1 /* deflate.c -- compress data using the deflation algorithm 2 * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler 3 * For conditions of distribution and use, see copyright notice in zlib.h 4 */ 5 6 /* 7 * ALGORITHM 8 * 9 * The "deflation" process depends on being able to identify portions 10 * of the input text which are identical to earlier input (within a 11 * sliding window trailing behind the input currently being processed). 12 * 13 * The most straightforward technique turns out to be the fastest for 14 * most input files: try all possible matches and select the longest. 15 * The key feature of this algorithm is that insertions into the string 16 * dictionary are very simple and thus fast, and deletions are avoided 17 * completely. Insertions are performed at each input character, whereas 18 * string matches are performed only when the previous match ends. So it 19 * is preferable to spend more time in matches to allow very fast string 20 * insertions and avoid deletions. The matching algorithm for small 21 * strings is inspired from that of Rabin & Karp. A brute force approach 22 * is used to find longer strings when a small match has been found. 23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze 24 * (by Leonid Broukhis). 25 * A previous version of this file used a more sophisticated algorithm 26 * (by Fiala and Greene) which is guaranteed to run in linear amortized 27 * time, but has a larger average cost, uses more memory and is patented. 28 * However the F&G algorithm may be faster for some highly redundant 29 * files if the parameter max_chain_length (described below) is too large. 30 * 31 * ACKNOWLEDGEMENTS 32 * 33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and 34 * I found it in 'freeze' written by Leonid Broukhis. 35 * Thanks to many people for bug reports and testing. 36 * 37 * REFERENCES 38 * 39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". 40 * Available in http://tools.ietf.org/html/rfc1951 41 * 42 * A description of the Rabin and Karp algorithm is given in the book 43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. 44 * 45 * Fiala,E.R., and Greene,D.H. 46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 47 * 48 */ 49 50 /* @(#) $Id$ */ 51 52 #include "hammer2_zlib_deflate.h" 53 #include "../hammer2.h" 54 #include <sys/malloc.h> //for malloc macros 55 56 MALLOC_DECLARE(C_ZLIB_BUFFER_DEFLATE); 57 MALLOC_DEFINE(C_ZLIB_BUFFER_DEFLATE, "compzlibbufferdeflate", 58 "A private buffer used by zlib library for deflate function."); 59 60 const char deflate_copyright[] = 61 " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler "; 62 /* 63 If you use the zlib library in a product, an acknowledgment is welcome 64 in the documentation of your product. If for some reason you cannot 65 include such an acknowledgment, I would appreciate that you keep this 66 copyright string in the executable of your product. 67 */ 68 69 /* =========================================================================== 70 * Function prototypes. 71 */ 72 typedef enum { 73 need_more, /* block not completed, need more input or more output */ 74 block_done, /* block flush performed */ 75 finish_started, /* finish started, need only more output at next deflate */ 76 finish_done /* finish done, accept no more input or output */ 77 } block_state; 78 79 typedef block_state (*compress_func)(deflate_state *s, int flush); 80 /* Compression function. Returns the block state after the call. */ 81 82 local void fill_window (deflate_state *s); 83 #ifndef FASTEST 84 local block_state deflate_slow(deflate_state *s, int flush); 85 #endif 86 local block_state deflate_rle(deflate_state *s, int flush); 87 local block_state deflate_huff(deflate_state *s, int flush); 88 local void lm_init(deflate_state *s); 89 local void putShortMSB(deflate_state *s, uInt b); 90 local void flush_pending(z_streamp strm); 91 local int read_buf(z_streamp strm, Bytef *buf, unsigned size); 92 #ifdef ASMV 93 void match_init(void); /* asm code initialization */ 94 uInt longest_match(deflate_state *s, IPos cur_match); 95 #else 96 local uInt longest_match(deflate_state *s, IPos cur_match); 97 #endif 98 99 #ifdef DEBUG 100 local void check_match(deflate_state *s, IPos start, IPos match, 101 int length); 102 #endif 103 104 int deflateInit2_(z_streamp strm, int level, int method, int windowBits, 105 int memLevel, int strategy, const char *version, 106 int stream_size); 107 int deflateReset (z_streamp strm); 108 int deflateResetKeep (z_streamp strm); 109 110 /* =========================================================================== 111 * Local data 112 */ 113 114 #define NIL 0 115 /* Tail of hash chains */ 116 117 #ifndef TOO_FAR 118 # define TOO_FAR 4096 119 #endif 120 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ 121 122 /* Values for max_lazy_match, good_match and max_chain_length, depending on 123 * the desired pack level (0..9). The values given below have been tuned to 124 * exclude worst case performance for pathological files. Better values may be 125 * found for specific files. 126 */ 127 typedef struct config_s { 128 ush good_length; /* reduce lazy search above this match length */ 129 ush max_lazy; /* do not perform lazy search above this match length */ 130 ush nice_length; /* quit search above this match length */ 131 ush max_chain; 132 compress_func func; 133 } config; 134 135 local const config configuration_table[10] = { 136 /* good lazy nice chain */ 137 /* 0 */ {0, 0, 0, 0, deflate_slow/*deflate_stored*/}, /* store only */ 138 /* 1 */ {4, 4, 8, 4, deflate_slow/*deflate_fast*/}, /* max speed, no lazy matches */ 139 /* 2 */ {4, 5, 16, 8, deflate_slow/*deflate_fast*/}, 140 /* 3 */ {4, 6, 32, 32, deflate_slow/*deflate_fast*/}, 141 142 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ 143 /* 5 */ {8, 16, 32, 32, deflate_slow}, 144 /* 6 */ {8, 16, 128, 128, deflate_slow}, 145 /* 7 */ {8, 32, 128, 256, deflate_slow}, 146 /* 8 */ {32, 128, 258, 1024, deflate_slow}, 147 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ 148 149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different 151 * meaning. 152 */ 153 154 #define EQUAL 0 155 /* result of memcmp for equal strings */ 156 157 #ifndef NO_DUMMY_DECL 158 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ 159 #endif 160 161 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ 162 #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0)) 163 164 /* =========================================================================== 165 * Update a hash value with the given input byte 166 * IN assertion: all calls to to UPDATE_HASH are made with consecutive 167 * input characters, so that a running hash key can be computed from the 168 * previous key instead of complete recalculation each time. 169 */ 170 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) 171 172 173 /* =========================================================================== 174 * Insert string str in the dictionary and set match_head to the previous head 175 * of the hash chain (the most recent string with same hash key). Return 176 * the previous length of the hash chain. 177 * If this file is compiled with -DFASTEST, the compression level is forced 178 * to 1, and no hash chains are maintained. 179 * IN assertion: all calls to to INSERT_STRING are made with consecutive 180 * input characters and the first MIN_MATCH bytes of str are valid 181 * (except for the last MIN_MATCH-1 bytes of the input file). 182 */ 183 #define INSERT_STRING(s, str, match_head) \ 184 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ 185 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ 186 s->head[s->ins_h] = (Pos)(str)) 187 188 /* =========================================================================== 189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). 190 * prev[] will be initialized on the fly. 191 */ 192 #define CLEAR_HASH(s) \ 193 s->head[s->hash_size-1] = NIL; \ 194 zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); 195 196 /* ========================================================================= */ 197 int 198 deflateInit_(z_streamp strm, int level, const char *version, int stream_size) 199 { 200 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 201 Z_DEFAULT_STRATEGY, version, stream_size); 202 /* To do: ignore strm->next_in if we use it as window */ 203 } 204 205 /* ========================================================================= */ 206 int 207 deflateInit2_(z_streamp strm, int level, int method, int windowBits, 208 int memLevel, int strategy, const char *version, int stream_size) 209 { 210 deflate_state *s; 211 int wrap = 1; 212 static const char my_version[] = ZLIB_VERSION; 213 214 ushf *overlay; 215 /* We overlay pending_buf and d_buf+l_buf. This works since the average 216 * output size for (length,distance) codes is <= 24 bits. 217 */ 218 219 if (version == Z_NULL || version[0] != my_version[0] || 220 stream_size != sizeof(z_stream)) { 221 return Z_VERSION_ERROR; 222 } 223 if (strm == Z_NULL) return Z_STREAM_ERROR; 224 225 strm->msg = Z_NULL; 226 227 if (level == Z_DEFAULT_COMPRESSION) level = 6; 228 229 if (windowBits < 0) { /* suppress zlib wrapper */ 230 wrap = 0; 231 windowBits = -windowBits; 232 } 233 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || 234 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || 235 strategy < 0 || strategy > Z_FIXED) { 236 return Z_STREAM_ERROR; 237 } 238 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ 239 s = (deflate_state *) kmalloc(sizeof(*s), C_ZLIB_BUFFER_DEFLATE, M_INTWAIT); 240 if (s == Z_NULL) return Z_MEM_ERROR; 241 strm->state = (struct internal_state FAR *)s; 242 s->strm = strm; 243 244 s->wrap = wrap; 245 s->w_bits = windowBits; 246 s->w_size = 1 << s->w_bits; 247 s->w_mask = s->w_size - 1; 248 249 s->hash_bits = memLevel + 7; 250 s->hash_size = 1 << s->hash_bits; 251 s->hash_mask = s->hash_size - 1; 252 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); 253 254 s->window = (Bytef *) kmalloc((s->w_size)*2*sizeof(Byte), C_ZLIB_BUFFER_DEFLATE, M_INTWAIT); 255 s->prev = (Posf *) kmalloc((s->w_size)*sizeof(Pos), C_ZLIB_BUFFER_DEFLATE, M_INTWAIT); 256 s->head = (Posf *) kmalloc((s->hash_size)*sizeof(Pos), C_ZLIB_BUFFER_DEFLATE, M_INTWAIT); 257 258 s->high_water = 0; /* nothing written to s->window yet */ 259 260 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ 261 262 overlay = (ushf *) kmalloc((s->lit_bufsize)*(sizeof(ush)+2), C_ZLIB_BUFFER_DEFLATE, M_INTWAIT); 263 s->pending_buf = (uchf *) overlay; 264 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); 265 266 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || 267 s->pending_buf == Z_NULL) { 268 s->status = FINISH_STATE; 269 strm->msg = ERR_MSG(Z_MEM_ERROR); 270 deflateEnd (strm); 271 return Z_MEM_ERROR; 272 } 273 s->d_buf = overlay + s->lit_bufsize/sizeof(ush); 274 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; 275 276 s->level = level; 277 s->strategy = strategy; 278 s->method = (Byte)method; 279 280 return deflateReset(strm); 281 } 282 283 /* ========================================================================= */ 284 int 285 deflateResetKeep (z_streamp strm) 286 { 287 deflate_state *s; 288 289 if (strm == Z_NULL || strm->state == Z_NULL) { 290 return Z_STREAM_ERROR; 291 } 292 293 strm->total_in = strm->total_out = 0; 294 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ 295 strm->data_type = Z_UNKNOWN; 296 297 s = (deflate_state *)strm->state; 298 s->pending = 0; 299 s->pending_out = s->pending_buf; 300 301 if (s->wrap < 0) { 302 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ 303 } 304 s->status = s->wrap ? INIT_STATE : BUSY_STATE; 305 strm->adler = adler32(0L, Z_NULL, 0); 306 s->last_flush = Z_NO_FLUSH; 307 308 _tr_init(s); 309 310 return Z_OK; 311 } 312 313 /* ========================================================================= */ 314 int 315 deflateReset (z_streamp strm) 316 { 317 int ret; 318 319 ret = deflateResetKeep(strm); 320 if (ret == Z_OK) 321 lm_init(strm->state); 322 return ret; 323 } 324 325 /* ========================================================================= 326 * Put a short in the pending buffer. The 16-bit value is put in MSB order. 327 * IN assertion: the stream state is correct and there is enough room in 328 * pending_buf. 329 */ 330 local 331 void 332 putShortMSB (deflate_state *s, uInt b) 333 { 334 put_byte(s, (Byte)(b >> 8)); 335 put_byte(s, (Byte)(b & 0xff)); 336 } 337 338 /* ========================================================================= 339 * Flush as much pending output as possible. All deflate() output goes 340 * through this function so some applications may wish to modify it 341 * to avoid allocating a large strm->next_out buffer and copying into it. 342 * (See also read_buf()). 343 */ 344 local 345 void 346 flush_pending(z_streamp strm) 347 { 348 unsigned len; 349 deflate_state *s = strm->state; 350 351 _tr_flush_bits(s); 352 len = s->pending; 353 if (len > strm->avail_out) len = strm->avail_out; 354 if (len == 0) return; 355 356 zmemcpy(strm->next_out, s->pending_out, len); 357 strm->next_out += len; 358 s->pending_out += len; 359 strm->total_out += len; 360 strm->avail_out -= len; 361 s->pending -= len; 362 if (s->pending == 0) { 363 s->pending_out = s->pending_buf; 364 } 365 } 366 367 /* ========================================================================= */ 368 int 369 deflate (z_streamp strm, int flush) 370 { 371 int old_flush; /* value of flush param for previous deflate call */ 372 deflate_state *s; 373 374 if (strm == Z_NULL || strm->state == Z_NULL || 375 flush > Z_BLOCK || flush < 0) { 376 return Z_STREAM_ERROR; 377 } 378 s = strm->state; 379 380 if (strm->next_out == Z_NULL || 381 (strm->next_in == Z_NULL && strm->avail_in != 0) || 382 (s->status == FINISH_STATE && flush != Z_FINISH)) { 383 ERR_RETURN(strm, Z_STREAM_ERROR); 384 } 385 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); 386 387 s->strm = strm; /* just in case */ 388 old_flush = s->last_flush; 389 s->last_flush = flush; 390 391 /* Write the header */ 392 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; 393 uInt level_flags; 394 395 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) 396 level_flags = 0; 397 else if (s->level < 6) 398 level_flags = 1; 399 else if (s->level == 6) 400 level_flags = 2; 401 else 402 level_flags = 3; 403 header |= (level_flags << 6); 404 if (s->strstart != 0) header |= PRESET_DICT; 405 header += 31 - (header % 31); 406 407 s->status = BUSY_STATE; 408 putShortMSB(s, header); 409 410 /* Save the adler32 of the preset dictionary: */ 411 if (s->strstart != 0) { 412 putShortMSB(s, (uInt)(strm->adler >> 16)); 413 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 414 } 415 strm->adler = adler32(0L, Z_NULL, 0); 416 417 /* Flush as much pending output as possible */ 418 if (s->pending != 0) { 419 flush_pending(strm); 420 if (strm->avail_out == 0) { 421 /* Since avail_out is 0, deflate will be called again with 422 * more output space, but possibly with both pending and 423 * avail_in equal to zero. There won't be anything to do, 424 * but this is not an error situation so make sure we 425 * return OK instead of BUF_ERROR at next call of deflate: 426 */ 427 s->last_flush = -1; 428 return Z_OK; 429 } 430 431 /* Make sure there is something to do and avoid duplicate consecutive 432 * flushes. For repeated and useless calls with Z_FINISH, we keep 433 * returning Z_STREAM_END instead of Z_BUF_ERROR. 434 */ 435 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && 436 flush != Z_FINISH) { 437 ERR_RETURN(strm, Z_BUF_ERROR); 438 } 439 440 /* User must not provide more input after the first FINISH: */ 441 if (s->status == FINISH_STATE && strm->avail_in != 0) { 442 ERR_RETURN(strm, Z_BUF_ERROR); 443 } 444 445 /* Start a new block or continue the current one. 446 */ 447 if (strm->avail_in != 0 || s->lookahead != 0 || 448 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { 449 block_state bstate; 450 451 bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : 452 (s->strategy == Z_RLE ? deflate_rle(s, flush) : 453 (*(configuration_table[s->level].func))(s, flush)); 454 455 if (bstate == finish_started || bstate == finish_done) { 456 s->status = FINISH_STATE; 457 } 458 if (bstate == need_more || bstate == finish_started) { 459 if (strm->avail_out == 0) { 460 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ 461 } 462 return Z_OK; 463 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call 464 * of deflate should use the same flush parameter to make sure 465 * that the flush is complete. So we don't have to output an 466 * empty block here, this will be done at next call. This also 467 * ensures that for a very small output buffer, we emit at most 468 * one empty block. 469 */ 470 } 471 if (bstate == block_done) { 472 if (flush == Z_PARTIAL_FLUSH) { 473 _tr_align(s); 474 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ 475 _tr_stored_block(s, (char*)0, 0L, 0); 476 /* For a full flush, this empty block will be recognized 477 * as a special marker by inflate_sync(). 478 */ 479 if (flush == Z_FULL_FLUSH) { 480 CLEAR_HASH(s); /* forget history */ 481 if (s->lookahead == 0) { 482 s->strstart = 0; 483 s->block_start = 0L; 484 s->insert = 0; 485 } 486 } 487 } 488 flush_pending(strm); 489 if (strm->avail_out == 0) { 490 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ 491 return Z_OK; 492 } 493 } 494 } 495 Assert(strm->avail_out > 0, "bug2"); 496 497 if (flush != Z_FINISH) return Z_OK; 498 if (s->wrap <= 0) return Z_STREAM_END; 499 500 /* Write the trailer */ 501 putShortMSB(s, (uInt)(strm->adler >> 16)); 502 putShortMSB(s, (uInt)(strm->adler & 0xffff)); 503 504 flush_pending(strm); 505 /* If avail_out is zero, the application will call deflate again 506 * to flush the rest. 507 */ 508 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ 509 return s->pending != 0 ? Z_OK : Z_STREAM_END; 510 } 511 512 /* ========================================================================= */ 513 int 514 deflateEnd (z_streamp strm) 515 { 516 int status; 517 518 if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; 519 520 status = strm->state->status; 521 if (status != INIT_STATE && 522 status != EXTRA_STATE && 523 status != NAME_STATE && 524 status != COMMENT_STATE && 525 status != HCRC_STATE && 526 status != BUSY_STATE && 527 status != FINISH_STATE) { 528 return Z_STREAM_ERROR; 529 } 530 531 /* Deallocate in reverse order of allocations: */ 532 kfree(strm->state->pending_buf, C_ZLIB_BUFFER_DEFLATE); 533 kfree(strm->state->head, C_ZLIB_BUFFER_DEFLATE); 534 kfree(strm->state->prev, C_ZLIB_BUFFER_DEFLATE); 535 kfree(strm->state->window, C_ZLIB_BUFFER_DEFLATE); 536 537 kfree(strm->state, C_ZLIB_BUFFER_DEFLATE); 538 strm->state = Z_NULL; 539 540 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; 541 } 542 543 /* =========================================================================== 544 * Read a new buffer from the current input stream, update the adler32 545 * and total number of bytes read. All deflate() input goes through 546 * this function so some applications may wish to modify it to avoid 547 * allocating a large strm->next_in buffer and copying from it. 548 * (See also flush_pending()). 549 */ 550 local 551 int 552 read_buf(z_streamp strm, Bytef *buf, unsigned size) 553 { 554 unsigned len = strm->avail_in; 555 556 if (len > size) len = size; 557 if (len == 0) return 0; 558 559 strm->avail_in -= len; 560 561 zmemcpy(buf, strm->next_in, len); 562 if (strm->state->wrap == 1) { 563 strm->adler = adler32(strm->adler, buf, len); 564 } 565 566 strm->next_in += len; 567 strm->total_in += len; 568 569 return (int)len; 570 } 571 572 /* =========================================================================== 573 * Initialize the "longest match" routines for a new zlib stream 574 */ 575 local 576 void 577 lm_init (deflate_state *s) 578 { 579 s->window_size = (ulg)2L*s->w_size; 580 581 CLEAR_HASH(s); 582 583 /* Set the default configuration parameters: 584 */ 585 s->max_lazy_match = configuration_table[s->level].max_lazy; 586 s->good_match = configuration_table[s->level].good_length; 587 s->nice_match = configuration_table[s->level].nice_length; 588 s->max_chain_length = configuration_table[s->level].max_chain; 589 590 s->strstart = 0; 591 s->block_start = 0L; 592 s->lookahead = 0; 593 s->insert = 0; 594 s->match_length = s->prev_length = MIN_MATCH-1; 595 s->match_available = 0; 596 s->ins_h = 0; 597 #ifndef FASTEST 598 #ifdef ASMV 599 match_init(); /* initialize the asm code */ 600 #endif 601 #endif 602 } 603 604 #ifndef FASTEST 605 /* =========================================================================== 606 * Set match_start to the longest match starting at the given string and 607 * return its length. Matches shorter or equal to prev_length are discarded, 608 * in which case the result is equal to prev_length and match_start is 609 * garbage. 610 * IN assertions: cur_match is the head of the hash chain for the current 611 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 612 * OUT assertion: the match length is not greater than s->lookahead. 613 */ 614 #ifndef ASMV 615 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or 616 * match.S. The code will be functionally equivalent. 617 */ 618 local 619 uInt 620 longest_match(deflate_state *s, IPos cur_match) /* cur_match = current match */ 621 { 622 unsigned chain_length = s->max_chain_length;/* max hash chain length */ 623 register Bytef *scan = s->window + s->strstart; /* current string */ 624 register Bytef *match; /* matched string */ 625 register int len; /* length of current match */ 626 int best_len = s->prev_length; /* best match length so far */ 627 int nice_match = s->nice_match; /* stop if match long enough */ 628 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? 629 s->strstart - (IPos)MAX_DIST(s) : NIL; 630 /* Stop when cur_match becomes <= limit. To simplify the code, 631 * we prevent matches with the string of window index 0. 632 */ 633 Posf *prev = s->prev; 634 uInt wmask = s->w_mask; 635 636 #ifdef UNALIGNED_OK 637 /* Compare two bytes at a time. Note: this is not always beneficial. 638 * Try with and without -DUNALIGNED_OK to check. 639 */ 640 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; 641 register ush scan_start = *(ushf*)scan; 642 register ush scan_end = *(ushf*)(scan+best_len-1); 643 #else 644 register Bytef *strend = s->window + s->strstart + MAX_MATCH; 645 register Byte scan_end1 = scan[best_len-1]; 646 register Byte scan_end = scan[best_len]; 647 #endif 648 649 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. 650 * It is easy to get rid of this optimization if necessary. 651 */ 652 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); 653 654 /* Do not waste too much time if we already have a good match: */ 655 if (s->prev_length >= s->good_match) { 656 chain_length >>= 2; 657 } 658 /* Do not look for matches beyond the end of the input. This is necessary 659 * to make deflate deterministic. 660 */ 661 if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; 662 663 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); 664 665 do { 666 Assert(cur_match < s->strstart, "no future"); 667 match = s->window + cur_match; 668 669 /* Skip to next match if the match length cannot increase 670 * or if the match length is less than 2. Note that the checks below 671 * for insufficient lookahead only occur occasionally for performance 672 * reasons. Therefore uninitialized memory will be accessed, and 673 * conditional jumps will be made that depend on those values. 674 * However the length of the match is limited to the lookahead, so 675 * the output of deflate is not affected by the uninitialized values. 676 */ 677 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) 678 /* This code assumes sizeof(unsigned short) == 2. Do not use 679 * UNALIGNED_OK if your compiler uses a different size. 680 */ 681 if (*(ushf*)(match+best_len-1) != scan_end || 682 *(ushf*)match != scan_start) continue; 683 684 /* It is not necessary to compare scan[2] and match[2] since they are 685 * always equal when the other bytes match, given that the hash keys 686 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at 687 * strstart+3, +5, ... up to strstart+257. We check for insufficient 688 * lookahead only every 4th comparison; the 128th check will be made 689 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is 690 * necessary to put more guard bytes at the end of the window, or 691 * to check more often for insufficient lookahead. 692 */ 693 Assert(scan[2] == match[2], "scan[2]?"); 694 scan++, match++; 695 do { 696 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && 697 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 698 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 699 *(ushf*)(scan+=2) == *(ushf*)(match+=2) && 700 scan < strend); 701 /* The funny "do {}" generates better code on most compilers */ 702 703 /* Here, scan <= window+strstart+257 */ 704 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 705 if (*scan == *match) scan++; 706 707 len = (MAX_MATCH - 1) - (int)(strend-scan); 708 scan = strend - (MAX_MATCH-1); 709 710 #else /* UNALIGNED_OK */ 711 712 if (match[best_len] != scan_end || 713 match[best_len-1] != scan_end1 || 714 *match != *scan || 715 *++match != scan[1]) continue; 716 717 /* The check at best_len-1 can be removed because it will be made 718 * again later. (This heuristic is not always a win.) 719 * It is not necessary to compare scan[2] and match[2] since they 720 * are always equal when the other bytes match, given that 721 * the hash keys are equal and that HASH_BITS >= 8. 722 */ 723 scan += 2, match++; 724 Assert(*scan == *match, "match[2]?"); 725 726 /* We check for insufficient lookahead only every 8th comparison; 727 * the 256th check will be made at strstart+258. 728 */ 729 do { 730 } while (*++scan == *++match && *++scan == *++match && 731 *++scan == *++match && *++scan == *++match && 732 *++scan == *++match && *++scan == *++match && 733 *++scan == *++match && *++scan == *++match && 734 scan < strend); 735 736 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); 737 738 len = MAX_MATCH - (int)(strend - scan); 739 scan = strend - MAX_MATCH; 740 741 #endif /* UNALIGNED_OK */ 742 743 if (len > best_len) { 744 s->match_start = cur_match; 745 best_len = len; 746 if (len >= nice_match) break; 747 #ifdef UNALIGNED_OK 748 scan_end = *(ushf*)(scan+best_len-1); 749 #else 750 scan_end1 = scan[best_len-1]; 751 scan_end = scan[best_len]; 752 #endif 753 } 754 } while ((cur_match = prev[cur_match & wmask]) > limit 755 && --chain_length != 0); 756 757 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; 758 return s->lookahead; 759 } 760 #endif /* ASMV */ 761 762 #endif /* FASTEST */ 763 764 #ifdef DEBUG 765 /* =========================================================================== 766 * Check that the match at match_start is indeed a match. 767 */ 768 local 769 void 770 check_match(deflate_state *s, IPos start, IPos match, int length) 771 { 772 /* check that the match is indeed a match */ 773 if (zmemcmp(s->window + match, 774 s->window + start, length) != EQUAL) { 775 fprintf(stderr, " start %u, match %u, length %d\n", 776 start, match, length); 777 do { 778 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); 779 } while (--length != 0); 780 z_error("invalid match"); 781 } 782 if (z_verbose > 1) { 783 fprintf(stderr,"\\[%d,%d]", start-match, length); 784 do { putc(s->window[start++], stderr); } while (--length != 0); 785 } 786 } 787 #else 788 # define check_match(s, start, match, length) 789 #endif /* DEBUG */ 790 791 /* =========================================================================== 792 * Fill the window when the lookahead becomes insufficient. 793 * Updates strstart and lookahead. 794 * 795 * IN assertion: lookahead < MIN_LOOKAHEAD 796 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD 797 * At least one byte has been read, or avail_in == 0; reads are 798 * performed for at least two bytes (required for the zip translate_eol 799 * option -- not supported here). 800 */ 801 local 802 void 803 fill_window(deflate_state *s) 804 { 805 register unsigned n, m; 806 register Posf *p; 807 unsigned more; /* Amount of free space at the end of the window. */ 808 uInt wsize = s->w_size; 809 810 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); 811 812 do { 813 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); 814 815 /* Deal with !@#$% 64K limit: */ 816 if (sizeof(int) <= 2) { 817 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { 818 more = wsize; 819 820 } else if (more == (unsigned)(-1)) { 821 /* Very unlikely, but possible on 16 bit machine if 822 * strstart == 0 && lookahead == 1 (input done a byte at time) 823 */ 824 more--; 825 } 826 } 827 828 /* If the window is almost full and there is insufficient lookahead, 829 * move the upper half to the lower one to make room in the upper half. 830 */ 831 if (s->strstart >= wsize+MAX_DIST(s)) { 832 833 zmemcpy(s->window, s->window+wsize, (unsigned)wsize); 834 s->match_start -= wsize; 835 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ 836 s->block_start -= (long) wsize; 837 838 /* Slide the hash table (could be avoided with 32 bit values 839 at the expense of memory usage). We slide even when level == 0 840 to keep the hash table consistent if we switch back to level > 0 841 later. (Using level 0 permanently is not an optimal usage of 842 zlib, so we don't care about this pathological case.) 843 */ 844 n = s->hash_size; 845 p = &s->head[n]; 846 do { 847 m = *--p; 848 *p = (Pos)(m >= wsize ? m-wsize : NIL); 849 } while (--n); 850 851 n = wsize; 852 #ifndef FASTEST 853 p = &s->prev[n]; 854 do { 855 m = *--p; 856 *p = (Pos)(m >= wsize ? m-wsize : NIL); 857 /* If n is not on any hash chain, prev[n] is garbage but 858 * its value will never be used. 859 */ 860 } while (--n); 861 #endif 862 more += wsize; 863 } 864 if (s->strm->avail_in == 0) break; 865 866 /* If there was no sliding: 867 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && 868 * more == window_size - lookahead - strstart 869 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) 870 * => more >= window_size - 2*WSIZE + 2 871 * In the BIG_MEM or MMAP case (not yet supported), 872 * window_size == input_size + MIN_LOOKAHEAD && 873 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. 874 * Otherwise, window_size == 2*WSIZE so more >= 2. 875 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. 876 */ 877 Assert(more >= 2, "more < 2"); 878 879 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); 880 s->lookahead += n; 881 882 /* Initialize the hash value now that we have some input: */ 883 if (s->lookahead + s->insert >= MIN_MATCH) { 884 uInt str = s->strstart - s->insert; 885 s->ins_h = s->window[str]; 886 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); 887 #if MIN_MATCH != 3 888 Call UPDATE_HASH() MIN_MATCH-3 more times 889 #endif 890 while (s->insert) { 891 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); 892 #ifndef FASTEST 893 s->prev[str & s->w_mask] = s->head[s->ins_h]; 894 #endif 895 s->head[s->ins_h] = (Pos)str; 896 str++; 897 s->insert--; 898 if (s->lookahead + s->insert < MIN_MATCH) 899 break; 900 } 901 } 902 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, 903 * but this is not important since only literal bytes will be emitted. 904 */ 905 906 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); 907 908 /* If the WIN_INIT bytes after the end of the current data have never been 909 * written, then zero those bytes in order to avoid memory check reports of 910 * the use of uninitialized (or uninitialised as Julian writes) bytes by 911 * the longest match routines. Update the high water mark for the next 912 * time through here. WIN_INIT is set to MAX_MATCH since the longest match 913 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. 914 */ 915 if (s->high_water < s->window_size) { 916 ulg curr = s->strstart + (ulg)(s->lookahead); 917 ulg init; 918 919 if (s->high_water < curr) { 920 /* Previous high water mark below current data -- zero WIN_INIT 921 * bytes or up to end of window, whichever is less. 922 */ 923 init = s->window_size - curr; 924 if (init > WIN_INIT) 925 init = WIN_INIT; 926 zmemzero(s->window + curr, (unsigned)init); 927 s->high_water = curr + init; 928 } 929 else if (s->high_water < (ulg)curr + WIN_INIT) { 930 /* High water mark at or above current data, but below current data 931 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up 932 * to end of window, whichever is less. 933 */ 934 init = (ulg)curr + WIN_INIT - s->high_water; 935 if (init > s->window_size - s->high_water) 936 init = s->window_size - s->high_water; 937 zmemzero(s->window + s->high_water, (unsigned)init); 938 s->high_water += init; 939 } 940 } 941 942 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, 943 "not enough room for search"); 944 } 945 946 /* =========================================================================== 947 * Flush the current block, with given end-of-file flag. 948 * IN assertion: strstart is set to the end of the current match. 949 */ 950 #define FLUSH_BLOCK_ONLY(s, last) { \ 951 _tr_flush_block(s, (s->block_start >= 0L ? \ 952 (charf *)&s->window[(unsigned)s->block_start] : \ 953 (charf *)Z_NULL), \ 954 (ulg)((long)s->strstart - s->block_start), \ 955 (last)); \ 956 s->block_start = s->strstart; \ 957 flush_pending(s->strm); \ 958 Tracev((stderr,"[FLUSH]")); \ 959 } 960 961 /* Same but force premature exit if necessary. */ 962 #define FLUSH_BLOCK(s, last) { \ 963 FLUSH_BLOCK_ONLY(s, last); \ 964 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ 965 } 966 967 #ifndef FASTEST 968 /* =========================================================================== 969 * Same as above, but achieves better compression. We use a lazy 970 * evaluation for matches: a match is finally adopted only if there is 971 * no better match at the next window position. 972 */ 973 local 974 block_state 975 deflate_slow(deflate_state *s, int flush) 976 { 977 IPos hash_head; /* head of hash chain */ 978 int bflush; /* set if current block must be flushed */ 979 980 /* Process the input block. */ 981 for (;;) { 982 /* Make sure that we always have enough lookahead, except 983 * at the end of the input file. We need MAX_MATCH bytes 984 * for the next match, plus MIN_MATCH bytes to insert the 985 * string following the next match. 986 */ 987 if (s->lookahead < MIN_LOOKAHEAD) { 988 fill_window(s); 989 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { 990 return need_more; 991 } 992 if (s->lookahead == 0) break; /* flush the current block */ 993 } 994 995 /* Insert the string window[strstart .. strstart+2] in the 996 * dictionary, and set hash_head to the head of the hash chain: 997 */ 998 hash_head = NIL; 999 if (s->lookahead >= MIN_MATCH) { 1000 INSERT_STRING(s, s->strstart, hash_head); 1001 } 1002 1003 /* Find the longest match, discarding those <= prev_length. 1004 */ 1005 s->prev_length = s->match_length, s->prev_match = s->match_start; 1006 s->match_length = MIN_MATCH-1; 1007 1008 if (hash_head != NIL && s->prev_length < s->max_lazy_match && 1009 s->strstart - hash_head <= MAX_DIST(s)) { 1010 /* To simplify the code, we prevent matches with the string 1011 * of window index 0 (in particular we have to avoid a match 1012 * of the string with itself at the start of the input file). 1013 */ 1014 s->match_length = longest_match (s, hash_head); 1015 /* longest_match() sets match_start */ 1016 1017 if (s->match_length <= 5 && (s->strategy == Z_FILTERED 1018 #if TOO_FAR <= 32767 1019 || (s->match_length == MIN_MATCH && 1020 s->strstart - s->match_start > TOO_FAR) 1021 #endif 1022 )) { 1023 1024 /* If prev_match is also MIN_MATCH, match_start is garbage 1025 * but we will ignore the current match anyway. 1026 */ 1027 s->match_length = MIN_MATCH-1; 1028 } 1029 } 1030 /* If there was a match at the previous step and the current 1031 * match is not better, output the previous match: 1032 */ 1033 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { 1034 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; 1035 /* Do not insert strings in hash table beyond this. */ 1036 1037 check_match(s, s->strstart-1, s->prev_match, s->prev_length); 1038 1039 _tr_tally_dist(s, s->strstart -1 - s->prev_match, 1040 s->prev_length - MIN_MATCH, bflush); 1041 1042 /* Insert in hash table all strings up to the end of the match. 1043 * strstart-1 and strstart are already inserted. If there is not 1044 * enough lookahead, the last two strings are not inserted in 1045 * the hash table. 1046 */ 1047 s->lookahead -= s->prev_length-1; 1048 s->prev_length -= 2; 1049 do { 1050 if (++s->strstart <= max_insert) { 1051 INSERT_STRING(s, s->strstart, hash_head); 1052 } 1053 } while (--s->prev_length != 0); 1054 s->match_available = 0; 1055 s->match_length = MIN_MATCH-1; 1056 s->strstart++; 1057 1058 if (bflush) FLUSH_BLOCK(s, 0); 1059 1060 } else if (s->match_available) { 1061 /* If there was no match at the previous position, output a 1062 * single literal. If there was a match but the current match 1063 * is longer, truncate the previous match to a single literal. 1064 */ 1065 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1066 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 1067 if (bflush) { 1068 FLUSH_BLOCK_ONLY(s, 0); 1069 } 1070 s->strstart++; 1071 s->lookahead--; 1072 if (s->strm->avail_out == 0) return need_more; 1073 } else { 1074 /* There is no previous match to compare with, wait for 1075 * the next step to decide. 1076 */ 1077 s->match_available = 1; 1078 s->strstart++; 1079 s->lookahead--; 1080 } 1081 } 1082 Assert (flush != Z_NO_FLUSH, "no flush?"); 1083 if (s->match_available) { 1084 Tracevv((stderr,"%c", s->window[s->strstart-1])); 1085 _tr_tally_lit(s, s->window[s->strstart-1], bflush); 1086 s->match_available = 0; 1087 } 1088 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; 1089 if (flush == Z_FINISH) { 1090 FLUSH_BLOCK(s, 1); 1091 return finish_done; 1092 } 1093 if (s->last_lit) 1094 FLUSH_BLOCK(s, 0); 1095 return block_done; 1096 } 1097 #endif /* FASTEST */ 1098 1099 /* =========================================================================== 1100 * For Z_RLE, simply look for runs of bytes, generate matches only of distance 1101 * one. Do not maintain a hash table. (It will be regenerated if this run of 1102 * deflate switches away from Z_RLE.) 1103 */ 1104 local 1105 block_state 1106 deflate_rle(deflate_state *s, int flush) 1107 { 1108 int bflush; /* set if current block must be flushed */ 1109 uInt prev; /* byte at distance one to match */ 1110 Bytef *scan, *strend; /* scan goes up to strend for length of run */ 1111 1112 for (;;) { 1113 /* Make sure that we always have enough lookahead, except 1114 * at the end of the input file. We need MAX_MATCH bytes 1115 * for the longest run, plus one for the unrolled loop. 1116 */ 1117 if (s->lookahead <= MAX_MATCH) { 1118 fill_window(s); 1119 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { 1120 return need_more; 1121 } 1122 if (s->lookahead == 0) break; /* flush the current block */ 1123 } 1124 1125 /* See how many times the previous byte repeats */ 1126 s->match_length = 0; 1127 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { 1128 scan = s->window + s->strstart - 1; 1129 prev = *scan; 1130 if (prev == *++scan && prev == *++scan && prev == *++scan) { 1131 strend = s->window + s->strstart + MAX_MATCH; 1132 do { 1133 } while (prev == *++scan && prev == *++scan && 1134 prev == *++scan && prev == *++scan && 1135 prev == *++scan && prev == *++scan && 1136 prev == *++scan && prev == *++scan && 1137 scan < strend); 1138 s->match_length = MAX_MATCH - (int)(strend - scan); 1139 if (s->match_length > s->lookahead) 1140 s->match_length = s->lookahead; 1141 } 1142 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan"); 1143 } 1144 1145 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ 1146 if (s->match_length >= MIN_MATCH) { 1147 check_match(s, s->strstart, s->strstart - 1, s->match_length); 1148 1149 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); 1150 1151 s->lookahead -= s->match_length; 1152 s->strstart += s->match_length; 1153 s->match_length = 0; 1154 } else { 1155 /* No match, output a literal byte */ 1156 Tracevv((stderr,"%c", s->window[s->strstart])); 1157 _tr_tally_lit (s, s->window[s->strstart], bflush); 1158 s->lookahead--; 1159 s->strstart++; 1160 } 1161 if (bflush) FLUSH_BLOCK(s, 0); 1162 } 1163 s->insert = 0; 1164 if (flush == Z_FINISH) { 1165 FLUSH_BLOCK(s, 1); 1166 return finish_done; 1167 } 1168 if (s->last_lit) 1169 FLUSH_BLOCK(s, 0); 1170 return block_done; 1171 } 1172 1173 /* =========================================================================== 1174 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. 1175 * (It will be regenerated if this run of deflate switches away from Huffman.) 1176 */ 1177 local 1178 block_state 1179 deflate_huff(deflate_state *s, int flush) 1180 { 1181 int bflush; /* set if current block must be flushed */ 1182 1183 for (;;) { 1184 /* Make sure that we have a literal to write. */ 1185 if (s->lookahead == 0) { 1186 fill_window(s); 1187 if (s->lookahead == 0) { 1188 if (flush == Z_NO_FLUSH) 1189 return need_more; 1190 break; /* flush the current block */ 1191 } 1192 } 1193 1194 /* Output a literal byte */ 1195 s->match_length = 0; 1196 Tracevv((stderr,"%c", s->window[s->strstart])); 1197 _tr_tally_lit (s, s->window[s->strstart], bflush); 1198 s->lookahead--; 1199 s->strstart++; 1200 if (bflush) FLUSH_BLOCK(s, 0); 1201 } 1202 s->insert = 0; 1203 if (flush == Z_FINISH) { 1204 FLUSH_BLOCK(s, 1); 1205 return finish_done; 1206 } 1207 if (s->last_lit) 1208 FLUSH_BLOCK(s, 0); 1209 return block_done; 1210 } 1211