1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 33 * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $ 34 */ 35 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/uio.h> 39 #include <sys/resourcevar.h> 40 #include <sys/signalvar.h> 41 #include <sys/proc.h> 42 #include <sys/buf.h> 43 #include <sys/vnode.h> 44 #include <sys/mount.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 #include <vm/vm_page.h> 52 #include <vm/vm_object.h> 53 #include <vm/vm_pager.h> 54 #include <vm/vnode_pager.h> 55 56 #include <sys/buf2.h> 57 #include <sys/thread2.h> 58 #include <vm/vm_page2.h> 59 60 #include "rpcv2.h" 61 #include "nfsproto.h" 62 #include "nfs.h" 63 #include "nfsmount.h" 64 #include "nfsnode.h" 65 #include "xdr_subs.h" 66 #include "nfsm_subs.h" 67 68 69 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset, 70 int size, struct thread *td); 71 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen); 72 static void nfsiodone_sync(struct bio *bio); 73 static void nfs_readrpc_bio_done(nfsm_info_t info); 74 static void nfs_writerpc_bio_done(nfsm_info_t info); 75 static void nfs_commitrpc_bio_done(nfsm_info_t info); 76 77 static __inline 78 void 79 nfs_knote(struct vnode *vp, int flags) 80 { 81 if (flags) 82 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags); 83 } 84 85 /* 86 * Vnode op for read using bio 87 */ 88 int 89 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag) 90 { 91 struct nfsnode *np = VTONFS(vp); 92 int biosize, i; 93 struct buf *bp, *rabp; 94 struct vattr vattr; 95 struct thread *td; 96 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 97 off_t lbn, rabn; 98 off_t raoffset; 99 off_t loffset; 100 int seqcount; 101 int nra, error = 0; 102 int boff = 0; 103 size_t n; 104 105 #ifdef DIAGNOSTIC 106 if (uio->uio_rw != UIO_READ) 107 panic("nfs_read mode"); 108 #endif 109 if (uio->uio_resid == 0) 110 return (0); 111 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 112 return (EINVAL); 113 td = uio->uio_td; 114 115 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 116 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 117 (void)nfs_fsinfo(nmp, vp, td); 118 if (vp->v_type != VDIR && 119 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 120 return (EFBIG); 121 biosize = vp->v_mount->mnt_stat.f_iosize; 122 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / MAXBSIZE); 123 124 /* 125 * For nfs, cache consistency can only be maintained approximately. 126 * Although RFC1094 does not specify the criteria, the following is 127 * believed to be compatible with the reference port. 128 * 129 * NFS: If local changes have been made and this is a 130 * directory, the directory must be invalidated and 131 * the attribute cache must be cleared. 132 * 133 * GETATTR is called to synchronize the file size. To 134 * avoid a deadlock again the VM system, we cannot do 135 * this for UIO_NOCOPY reads. 136 * 137 * If remote changes are detected local data is flushed 138 * and the cache is invalidated. 139 * 140 * NOTE: In the normal case the attribute cache is not 141 * cleared which means GETATTR may use cached data and 142 * not immediately detect changes made on the server. 143 */ 144 if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) { 145 nfs_invaldir(vp); 146 error = nfs_vinvalbuf(vp, V_SAVE, 1); 147 if (error) 148 return (error); 149 np->n_attrstamp = 0; 150 } 151 152 /* 153 * Synchronize the file size when possible. We can't do this without 154 * risking a deadlock if this is NOCOPY read from a vm_fault->getpages 155 * sequence. 156 */ 157 if (uio->uio_segflg != UIO_NOCOPY) { 158 error = VOP_GETATTR(vp, &vattr); 159 if (error) 160 return (error); 161 } 162 163 /* 164 * This can deadlock getpages/putpages for regular 165 * files. Only do it for directories. 166 */ 167 if (np->n_flag & NRMODIFIED) { 168 if (vp->v_type == VDIR) { 169 nfs_invaldir(vp); 170 error = nfs_vinvalbuf(vp, V_SAVE, 1); 171 if (error) 172 return (error); 173 np->n_flag &= ~NRMODIFIED; 174 } 175 } 176 177 /* 178 * Loop until uio exhausted or we hit EOF 179 */ 180 do { 181 bp = NULL; 182 183 switch (vp->v_type) { 184 case VREG: 185 nfsstats.biocache_reads++; 186 lbn = uio->uio_offset / biosize; 187 boff = uio->uio_offset & (biosize - 1); 188 loffset = lbn * biosize; 189 190 /* 191 * Start the read ahead(s), as required. 192 */ 193 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) { 194 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 195 (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) { 196 rabn = lbn + 1 + nra; 197 raoffset = rabn * biosize; 198 if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) { 199 rabp = nfs_getcacheblk(vp, raoffset, biosize, td); 200 if (!rabp) 201 return (EINTR); 202 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 203 rabp->b_cmd = BUF_CMD_READ; 204 vfs_busy_pages(vp, rabp); 205 nfs_asyncio(vp, &rabp->b_bio2); 206 } else { 207 brelse(rabp); 208 } 209 } 210 } 211 } 212 213 /* 214 * Obtain the buffer cache block. Figure out the buffer size 215 * when we are at EOF. If we are modifying the size of the 216 * buffer based on an EOF condition we need to hold 217 * nfs_rslock() through obtaining the buffer to prevent 218 * a potential writer-appender from messing with n_size. 219 * Otherwise we may accidently truncate the buffer and 220 * lose dirty data. 221 * 222 * Note that bcount is *not* DEV_BSIZE aligned. 223 */ 224 if (loffset + boff >= np->n_size) { 225 n = 0; 226 break; 227 } 228 bp = nfs_getcacheblk(vp, loffset, biosize, td); 229 230 if (bp == NULL) 231 return (EINTR); 232 233 /* 234 * If B_CACHE is not set, we must issue the read. If this 235 * fails, we return an error. 236 */ 237 if ((bp->b_flags & B_CACHE) == 0) { 238 bp->b_cmd = BUF_CMD_READ; 239 bp->b_bio2.bio_done = nfsiodone_sync; 240 bp->b_bio2.bio_flags |= BIO_SYNC; 241 vfs_busy_pages(vp, bp); 242 error = nfs_doio(vp, &bp->b_bio2, td); 243 if (error) { 244 brelse(bp); 245 return (error); 246 } 247 } 248 249 /* 250 * on is the offset into the current bp. Figure out how many 251 * bytes we can copy out of the bp. Note that bcount is 252 * NOT DEV_BSIZE aligned. 253 * 254 * Then figure out how many bytes we can copy into the uio. 255 */ 256 n = biosize - boff; 257 if (n > uio->uio_resid) 258 n = uio->uio_resid; 259 if (loffset + boff + n > np->n_size) 260 n = np->n_size - loffset - boff; 261 break; 262 case VLNK: 263 biosize = min(NFS_MAXPATHLEN, np->n_size); 264 nfsstats.biocache_readlinks++; 265 bp = nfs_getcacheblk(vp, (off_t)0, biosize, td); 266 if (bp == NULL) 267 return (EINTR); 268 if ((bp->b_flags & B_CACHE) == 0) { 269 bp->b_cmd = BUF_CMD_READ; 270 bp->b_bio2.bio_done = nfsiodone_sync; 271 bp->b_bio2.bio_flags |= BIO_SYNC; 272 vfs_busy_pages(vp, bp); 273 error = nfs_doio(vp, &bp->b_bio2, td); 274 if (error) { 275 bp->b_flags |= B_ERROR | B_INVAL; 276 brelse(bp); 277 return (error); 278 } 279 } 280 n = szmin(uio->uio_resid, (size_t)bp->b_bcount - bp->b_resid); 281 boff = 0; 282 break; 283 case VDIR: 284 nfsstats.biocache_readdirs++; 285 if (np->n_direofoffset && 286 uio->uio_offset >= np->n_direofoffset 287 ) { 288 return (0); 289 } 290 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 291 boff = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 292 loffset = uio->uio_offset - boff; 293 bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td); 294 if (bp == NULL) 295 return (EINTR); 296 297 if ((bp->b_flags & B_CACHE) == 0) { 298 bp->b_cmd = BUF_CMD_READ; 299 bp->b_bio2.bio_done = nfsiodone_sync; 300 bp->b_bio2.bio_flags |= BIO_SYNC; 301 vfs_busy_pages(vp, bp); 302 error = nfs_doio(vp, &bp->b_bio2, td); 303 if (error) 304 brelse(bp); 305 while (error == NFSERR_BAD_COOKIE) { 306 kprintf("got bad cookie vp %p bp %p\n", vp, bp); 307 nfs_invaldir(vp); 308 error = nfs_vinvalbuf(vp, 0, 1); 309 /* 310 * Yuck! The directory has been modified on the 311 * server. The only way to get the block is by 312 * reading from the beginning to get all the 313 * offset cookies. 314 * 315 * Leave the last bp intact unless there is an error. 316 * Loop back up to the while if the error is another 317 * NFSERR_BAD_COOKIE (double yuch!). 318 */ 319 for (i = 0; i <= lbn && !error; i++) { 320 if (np->n_direofoffset 321 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 322 return (0); 323 bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ, 324 NFS_DIRBLKSIZ, td); 325 if (!bp) 326 return (EINTR); 327 if ((bp->b_flags & B_CACHE) == 0) { 328 bp->b_cmd = BUF_CMD_READ; 329 bp->b_bio2.bio_done = nfsiodone_sync; 330 bp->b_bio2.bio_flags |= BIO_SYNC; 331 vfs_busy_pages(vp, bp); 332 error = nfs_doio(vp, &bp->b_bio2, td); 333 /* 334 * no error + B_INVAL == directory EOF, 335 * use the block. 336 */ 337 if (error == 0 && (bp->b_flags & B_INVAL)) 338 break; 339 } 340 /* 341 * An error will throw away the block and the 342 * for loop will break out. If no error and this 343 * is not the block we want, we throw away the 344 * block and go for the next one via the for loop. 345 */ 346 if (error || i < lbn) 347 brelse(bp); 348 } 349 } 350 /* 351 * The above while is repeated if we hit another cookie 352 * error. If we hit an error and it wasn't a cookie error, 353 * we give up. 354 */ 355 if (error) 356 return (error); 357 } 358 359 /* 360 * If not eof and read aheads are enabled, start one. 361 * (You need the current block first, so that you have the 362 * directory offset cookie of the next block.) 363 */ 364 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) && 365 (bp->b_flags & B_INVAL) == 0 && 366 (np->n_direofoffset == 0 || 367 loffset + NFS_DIRBLKSIZ < np->n_direofoffset) && 368 findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL 369 ) { 370 rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ, 371 NFS_DIRBLKSIZ, td); 372 if (rabp) { 373 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 374 rabp->b_cmd = BUF_CMD_READ; 375 vfs_busy_pages(vp, rabp); 376 nfs_asyncio(vp, &rabp->b_bio2); 377 } else { 378 brelse(rabp); 379 } 380 } 381 } 382 /* 383 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 384 * chopped for the EOF condition, we cannot tell how large 385 * NFS directories are going to be until we hit EOF. So 386 * an NFS directory buffer is *not* chopped to its EOF. Now, 387 * it just so happens that b_resid will effectively chop it 388 * to EOF. *BUT* this information is lost if the buffer goes 389 * away and is reconstituted into a B_CACHE state ( due to 390 * being VMIO ) later. So we keep track of the directory eof 391 * in np->n_direofoffset and chop it off as an extra step 392 * right here. 393 * 394 * NOTE: boff could already be beyond EOF. 395 */ 396 if ((size_t)boff > NFS_DIRBLKSIZ - bp->b_resid) { 397 n = 0; 398 } else { 399 n = szmin(uio->uio_resid, 400 NFS_DIRBLKSIZ - bp->b_resid - (size_t)boff); 401 } 402 if (np->n_direofoffset && 403 n > (size_t)(np->n_direofoffset - uio->uio_offset)) { 404 n = (size_t)(np->n_direofoffset - uio->uio_offset); 405 } 406 break; 407 default: 408 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type); 409 n = 0; 410 break; 411 } 412 413 switch (vp->v_type) { 414 case VREG: 415 if (n > 0) 416 error = uiomovebp(bp, bp->b_data + boff, n, uio); 417 break; 418 case VLNK: 419 if (n > 0) 420 error = uiomovebp(bp, bp->b_data + boff, n, uio); 421 n = 0; 422 break; 423 case VDIR: 424 if (n > 0) { 425 off_t old_off = uio->uio_offset; 426 caddr_t cpos, epos; 427 struct nfs_dirent *dp; 428 429 /* 430 * We are casting cpos to nfs_dirent, it must be 431 * int-aligned. 432 */ 433 if (boff & 3) { 434 error = EINVAL; 435 break; 436 } 437 438 cpos = bp->b_data + boff; 439 epos = bp->b_data + boff + n; 440 while (cpos < epos && error == 0 && uio->uio_resid > 0) { 441 dp = (struct nfs_dirent *)cpos; 442 error = nfs_check_dirent(dp, (int)(epos - cpos)); 443 if (error) 444 break; 445 if (vop_write_dirent(&error, uio, dp->nfs_ino, 446 dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) { 447 break; 448 } 449 cpos += dp->nfs_reclen; 450 } 451 n = 0; 452 if (error == 0) { 453 uio->uio_offset = old_off + cpos - 454 bp->b_data - boff; 455 } 456 } 457 break; 458 default: 459 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type); 460 } 461 if (bp) 462 brelse(bp); 463 } while (error == 0 && uio->uio_resid > 0 && n > 0); 464 return (error); 465 } 466 467 /* 468 * Userland can supply any 'seek' offset when reading a NFS directory. 469 * Validate the structure so we don't panic the kernel. Note that 470 * the element name is nul terminated and the nul is not included 471 * in nfs_namlen. 472 */ 473 static 474 int 475 nfs_check_dirent(struct nfs_dirent *dp, int maxlen) 476 { 477 int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]); 478 479 if (nfs_name_off >= maxlen) 480 return (EINVAL); 481 if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen) 482 return (EINVAL); 483 if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen) 484 return (EINVAL); 485 if (dp->nfs_reclen & 3) 486 return (EINVAL); 487 return (0); 488 } 489 490 /* 491 * Vnode op for write using bio 492 * 493 * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 494 * struct ucred *a_cred) 495 */ 496 int 497 nfs_write(struct vop_write_args *ap) 498 { 499 struct uio *uio = ap->a_uio; 500 struct thread *td = uio->uio_td; 501 struct vnode *vp = ap->a_vp; 502 struct nfsnode *np = VTONFS(vp); 503 int ioflag = ap->a_ioflag; 504 struct buf *bp; 505 struct vattr vattr; 506 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 507 off_t loffset; 508 int boff, bytes; 509 int error = 0; 510 int haverslock = 0; 511 int bcount; 512 int biosize; 513 int trivial; 514 int kflags = 0; 515 516 #ifdef DIAGNOSTIC 517 if (uio->uio_rw != UIO_WRITE) 518 panic("nfs_write mode"); 519 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread) 520 panic("nfs_write proc"); 521 #endif 522 if (vp->v_type != VREG) 523 return (EIO); 524 525 lwkt_gettoken(&nmp->nm_token); 526 527 if (np->n_flag & NWRITEERR) { 528 np->n_flag &= ~NWRITEERR; 529 lwkt_reltoken(&nmp->nm_token); 530 return (np->n_error); 531 } 532 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 533 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) { 534 (void)nfs_fsinfo(nmp, vp, td); 535 } 536 537 /* 538 * Synchronously flush pending buffers if we are in synchronous 539 * mode or if we are appending. 540 */ 541 if (ioflag & (IO_APPEND | IO_SYNC)) { 542 if (np->n_flag & NLMODIFIED) { 543 np->n_attrstamp = 0; 544 error = nfs_flush(vp, MNT_WAIT, td, 0); 545 /* error = nfs_vinvalbuf(vp, V_SAVE, 1); */ 546 if (error) 547 goto done; 548 } 549 } 550 551 /* 552 * If IO_APPEND then load uio_offset. We restart here if we cannot 553 * get the append lock. 554 */ 555 restart: 556 if (ioflag & IO_APPEND) { 557 np->n_attrstamp = 0; 558 error = VOP_GETATTR(vp, &vattr); 559 if (error) 560 goto done; 561 uio->uio_offset = np->n_size; 562 } 563 564 if (uio->uio_offset < 0) { 565 error = EINVAL; 566 goto done; 567 } 568 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) { 569 error = EFBIG; 570 goto done; 571 } 572 if (uio->uio_resid == 0) { 573 error = 0; 574 goto done; 575 } 576 577 /* 578 * We need to obtain the rslock if we intend to modify np->n_size 579 * in order to guarentee the append point with multiple contending 580 * writers, to guarentee that no other appenders modify n_size 581 * while we are trying to obtain a truncated buffer (i.e. to avoid 582 * accidently truncating data written by another appender due to 583 * the race), and to ensure that the buffer is populated prior to 584 * our extending of the file. We hold rslock through the entire 585 * operation. 586 * 587 * Note that we do not synchronize the case where someone truncates 588 * the file while we are appending to it because attempting to lock 589 * this case may deadlock other parts of the system unexpectedly. 590 */ 591 if ((ioflag & IO_APPEND) || 592 uio->uio_offset + uio->uio_resid > np->n_size) { 593 switch(nfs_rslock(np)) { 594 case ENOLCK: 595 goto restart; 596 /* not reached */ 597 case EINTR: 598 case ERESTART: 599 error = EINTR; 600 goto done; 601 /* not reached */ 602 default: 603 break; 604 } 605 haverslock = 1; 606 } 607 608 /* 609 * Maybe this should be above the vnode op call, but so long as 610 * file servers have no limits, i don't think it matters 611 */ 612 if (td && td->td_proc && uio->uio_offset + uio->uio_resid > 613 td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 614 lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ); 615 if (haverslock) 616 nfs_rsunlock(np); 617 error = EFBIG; 618 goto done; 619 } 620 621 biosize = vp->v_mount->mnt_stat.f_iosize; 622 623 do { 624 nfsstats.biocache_writes++; 625 boff = uio->uio_offset & (biosize-1); 626 loffset = uio->uio_offset - boff; 627 bytes = (int)szmin((unsigned)(biosize - boff), uio->uio_resid); 628 again: 629 /* 630 * Handle direct append and file extension cases, calculate 631 * unaligned buffer size. When extending B_CACHE will be 632 * set if possible. See UIO_NOCOPY note below. 633 */ 634 if (uio->uio_offset + bytes > np->n_size) { 635 np->n_flag |= NLMODIFIED; 636 trivial = (uio->uio_segflg != UIO_NOCOPY && 637 uio->uio_offset <= np->n_size) ? 638 NVEXTF_TRIVIAL : 0; 639 nfs_meta_setsize(vp, td, uio->uio_offset + bytes, 640 trivial); 641 kflags |= NOTE_EXTEND; 642 } 643 bp = nfs_getcacheblk(vp, loffset, biosize, td); 644 if (bp == NULL) { 645 error = EINTR; 646 break; 647 } 648 649 /* 650 * Actual bytes in buffer which we care about 651 */ 652 if (loffset + biosize < np->n_size) 653 bcount = biosize; 654 else 655 bcount = (int)(np->n_size - loffset); 656 657 /* 658 * Avoid a read by setting B_CACHE where the data we 659 * intend to write covers the entire buffer. Note 660 * that the buffer may have been set to B_CACHE by 661 * nfs_meta_setsize() above or otherwise inherited the 662 * flag, but if B_CACHE isn't set the buffer may be 663 * uninitialized and must be zero'd to accomodate 664 * future seek+write's. 665 * 666 * See the comments in kern/vfs_bio.c's getblk() for 667 * more information. 668 * 669 * When doing a UIO_NOCOPY write the buffer is not 670 * overwritten and we cannot just set B_CACHE unconditionally 671 * for full-block writes. 672 */ 673 if (boff == 0 && bytes == biosize && 674 uio->uio_segflg != UIO_NOCOPY) { 675 bp->b_flags |= B_CACHE; 676 bp->b_flags &= ~(B_ERROR | B_INVAL); 677 } 678 679 /* 680 * b_resid may be set due to file EOF if we extended out. 681 * The NFS bio code will zero the difference anyway so 682 * just acknowledged the fact and set b_resid to 0. 683 */ 684 if ((bp->b_flags & B_CACHE) == 0) { 685 bp->b_cmd = BUF_CMD_READ; 686 bp->b_bio2.bio_done = nfsiodone_sync; 687 bp->b_bio2.bio_flags |= BIO_SYNC; 688 vfs_busy_pages(vp, bp); 689 error = nfs_doio(vp, &bp->b_bio2, td); 690 if (error) { 691 brelse(bp); 692 break; 693 } 694 bp->b_resid = 0; 695 } 696 np->n_flag |= NLMODIFIED; 697 kflags |= NOTE_WRITE; 698 699 /* 700 * If dirtyend exceeds file size, chop it down. This should 701 * not normally occur but there is an append race where it 702 * might occur XXX, so we log it. 703 * 704 * If the chopping creates a reverse-indexed or degenerate 705 * situation with dirtyoff/end, we 0 both of them. 706 */ 707 if (bp->b_dirtyend > bcount) { 708 kprintf("NFS append race @%08llx:%d\n", 709 (long long)bp->b_bio2.bio_offset, 710 bp->b_dirtyend - bcount); 711 bp->b_dirtyend = bcount; 712 } 713 714 if (bp->b_dirtyoff >= bp->b_dirtyend) 715 bp->b_dirtyoff = bp->b_dirtyend = 0; 716 717 /* 718 * If the new write will leave a contiguous dirty 719 * area, just update the b_dirtyoff and b_dirtyend, 720 * otherwise force a write rpc of the old dirty area. 721 * 722 * While it is possible to merge discontiguous writes due to 723 * our having a B_CACHE buffer ( and thus valid read data 724 * for the hole), we don't because it could lead to 725 * significant cache coherency problems with multiple clients, 726 * especially if locking is implemented later on. 727 * 728 * as an optimization we could theoretically maintain 729 * a linked list of discontinuous areas, but we would still 730 * have to commit them separately so there isn't much 731 * advantage to it except perhaps a bit of asynchronization. 732 */ 733 if (bp->b_dirtyend > 0 && 734 (boff > bp->b_dirtyend || 735 (boff + bytes) < bp->b_dirtyoff) 736 ) { 737 if (bwrite(bp) == EINTR) { 738 error = EINTR; 739 break; 740 } 741 goto again; 742 } 743 744 error = uiomovebp(bp, bp->b_data + boff, bytes, uio); 745 746 /* 747 * Since this block is being modified, it must be written 748 * again and not just committed. Since write clustering does 749 * not work for the stage 1 data write, only the stage 2 750 * commit rpc, we have to clear B_CLUSTEROK as well. 751 */ 752 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 753 754 if (error) { 755 brelse(bp); 756 break; 757 } 758 759 /* 760 * Only update dirtyoff/dirtyend if not a degenerate 761 * condition. 762 * 763 * The underlying VM pages have been marked valid by 764 * virtue of acquiring the bp. Because the entire buffer 765 * is marked dirty we do not have to worry about cleaning 766 * out the related dirty bits (and wouldn't really know 767 * how to deal with byte ranges anyway) 768 */ 769 if (bytes) { 770 if (bp->b_dirtyend > 0) { 771 bp->b_dirtyoff = imin(boff, bp->b_dirtyoff); 772 bp->b_dirtyend = imax(boff + bytes, 773 bp->b_dirtyend); 774 } else { 775 bp->b_dirtyoff = boff; 776 bp->b_dirtyend = boff + bytes; 777 } 778 } 779 780 /* 781 * If the lease is non-cachable or IO_SYNC do bwrite(). 782 * 783 * IO_INVAL appears to be unused. The idea appears to be 784 * to turn off caching in this case. Very odd. XXX 785 * 786 * If nfs_async is set bawrite() will use an unstable write 787 * (build dirty bufs on the server), so we might as well 788 * push it out with bawrite(). If nfs_async is not set we 789 * use bdwrite() to cache dirty bufs on the client. 790 */ 791 if (ioflag & IO_SYNC) { 792 if (ioflag & IO_INVAL) 793 bp->b_flags |= B_NOCACHE; 794 error = bwrite(bp); 795 if (error) 796 break; 797 } else if (boff + bytes == biosize && nfs_async) { 798 bawrite(bp); 799 } else { 800 bdwrite(bp); 801 } 802 } while (uio->uio_resid > 0 && bytes > 0); 803 804 if (haverslock) 805 nfs_rsunlock(np); 806 807 done: 808 nfs_knote(vp, kflags); 809 lwkt_reltoken(&nmp->nm_token); 810 return (error); 811 } 812 813 /* 814 * Get an nfs cache block. 815 * 816 * Allocate a new one if the block isn't currently in the cache 817 * and return the block marked busy. If the calling process is 818 * interrupted by a signal for an interruptible mount point, return 819 * NULL. 820 * 821 * The caller must carefully deal with the possible B_INVAL state of 822 * the buffer. nfs_startio() clears B_INVAL (and nfs_asyncio() clears it 823 * indirectly), so synchronous reads can be issued without worrying about 824 * the B_INVAL state. We have to be a little more careful when dealing 825 * with writes (see comments in nfs_write()) when extending a file past 826 * its EOF. 827 */ 828 static struct buf * 829 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td) 830 { 831 struct buf *bp; 832 struct mount *mp; 833 struct nfsmount *nmp; 834 835 mp = vp->v_mount; 836 nmp = VFSTONFS(mp); 837 838 if (nmp->nm_flag & NFSMNT_INT) { 839 bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0); 840 while (bp == NULL) { 841 if (nfs_sigintr(nmp, NULL, td)) 842 return (NULL); 843 bp = getblk(vp, loffset, size, 0, 2 * hz); 844 } 845 } else { 846 bp = getblk(vp, loffset, size, 0, 0); 847 } 848 849 /* 850 * bio2, the 'device' layer. Since BIOs use 64 bit byte offsets 851 * now, no translation is necessary. 852 */ 853 bp->b_bio2.bio_offset = loffset; 854 return (bp); 855 } 856 857 /* 858 * Flush and invalidate all dirty buffers. If another process is already 859 * doing the flush, just wait for completion. 860 */ 861 int 862 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg) 863 { 864 struct nfsnode *np = VTONFS(vp); 865 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 866 int error = 0, slpflag, slptimeo; 867 thread_t td = curthread; 868 869 if (vp->v_flag & VRECLAIMED) 870 return (0); 871 872 if ((nmp->nm_flag & NFSMNT_INT) == 0) 873 intrflg = 0; 874 if (intrflg) { 875 slpflag = PCATCH; 876 slptimeo = 2 * hz; 877 } else { 878 slpflag = 0; 879 slptimeo = 0; 880 } 881 /* 882 * First wait for any other process doing a flush to complete. 883 */ 884 while (np->n_flag & NFLUSHINPROG) { 885 np->n_flag |= NFLUSHWANT; 886 error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo); 887 if (error && intrflg && nfs_sigintr(nmp, NULL, td)) 888 return (EINTR); 889 } 890 891 /* 892 * Now, flush as required. 893 */ 894 np->n_flag |= NFLUSHINPROG; 895 error = vinvalbuf(vp, flags, slpflag, 0); 896 while (error) { 897 if (intrflg && nfs_sigintr(nmp, NULL, td)) { 898 np->n_flag &= ~NFLUSHINPROG; 899 if (np->n_flag & NFLUSHWANT) { 900 np->n_flag &= ~NFLUSHWANT; 901 wakeup((caddr_t)&np->n_flag); 902 } 903 return (EINTR); 904 } 905 error = vinvalbuf(vp, flags, 0, slptimeo); 906 } 907 np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG); 908 if (np->n_flag & NFLUSHWANT) { 909 np->n_flag &= ~NFLUSHWANT; 910 wakeup((caddr_t)&np->n_flag); 911 } 912 return (0); 913 } 914 915 /* 916 * Return true (non-zero) if the txthread and rxthread are operational 917 * and we do not already have too many not-yet-started BIO's built up. 918 */ 919 int 920 nfs_asyncok(struct nfsmount *nmp) 921 { 922 return (nmp->nm_bioqlen < nfs_maxasyncbio && 923 nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE && 924 nmp->nm_rxstate <= NFSSVC_PENDING && 925 nmp->nm_txstate <= NFSSVC_PENDING); 926 } 927 928 /* 929 * The read-ahead code calls this to queue a bio to the txthread. 930 * 931 * We don't touch the bio otherwise... that is, we do not even 932 * construct or send the initial rpc. The txthread will do it 933 * for us. 934 * 935 * NOTE! nm_bioqlen is not decremented until the request completes, 936 * so it does not reflect the number of bio's on bioq. 937 */ 938 void 939 nfs_asyncio(struct vnode *vp, struct bio *bio) 940 { 941 struct buf *bp = bio->bio_buf; 942 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 943 944 KKASSERT(vp->v_tag == VT_NFS); 945 BUF_KERNPROC(bp); 946 947 /* 948 * Shortcut swap cache (not done automatically because we are not 949 * using bread()). 950 */ 951 if (vn_cache_strategy(vp, bio)) 952 return; 953 954 bio->bio_driver_info = vp; 955 crit_enter(); 956 TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act); 957 atomic_add_int(&nmp->nm_bioqlen, 1); 958 crit_exit(); 959 nfssvc_iod_writer_wakeup(nmp); 960 } 961 962 /* 963 * nfs_doio() - Execute a BIO operation synchronously. The BIO will be 964 * completed and its error returned. The caller is responsible 965 * for brelse()ing it. ONLY USE FOR BIO_SYNC IOs! Otherwise 966 * our error probe will be against an invalid pointer. 967 * 968 * nfs_startio()- Execute a BIO operation assynchronously. 969 * 970 * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation, 971 * which basically just queues it to the txthread. nfs_startio() 972 * actually initiates the I/O AFTER it has gotten to the txthread. 973 * 974 * NOTE: td might be NULL. 975 * 976 * NOTE: Caller has already busied the I/O. 977 */ 978 void 979 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td) 980 { 981 struct buf *bp = bio->bio_buf; 982 983 KKASSERT(vp->v_tag == VT_NFS); 984 985 /* 986 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We 987 * do this here so we do not have to do it in all the code that 988 * calls us. 989 */ 990 bp->b_flags &= ~(B_ERROR | B_INVAL); 991 992 KASSERT(bp->b_cmd != BUF_CMD_DONE, 993 ("nfs_doio: bp %p already marked done!", bp)); 994 995 if (bp->b_cmd == BUF_CMD_READ) { 996 switch (vp->v_type) { 997 case VREG: 998 nfsstats.read_bios++; 999 nfs_readrpc_bio(vp, bio); 1000 break; 1001 case VLNK: 1002 #if 0 1003 bio->bio_offset = 0; 1004 nfsstats.readlink_bios++; 1005 nfs_readlinkrpc_bio(vp, bio); 1006 #else 1007 nfs_doio(vp, bio, td); 1008 #endif 1009 break; 1010 case VDIR: 1011 /* 1012 * NOTE: If nfs_readdirplusrpc_bio() is requested but 1013 * not supported, it will chain to 1014 * nfs_readdirrpc_bio(). 1015 */ 1016 #if 0 1017 nfsstats.readdir_bios++; 1018 uiop->uio_offset = bio->bio_offset; 1019 if (nmp->nm_flag & NFSMNT_RDIRPLUS) 1020 nfs_readdirplusrpc_bio(vp, bio); 1021 else 1022 nfs_readdirrpc_bio(vp, bio); 1023 #else 1024 nfs_doio(vp, bio, td); 1025 #endif 1026 break; 1027 default: 1028 kprintf("nfs_doio: type %x unexpected\n",vp->v_type); 1029 bp->b_flags |= B_ERROR; 1030 bp->b_error = EINVAL; 1031 biodone(bio); 1032 break; 1033 } 1034 } else { 1035 /* 1036 * If we only need to commit, try to commit. If this fails 1037 * it will chain through to the write. Basically all the logic 1038 * in nfs_doio() is replicated. 1039 */ 1040 KKASSERT(bp->b_cmd == BUF_CMD_WRITE); 1041 if (bp->b_flags & B_NEEDCOMMIT) 1042 nfs_commitrpc_bio(vp, bio); 1043 else 1044 nfs_writerpc_bio(vp, bio); 1045 } 1046 } 1047 1048 int 1049 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td) 1050 { 1051 struct buf *bp = bio->bio_buf; 1052 struct uio *uiop; 1053 struct nfsnode *np; 1054 struct nfsmount *nmp; 1055 int error = 0; 1056 int iomode, must_commit; 1057 size_t n; 1058 struct uio uio; 1059 struct iovec io; 1060 1061 #if 0 1062 /* 1063 * Shortcut swap cache (not done automatically because we are not 1064 * using bread()). 1065 * 1066 * XXX The biowait is a hack until we can figure out how to stop a 1067 * biodone chain when a middle element is BIO_SYNC. BIO_SYNC is 1068 * set so the bp shouldn't get ripped out from under us. The only 1069 * use-cases are fully synchronous I/O cases. 1070 * 1071 * XXX This is having problems, give up for now. 1072 */ 1073 if (vn_cache_strategy(vp, bio)) { 1074 error = biowait(&bio->bio_buf->b_bio1, "nfsrsw"); 1075 return (error); 1076 } 1077 #endif 1078 1079 KKASSERT(vp->v_tag == VT_NFS); 1080 np = VTONFS(vp); 1081 nmp = VFSTONFS(vp->v_mount); 1082 uiop = &uio; 1083 uiop->uio_iov = &io; 1084 uiop->uio_iovcnt = 1; 1085 uiop->uio_segflg = UIO_SYSSPACE; 1086 uiop->uio_td = td; 1087 1088 /* 1089 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We 1090 * do this here so we do not have to do it in all the code that 1091 * calls us. 1092 */ 1093 bp->b_flags &= ~(B_ERROR | B_INVAL); 1094 1095 KASSERT(bp->b_cmd != BUF_CMD_DONE, 1096 ("nfs_doio: bp %p already marked done!", bp)); 1097 1098 if (bp->b_cmd == BUF_CMD_READ) { 1099 io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount; 1100 io.iov_base = bp->b_data; 1101 uiop->uio_rw = UIO_READ; 1102 1103 switch (vp->v_type) { 1104 case VREG: 1105 /* 1106 * When reading from a regular file zero-fill any residual. 1107 * Note that this residual has nothing to do with NFS short 1108 * reads, which nfs_readrpc_uio() will handle for us. 1109 * 1110 * We have to do this because when we are write extending 1111 * a file the server may not have the same notion of 1112 * filesize as we do. Our BIOs should already be sized 1113 * (b_bcount) to account for the file EOF. 1114 */ 1115 nfsstats.read_bios++; 1116 uiop->uio_offset = bio->bio_offset; 1117 error = nfs_readrpc_uio(vp, uiop); 1118 if (error == 0 && uiop->uio_resid) { 1119 n = (size_t)bp->b_bcount - uiop->uio_resid; 1120 bzero(bp->b_data + n, bp->b_bcount - n); 1121 uiop->uio_resid = 0; 1122 } 1123 if (td && td->td_proc && (vp->v_flag & VTEXT) && 1124 np->n_mtime != np->n_vattr.va_mtime.tv_sec) { 1125 uprintf("Process killed due to text file modification\n"); 1126 ksignal(td->td_proc, SIGKILL); 1127 } 1128 break; 1129 case VLNK: 1130 uiop->uio_offset = 0; 1131 nfsstats.readlink_bios++; 1132 error = nfs_readlinkrpc_uio(vp, uiop); 1133 break; 1134 case VDIR: 1135 nfsstats.readdir_bios++; 1136 uiop->uio_offset = bio->bio_offset; 1137 if (nmp->nm_flag & NFSMNT_RDIRPLUS) { 1138 error = nfs_readdirplusrpc_uio(vp, uiop); 1139 if (error == NFSERR_NOTSUPP) 1140 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1141 } 1142 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1143 error = nfs_readdirrpc_uio(vp, uiop); 1144 /* 1145 * end-of-directory sets B_INVAL but does not generate an 1146 * error. 1147 */ 1148 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1149 bp->b_flags |= B_INVAL; 1150 break; 1151 default: 1152 kprintf("nfs_doio: type %x unexpected\n",vp->v_type); 1153 break; 1154 } 1155 if (error) { 1156 bp->b_flags |= B_ERROR; 1157 bp->b_error = error; 1158 } 1159 bp->b_resid = uiop->uio_resid; 1160 } else { 1161 /* 1162 * If we only need to commit, try to commit. 1163 * 1164 * NOTE: The I/O has already been staged for the write and 1165 * its pages busied, so b_dirtyoff/end is valid. 1166 */ 1167 KKASSERT(bp->b_cmd == BUF_CMD_WRITE); 1168 if (bp->b_flags & B_NEEDCOMMIT) { 1169 int retv; 1170 off_t off; 1171 1172 off = bio->bio_offset + bp->b_dirtyoff; 1173 retv = nfs_commitrpc_uio(vp, off, 1174 bp->b_dirtyend - bp->b_dirtyoff, 1175 td); 1176 if (retv == 0) { 1177 bp->b_dirtyoff = bp->b_dirtyend = 0; 1178 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1179 bp->b_resid = 0; 1180 biodone(bio); 1181 return(0); 1182 } 1183 if (retv == NFSERR_STALEWRITEVERF) { 1184 nfs_clearcommit(vp->v_mount); 1185 } 1186 } 1187 1188 /* 1189 * Setup for actual write 1190 */ 1191 if (bio->bio_offset + bp->b_dirtyend > np->n_size) 1192 bp->b_dirtyend = np->n_size - bio->bio_offset; 1193 1194 if (bp->b_dirtyend > bp->b_dirtyoff) { 1195 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1196 - bp->b_dirtyoff; 1197 uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff; 1198 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1199 uiop->uio_rw = UIO_WRITE; 1200 nfsstats.write_bios++; 1201 1202 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0) 1203 iomode = NFSV3WRITE_UNSTABLE; 1204 else 1205 iomode = NFSV3WRITE_FILESYNC; 1206 1207 must_commit = 0; 1208 error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit); 1209 1210 /* 1211 * We no longer try to use kern/vfs_bio's cluster code to 1212 * cluster commits, so B_CLUSTEROK is no longer set with 1213 * B_NEEDCOMMIT. The problem is that a vfs_busy_pages() 1214 * may have to clear B_NEEDCOMMIT if it finds underlying 1215 * pages have been redirtied through a memory mapping 1216 * and doing this on a clustered bp will probably cause 1217 * a panic, plus the flag in the underlying NFS bufs 1218 * making up the cluster bp will not be properly cleared. 1219 */ 1220 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1221 bp->b_flags |= B_NEEDCOMMIT; 1222 #if 0 1223 /* XXX do not enable commit clustering */ 1224 if (bp->b_dirtyoff == 0 1225 && bp->b_dirtyend == bp->b_bcount) 1226 bp->b_flags |= B_CLUSTEROK; 1227 #endif 1228 } else { 1229 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1230 } 1231 1232 /* 1233 * For an interrupted write, the buffer is still valid 1234 * and the write hasn't been pushed to the server yet, 1235 * so we can't set B_ERROR and report the interruption 1236 * by setting B_EINTR. For the async case, B_EINTR 1237 * is not relevant, so the rpc attempt is essentially 1238 * a noop. For the case of a V3 write rpc not being 1239 * committed to stable storage, the block is still 1240 * dirty and requires either a commit rpc or another 1241 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1242 * the block is reused. This is indicated by setting 1243 * the B_DELWRI and B_NEEDCOMMIT flags. 1244 * 1245 * If the buffer is marked B_PAGING, it does not reside on 1246 * the vp's paging queues so we cannot call bdirty(). The 1247 * bp in this case is not an NFS cache block so we should 1248 * be safe. XXX 1249 */ 1250 if (error == EINTR 1251 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1252 crit_enter(); 1253 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1254 if ((bp->b_flags & B_PAGING) == 0) 1255 bdirty(bp); 1256 if (error) 1257 bp->b_flags |= B_EINTR; 1258 crit_exit(); 1259 } else { 1260 if (error) { 1261 bp->b_flags |= B_ERROR; 1262 bp->b_error = np->n_error = error; 1263 np->n_flag |= NWRITEERR; 1264 } 1265 bp->b_dirtyoff = bp->b_dirtyend = 0; 1266 } 1267 if (must_commit) 1268 nfs_clearcommit(vp->v_mount); 1269 bp->b_resid = uiop->uio_resid; 1270 } else { 1271 bp->b_resid = 0; 1272 } 1273 } 1274 1275 /* 1276 * I/O was run synchronously, biodone() it and calculate the 1277 * error to return. 1278 */ 1279 biodone(bio); 1280 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 1281 if (bp->b_flags & B_EINTR) 1282 return (EINTR); 1283 if (bp->b_flags & B_ERROR) 1284 return (bp->b_error ? bp->b_error : EIO); 1285 return (0); 1286 } 1287 1288 /* 1289 * Handle all truncation, write-extend, and ftruncate()-extend operations 1290 * on the NFS lcient side. 1291 * 1292 * We use the new API in kern/vfs_vm.c to perform these operations in a 1293 * VM-friendly way. With this API VM pages are properly zerod and pages 1294 * still mapped into the buffer straddling EOF are not invalidated. 1295 */ 1296 int 1297 nfs_meta_setsize(struct vnode *vp, struct thread *td, off_t nsize, int flags) 1298 { 1299 struct nfsnode *np = VTONFS(vp); 1300 off_t osize; 1301 int biosize = vp->v_mount->mnt_stat.f_iosize; 1302 int error; 1303 1304 osize = np->n_size; 1305 np->n_size = nsize; 1306 1307 if (nsize < osize) { 1308 error = nvtruncbuf(vp, nsize, biosize, -1, flags); 1309 } else { 1310 error = nvextendbuf(vp, osize, nsize, 1311 biosize, biosize, -1, -1, flags); 1312 } 1313 return(error); 1314 } 1315 1316 /* 1317 * Synchronous completion for nfs_doio. Call bpdone() with elseit=FALSE. 1318 * Caller is responsible for brelse()'ing the bp. 1319 */ 1320 static void 1321 nfsiodone_sync(struct bio *bio) 1322 { 1323 bio->bio_flags = 0; 1324 bpdone(bio->bio_buf, 0); 1325 } 1326 1327 /* 1328 * nfs read rpc - BIO version 1329 */ 1330 void 1331 nfs_readrpc_bio(struct vnode *vp, struct bio *bio) 1332 { 1333 struct buf *bp = bio->bio_buf; 1334 u_int32_t *tl; 1335 struct nfsmount *nmp; 1336 int error = 0, len, tsiz; 1337 struct nfsm_info *info; 1338 1339 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1340 info->mrep = NULL; 1341 info->v3 = NFS_ISV3(vp); 1342 1343 nmp = VFSTONFS(vp->v_mount); 1344 tsiz = bp->b_bcount; 1345 KKASSERT(tsiz <= nmp->nm_rsize); 1346 if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) { 1347 error = EFBIG; 1348 goto nfsmout; 1349 } 1350 nfsstats.rpccnt[NFSPROC_READ]++; 1351 len = tsiz; 1352 nfsm_reqhead(info, vp, NFSPROC_READ, 1353 NFSX_FH(info->v3) + NFSX_UNSIGNED * 3); 1354 ERROROUT(nfsm_fhtom(info, vp)); 1355 tl = nfsm_build(info, NFSX_UNSIGNED * 3); 1356 if (info->v3) { 1357 txdr_hyper(bio->bio_offset, tl); 1358 *(tl + 2) = txdr_unsigned(len); 1359 } else { 1360 *tl++ = txdr_unsigned(bio->bio_offset); 1361 *tl++ = txdr_unsigned(len); 1362 *tl = 0; 1363 } 1364 info->bio = bio; 1365 info->done = nfs_readrpc_bio_done; 1366 nfsm_request_bio(info, vp, NFSPROC_READ, NULL, 1367 nfs_vpcred(vp, ND_READ)); 1368 return; 1369 nfsmout: 1370 kfree(info, M_NFSREQ); 1371 bp->b_error = error; 1372 bp->b_flags |= B_ERROR; 1373 biodone(bio); 1374 } 1375 1376 static void 1377 nfs_readrpc_bio_done(nfsm_info_t info) 1378 { 1379 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1380 struct bio *bio = info->bio; 1381 struct buf *bp = bio->bio_buf; 1382 u_int32_t *tl; 1383 int attrflag; 1384 int retlen; 1385 int eof; 1386 int error = 0; 1387 1388 KKASSERT(info->state == NFSM_STATE_DONE); 1389 1390 lwkt_gettoken(&nmp->nm_token); 1391 1392 ERROROUT(info->error); 1393 if (info->v3) { 1394 ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag, 1395 NFS_LATTR_NOSHRINK)); 1396 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED)); 1397 eof = fxdr_unsigned(int, *(tl + 1)); 1398 } else { 1399 ERROROUT(nfsm_loadattr(info, info->vp, NULL)); 1400 eof = 0; 1401 } 1402 NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize)); 1403 ERROROUT(nfsm_mtobio(info, bio, retlen)); 1404 m_freem(info->mrep); 1405 info->mrep = NULL; 1406 1407 /* 1408 * No error occured, if retlen is less then bcount and no EOF 1409 * and NFSv3 a zero-fill short read occured. 1410 * 1411 * For NFSv2 a short-read indicates EOF. 1412 */ 1413 if (retlen < bp->b_bcount && info->v3 && eof == 0) { 1414 bzero(bp->b_data + retlen, bp->b_bcount - retlen); 1415 retlen = bp->b_bcount; 1416 } 1417 1418 /* 1419 * If we hit an EOF we still zero-fill, but return the expected 1420 * b_resid anyway. This should normally not occur since async 1421 * BIOs are not used for read-before-write case. Races against 1422 * the server can cause it though and we don't want to leave 1423 * garbage in the buffer. 1424 */ 1425 if (retlen < bp->b_bcount) { 1426 bzero(bp->b_data + retlen, bp->b_bcount - retlen); 1427 } 1428 bp->b_resid = 0; 1429 /* bp->b_resid = bp->b_bcount - retlen; */ 1430 nfsmout: 1431 lwkt_reltoken(&nmp->nm_token); 1432 kfree(info, M_NFSREQ); 1433 if (error) { 1434 bp->b_error = error; 1435 bp->b_flags |= B_ERROR; 1436 } 1437 biodone(bio); 1438 } 1439 1440 /* 1441 * nfs write call - BIO version 1442 * 1443 * NOTE: Caller has already busied the I/O. 1444 */ 1445 void 1446 nfs_writerpc_bio(struct vnode *vp, struct bio *bio) 1447 { 1448 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1449 struct nfsnode *np = VTONFS(vp); 1450 struct buf *bp = bio->bio_buf; 1451 u_int32_t *tl; 1452 int len; 1453 int iomode; 1454 int error = 0; 1455 struct nfsm_info *info; 1456 off_t offset; 1457 1458 /* 1459 * Setup for actual write. Just clean up the bio if there 1460 * is nothing to do. b_dirtyoff/end have already been staged 1461 * by the bp's pages getting busied. 1462 */ 1463 if (bio->bio_offset + bp->b_dirtyend > np->n_size) 1464 bp->b_dirtyend = np->n_size - bio->bio_offset; 1465 1466 if (bp->b_dirtyend <= bp->b_dirtyoff) { 1467 bp->b_resid = 0; 1468 biodone(bio); 1469 return; 1470 } 1471 len = bp->b_dirtyend - bp->b_dirtyoff; 1472 offset = bio->bio_offset + bp->b_dirtyoff; 1473 if (offset + len > nmp->nm_maxfilesize) { 1474 bp->b_flags |= B_ERROR; 1475 bp->b_error = EFBIG; 1476 biodone(bio); 1477 return; 1478 } 1479 bp->b_resid = len; 1480 nfsstats.write_bios++; 1481 1482 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1483 info->mrep = NULL; 1484 info->v3 = NFS_ISV3(vp); 1485 info->info_writerpc.must_commit = 0; 1486 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0) 1487 iomode = NFSV3WRITE_UNSTABLE; 1488 else 1489 iomode = NFSV3WRITE_FILESYNC; 1490 1491 KKASSERT(len <= nmp->nm_wsize); 1492 1493 nfsstats.rpccnt[NFSPROC_WRITE]++; 1494 nfsm_reqhead(info, vp, NFSPROC_WRITE, 1495 NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len)); 1496 ERROROUT(nfsm_fhtom(info, vp)); 1497 if (info->v3) { 1498 tl = nfsm_build(info, 5 * NFSX_UNSIGNED); 1499 txdr_hyper(offset, tl); 1500 tl += 2; 1501 *tl++ = txdr_unsigned(len); 1502 *tl++ = txdr_unsigned(iomode); 1503 *tl = txdr_unsigned(len); 1504 } else { 1505 u_int32_t x; 1506 1507 tl = nfsm_build(info, 4 * NFSX_UNSIGNED); 1508 /* Set both "begin" and "current" to non-garbage. */ 1509 x = txdr_unsigned((u_int32_t)offset); 1510 *tl++ = x; /* "begin offset" */ 1511 *tl++ = x; /* "current offset" */ 1512 x = txdr_unsigned(len); 1513 *tl++ = x; /* total to this offset */ 1514 *tl = x; /* size of this write */ 1515 } 1516 ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len)); 1517 info->bio = bio; 1518 info->done = nfs_writerpc_bio_done; 1519 nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL, 1520 nfs_vpcred(vp, ND_WRITE)); 1521 return; 1522 nfsmout: 1523 kfree(info, M_NFSREQ); 1524 bp->b_error = error; 1525 bp->b_flags |= B_ERROR; 1526 biodone(bio); 1527 } 1528 1529 static void 1530 nfs_writerpc_bio_done(nfsm_info_t info) 1531 { 1532 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1533 struct nfsnode *np = VTONFS(info->vp); 1534 struct bio *bio = info->bio; 1535 struct buf *bp = bio->bio_buf; 1536 int wccflag = NFSV3_WCCRATTR; 1537 int iomode = NFSV3WRITE_FILESYNC; 1538 int commit; 1539 int rlen; 1540 int error; 1541 int len = bp->b_resid; /* b_resid was set to shortened length */ 1542 u_int32_t *tl; 1543 1544 lwkt_gettoken(&nmp->nm_token); 1545 1546 ERROROUT(info->error); 1547 if (info->v3) { 1548 /* 1549 * The write RPC returns a before and after mtime. The 1550 * nfsm_wcc_data() macro checks the before n_mtime 1551 * against the before time and stores the after time 1552 * in the nfsnode's cached vattr and n_mtime field. 1553 * The NRMODIFIED bit will be set if the before 1554 * time did not match the original mtime. 1555 */ 1556 wccflag = NFSV3_WCCCHK; 1557 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag)); 1558 if (error == 0) { 1559 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF)); 1560 rlen = fxdr_unsigned(int, *tl++); 1561 if (rlen == 0) { 1562 error = NFSERR_IO; 1563 m_freem(info->mrep); 1564 info->mrep = NULL; 1565 goto nfsmout; 1566 } else if (rlen < len) { 1567 #if 0 1568 /* 1569 * XXX what do we do here? 1570 */ 1571 backup = len - rlen; 1572 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup; 1573 uiop->uio_iov->iov_len += backup; 1574 uiop->uio_offset -= backup; 1575 uiop->uio_resid += backup; 1576 len = rlen; 1577 #endif 1578 } 1579 commit = fxdr_unsigned(int, *tl++); 1580 1581 /* 1582 * Return the lowest committment level 1583 * obtained by any of the RPCs. 1584 */ 1585 if (iomode == NFSV3WRITE_FILESYNC) 1586 iomode = commit; 1587 else if (iomode == NFSV3WRITE_DATASYNC && 1588 commit == NFSV3WRITE_UNSTABLE) 1589 iomode = commit; 1590 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){ 1591 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); 1592 nmp->nm_state |= NFSSTA_HASWRITEVERF; 1593 } else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) { 1594 info->info_writerpc.must_commit = 1; 1595 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); 1596 } 1597 } 1598 } else { 1599 ERROROUT(nfsm_loadattr(info, info->vp, NULL)); 1600 } 1601 m_freem(info->mrep); 1602 info->mrep = NULL; 1603 len = 0; 1604 nfsmout: 1605 if (info->vp->v_mount->mnt_flag & MNT_ASYNC) 1606 iomode = NFSV3WRITE_FILESYNC; 1607 bp->b_resid = len; 1608 1609 /* 1610 * End of RPC. Now clean up the bp. 1611 * 1612 * We no longer enable write clustering for commit operations, 1613 * See around line 1157 for a more detailed comment. 1614 */ 1615 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1616 bp->b_flags |= B_NEEDCOMMIT; 1617 #if 0 1618 /* XXX do not enable commit clustering */ 1619 if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount) 1620 bp->b_flags |= B_CLUSTEROK; 1621 #endif 1622 } else { 1623 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1624 } 1625 1626 /* 1627 * For an interrupted write, the buffer is still valid 1628 * and the write hasn't been pushed to the server yet, 1629 * so we can't set B_ERROR and report the interruption 1630 * by setting B_EINTR. For the async case, B_EINTR 1631 * is not relevant, so the rpc attempt is essentially 1632 * a noop. For the case of a V3 write rpc not being 1633 * committed to stable storage, the block is still 1634 * dirty and requires either a commit rpc or another 1635 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1636 * the block is reused. This is indicated by setting 1637 * the B_DELWRI and B_NEEDCOMMIT flags. 1638 * 1639 * If the buffer is marked B_PAGING, it does not reside on 1640 * the vp's paging queues so we cannot call bdirty(). The 1641 * bp in this case is not an NFS cache block so we should 1642 * be safe. XXX 1643 */ 1644 if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1645 crit_enter(); 1646 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1647 if ((bp->b_flags & B_PAGING) == 0) 1648 bdirty(bp); 1649 if (error) 1650 bp->b_flags |= B_EINTR; 1651 crit_exit(); 1652 } else { 1653 if (error) { 1654 bp->b_flags |= B_ERROR; 1655 bp->b_error = np->n_error = error; 1656 np->n_flag |= NWRITEERR; 1657 } 1658 bp->b_dirtyoff = bp->b_dirtyend = 0; 1659 } 1660 if (info->info_writerpc.must_commit) 1661 nfs_clearcommit(info->vp->v_mount); 1662 lwkt_reltoken(&nmp->nm_token); 1663 1664 kfree(info, M_NFSREQ); 1665 if (error) { 1666 bp->b_flags |= B_ERROR; 1667 bp->b_error = error; 1668 } 1669 biodone(bio); 1670 } 1671 1672 /* 1673 * Nfs Version 3 commit rpc - BIO version 1674 * 1675 * This function issues the commit rpc and will chain to a write 1676 * rpc if necessary. 1677 */ 1678 void 1679 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio) 1680 { 1681 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1682 struct buf *bp = bio->bio_buf; 1683 struct nfsm_info *info; 1684 int error = 0; 1685 u_int32_t *tl; 1686 1687 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 1688 bp->b_dirtyoff = bp->b_dirtyend = 0; 1689 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1690 bp->b_resid = 0; 1691 biodone(bio); 1692 return; 1693 } 1694 1695 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1696 info->mrep = NULL; 1697 info->v3 = 1; 1698 1699 nfsstats.rpccnt[NFSPROC_COMMIT]++; 1700 nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1)); 1701 ERROROUT(nfsm_fhtom(info, vp)); 1702 tl = nfsm_build(info, 3 * NFSX_UNSIGNED); 1703 txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl); 1704 tl += 2; 1705 *tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff); 1706 info->bio = bio; 1707 info->done = nfs_commitrpc_bio_done; 1708 nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL, 1709 nfs_vpcred(vp, ND_WRITE)); 1710 return; 1711 nfsmout: 1712 /* 1713 * Chain to write RPC on (early) error 1714 */ 1715 kfree(info, M_NFSREQ); 1716 nfs_writerpc_bio(vp, bio); 1717 } 1718 1719 static void 1720 nfs_commitrpc_bio_done(nfsm_info_t info) 1721 { 1722 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1723 struct bio *bio = info->bio; 1724 struct buf *bp = bio->bio_buf; 1725 u_int32_t *tl; 1726 int wccflag = NFSV3_WCCRATTR; 1727 int error = 0; 1728 1729 lwkt_gettoken(&nmp->nm_token); 1730 1731 ERROROUT(info->error); 1732 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag)); 1733 if (error == 0) { 1734 NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF)); 1735 if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) { 1736 bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF); 1737 error = NFSERR_STALEWRITEVERF; 1738 } 1739 } 1740 m_freem(info->mrep); 1741 info->mrep = NULL; 1742 1743 /* 1744 * On completion we must chain to a write bio if an 1745 * error occurred. 1746 */ 1747 nfsmout: 1748 if (error == 0) { 1749 bp->b_dirtyoff = bp->b_dirtyend = 0; 1750 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1751 bp->b_resid = 0; 1752 biodone(bio); 1753 } else { 1754 nfs_writerpc_bio(info->vp, bio); 1755 } 1756 kfree(info, M_NFSREQ); 1757 lwkt_reltoken(&nmp->nm_token); 1758 } 1759 1760