= 1 &&
503 		    pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) {
504 			continue;
505 		}
506 
507 		/*
508 		 * Sync support thread
509 		 */
510 		if (pmp->sync_thrs[i].td == NULL) {
511 			hammer2_thr_create(&pmp->sync_thrs[i], pmp,
512 					   "h2nod", i, -1,
513 					   hammer2_primary_sync_thread);
514 		}
515 	}
516 
517 	/*
518 	 * Create missing Xop threads
519 	 */
520 	if (pmp->mp)
521 		hammer2_xop_helper_create(pmp);
522 
523 	hammer2_mtx_unlock(&iroot->lock);
524 	hammer2_inode_drop(iroot);
525 done:
526 	return pmp;
527 }
528 
529 /*
530  * Destroy a PFS, typically only occurs after the last mount on a device
531  * has gone away.
532  */
533 static void
534 hammer2_pfsfree(hammer2_pfs_t *pmp)
535 {
536 	hammer2_inode_t *iroot;
537 	int i;
538 	int j;
539 
540 	/*
541 	 * Cleanup our reference on iroot.  iroot is (should) not be needed
542 	 * by the flush code.
543 	 */
544 	TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry);
545 
546 	iroot = pmp->iroot;
547 	if (iroot) {
548 		for (i = 0; i < iroot->cluster.nchains; ++i) {
549 			hammer2_thr_delete(&pmp->sync_thrs[i]);
550 			for (j = 0; j < HAMMER2_XOPGROUPS; ++j)
551 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
552 		}
553 #if REPORT_REFS_ERRORS
554 		if (pmp->iroot->refs != 1)
555 			kprintf("PMP->IROOT %p REFS WRONG %d\n",
556 				pmp->iroot, pmp->iroot->refs);
557 #else
558 		KKASSERT(pmp->iroot->refs == 1);
559 #endif
560 		/* ref for pmp->iroot */
561 		hammer2_inode_drop(pmp->iroot);
562 		pmp->iroot = NULL;
563 	}
564 
565 	kmalloc_destroy(&pmp->mmsg);
566 	kmalloc_destroy(&pmp->minode);
567 
568 	kfree(pmp, M_HAMMER2);
569 }
570 
571 /*
572  * Remove all references to hmp from the pfs list.  Any PFS which becomes
573  * empty is terminated and freed.
574  *
575  * XXX inefficient.
576  */
577 static void
578 hammer2_pfsfree_scan(hammer2_dev_t *hmp)
579 {
580 	hammer2_pfs_t *pmp;
581 	hammer2_inode_t *iroot;
582 	hammer2_chain_t *rchain;
583 	int didfreeze;
584 	int i;
585 	int j;
586 
587 again:
588 	TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) {
589 		if ((iroot = pmp->iroot) == NULL)
590 			continue;
591 		if (hmp->spmp == pmp) {
592 			kprintf("unmount hmp %p remove spmp %p\n",
593 				hmp, pmp);
594 			hmp->spmp = NULL;
595 		}
596 
597 		/*
598 		 * Determine if this PFS is affected.  If it is we must
599 		 * freeze all management threads and lock its iroot.
600 		 *
601 		 * Freezing a management thread forces it idle, operations
602 		 * in-progress will be aborted and it will have to start
603 		 * over again when unfrozen, or exit if told to exit.
604 		 */
605 		for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
606 			if (pmp->pfs_hmps[i] == hmp)
607 				break;
608 		}
609 		if (i != HAMMER2_MAXCLUSTER) {
610 			/*
611 			 * Make sure all synchronization threads are locked
612 			 * down.
613 			 */
614 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
615 				if (pmp->pfs_hmps[i] == NULL)
616 					continue;
617 				hammer2_thr_freeze_async(&pmp->sync_thrs[i]);
618 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
619 					hammer2_thr_freeze_async(
620 						&pmp->xop_groups[j].thrs[i]);
621 				}
622 			}
623 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
624 				if (pmp->pfs_hmps[i] == NULL)
625 					continue;
626 				hammer2_thr_freeze(&pmp->sync_thrs[i]);
627 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
628 					hammer2_thr_freeze(
629 						&pmp->xop_groups[j].thrs[i]);
630 				}
631 			}
632 
633 			/*
634 			 * Lock the inode and clean out matching chains.
635 			 * Note that we cannot use hammer2_inode_lock_*()
636 			 * here because that would attempt to validate the
637 			 * cluster that we are in the middle of ripping
638 			 * apart.
639 			 *
640 			 * WARNING! We are working directly on the inodes
641 			 *	    embedded cluster.
642 			 */
643 			hammer2_mtx_ex(&iroot->lock);
644 
645 			/*
646 			 * Remove the chain from matching elements of the PFS.
647 			 */
648 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
649 				if (pmp->pfs_hmps[i] != hmp)
650 					continue;
651 				hammer2_thr_delete(&pmp->sync_thrs[i]);
652 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
653 					hammer2_thr_delete(
654 						&pmp->xop_groups[j].thrs[i]);
655 				}
656 				rchain = iroot->cluster.array[i].chain;
657 				iroot->cluster.array[i].chain = NULL;
658 				pmp->pfs_types[i] = 0;
659 				if (pmp->pfs_names[i]) {
660 					kfree(pmp->pfs_names[i], M_HAMMER2);
661 					pmp->pfs_names[i] = NULL;
662 				}
663 				if (rchain) {
664 					hammer2_chain_drop(rchain);
665 					/* focus hint */
666 					if (iroot->cluster.focus == rchain)
667 						iroot->cluster.focus = NULL;
668 				}
669 				pmp->pfs_hmps[i] = NULL;
670 			}
671 			hammer2_mtx_unlock(&iroot->lock);
672 			didfreeze = 1;	/* remaster, unfreeze down below */
673 		} else {
674 			didfreeze = 0;
675 		}
676 
677 		/*
678 		 * Cleanup trailing chains.  Gaps may remain.
679 		 */
680 		for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) {
681 			if (pmp->pfs_hmps[i])
682 				break;
683 		}
684 		iroot->cluster.nchains = i + 1;
685 
686 		/*
687 		 * If the PMP has no elements remaining we can destroy it.
688 		 * (this will transition management threads from frozen->exit).
689 		 */
690 		if (iroot->cluster.nchains == 0) {
691 			kprintf("unmount hmp %p last ref to PMP=%p\n",
692 				hmp, pmp);
693 			hammer2_pfsfree(pmp);
694 			goto again;
695 		}
696 
697 		/*
698 		 * If elements still remain we need to set the REMASTER
699 		 * flag and unfreeze it.
700 		 */
701 		if (didfreeze) {
702 			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
703 				if (pmp->pfs_hmps[i] == NULL)
704 					continue;
705 				hammer2_thr_remaster(&pmp->sync_thrs[i]);
706 				hammer2_thr_unfreeze(&pmp->sync_thrs[i]);
707 				for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
708 					hammer2_thr_remaster(
709 						&pmp->xop_groups[j].thrs[i]);
710 					hammer2_thr_unfreeze(
711 						&pmp->xop_groups[j].thrs[i]);
712 				}
713 			}
714 		}
715 	}
716 }
717 
718 /*
719  * Mount or remount HAMMER2 fileystem from physical media
720  *
721  *	mountroot
722  *		mp		mount point structure
723  *		path		NULL
724  *		data		<unused>
725  *		cred		<unused>
726  *
727  *	mount
728  *		mp		mount point structure
729  *		path		path to mount point
730  *		data		pointer to argument structure in user space
731  *			volume	volume path (device@LABEL form)
732  *			hflags	user mount flags
733  *		cred		user credentials
734  *
735  * RETURNS:	0	Success
736  *		!0	error number
737  */
738 static
739 int
740 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data,
741 		  struct ucred *cred)
742 {
743 	struct hammer2_mount_info info;
744 	hammer2_pfs_t *pmp;
745 	hammer2_pfs_t *spmp;
746 	hammer2_dev_t *hmp;
747 	hammer2_key_t key_next;
748 	hammer2_key_t key_dummy;
749 	hammer2_key_t lhc;
750 	struct vnode *devvp;
751 	struct nlookupdata nd;
752 	hammer2_chain_t *parent;
753 	hammer2_chain_t *chain;
754 	hammer2_cluster_t *cluster;
755 	const hammer2_inode_data_t *ripdata;
756 	hammer2_blockref_t bref;
757 	struct file *fp;
758 	char devstr[MNAMELEN];
759 	size_t size;
760 	size_t done;
761 	char *dev;
762 	char *label;
763 	int ronly = 1;
764 	int error;
765 	int cache_index;
766 	int i;
767 
768 	hmp = NULL;
769 	pmp = NULL;
770 	dev = NULL;
771 	label = NULL;
772 	devvp = NULL;
773 	cache_index = -1;
774 
775 	kprintf("hammer2_mount\n");
776 
777 	if (path == NULL) {
778 		/*
779 		 * Root mount
780 		 */
781 		bzero(&info, sizeof(info));
782 		info.cluster_fd = -1;
783 		ksnprintf(devstr, sizeof(devstr), "%s",
784 			  mp->mnt_stat.f_mntfromname);
785 		kprintf("hammer2_mount: root '%s'\n", devstr);
786 	} else {
787 		/*
788 		 * Non-root mount or updating a mount
789 		 */
790 		error = copyin(data, &info, sizeof(info));
791 		if (error)
792 			return (error);
793 
794 		error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done);
795 		if (error)
796 			return (error);
797 	}
798 
799 	/* Extract device and label */
800 	dev = devstr;
801 	label = strchr(devstr, '@');
802 	if (label == NULL ||
803 	    ((label + 1) - dev) > done) {
804 		return (EINVAL);
805 	}
806 	*label = '\0';
807 	label++;
808 	if (*label == '\0')
809 		return (EINVAL);
810 
811 	if (mp->mnt_flag & MNT_UPDATE) {
812 		/*
813 		 * Update mount.  Note that pmp->iroot->cluster is
814 		 * an inode-embedded cluster and thus cannot be
815 		 * directly locked.
816 		 *
817 		 * XXX HAMMER2 needs to implement NFS export via
818 		 *     mountctl.
819 		 */
820 		pmp = MPTOPMP(mp);
821 		cluster = &pmp->iroot->cluster;
822 		for (i = 0; i < cluster->nchains; ++i) {
823 			if (cluster->array[i].chain == NULL)
824 				continue;
825 			hmp = cluster->array[i].chain->hmp;
826 			devvp = hmp->devvp;
827 			error = hammer2_remount(hmp, mp, path,
828 						devvp, cred);
829 			if (error)
830 				break;
831 		}
832 
833 		return error;
834 	}
835 
836 	/*
837 	 * HMP device mount
838 	 *
839 	 * Lookup name and verify it refers to a block device.
840 	 */
841 	if (path) {
842 		error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW);
843 		if (error == 0)
844 			error = nlookup(&nd);
845 		if (error == 0)
846 			error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp);
847 		nlookup_done(&nd);
848 	} else {
849 		/* root mount */
850 		cdev_t cdev = kgetdiskbyname(dev);
851 		error = bdevvp(cdev, &devvp);
852 		if (error)
853 			kprintf("hammer2: cannot find '%s'\n", dev);
854 	}
855 
856 	if (error == 0) {
857 		if (vn_isdisk(devvp, &error))
858 			error = vfs_mountedon(devvp);
859 	}
860 
861 	/*
862 	 * Determine if the device has already been mounted.  After this
863 	 * check hmp will be non-NULL if we are doing the second or more
864 	 * hammer2 mounts from the same device.
865 	 */
866 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
867 	TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
868 		if (hmp->devvp == devvp)
869 			break;
870 	}
871 
872 	/*
873 	 * Open the device if this isn't a secondary mount and construct
874 	 * the H2 device mount (hmp).
875 	 */
876 	if (hmp == NULL) {
877 		hammer2_chain_t *schain;
878 		hammer2_xid_t xid;
879 
880 		if (error == 0 && vcount(devvp) > 0)
881 			error = EBUSY;
882 
883 		/*
884 		 * Now open the device
885 		 */
886 		if (error == 0) {
887 			ronly = ((mp->mnt_flag & MNT_RDONLY) != 0);
888 			vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
889 			error = vinvalbuf(devvp, V_SAVE, 0, 0);
890 			if (error == 0) {
891 				error = VOP_OPEN(devvp,
892 						 ronly ? FREAD : FREAD | FWRITE,
893 						 FSCRED, NULL);
894 			}
895 			vn_unlock(devvp);
896 		}
897 		if (error && devvp) {
898 			vrele(devvp);
899 			devvp = NULL;
900 		}
901 		if (error) {
902 			lockmgr(&hammer2_mntlk, LK_RELEASE);
903 			return error;
904 		}
905 		hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO);
906 		ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev);
907 		hmp->ronly = ronly;
908 		hmp->devvp = devvp;
909 		kmalloc_create(&hmp->mchain, "HAMMER2-chains");
910 		TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry);
911 		RB_INIT(&hmp->iotree);
912 		spin_init(&hmp->io_spin, "hm2mount_io");
913 		spin_init(&hmp->list_spin, "hm2mount_list");
914 		TAILQ_INIT(&hmp->flushq);
915 
916 		lockinit(&hmp->vollk, "h2vol", 0, 0);
917 		lockinit(&hmp->bulklk, "h2bulk", 0, 0);
918 
919 		/*
920 		 * vchain setup. vchain.data is embedded.
921 		 * vchain.refs is initialized and will never drop to 0.
922 		 *
923 		 * NOTE! voldata is not yet loaded.
924 		 */
925 		hmp->vchain.hmp = hmp;
926 		hmp->vchain.refs = 1;
927 		hmp->vchain.data = (void *)&hmp->voldata;
928 		hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME;
929 		hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
930 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
931 
932 		hammer2_chain_core_init(&hmp->vchain);
933 		/* hmp->vchain.u.xxx is left NULL */
934 
935 		/*
936 		 * fchain setup.  fchain.data is embedded.
937 		 * fchain.refs is initialized and will never drop to 0.
938 		 *
939 		 * The data is not used but needs to be initialized to
940 		 * pass assertion muster.  We use this chain primarily
941 		 * as a placeholder for the freemap's top-level RBTREE
942 		 * so it does not interfere with the volume's topology
943 		 * RBTREE.
944 		 */
945 		hmp->fchain.hmp = hmp;
946 		hmp->fchain.refs = 1;
947 		hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset;
948 		hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP;
949 		hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX;
950 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
951 		hmp->fchain.bref.methods =
952 			HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) |
953 			HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
954 
955 		hammer2_chain_core_init(&hmp->fchain);
956 		/* hmp->fchain.u.xxx is left NULL */
957 
958 		/*
959 		 * Install the volume header and initialize fields from
960 		 * voldata.
961 		 */
962 		error = hammer2_install_volume_header(hmp);
963 		if (error) {
964 			hammer2_unmount_helper(mp, NULL, hmp);
965 			lockmgr(&hammer2_mntlk, LK_RELEASE);
966 			hammer2_vfs_unmount(mp, MNT_FORCE);
967 			return error;
968 		}
969 
970 		/*
971 		 * Really important to get these right or flush will get
972 		 * confused.
973 		 */
974 		hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0);
975 		kprintf("alloc spmp %p tid %016jx\n",
976 			hmp->spmp, hmp->voldata.mirror_tid);
977 		spmp = hmp->spmp;
978 
979 		/*
980 		 * Dummy-up vchain and fchain's modify_tid.  mirror_tid
981 		 * is inherited from the volume header.
982 		 */
983 		xid = 0;
984 		hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid;
985 		hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid;
986 		hmp->vchain.pmp = spmp;
987 		hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid;
988 		hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid;
989 		hmp->fchain.pmp = spmp;
990 
991 		/*
992 		 * First locate the super-root inode, which is key 0
993 		 * relative to the volume header's blockset.
994 		 *
995 		 * Then locate the root inode by scanning the directory keyspace
996 		 * represented by the label.
997 		 */
998 		parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
999 		schain = hammer2_chain_lookup(&parent, &key_dummy,
1000 				      HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY,
1001 				      &cache_index, 0);
1002 		hammer2_chain_lookup_done(parent);
1003 		if (schain == NULL) {
1004 			kprintf("hammer2_mount: invalid super-root\n");
1005 			hammer2_unmount_helper(mp, NULL, hmp);
1006 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1007 			hammer2_vfs_unmount(mp, MNT_FORCE);
1008 			return EINVAL;
1009 		}
1010 		if (schain->error) {
1011 			kprintf("hammer2_mount: error %s reading super-root\n",
1012 				hammer2_error_str(schain->error));
1013 			hammer2_chain_unlock(schain);
1014 			hammer2_chain_drop(schain);
1015 			schain = NULL;
1016 			hammer2_unmount_helper(mp, NULL, hmp);
1017 			lockmgr(&hammer2_mntlk, LK_RELEASE);
1018 			hammer2_vfs_unmount(mp, MNT_FORCE);
1019 			return EINVAL;
1020 		}
1021 
1022 		/*
1023 		 * The super-root always uses an inode_tid of 1 when
1024 		 * creating PFSs.
1025 		 */
1026 		spmp->inode_tid = 1;
1027 		spmp->modify_tid = schain->bref.modify_tid + 1;
1028 
1029 		/*
1030 		 * Sanity-check schain's pmp and finish initialization.
1031 		 * Any chain belonging to the super-root topology should
1032 		 * have a NULL pmp (not even set to spmp).
1033 		 */
1034 		ripdata = &hammer2_chain_rdata(schain)->ipdata;
1035 		KKASSERT(schain->pmp == NULL);
1036 		spmp->pfs_clid = ripdata->meta.pfs_clid;
1037 
1038 		/*
1039 		 * Replace the dummy spmp->iroot with a real one.  It's
1040 		 * easier to just do a wholesale replacement than to try
1041 		 * to update the chain and fixup the iroot fields.
1042 		 *
1043 		 * The returned inode is locked with the supplied cluster.
1044 		 */
1045 		cluster = hammer2_cluster_from_chain(schain);
1046 		hammer2_inode_drop(spmp->iroot);
1047 		spmp->iroot = NULL;
1048 		spmp->iroot = hammer2_inode_get(spmp, NULL, cluster, -1);
1049 		spmp->spmp_hmp = hmp;
1050 		spmp->pfs_types[0] = ripdata->meta.pfs_type;
1051 		spmp->pfs_hmps[0] = hmp;
1052 		hammer2_inode_ref(spmp->iroot);
1053 		hammer2_inode_unlock(spmp->iroot);
1054 		hammer2_cluster_unlock(cluster);
1055 		hammer2_cluster_drop(cluster);
1056 		schain = NULL;
1057 		/* leave spmp->iroot with one ref */
1058 
1059 		if ((mp->mnt_flag & MNT_RDONLY) == 0) {
1060 			error = hammer2_recovery(hmp);
1061 			/* XXX do something with error */
1062 		}
1063 		hammer2_update_pmps(hmp);
1064 		hammer2_iocom_init(hmp);
1065 
1066 		/*
1067 		 * Ref the cluster management messaging descriptor.  The mount
1068 		 * program deals with the other end of the communications pipe.
1069 		 *
1070 		 * Root mounts typically do not supply one.
1071 		 */
1072 		if (info.cluster_fd >= 0) {
1073 			fp = holdfp(curproc->p_fd, info.cluster_fd, -1);
1074 			if (fp) {
1075 				hammer2_cluster_reconnect(hmp, fp);
1076 			} else {
1077 				kprintf("hammer2_mount: bad cluster_fd!\n");
1078 			}
1079 		}
1080 	} else {
1081 		spmp = hmp->spmp;
1082 	}
1083 
1084 	/*
1085 	 * Lookup the mount point under the media-localized super-root.
1086 	 * Scanning hammer2_pfslist doesn't help us because it represents
1087 	 * PFS cluster ids which can aggregate several named PFSs together.
1088 	 *
1089 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1090 	 * up later on.
1091 	 */
1092 	hammer2_inode_lock(spmp->iroot, 0);
1093 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1094 	lhc = hammer2_dirhash(label, strlen(label));
1095 	chain = hammer2_chain_lookup(&parent, &key_next,
1096 				     lhc, lhc + HAMMER2_DIRHASH_LOMASK,
1097 				     &cache_index, 0);
1098 	while (chain) {
1099 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
1100 		    strcmp(label, chain->data->ipdata.filename) == 0) {
1101 			break;
1102 		}
1103 		chain = hammer2_chain_next(&parent, chain, &key_next,
1104 					    key_next,
1105 					    lhc + HAMMER2_DIRHASH_LOMASK,
1106 					    &cache_index, 0);
1107 	}
1108 	if (parent) {
1109 		hammer2_chain_unlock(parent);
1110 		hammer2_chain_drop(parent);
1111 	}
1112 	hammer2_inode_unlock(spmp->iroot);
1113 
1114 	/*
1115 	 * PFS could not be found?
1116 	 */
1117 	if (chain == NULL) {
1118 		kprintf("hammer2_mount: PFS label not found\n");
1119 		hammer2_unmount_helper(mp, NULL, hmp);
1120 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1121 		hammer2_vfs_unmount(mp, MNT_FORCE);
1122 
1123 		return EINVAL;
1124 	}
1125 
1126 	/*
1127 	 * Acquire the pmp structure (it should have already been allocated
1128 	 * via hammer2_update_pmps() so do not pass cluster in to add to
1129 	 * available chains).
1130 	 *
1131 	 * Check if the cluster has already been mounted.  A cluster can
1132 	 * only be mounted once, use null mounts to mount additional copies.
1133 	 */
1134 	ripdata = &chain->data->ipdata;
1135 	bref = chain->bref;
1136 	pmp = hammer2_pfsalloc(NULL, ripdata, bref.modify_tid);
1137 	hammer2_chain_unlock(chain);
1138 	hammer2_chain_drop(chain);
1139 
1140 	if (pmp->mp) {
1141 		kprintf("hammer2_mount: PFS already mounted!\n");
1142 		hammer2_unmount_helper(mp, NULL, hmp);
1143 		lockmgr(&hammer2_mntlk, LK_RELEASE);
1144 		hammer2_vfs_unmount(mp, MNT_FORCE);
1145 
1146 		return EBUSY;
1147 	}
1148 
1149 	/*
1150 	 * Finish the mount
1151 	 */
1152         kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp);
1153 
1154         mp->mnt_flag = MNT_LOCAL;
1155         mp->mnt_kern_flag |= MNTK_ALL_MPSAFE;   /* all entry pts are SMP */
1156         mp->mnt_kern_flag |= MNTK_THR_SYNC;     /* new vsyncscan semantics */
1157 
1158         /*
1159          * required mount structure initializations
1160          */
1161         mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE;
1162         mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE;
1163 
1164         mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE;
1165         mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1166 
1167         /*
1168          * Optional fields
1169          */
1170         mp->mnt_iosize_max = MAXPHYS;
1171 
1172 	/*
1173 	 * Connect up mount pointers.
1174 	 */
1175 	hammer2_mount_helper(mp, pmp);
1176 
1177         lockmgr(&hammer2_mntlk, LK_RELEASE);
1178 
1179 	/*
1180 	 * Finish setup
1181 	 */
1182 	vfs_getnewfsid(mp);
1183 	vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops);
1184 	vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops);
1185 	vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops);
1186 
1187 	if (path) {
1188 		copyinstr(info.volume, mp->mnt_stat.f_mntfromname,
1189 			  MNAMELEN - 1, &size);
1190 		bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size);
1191 	} /* else root mount, already in there */
1192 
1193 	bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname));
1194 	if (path) {
1195 		copyinstr(path, mp->mnt_stat.f_mntonname,
1196 			  sizeof(mp->mnt_stat.f_mntonname) - 1,
1197 			  &size);
1198 	} else {
1199 		/* root mount */
1200 		mp->mnt_stat.f_mntonname[0] = '/';
1201 	}
1202 
1203 	/*
1204 	 * Initial statfs to prime mnt_stat.
1205 	 */
1206 	hammer2_vfs_statfs(mp, &mp->mnt_stat, cred);
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Scan PFSs under the super-root and create hammer2_pfs structures.
1213  */
1214 static
1215 void
1216 hammer2_update_pmps(hammer2_dev_t *hmp)
1217 {
1218 	const hammer2_inode_data_t *ripdata;
1219 	hammer2_chain_t *parent;
1220 	hammer2_chain_t *chain;
1221 	hammer2_blockref_t bref;
1222 	hammer2_pfs_t *spmp;
1223 	hammer2_pfs_t *pmp;
1224 	hammer2_key_t key_next;
1225 	int cache_index = -1;
1226 
1227 	/*
1228 	 * Lookup mount point under the media-localized super-root.
1229 	 *
1230 	 * cluster->pmp will incorrectly point to spmp and must be fixed
1231 	 * up later on.
1232 	 */
1233 	spmp = hmp->spmp;
1234 	hammer2_inode_lock(spmp->iroot, 0);
1235 	parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS);
1236 	chain = hammer2_chain_lookup(&parent, &key_next,
1237 					 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX,
1238 					 &cache_index, 0);
1239 	while (chain) {
1240 		if (chain->bref.type != HAMMER2_BREF_TYPE_INODE)
1241 			continue;
1242 		ripdata = &chain->data->ipdata;
1243 		bref = chain->bref;
1244 		kprintf("ADD LOCAL PFS: %s\n", ripdata->filename);
1245 
1246 		pmp = hammer2_pfsalloc(chain, ripdata, bref.modify_tid);
1247 		chain = hammer2_chain_next(&parent, chain, &key_next,
1248 					   key_next, HAMMER2_KEY_MAX,
1249 					   &cache_index, 0);
1250 	}
1251 	if (parent) {
1252 		hammer2_chain_unlock(parent);
1253 		hammer2_chain_drop(parent);
1254 	}
1255 	hammer2_inode_unlock(spmp->iroot);
1256 }
1257 
1258 static
1259 int
1260 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused,
1261 		struct vnode *devvp, struct ucred *cred)
1262 {
1263 	int error;
1264 
1265 	if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) {
1266 		error = hammer2_recovery(hmp);
1267 	} else {
1268 		error = 0;
1269 	}
1270 	return error;
1271 }
1272 
1273 static
1274 int
1275 hammer2_vfs_unmount(struct mount *mp, int mntflags)
1276 {
1277 	hammer2_pfs_t *pmp;
1278 	int flags;
1279 	int error = 0;
1280 
1281 	pmp = MPTOPMP(mp);
1282 
1283 	if (pmp == NULL)
1284 		return(0);
1285 
1286 	lockmgr(&hammer2_mntlk, LK_EXCLUSIVE);
1287 
1288 	/*
1289 	 * If mount initialization proceeded far enough we must flush
1290 	 * its vnodes and sync the underlying mount points.  Three syncs
1291 	 * are required to fully flush the filesystem (freemap updates lag
1292 	 * by one flush, and one extra for safety).
1293 	 */
1294 	if (mntflags & MNT_FORCE)
1295 		flags = FORCECLOSE;
1296 	else
1297 		flags = 0;
1298 	if (pmp->iroot) {
1299 		error = vflush(mp, 0, flags);
1300 		if (error)
1301 			goto failed;
1302 		hammer2_vfs_sync(mp, MNT_WAIT);
1303 		hammer2_vfs_sync(mp, MNT_WAIT);
1304 		hammer2_vfs_sync(mp, MNT_WAIT);
1305 	}
1306 
1307 	/*
1308 	 * Cleanup the frontend support XOPS threads
1309 	 */
1310 	hammer2_xop_helper_cleanup(pmp);
1311 
1312 	/*
1313 	 * Cleanup our reference on ihidden.
1314 	 */
1315 	if (pmp->ihidden) {
1316 		hammer2_inode_drop(pmp->ihidden);
1317 		pmp->ihidden = NULL;
1318 	}
1319 	if (pmp->mp)
1320 		hammer2_unmount_helper(mp, pmp, NULL);
1321 
1322 	error = 0;
1323 failed:
1324 	lockmgr(&hammer2_mntlk, LK_RELEASE);
1325 
1326 	return (error);
1327 }
1328 
1329 /*
1330  * Mount helper, hook the system mount into our PFS.
1331  * The mount lock is held.
1332  *
1333  * We must bump the mount_count on related devices for any
1334  * mounted PFSs.
1335  */
1336 static
1337 void
1338 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp)
1339 {
1340 	hammer2_cluster_t *cluster;
1341 	hammer2_chain_t *rchain;
1342 	int i;
1343 
1344         mp->mnt_data = (qaddr_t)pmp;
1345 	pmp->mp = mp;
1346 
1347 	/*
1348 	 * After pmp->mp is set we have to adjust hmp->mount_count.
1349 	 */
1350 	cluster = &pmp->iroot->cluster;
1351 	for (i = 0; i < cluster->nchains; ++i) {
1352 		rchain = cluster->array[i].chain;
1353 		if (rchain == NULL)
1354 			continue;
1355 		++rchain->hmp->mount_count;
1356 		kprintf("hammer2_mount hmp=%p ++mount_count=%d\n",
1357 			rchain->hmp, rchain->hmp->mount_count);
1358 	}
1359 
1360 	/*
1361 	 * Create missing Xop threads
1362 	 */
1363 	hammer2_xop_helper_create(pmp);
1364 }
1365 
1366 /*
1367  * Mount helper, unhook the system mount from our PFS.
1368  * The mount lock is held.
1369  *
1370  * If hmp is supplied a mount responsible for being the first to open
1371  * the block device failed and the block device and all PFSs using the
1372  * block device must be cleaned up.
1373  *
1374  * If pmp is supplied multiple devices might be backing the PFS and each
1375  * must be disconnect.  This might not be the last PFS using some of the
1376  * underlying devices.  Also, we have to adjust our hmp->mount_count
1377  * accounting for the devices backing the pmp which is now undergoing an
1378  * unmount.
1379  */
1380 static
1381 void
1382 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp)
1383 {
1384 	hammer2_cluster_t *cluster;
1385 	hammer2_chain_t *rchain;
1386 	struct vnode *devvp;
1387 	int dumpcnt;
1388 	int ronly = 0;
1389 	int i;
1390 
1391 	/*
1392 	 * If no device supplied this is a high-level unmount and we have to
1393 	 * to disconnect the mount, adjust mount_count, and locate devices
1394 	 * that might now have no mounts.
1395 	 */
1396 	if (pmp) {
1397 		KKASSERT(hmp == NULL);
1398 		KKASSERT((void *)(intptr_t)mp->mnt_data == pmp);
1399 		pmp->mp = NULL;
1400 		mp->mnt_data = NULL;
1401 
1402 		/*
1403 		 * After pmp->mp is cleared we have to account for
1404 		 * mount_count.
1405 		 */
1406 		cluster = &pmp->iroot->cluster;
1407 		for (i = 0; i < cluster->nchains; ++i) {
1408 			rchain = cluster->array[i].chain;
1409 			if (rchain == NULL)
1410 				continue;
1411 			--rchain->hmp->mount_count;
1412 			kprintf("hammer2_unmount hmp=%p --mount_count=%d\n",
1413 				rchain->hmp, rchain->hmp->mount_count);
1414 			/* scrapping hmp now may invalidate the pmp */
1415 		}
1416 again:
1417 		TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) {
1418 			if (hmp->mount_count == 0) {
1419 				hammer2_unmount_helper(NULL, NULL, hmp);
1420 				goto again;
1421 			}
1422 		}
1423 		return;
1424 	}
1425 
1426 	/*
1427 	 * Try to terminate the block device.  We can't terminate it if
1428 	 * there are still PFSs referencing it.
1429 	 */
1430 	kprintf("hammer2_unmount hmp=%p mount_count=%d\n",
1431 		hmp, hmp->mount_count);
1432 	if (hmp->mount_count)
1433 		return;
1434 
1435 	hammer2_pfsfree_scan(hmp);
1436 	hammer2_dev_exlock(hmp);	/* XXX order */
1437 
1438 	/*
1439 	 * Cycle the volume data lock as a safety (probably not needed any
1440 	 * more).  To ensure everything is out we need to flush at least
1441 	 * three times.  (1) The running of the sideq can dirty the
1442 	 * filesystem, (2) A normal flush can dirty the freemap, and
1443 	 * (3) ensure that the freemap is fully synchronized.
1444 	 *
1445 	 * The next mount's recovery scan can clean everything up but we want
1446 	 * to leave the filesystem in a 100% clean state on a normal unmount.
1447 	 */
1448 #if 0
1449 	hammer2_voldata_lock(hmp);
1450 	hammer2_voldata_unlock(hmp);
1451 #endif
1452 	hammer2_iocom_uninit(hmp);
1453 
1454 	if ((hmp->vchain.flags | hmp->fchain.flags) &
1455 	    HAMMER2_CHAIN_FLUSH_MASK) {
1456 		kprintf("hammer2_unmount: chains left over "
1457 			"after final sync\n");
1458 		kprintf("    vchain %08x\n", hmp->vchain.flags);
1459 		kprintf("    fchain %08x\n", hmp->fchain.flags);
1460 
1461 		if (hammer2_debug & 0x0010)
1462 			Debugger("entered debugger");
1463 	}
1464 
1465 	KKASSERT(hmp->spmp == NULL);
1466 
1467 	/*
1468 	 * Finish up with the device vnode
1469 	 */
1470 	if ((devvp = hmp->devvp) != NULL) {
1471 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
1472 		vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0);
1473 		hmp->devvp = NULL;
1474 		VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL);
1475 		vn_unlock(devvp);
1476 		vrele(devvp);
1477 		devvp = NULL;
1478 	}
1479 
1480 	/*
1481 	 * Clear vchain/fchain flags that might prevent final cleanup
1482 	 * of these chains.
1483 	 */
1484 	if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) {
1485 		atomic_add_long(&hammer2_count_modified_chains, -1);
1486 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
1487 		hammer2_pfs_memory_wakeup(hmp->vchain.pmp);
1488 	}
1489 	if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) {
1490 		atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE);
1491 	}
1492 
1493 	if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) {
1494 		atomic_add_long(&hammer2_count_modified_chains, -1);
1495 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED);
1496 		hammer2_pfs_memory_wakeup(hmp->fchain.pmp);
1497 	}
1498 	if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) {
1499 		atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE);
1500 	}
1501 
1502 	/*
1503 	 * Final drop of embedded freemap root chain to
1504 	 * clean up fchain.core (fchain structure is not
1505 	 * flagged ALLOCATED so it is cleaned out and then
1506 	 * left to rot).
1507 	 */
1508 	hammer2_chain_drop(&hmp->fchain);
1509 
1510 	/*
1511 	 * Final drop of embedded volume root chain to clean
1512 	 * up vchain.core (vchain structure is not flagged
1513 	 * ALLOCATED so it is cleaned out and then left to
1514 	 * rot).
1515 	 */
1516 	dumpcnt = 50;
1517 	hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v');
1518 	dumpcnt = 50;
1519 	hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f');
1520 	hammer2_dev_unlock(hmp);
1521 	hammer2_chain_drop(&hmp->vchain);
1522 
1523 	hammer2_io_cleanup(hmp, &hmp->iotree);
1524 	if (hmp->iofree_count) {
1525 		kprintf("io_cleanup: %d I/O's left hanging\n",
1526 			hmp->iofree_count);
1527 	}
1528 
1529 	TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry);
1530 	kmalloc_destroy(&hmp->mchain);
1531 	kfree(hmp, M_HAMMER2);
1532 }
1533 
1534 static
1535 int
1536 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp,
1537 	     ino_t ino, struct vnode **vpp)
1538 {
1539 	kprintf("hammer2_vget\n");
1540 	return (EOPNOTSUPP);
1541 }
1542 
1543 static
1544 int
1545 hammer2_vfs_root(struct mount *mp, struct vnode **vpp)
1546 {
1547 	hammer2_pfs_t *pmp;
1548 	int error;
1549 	struct vnode *vp;
1550 
1551 	pmp = MPTOPMP(mp);
1552 	if (pmp->iroot == NULL) {
1553 		*vpp = NULL;
1554 		return EINVAL;
1555 	}
1556 
1557 	error = 0;
1558 	hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1559 
1560 	while (pmp->inode_tid == 0) {
1561 		hammer2_xop_ipcluster_t *xop;
1562 		hammer2_inode_meta_t *meta;
1563 
1564 		xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING);
1565 		hammer2_xop_start(&xop->head, hammer2_xop_ipcluster);
1566 		error = hammer2_xop_collect(&xop->head, 0);
1567 
1568 		if (error == 0) {
1569 			meta = &xop->head.cluster.focus->data->ipdata.meta;
1570 			pmp->iroot->meta = *meta;
1571 			pmp->inode_tid = meta->pfs_inum + 1;
1572 			if (pmp->inode_tid < HAMMER2_INODE_START)
1573 				pmp->inode_tid = HAMMER2_INODE_START;
1574 			pmp->modify_tid =
1575 				xop->head.cluster.focus->bref.modify_tid + 1;
1576 			kprintf("PFS: Starting inode %jd\n",
1577 				(intmax_t)pmp->inode_tid);
1578 			kprintf("PMP focus good set nextino=%ld mod=%016jx\n",
1579 				pmp->inode_tid, pmp->modify_tid);
1580 			wakeup(&pmp->iroot);
1581 
1582 			hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1583 
1584 			/*
1585 			 * Prime the mount info.
1586 			 */
1587 			hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL);
1588 
1589 			/*
1590 			 * With the cluster operational, check for and
1591 			 * install ihidden if needed.  The install_hidden
1592 			 * code needs to get a transaction so we must unlock
1593 			 * iroot around it.
1594 			 *
1595 			 * This is only applicable PFS mounts, there is no
1596 			 * hidden directory in the spmp.
1597 			 */
1598 			hammer2_inode_unlock(pmp->iroot);
1599 			hammer2_inode_install_hidden(pmp);
1600 			hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1601 
1602 			break;
1603 		}
1604 
1605 		/*
1606 		 * Loop, try again
1607 		 */
1608 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
1609 		hammer2_inode_unlock(pmp->iroot);
1610 		error = tsleep(&pmp->iroot, PCATCH, "h2root", hz);
1611 		hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED);
1612 		if (error == EINTR)
1613 			break;
1614 	}
1615 
1616 	if (error) {
1617 		hammer2_inode_unlock(pmp->iroot);
1618 		*vpp = NULL;
1619 	} else {
1620 		vp = hammer2_igetv(pmp->iroot, &error);
1621 		hammer2_inode_unlock(pmp->iroot);
1622 		*vpp = vp;
1623 	}
1624 
1625 	return (error);
1626 }
1627 
1628 /*
1629  * Filesystem status
1630  *
1631  * XXX incorporate ipdata->meta.inode_quota and data_quota
1632  */
1633 static
1634 int
1635 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred)
1636 {
1637 	hammer2_pfs_t *pmp;
1638 	hammer2_dev_t *hmp;
1639 	hammer2_blockref_t bref;
1640 	int i;
1641 
1642 	/*
1643 	 * NOTE: iroot might not have validated the cluster yet.
1644 	 */
1645 	pmp = MPTOPMP(mp);
1646 
1647 	mp->mnt_stat.f_files = 0;
1648 	mp->mnt_stat.f_ffree = 0;
1649 	mp->mnt_stat.f_blocks = 0;
1650 	mp->mnt_stat.f_bfree = 0;
1651 	mp->mnt_stat.f_bavail = 0;
1652 
1653 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1654 		hmp = pmp->pfs_hmps[i];
1655 		if (hmp == NULL)
1656 			continue;
1657 		if (pmp->iroot->cluster.array[i].chain)
1658 			bref = pmp->iroot->cluster.array[i].chain->bref;
1659 		else
1660 			bzero(&bref, sizeof(bref));
1661 
1662 		mp->mnt_stat.f_files = bref.inode_count;
1663 		mp->mnt_stat.f_ffree = 0;
1664 		mp->mnt_stat.f_blocks = (bref.data_count +
1665 					 hmp->voldata.allocator_free) /
1666 					mp->mnt_vstat.f_bsize;
1667 		mp->mnt_stat.f_bfree =  hmp->voldata.allocator_free /
1668 					mp->mnt_vstat.f_bsize;
1669 		mp->mnt_stat.f_bavail = mp->mnt_stat.f_bfree;
1670 
1671 		*sbp = mp->mnt_stat;
1672 	}
1673 	return (0);
1674 }
1675 
1676 static
1677 int
1678 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred)
1679 {
1680 	hammer2_pfs_t *pmp;
1681 	hammer2_dev_t *hmp;
1682 	hammer2_blockref_t bref;
1683 	int i;
1684 
1685 	/*
1686 	 * NOTE: iroot might not have validated the cluster yet.
1687 	 */
1688 	pmp = MPTOPMP(mp);
1689 
1690 	mp->mnt_vstat.f_bsize = 0;
1691 	mp->mnt_vstat.f_files = 0;
1692 	mp->mnt_vstat.f_ffree = 0;
1693 	mp->mnt_vstat.f_blocks = 0;
1694 	mp->mnt_vstat.f_bfree = 0;
1695 	mp->mnt_vstat.f_bavail = 0;
1696 
1697 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
1698 		hmp = pmp->pfs_hmps[i];
1699 		if (hmp == NULL)
1700 			continue;
1701 		if (pmp->iroot->cluster.array[i].chain)
1702 			bref = pmp->iroot->cluster.array[i].chain->bref;
1703 		else
1704 			bzero(&bref, sizeof(bref));
1705 
1706 		mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE;
1707 		mp->mnt_vstat.f_files = bref.inode_count;
1708 		mp->mnt_vstat.f_ffree = 0;
1709 		mp->mnt_vstat.f_blocks = (bref.data_count +
1710 					 hmp->voldata.allocator_free) /
1711 					mp->mnt_vstat.f_bsize;
1712 		mp->mnt_vstat.f_bfree = hmp->voldata.allocator_free /
1713 					mp->mnt_vstat.f_bsize;
1714 		mp->mnt_vstat.f_bavail = mp->mnt_vstat.f_bfree;
1715 
1716 		*sbp = mp->mnt_vstat;
1717 	}
1718 	return (0);
1719 }
1720 
1721 /*
1722  * Mount-time recovery (RW mounts)
1723  *
1724  * Updates to the free block table are allowed to lag flushes by one
1725  * transaction.  In case of a crash, then on a fresh mount we must do an
1726  * incremental scan of the last committed transaction id and make sure that
1727  * all related blocks have been marked allocated.
1728  *
1729  * The super-root topology and each PFS has its own transaction id domain,
1730  * so we must track PFS boundary transitions.
1731  */
1732 struct hammer2_recovery_elm {
1733 	TAILQ_ENTRY(hammer2_recovery_elm) entry;
1734 	hammer2_chain_t *chain;
1735 	hammer2_tid_t sync_tid;
1736 };
1737 
1738 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm);
1739 
1740 struct hammer2_recovery_info {
1741 	struct hammer2_recovery_list list;
1742 	hammer2_tid_t	mtid;
1743 	int	depth;
1744 };
1745 
1746 static int hammer2_recovery_scan(hammer2_dev_t *hmp,
1747 			hammer2_chain_t *parent,
1748 			struct hammer2_recovery_info *info,
1749 			hammer2_tid_t sync_tid);
1750 
1751 #define HAMMER2_RECOVERY_MAXDEPTH	10
1752 
1753 static
1754 int
1755 hammer2_recovery(hammer2_dev_t *hmp)
1756 {
1757 	struct hammer2_recovery_info info;
1758 	struct hammer2_recovery_elm *elm;
1759 	hammer2_chain_t *parent;
1760 	hammer2_tid_t sync_tid;
1761 	hammer2_tid_t mirror_tid;
1762 	int error;
1763 	int cumulative_error = 0;
1764 
1765 	hammer2_trans_init(hmp->spmp, 0);
1766 
1767 	sync_tid = hmp->voldata.freemap_tid;
1768 	mirror_tid = hmp->voldata.mirror_tid;
1769 
1770 	kprintf("hammer2 mount \"%s\": ", hmp->devrepname);
1771 	if (sync_tid >= mirror_tid) {
1772 		kprintf(" no recovery needed\n");
1773 	} else {
1774 		kprintf(" freemap recovery %016jx-%016jx\n",
1775 			sync_tid + 1, mirror_tid);
1776 	}
1777 
1778 	TAILQ_INIT(&info.list);
1779 	info.depth = 0;
1780 	parent = hammer2_chain_lookup_init(&hmp->vchain, 0);
1781 	cumulative_error = hammer2_recovery_scan(hmp, parent, &info, sync_tid);
1782 	hammer2_chain_lookup_done(parent);
1783 
1784 	while ((elm = TAILQ_FIRST(&info.list)) != NULL) {
1785 		TAILQ_REMOVE(&info.list, elm, entry);
1786 		parent = elm->chain;
1787 		sync_tid = elm->sync_tid;
1788 		kfree(elm, M_HAMMER2);
1789 
1790 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1791 		error = hammer2_recovery_scan(hmp, parent, &info,
1792 					      hmp->voldata.freemap_tid);
1793 		hammer2_chain_unlock(parent);
1794 		hammer2_chain_drop(parent);	/* drop elm->chain ref */
1795 		if (error)
1796 			cumulative_error = error;
1797 	}
1798 	hammer2_trans_done(hmp->spmp);
1799 
1800 	return cumulative_error;
1801 }
1802 
1803 static
1804 int
1805 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent,
1806 		      struct hammer2_recovery_info *info,
1807 		      hammer2_tid_t sync_tid)
1808 {
1809 	const hammer2_inode_data_t *ripdata;
1810 	hammer2_chain_t *chain;
1811 	hammer2_blockref_t bref;
1812 	int cache_index;
1813 	int cumulative_error = 0;
1814 	int error;
1815 	int first;
1816 
1817 	/*
1818 	 * Adjust freemap to ensure that the block(s) are marked allocated.
1819 	 */
1820 	if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) {
1821 		hammer2_freemap_adjust(hmp, &parent->bref,
1822 				       HAMMER2_FREEMAP_DORECOVER);
1823 	}
1824 
1825 	/*
1826 	 * Check type for recursive scan
1827 	 */
1828 	switch(parent->bref.type) {
1829 	case HAMMER2_BREF_TYPE_VOLUME:
1830 		/* data already instantiated */
1831 		break;
1832 	case HAMMER2_BREF_TYPE_INODE:
1833 		/*
1834 		 * Must instantiate data for DIRECTDATA test and also
1835 		 * for recursion.
1836 		 */
1837 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1838 		ripdata = &hammer2_chain_rdata(parent)->ipdata;
1839 		if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) {
1840 			/* not applicable to recovery scan */
1841 			hammer2_chain_unlock(parent);
1842 			return 0;
1843 		}
1844 		hammer2_chain_unlock(parent);
1845 		break;
1846 	case HAMMER2_BREF_TYPE_INDIRECT:
1847 		/*
1848 		 * Must instantiate data for recursion
1849 		 */
1850 		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
1851 		hammer2_chain_unlock(parent);
1852 		break;
1853 	case HAMMER2_BREF_TYPE_DATA:
1854 	case HAMMER2_BREF_TYPE_FREEMAP:
1855 	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1856 	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1857 		/* not applicable to recovery scan */
1858 		return 0;
1859 		break;
1860 	default:
1861 		return EDOM;
1862 	}
1863 
1864 	/*
1865 	 * Defer operation if depth limit reached or if we are crossing a
1866 	 * PFS boundary.
1867 	 */
1868 	if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) {
1869 		struct hammer2_recovery_elm *elm;
1870 
1871 		elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK);
1872 		elm->chain = parent;
1873 		elm->sync_tid = sync_tid;
1874 		hammer2_chain_ref(parent);
1875 		TAILQ_INSERT_TAIL(&info->list, elm, entry);
1876 		/* unlocked by caller */
1877 
1878 		return(0);
1879 	}
1880 
1881 
1882 	/*
1883 	 * Recursive scan of the last flushed transaction only.  We are
1884 	 * doing this without pmp assignments so don't leave the chains
1885 	 * hanging around after we are done with them.
1886 	 */
1887 	cache_index = 0;
1888 	chain = NULL;
1889 	first = 1;
1890 
1891 	while (hammer2_chain_scan(parent, &chain, &bref,
1892 				  &first, &cache_index,
1893 				  HAMMER2_LOOKUP_NODATA) != NULL) {
1894 		/*
1895 		 * If this is a leaf
1896 		 */
1897 		if (chain == NULL) {
1898 			if (bref.mirror_tid > sync_tid) {
1899 				hammer2_freemap_adjust(hmp, &bref,
1900 						     HAMMER2_FREEMAP_DORECOVER);
1901 			}
1902 			continue;
1903 		}
1904 
1905 		/*
1906 		 * This may or may not be a recursive node.
1907 		 */
1908 		atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
1909 		if (bref.mirror_tid > sync_tid) {
1910 			++info->depth;
1911 			error = hammer2_recovery_scan(hmp, chain,
1912 						      info, sync_tid);
1913 			--info->depth;
1914 			if (error)
1915 				cumulative_error = error;
1916 		}
1917 
1918 		/*
1919 		 * Flush the recovery at the PFS boundary to stage it for
1920 		 * the final flush of the super-root topology.
1921 		 */
1922 		if ((bref.flags & HAMMER2_BREF_FLAG_PFSROOT) &&
1923 		    (chain->flags & HAMMER2_CHAIN_ONFLUSH)) {
1924 			hammer2_flush(chain, HAMMER2_FLUSH_TOP);
1925 		}
1926 	}
1927 
1928 	return cumulative_error;
1929 }
1930 
1931 /*
1932  * Sync a mount point; this is called on a per-mount basis from the
1933  * filesystem syncer process periodically and whenever a user issues
1934  * a sync.
1935  */
1936 int
1937 hammer2_vfs_sync(struct mount *mp, int waitfor)
1938 {
1939 	hammer2_xop_flush_t *xop;
1940 	struct hammer2_sync_info info;
1941 	hammer2_inode_t *iroot;
1942 	hammer2_pfs_t *pmp;
1943 	int flags;
1944 	int error;
1945 
1946 	pmp = MPTOPMP(mp);
1947 	iroot = pmp->iroot;
1948 	KKASSERT(iroot);
1949 	KKASSERT(iroot->pmp == pmp);
1950 
1951 	/*
1952 	 * We can't acquire locks on existing vnodes while in a transaction
1953 	 * without risking a deadlock.  This assumes that vfsync() can be
1954 	 * called without the vnode locked (which it can in DragonFly).
1955 	 * Otherwise we'd have to implement a multi-pass or flag the lock
1956 	 * failures and retry.
1957 	 *
1958 	 * The reclamation code interlocks with the sync list's token
1959 	 * (by removing the vnode from the scan list) before unlocking
1960 	 * the inode, giving us time to ref the inode.
1961 	 */
1962 	/*flags = VMSC_GETVP;*/
1963 	flags = 0;
1964 	if (waitfor & MNT_LAZY)
1965 		flags |= VMSC_ONEPASS;
1966 
1967 #if 0
1968 	/*
1969 	 * Preflush the vnodes using a normal transaction before interlocking
1970 	 * with a flush transaction.
1971 	 */
1972 	hammer2_trans_init(pmp, 0);
1973 	info.error = 0;
1974 	info.waitfor = MNT_NOWAIT;
1975 	vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
1976 	hammer2_trans_done(pmp);
1977 #endif
1978 
1979 	/*
1980 	 * Start our flush transaction.  This does not return until all
1981 	 * concurrent transactions have completed and will prevent any
1982 	 * new transactions from running concurrently, except for the
1983 	 * buffer cache transactions.
1984 	 *
1985 	 * For efficiency do an async pass before making sure with a
1986 	 * synchronous pass on all related buffer cache buffers.  It
1987 	 * should theoretically not be possible for any new file buffers
1988 	 * to be instantiated during this sequence.
1989 	 */
1990 	hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH |
1991 			        HAMMER2_TRANS_PREFLUSH);
1992 	hammer2_inode_run_sideq(pmp);
1993 
1994 	info.error = 0;
1995 	info.waitfor = MNT_NOWAIT;
1996 	vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info);
1997 	info.waitfor = MNT_WAIT;
1998 	vsyncscan(mp, flags, hammer2_sync_scan2, &info);
1999 
2000 	/*
2001 	 * Clear PREFLUSH.  This prevents (or asserts on) any new logical
2002 	 * buffer cache flushes which occur during the flush.  Device buffers
2003 	 * are not affected.
2004 	 */
2005 	hammer2_bioq_sync(pmp);
2006 	hammer2_trans_clear_preflush(pmp);
2007 
2008 	/*
2009 	 * Use the XOP interface to concurrently flush all nodes to
2010 	 * synchronize the PFSROOT subtopology to the media.  A standard
2011 	 * end-of-scan ENOENT error indicates cluster sufficiency.
2012 	 *
2013 	 * Note that this flush will not be visible on crash recovery until
2014 	 * we flush the super-root topology in the next loop.
2015 	 *
2016 	 * XXX For now wait for all flushes to complete.
2017 	 */
2018 	if (iroot) {
2019 		xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING);
2020 		hammer2_xop_start(&xop->head, hammer2_inode_xop_flush);
2021 		error = hammer2_xop_collect(&xop->head,
2022 					    HAMMER2_XOP_COLLECT_WAITALL);
2023 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
2024 		if (error == ENOENT)
2025 			error = 0;
2026 	} else {
2027 		error = 0;
2028 	}
2029 	hammer2_trans_done(pmp);
2030 
2031 	return (error);
2032 }
2033 
2034 /*
2035  * Sync passes.
2036  *
2037  * Note that we ignore the tranasction mtid we got above.  Instead,
2038  * each vfsync below will ultimately get its own via TRANS_BUFCACHE
2039  * transactions.
2040  */
2041 static int
2042 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
2043 {
2044 	struct hammer2_sync_info *info = data;
2045 	hammer2_inode_t *ip;
2046 	int error;
2047 
2048 	/*
2049 	 * Degenerate cases.  Note that ip == NULL typically means the
2050 	 * syncer vnode itself and we don't want to vclrisdirty() in that
2051 	 * situation.
2052 	 */
2053 	ip = VTOI(vp);
2054 	if (ip == NULL) {
2055 		return(0);
2056 	}
2057 	if (vp->v_type == VNON || vp->v_type == VBAD) {
2058 		vclrisdirty(vp);
2059 		return(0);
2060 	}
2061 
2062 	/*
2063 	 * VOP_FSYNC will start a new transaction so replicate some code
2064 	 * here to do it inline (see hammer2_vop_fsync()).
2065 	 *
2066 	 * WARNING: The vfsync interacts with the buffer cache and might
2067 	 *          block, we can't hold the inode lock at that time.
2068 	 *	    However, we MUST ref ip before blocking to ensure that
2069 	 *	    it isn't ripped out from under us (since we do not
2070 	 *	    hold a lock on the vnode).
2071 	 */
2072 	hammer2_inode_ref(ip);
2073 	if ((ip->flags & HAMMER2_INODE_MODIFIED) ||
2074 	    !RB_EMPTY(&vp->v_rbdirty_tree)) {
2075 		vfsync(vp, info->waitfor, 1, NULL, NULL);
2076 		if (ip->flags & (HAMMER2_INODE_RESIZED |
2077 				 HAMMER2_INODE_MODIFIED)) {
2078 			hammer2_inode_lock(ip, 0);
2079 			hammer2_inode_chain_sync(ip);
2080 			hammer2_inode_unlock(ip);
2081 		}
2082 	}
2083 	if ((ip->flags & HAMMER2_INODE_MODIFIED) == 0 &&
2084 	    RB_EMPTY(&vp->v_rbdirty_tree)) {
2085 		vclrisdirty(vp);
2086 	}
2087 
2088 	hammer2_inode_drop(ip);
2089 #if 1
2090 	error = 0;
2091 	if (error)
2092 		info->error = error;
2093 #endif
2094 	return(0);
2095 }
2096 
2097 static
2098 int
2099 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp)
2100 {
2101 	return (0);
2102 }
2103 
2104 static
2105 int
2106 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp,
2107 	       struct fid *fhp, struct vnode **vpp)
2108 {
2109 	return (0);
2110 }
2111 
2112 static
2113 int
2114 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam,
2115 		 int *exflagsp, struct ucred **credanonp)
2116 {
2117 	return (0);
2118 }
2119 
2120 /*
2121  * Support code for hammer2_vfs_mount().  Read, verify, and install the volume
2122  * header into the HMP
2123  *
2124  * XXX read four volhdrs and use the one with the highest TID whos CRC
2125  *     matches.
2126  *
2127  * XXX check iCRCs.
2128  *
2129  * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to
2130  *     nonexistant locations.
2131  *
2132  * XXX Record selected volhdr and ring updates to each of 4 volhdrs
2133  */
2134 static
2135 int
2136 hammer2_install_volume_header(hammer2_dev_t *hmp)
2137 {
2138 	hammer2_volume_data_t *vd;
2139 	struct buf *bp;
2140 	hammer2_crc32_t crc0, crc, bcrc0, bcrc;
2141 	int error_reported;
2142 	int error;
2143 	int valid;
2144 	int i;
2145 
2146 	error_reported = 0;
2147 	error = 0;
2148 	valid = 0;
2149 	bp = NULL;
2150 
2151 	/*
2152 	 * There are up to 4 copies of the volume header (syncs iterate
2153 	 * between them so there is no single master).  We don't trust the
2154 	 * volu_size field so we don't know precisely how large the filesystem
2155 	 * is, so depend on the OS to return an error if we go beyond the
2156 	 * block device's EOF.
2157 	 */
2158 	for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) {
2159 		error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64,
2160 			      HAMMER2_VOLUME_BYTES, &bp);
2161 		if (error) {
2162 			brelse(bp);
2163 			bp = NULL;
2164 			continue;
2165 		}
2166 
2167 		vd = (struct hammer2_volume_data *) bp->b_data;
2168 		if ((vd->magic != HAMMER2_VOLUME_ID_HBO) &&
2169 		    (vd->magic != HAMMER2_VOLUME_ID_ABO)) {
2170 			brelse(bp);
2171 			bp = NULL;
2172 			continue;
2173 		}
2174 
2175 		if (vd->magic == HAMMER2_VOLUME_ID_ABO) {
2176 			/* XXX: Reversed-endianness filesystem */
2177 			kprintf("hammer2: reverse-endian filesystem detected");
2178 			brelse(bp);
2179 			bp = NULL;
2180 			continue;
2181 		}
2182 
2183 		crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0];
2184 		crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF,
2185 				      HAMMER2_VOLUME_ICRC0_SIZE);
2186 		bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1];
2187 		bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF,
2188 				       HAMMER2_VOLUME_ICRC1_SIZE);
2189 		if ((crc0 != crc) || (bcrc0 != bcrc)) {
2190 			kprintf("hammer2 volume header crc "
2191 				"mismatch copy #%d %08x/%08x\n",
2192 				i, crc0, crc);
2193 			error_reported = 1;
2194 			brelse(bp);
2195 			bp = NULL;
2196 			continue;
2197 		}
2198 		if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) {
2199 			valid = 1;
2200 			hmp->voldata = *vd;
2201 			hmp->volhdrno = i;
2202 		}
2203 		brelse(bp);
2204 		bp = NULL;
2205 	}
2206 	if (valid) {
2207 		hmp->volsync = hmp->voldata;
2208 		error = 0;
2209 		if (error_reported || bootverbose || 1) { /* 1/DEBUG */
2210 			kprintf("hammer2: using volume header #%d\n",
2211 				hmp->volhdrno);
2212 		}
2213 	} else {
2214 		error = EINVAL;
2215 		kprintf("hammer2: no valid volume headers found!\n");
2216 	}
2217 	return (error);
2218 }
2219 
2220 /*
2221  * This handles hysteresis on regular file flushes.  Because the BIOs are
2222  * routed to a thread it is possible for an excessive number to build up
2223  * and cause long front-end stalls long before the runningbuffspace limit
2224  * is hit, so we implement hammer2_flush_pipe to control the
2225  * hysteresis.
2226  *
2227  * This is a particular problem when compression is used.
2228  */
2229 void
2230 hammer2_lwinprog_ref(hammer2_pfs_t *pmp)
2231 {
2232 	atomic_add_int(&pmp->count_lwinprog, 1);
2233 }
2234 
2235 void
2236 hammer2_lwinprog_drop(hammer2_pfs_t *pmp)
2237 {
2238 	int lwinprog;
2239 
2240 	lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1);
2241 	if ((lwinprog & HAMMER2_LWINPROG_WAITING) &&
2242 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) {
2243 		atomic_clear_int(&pmp->count_lwinprog,
2244 				 HAMMER2_LWINPROG_WAITING);
2245 		wakeup(&pmp->count_lwinprog);
2246 	}
2247 	if ((lwinprog & HAMMER2_LWINPROG_WAITING0) &&
2248 	    (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) {
2249 		atomic_clear_int(&pmp->count_lwinprog,
2250 				 HAMMER2_LWINPROG_WAITING0);
2251 		wakeup(&pmp->count_lwinprog);
2252 	}
2253 }
2254 
2255 void
2256 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe)
2257 {
2258 	int lwinprog;
2259 	int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING :
2260 				    HAMMER2_LWINPROG_WAITING0;
2261 
2262 	for (;;) {
2263 		lwinprog = pmp->count_lwinprog;
2264 		cpu_ccfence();
2265 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2266 			break;
2267 		tsleep_interlock(&pmp->count_lwinprog, 0);
2268 		atomic_set_int(&pmp->count_lwinprog, lwflag);
2269 		lwinprog = pmp->count_lwinprog;
2270 		if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe)
2271 			break;
2272 		tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz);
2273 	}
2274 }
2275 
2276 /*
2277  * Manage excessive memory resource use for chain and related
2278  * structures.
2279  */
2280 void
2281 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp)
2282 {
2283 	uint32_t waiting;
2284 	uint32_t count;
2285 	uint32_t limit;
2286 #if 0
2287 	static int zzticks;
2288 #endif
2289 
2290 	/*
2291 	 * Atomic check condition and wait.  Also do an early speedup of
2292 	 * the syncer to try to avoid hitting the wait.
2293 	 */
2294 	for (;;) {
2295 		waiting = pmp->inmem_dirty_chains;
2296 		cpu_ccfence();
2297 		count = waiting & HAMMER2_DIRTYCHAIN_MASK;
2298 
2299 		limit = pmp->mp->mnt_nvnodelistsize / 10;
2300 		if (limit < hammer2_limit_dirty_chains)
2301 			limit = hammer2_limit_dirty_chains;
2302 		if (limit < 1000)
2303 			limit = 1000;
2304 
2305 #if 0
2306 		if ((int)(ticks - zzticks) > hz) {
2307 			zzticks = ticks;
2308 			kprintf("count %ld %ld\n", count, limit);
2309 		}
2310 #endif
2311 
2312 		/*
2313 		 * Block if there are too many dirty chains present, wait
2314 		 * for the flush to clean some out.
2315 		 */
2316 		if (count > limit) {
2317 			tsleep_interlock(&pmp->inmem_dirty_chains, 0);
2318 			if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2319 					       waiting,
2320 				       waiting | HAMMER2_DIRTYCHAIN_WAITING)) {
2321 				speedup_syncer(pmp->mp);
2322 				tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED,
2323 				       "chnmem", hz);
2324 			}
2325 			continue;	/* loop on success or fail */
2326 		}
2327 
2328 		/*
2329 		 * Try to start an early flush before we are forced to block.
2330 		 */
2331 		if (count > limit * 7 / 10)
2332 			speedup_syncer(pmp->mp);
2333 		break;
2334 	}
2335 }
2336 
2337 void
2338 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp)
2339 {
2340 	if (pmp) {
2341 		atomic_add_int(&pmp->inmem_dirty_chains, 1);
2342 	}
2343 }
2344 
2345 void
2346 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp)
2347 {
2348 	uint32_t waiting;
2349 
2350 	if (pmp == NULL)
2351 		return;
2352 
2353 	for (;;) {
2354 		waiting = pmp->inmem_dirty_chains;
2355 		cpu_ccfence();
2356 		if (atomic_cmpset_int(&pmp->inmem_dirty_chains,
2357 				       waiting,
2358 				       (waiting - 1) &
2359 					~HAMMER2_DIRTYCHAIN_WAITING)) {
2360 			break;
2361 		}
2362 	}
2363 
2364 	if (waiting & HAMMER2_DIRTYCHAIN_WAITING)
2365 		wakeup(&pmp->inmem_dirty_chains);
2366 }
2367 
2368 /*
2369  * Debugging
2370  */
2371 void
2372 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx)
2373 {
2374 	hammer2_chain_t *scan;
2375 	hammer2_chain_t *parent;
2376 
2377 	--*countp;
2378 	if (*countp == 0) {
2379 		kprintf("%*.*s...\n", tab, tab, "");
2380 		return;
2381 	}
2382 	if (*countp < 0)
2383 		return;
2384 	kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n",
2385 		tab, tab, "", pfx,
2386 		chain, chain->bref.type,
2387 		chain->bref.key, chain->bref.keybits,
2388 		chain->bref.mirror_tid);
2389 
2390 	kprintf("%*.*s      [%08x] (%s) refs=%d",
2391 		tab, tab, "",
2392 		chain->flags,
2393 		((chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
2394 		chain->data) ?  (char *)chain->data->ipdata.filename : "?"),
2395 		chain->refs);
2396 
2397 	parent = chain->parent;
2398 	if (parent)
2399 		kprintf("\n%*.*s      p=%p [pflags %08x prefs %d",
2400 			tab, tab, "",
2401 			parent, parent->flags, parent->refs);
2402 	if (RB_EMPTY(&chain->core.rbtree)) {
2403 		kprintf("\n");
2404 	} else {
2405 		kprintf(" {\n");
2406 		RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree)
2407 			hammer2_dump_chain(scan, tab + 4, countp, 'a');
2408 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data)
2409 			kprintf("%*.*s}(%s)\n", tab, tab, "",
2410 				chain->data->ipdata.filename);
2411 		else
2412 			kprintf("%*.*s}\n", tab, tab, "");
2413 	}
2414 }
2415