xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 333227be)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.18 2004/10/12 19:21:01 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/buf2.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include "rpcv2.h"
62 #include "nfsproto.h"
63 #include "nfs.h"
64 #include "nfsmount.h"
65 #include "nqnfs.h"
66 #include "nfsnode.h"
67 
68 static struct buf *nfs_getcacheblk (struct vnode *vp, daddr_t bn, int size,
69 					struct thread *td);
70 
71 extern int nfs_numasync;
72 extern int nfs_pbuf_freecnt;
73 extern struct nfsstats nfsstats;
74 
75 /*
76  * Vnode op for VM getpages.
77  *
78  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
79  *		int a_reqpage, vm_ooffset_t a_offset)
80  */
81 int
82 nfs_getpages(struct vop_getpages_args *ap)
83 {
84 	struct thread *td = curthread;		/* XXX */
85 	int i, error, nextoff, size, toff, count, npages;
86 	struct uio uio;
87 	struct iovec iov;
88 	vm_offset_t kva;
89 	struct vnode *vp;
90 	struct nfsmount *nmp;
91 	vm_page_t *pages;
92 	vm_page_t m;
93 	struct msf_buf *msf;
94 
95 	vp = ap->a_vp;
96 	nmp = VFSTONFS(vp->v_mount);
97 	pages = ap->a_m;
98 	count = ap->a_count;
99 
100 	if (vp->v_object == NULL) {
101 		printf("nfs_getpages: called with non-merged cache vnode??\n");
102 		return VM_PAGER_ERROR;
103 	}
104 
105 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
106 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
107 		(void)nfs_fsinfo(nmp, vp, td);
108 
109 	npages = btoc(count);
110 
111 	/*
112 	 * NOTE that partially valid pages may occur in cases other
113 	 * then file EOF, such as when a file is partially written and
114 	 * ftruncate()-extended to a larger size.   It is also possible
115 	 * for the valid bits to be set on garbage beyond the file EOF and
116 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
117 	 * occur due to vtruncbuf() and the buffer cache's handling of
118 	 * pages which 'straddle' buffers or when b_bufsize is not a
119 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
120 	 * clear the extra bits.  This kind of situation occurs when you
121 	 * make a small write() (m->valid == 0x03) and then mmap() and
122 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
123 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
124 	 *
125 	 * This is combined with the possibility that the pages are partially
126 	 * dirty or that there is a buffer backing the pages that is dirty
127 	 * (even if m->dirty is 0).
128 	 *
129 	 * To solve this problem several hacks have been made:  (1) NFS
130 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
131 	 * (2) The buffer cache, when invalidating an NFS buffer, will
132 	 * disregard the buffer's fragmentory b_bufsize and invalidate
133 	 * the whole page rather then just the piece the buffer owns.
134 	 *
135 	 * This allows us to assume that a partially valid page found here
136 	 * is fully valid (vm_fault will zero'd out areas of the page not
137 	 * marked as valid).
138 	 */
139 	m = pages[ap->a_reqpage];
140 	if (m->valid != 0) {
141 		for (i = 0; i < npages; ++i) {
142 			if (i != ap->a_reqpage)
143 				vnode_pager_freepage(pages[i]);
144 		}
145 		return(0);
146 	}
147 
148 	/*
149 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
150 	 */
151 	msf = msf_buf_alloc(pages, npages, 0);
152 	kva = msf_buf_kva(msf);
153 
154 	iov.iov_base = (caddr_t) kva;
155 	iov.iov_len = count;
156 	uio.uio_iov = &iov;
157 	uio.uio_iovcnt = 1;
158 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
159 	uio.uio_resid = count;
160 	uio.uio_segflg = UIO_SYSSPACE;
161 	uio.uio_rw = UIO_READ;
162 	uio.uio_td = td;
163 
164 	error = nfs_readrpc(vp, &uio);
165 	msf_buf_free(msf);
166 
167 	if (error && (uio.uio_resid == count)) {
168 		printf("nfs_getpages: error %d\n", error);
169 		for (i = 0; i < npages; ++i) {
170 			if (i != ap->a_reqpage)
171 				vnode_pager_freepage(pages[i]);
172 		}
173 		return VM_PAGER_ERROR;
174 	}
175 
176 	/*
177 	 * Calculate the number of bytes read and validate only that number
178 	 * of bytes.  Note that due to pending writes, size may be 0.  This
179 	 * does not mean that the remaining data is invalid!
180 	 */
181 
182 	size = count - uio.uio_resid;
183 
184 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
185 		nextoff = toff + PAGE_SIZE;
186 		m = pages[i];
187 
188 		m->flags &= ~PG_ZERO;
189 
190 		if (nextoff <= size) {
191 			/*
192 			 * Read operation filled an entire page
193 			 */
194 			m->valid = VM_PAGE_BITS_ALL;
195 			vm_page_undirty(m);
196 		} else if (size > toff) {
197 			/*
198 			 * Read operation filled a partial page.
199 			 */
200 			m->valid = 0;
201 			vm_page_set_validclean(m, 0, size - toff);
202 			/* handled by vm_fault now	  */
203 			/* vm_page_zero_invalid(m, TRUE); */
204 		} else {
205 			/*
206 			 * Read operation was short.  If no error occured
207 			 * we may have hit a zero-fill section.   We simply
208 			 * leave valid set to 0.
209 			 */
210 			;
211 		}
212 		if (i != ap->a_reqpage) {
213 			/*
214 			 * Whether or not to leave the page activated is up in
215 			 * the air, but we should put the page on a page queue
216 			 * somewhere (it already is in the object).  Result:
217 			 * It appears that emperical results show that
218 			 * deactivating pages is best.
219 			 */
220 
221 			/*
222 			 * Just in case someone was asking for this page we
223 			 * now tell them that it is ok to use.
224 			 */
225 			if (!error) {
226 				if (m->flags & PG_WANTED)
227 					vm_page_activate(m);
228 				else
229 					vm_page_deactivate(m);
230 				vm_page_wakeup(m);
231 			} else {
232 				vnode_pager_freepage(m);
233 			}
234 		}
235 	}
236 	return 0;
237 }
238 
239 /*
240  * Vnode op for VM putpages.
241  *
242  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
243  *		int *a_rtvals, vm_ooffset_t a_offset)
244  */
245 int
246 nfs_putpages(struct vop_putpages_args *ap)
247 {
248 	struct thread *td = curthread;
249 	struct uio uio;
250 	struct iovec iov;
251 	vm_offset_t kva;
252 	int iomode, must_commit, i, error, npages, count;
253 	off_t offset;
254 	int *rtvals;
255 	struct vnode *vp;
256 	struct nfsmount *nmp;
257 	struct nfsnode *np;
258 	vm_page_t *pages;
259 	struct msf_buf *msf;
260 
261 	vp = ap->a_vp;
262 	np = VTONFS(vp);
263 	nmp = VFSTONFS(vp->v_mount);
264 	pages = ap->a_m;
265 	count = ap->a_count;
266 	rtvals = ap->a_rtvals;
267 	npages = btoc(count);
268 	offset = IDX_TO_OFF(pages[0]->pindex);
269 
270 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
271 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
272 		(void)nfs_fsinfo(nmp, vp, td);
273 
274 	for (i = 0; i < npages; i++) {
275 		rtvals[i] = VM_PAGER_AGAIN;
276 	}
277 
278 	/*
279 	 * When putting pages, do not extend file past EOF.
280 	 */
281 
282 	if (offset + count > np->n_size) {
283 		count = np->n_size - offset;
284 		if (count < 0)
285 			count = 0;
286 	}
287 
288 	/*
289 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
290 	 */
291 	msf = msf_buf_alloc(pages, npages, 0);
292 	kva = msf_buf_kva(msf);
293 
294 	iov.iov_base = (caddr_t) kva;
295 	iov.iov_len = count;
296 	uio.uio_iov = &iov;
297 	uio.uio_iovcnt = 1;
298 	uio.uio_offset = offset;
299 	uio.uio_resid = count;
300 	uio.uio_segflg = UIO_SYSSPACE;
301 	uio.uio_rw = UIO_WRITE;
302 	uio.uio_td = td;
303 
304 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
305 	    iomode = NFSV3WRITE_UNSTABLE;
306 	else
307 	    iomode = NFSV3WRITE_FILESYNC;
308 
309 	error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
310 
311 	msf_buf_free(msf);
312 
313 	if (!error) {
314 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
315 		for (i = 0; i < nwritten; i++) {
316 			rtvals[i] = VM_PAGER_OK;
317 			vm_page_undirty(pages[i]);
318 		}
319 		if (must_commit)
320 			nfs_clearcommit(vp->v_mount);
321 	}
322 	return rtvals[0];
323 }
324 
325 /*
326  * Vnode op for read using bio
327  */
328 int
329 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
330 {
331 	struct nfsnode *np = VTONFS(vp);
332 	int biosize, i;
333 	struct buf *bp = 0, *rabp;
334 	struct vattr vattr;
335 	struct thread *td;
336 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
337 	daddr_t lbn, rabn;
338 	int bcount;
339 	int seqcount;
340 	int nra, error = 0, n = 0, on = 0;
341 
342 #ifdef DIAGNOSTIC
343 	if (uio->uio_rw != UIO_READ)
344 		panic("nfs_read mode");
345 #endif
346 	if (uio->uio_resid == 0)
347 		return (0);
348 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
349 		return (EINVAL);
350 	td = uio->uio_td;
351 
352 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
353 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
354 		(void)nfs_fsinfo(nmp, vp, td);
355 	if (vp->v_type != VDIR &&
356 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
357 		return (EFBIG);
358 	biosize = vp->v_mount->mnt_stat.f_iosize;
359 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
360 	/*
361 	 * For nfs, cache consistency can only be maintained approximately.
362 	 * Although RFC1094 does not specify the criteria, the following is
363 	 * believed to be compatible with the reference port.
364 	 * For nqnfs, full cache consistency is maintained within the loop.
365 	 * For nfs:
366 	 * If the file's modify time on the server has changed since the
367 	 * last read rpc or you have written to the file,
368 	 * you may have lost data cache consistency with the
369 	 * server, so flush all of the file's data out of the cache.
370 	 * Then force a getattr rpc to ensure that you have up to date
371 	 * attributes.
372 	 * NB: This implies that cache data can be read when up to
373 	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
374 	 * attributes this could be forced by setting n_attrstamp to 0 before
375 	 * the VOP_GETATTR() call.
376 	 */
377 	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
378 		if (np->n_flag & NMODIFIED) {
379 			if (vp->v_type != VREG) {
380 				if (vp->v_type != VDIR)
381 					panic("nfs: bioread, not dir");
382 				nfs_invaldir(vp);
383 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
384 				if (error)
385 					return (error);
386 			}
387 			np->n_attrstamp = 0;
388 			error = VOP_GETATTR(vp, &vattr, td);
389 			if (error)
390 				return (error);
391 			np->n_mtime = vattr.va_mtime.tv_sec;
392 		} else {
393 			error = VOP_GETATTR(vp, &vattr, td);
394 			if (error)
395 				return (error);
396 			if ((np->n_flag & NSIZECHANGED)
397 			    || np->n_mtime != vattr.va_mtime.tv_sec) {
398 				if (vp->v_type == VDIR)
399 					nfs_invaldir(vp);
400 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
401 				if (error)
402 					return (error);
403 				np->n_mtime = vattr.va_mtime.tv_sec;
404 				np->n_flag &= ~NSIZECHANGED;
405 			}
406 		}
407 	}
408 	do {
409 
410 	    /*
411 	     * Get a valid lease. If cached data is stale, flush it.
412 	     */
413 	    if (nmp->nm_flag & NFSMNT_NQNFS) {
414 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
415 		    do {
416 			error = nqnfs_getlease(vp, ND_READ, td);
417 		    } while (error == NQNFS_EXPIRED);
418 		    if (error)
419 			return (error);
420 		    if (np->n_lrev != np->n_brev ||
421 			(np->n_flag & NQNFSNONCACHE) ||
422 			((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
423 			if (vp->v_type == VDIR)
424 			    nfs_invaldir(vp);
425 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
426 			if (error)
427 			    return (error);
428 			np->n_brev = np->n_lrev;
429 		    }
430 		} else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
431 		    nfs_invaldir(vp);
432 		    error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
433 		    if (error)
434 			return (error);
435 		}
436 	    }
437 	    if (np->n_flag & NQNFSNONCACHE) {
438 		switch (vp->v_type) {
439 		case VREG:
440 			return (nfs_readrpc(vp, uio));
441 		case VLNK:
442 			return (nfs_readlinkrpc(vp, uio));
443 		case VDIR:
444 			break;
445 		default:
446 			printf(" NQNFSNONCACHE: type %x unexpected\n",
447 				vp->v_type);
448 		};
449 	    }
450 	    switch (vp->v_type) {
451 	    case VREG:
452 		nfsstats.biocache_reads++;
453 		lbn = uio->uio_offset / biosize;
454 		on = uio->uio_offset & (biosize - 1);
455 
456 		/*
457 		 * Start the read ahead(s), as required.
458 		 */
459 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
460 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
461 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
462 			rabn = lbn + 1 + nra;
463 			if (!incore(vp, rabn)) {
464 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
465 			    if (!rabp)
466 				return (EINTR);
467 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
468 				rabp->b_flags |= (B_READ | B_ASYNC);
469 				vfs_busy_pages(rabp, 0);
470 				if (nfs_asyncio(rabp, td)) {
471 				    rabp->b_flags |= B_INVAL|B_ERROR;
472 				    vfs_unbusy_pages(rabp);
473 				    brelse(rabp);
474 				    break;
475 				}
476 			    } else {
477 				brelse(rabp);
478 			    }
479 			}
480 		    }
481 		}
482 
483 		/*
484 		 * Obtain the buffer cache block.  Figure out the buffer size
485 		 * when we are at EOF.  If we are modifying the size of the
486 		 * buffer based on an EOF condition we need to hold
487 		 * nfs_rslock() through obtaining the buffer to prevent
488 		 * a potential writer-appender from messing with n_size.
489 		 * Otherwise we may accidently truncate the buffer and
490 		 * lose dirty data.
491 		 *
492 		 * Note that bcount is *not* DEV_BSIZE aligned.
493 		 */
494 
495 again:
496 		bcount = biosize;
497 		if ((off_t)lbn * biosize >= np->n_size) {
498 			bcount = 0;
499 		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
500 			bcount = np->n_size - (off_t)lbn * biosize;
501 		}
502 		if (bcount != biosize) {
503 			switch(nfs_rslock(np, td)) {
504 			case ENOLCK:
505 				goto again;
506 				/* not reached */
507 			case EINTR:
508 			case ERESTART:
509 				return(EINTR);
510 				/* not reached */
511 			default:
512 				break;
513 			}
514 		}
515 
516 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
517 
518 		if (bcount != biosize)
519 			nfs_rsunlock(np, td);
520 		if (!bp)
521 			return (EINTR);
522 
523 		/*
524 		 * If B_CACHE is not set, we must issue the read.  If this
525 		 * fails, we return an error.
526 		 */
527 
528 		if ((bp->b_flags & B_CACHE) == 0) {
529 		    bp->b_flags |= B_READ;
530 		    vfs_busy_pages(bp, 0);
531 		    error = nfs_doio(bp, td);
532 		    if (error) {
533 			brelse(bp);
534 			return (error);
535 		    }
536 		}
537 
538 		/*
539 		 * on is the offset into the current bp.  Figure out how many
540 		 * bytes we can copy out of the bp.  Note that bcount is
541 		 * NOT DEV_BSIZE aligned.
542 		 *
543 		 * Then figure out how many bytes we can copy into the uio.
544 		 */
545 
546 		n = 0;
547 		if (on < bcount)
548 			n = min((unsigned)(bcount - on), uio->uio_resid);
549 		break;
550 	    case VLNK:
551 		nfsstats.biocache_readlinks++;
552 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
553 		if (!bp)
554 			return (EINTR);
555 		if ((bp->b_flags & B_CACHE) == 0) {
556 		    bp->b_flags |= B_READ;
557 		    vfs_busy_pages(bp, 0);
558 		    error = nfs_doio(bp, td);
559 		    if (error) {
560 			bp->b_flags |= B_ERROR;
561 			brelse(bp);
562 			return (error);
563 		    }
564 		}
565 		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
566 		on = 0;
567 		break;
568 	    case VDIR:
569 		nfsstats.biocache_readdirs++;
570 		if (np->n_direofoffset
571 		    && uio->uio_offset >= np->n_direofoffset) {
572 		    return (0);
573 		}
574 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
575 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
576 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
577 		if (!bp)
578 		    return (EINTR);
579 		if ((bp->b_flags & B_CACHE) == 0) {
580 		    bp->b_flags |= B_READ;
581 		    vfs_busy_pages(bp, 0);
582 		    error = nfs_doio(bp, td);
583 		    if (error) {
584 			    brelse(bp);
585 		    }
586 		    while (error == NFSERR_BAD_COOKIE) {
587 			printf("got bad cookie vp %p bp %p\n", vp, bp);
588 			nfs_invaldir(vp);
589 			error = nfs_vinvalbuf(vp, 0, td, 1);
590 			/*
591 			 * Yuck! The directory has been modified on the
592 			 * server. The only way to get the block is by
593 			 * reading from the beginning to get all the
594 			 * offset cookies.
595 			 *
596 			 * Leave the last bp intact unless there is an error.
597 			 * Loop back up to the while if the error is another
598 			 * NFSERR_BAD_COOKIE (double yuch!).
599 			 */
600 			for (i = 0; i <= lbn && !error; i++) {
601 			    if (np->n_direofoffset
602 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
603 				    return (0);
604 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
605 			    if (!bp)
606 				return (EINTR);
607 			    if ((bp->b_flags & B_CACHE) == 0) {
608 				    bp->b_flags |= B_READ;
609 				    vfs_busy_pages(bp, 0);
610 				    error = nfs_doio(bp, td);
611 				    /*
612 				     * no error + B_INVAL == directory EOF,
613 				     * use the block.
614 				     */
615 				    if (error == 0 && (bp->b_flags & B_INVAL))
616 					    break;
617 			    }
618 			    /*
619 			     * An error will throw away the block and the
620 			     * for loop will break out.  If no error and this
621 			     * is not the block we want, we throw away the
622 			     * block and go for the next one via the for loop.
623 			     */
624 			    if (error || i < lbn)
625 				    brelse(bp);
626 			}
627 		    }
628 		    /*
629 		     * The above while is repeated if we hit another cookie
630 		     * error.  If we hit an error and it wasn't a cookie error,
631 		     * we give up.
632 		     */
633 		    if (error)
634 			    return (error);
635 		}
636 
637 		/*
638 		 * If not eof and read aheads are enabled, start one.
639 		 * (You need the current block first, so that you have the
640 		 *  directory offset cookie of the next block.)
641 		 */
642 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
643 		    (bp->b_flags & B_INVAL) == 0 &&
644 		    (np->n_direofoffset == 0 ||
645 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
646 		    !(np->n_flag & NQNFSNONCACHE) &&
647 		    !incore(vp, lbn + 1)) {
648 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
649 			if (rabp) {
650 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
651 				rabp->b_flags |= (B_READ | B_ASYNC);
652 				vfs_busy_pages(rabp, 0);
653 				if (nfs_asyncio(rabp, td)) {
654 				    rabp->b_flags |= B_INVAL|B_ERROR;
655 				    vfs_unbusy_pages(rabp);
656 				    brelse(rabp);
657 				}
658 			    } else {
659 				brelse(rabp);
660 			    }
661 			}
662 		}
663 		/*
664 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
665 		 * chopped for the EOF condition, we cannot tell how large
666 		 * NFS directories are going to be until we hit EOF.  So
667 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
668 		 * it just so happens that b_resid will effectively chop it
669 		 * to EOF.  *BUT* this information is lost if the buffer goes
670 		 * away and is reconstituted into a B_CACHE state ( due to
671 		 * being VMIO ) later.  So we keep track of the directory eof
672 		 * in np->n_direofoffset and chop it off as an extra step
673 		 * right here.
674 		 */
675 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
676 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
677 			n = np->n_direofoffset - uio->uio_offset;
678 		break;
679 	    default:
680 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
681 		break;
682 	    };
683 
684 	    if (n > 0) {
685 		    error = uiomove(bp->b_data + on, (int)n, uio);
686 	    }
687 	    switch (vp->v_type) {
688 	    case VREG:
689 		break;
690 	    case VLNK:
691 		n = 0;
692 		break;
693 	    case VDIR:
694 		/*
695 		 * Invalidate buffer if caching is disabled, forcing a
696 		 * re-read from the remote later.
697 		 */
698 		if (np->n_flag & NQNFSNONCACHE)
699 			bp->b_flags |= B_INVAL;
700 		break;
701 	    default:
702 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
703 	    }
704 	    brelse(bp);
705 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
706 	return (error);
707 }
708 
709 /*
710  * Vnode op for write using bio
711  *
712  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
713  *	     struct ucred *a_cred)
714  */
715 int
716 nfs_write(struct vop_write_args *ap)
717 {
718 	int biosize;
719 	struct uio *uio = ap->a_uio;
720 	struct thread *td = uio->uio_td;
721 	struct vnode *vp = ap->a_vp;
722 	struct nfsnode *np = VTONFS(vp);
723 	int ioflag = ap->a_ioflag;
724 	struct buf *bp;
725 	struct vattr vattr;
726 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
727 	daddr_t lbn;
728 	int bcount;
729 	int n, on, error = 0, iomode, must_commit;
730 	int haverslock = 0;
731 
732 #ifdef DIAGNOSTIC
733 	if (uio->uio_rw != UIO_WRITE)
734 		panic("nfs_write mode");
735 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
736 		panic("nfs_write proc");
737 #endif
738 	if (vp->v_type != VREG)
739 		return (EIO);
740 	if (np->n_flag & NWRITEERR) {
741 		np->n_flag &= ~NWRITEERR;
742 		return (np->n_error);
743 	}
744 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
745 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
746 		(void)nfs_fsinfo(nmp, vp, td);
747 
748 	/*
749 	 * Synchronously flush pending buffers if we are in synchronous
750 	 * mode or if we are appending.
751 	 */
752 	if (ioflag & (IO_APPEND | IO_SYNC)) {
753 		if (np->n_flag & NMODIFIED) {
754 			np->n_attrstamp = 0;
755 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
756 			if (error)
757 				return (error);
758 		}
759 	}
760 
761 	/*
762 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
763 	 * get the append lock.
764 	 */
765 restart:
766 	if (ioflag & IO_APPEND) {
767 		np->n_attrstamp = 0;
768 		error = VOP_GETATTR(vp, &vattr, td);
769 		if (error)
770 			return (error);
771 		uio->uio_offset = np->n_size;
772 	}
773 
774 	if (uio->uio_offset < 0)
775 		return (EINVAL);
776 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
777 		return (EFBIG);
778 	if (uio->uio_resid == 0)
779 		return (0);
780 
781 	/*
782 	 * We need to obtain the rslock if we intend to modify np->n_size
783 	 * in order to guarentee the append point with multiple contending
784 	 * writers, to guarentee that no other appenders modify n_size
785 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
786 	 * accidently truncating data written by another appender due to
787 	 * the race), and to ensure that the buffer is populated prior to
788 	 * our extending of the file.  We hold rslock through the entire
789 	 * operation.
790 	 *
791 	 * Note that we do not synchronize the case where someone truncates
792 	 * the file while we are appending to it because attempting to lock
793 	 * this case may deadlock other parts of the system unexpectedly.
794 	 */
795 	if ((ioflag & IO_APPEND) ||
796 	    uio->uio_offset + uio->uio_resid > np->n_size) {
797 		switch(nfs_rslock(np, td)) {
798 		case ENOLCK:
799 			goto restart;
800 			/* not reached */
801 		case EINTR:
802 		case ERESTART:
803 			return(EINTR);
804 			/* not reached */
805 		default:
806 			break;
807 		}
808 		haverslock = 1;
809 	}
810 
811 	/*
812 	 * Maybe this should be above the vnode op call, but so long as
813 	 * file servers have no limits, i don't think it matters
814 	 */
815 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
816 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
817 		psignal(td->td_proc, SIGXFSZ);
818 		if (haverslock)
819 			nfs_rsunlock(np, td);
820 		return (EFBIG);
821 	}
822 
823 	biosize = vp->v_mount->mnt_stat.f_iosize;
824 
825 	do {
826 		/*
827 		 * Check for a valid write lease.
828 		 */
829 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
830 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
831 			do {
832 				error = nqnfs_getlease(vp, ND_WRITE, td);
833 			} while (error == NQNFS_EXPIRED);
834 			if (error)
835 				break;
836 			if (np->n_lrev != np->n_brev ||
837 			    (np->n_flag & NQNFSNONCACHE)) {
838 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
839 				if (error)
840 					break;
841 				np->n_brev = np->n_lrev;
842 			}
843 		}
844 		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
845 		    iomode = NFSV3WRITE_FILESYNC;
846 		    error = nfs_writerpc(vp, uio, &iomode, &must_commit);
847 		    if (must_commit)
848 			    nfs_clearcommit(vp->v_mount);
849 		    break;
850 		}
851 		nfsstats.biocache_writes++;
852 		lbn = uio->uio_offset / biosize;
853 		on = uio->uio_offset & (biosize-1);
854 		n = min((unsigned)(biosize - on), uio->uio_resid);
855 again:
856 		/*
857 		 * Handle direct append and file extension cases, calculate
858 		 * unaligned buffer size.
859 		 */
860 
861 		if (uio->uio_offset == np->n_size && n) {
862 			/*
863 			 * Get the buffer (in its pre-append state to maintain
864 			 * B_CACHE if it was previously set).  Resize the
865 			 * nfsnode after we have locked the buffer to prevent
866 			 * readers from reading garbage.
867 			 */
868 			bcount = on;
869 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
870 
871 			if (bp != NULL) {
872 				long save;
873 
874 				np->n_size = uio->uio_offset + n;
875 				np->n_flag |= NMODIFIED;
876 				vnode_pager_setsize(vp, np->n_size);
877 
878 				save = bp->b_flags & B_CACHE;
879 				bcount += n;
880 				allocbuf(bp, bcount);
881 				bp->b_flags |= save;
882 			}
883 		} else {
884 			/*
885 			 * Obtain the locked cache block first, and then
886 			 * adjust the file's size as appropriate.
887 			 */
888 			bcount = on + n;
889 			if ((off_t)lbn * biosize + bcount < np->n_size) {
890 				if ((off_t)(lbn + 1) * biosize < np->n_size)
891 					bcount = biosize;
892 				else
893 					bcount = np->n_size - (off_t)lbn * biosize;
894 			}
895 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
896 			if (uio->uio_offset + n > np->n_size) {
897 				np->n_size = uio->uio_offset + n;
898 				np->n_flag |= NMODIFIED;
899 				vnode_pager_setsize(vp, np->n_size);
900 			}
901 		}
902 
903 		if (!bp) {
904 			error = EINTR;
905 			break;
906 		}
907 
908 		/*
909 		 * Issue a READ if B_CACHE is not set.  In special-append
910 		 * mode, B_CACHE is based on the buffer prior to the write
911 		 * op and is typically set, avoiding the read.  If a read
912 		 * is required in special append mode, the server will
913 		 * probably send us a short-read since we extended the file
914 		 * on our end, resulting in b_resid == 0 and, thusly,
915 		 * B_CACHE getting set.
916 		 *
917 		 * We can also avoid issuing the read if the write covers
918 		 * the entire buffer.  We have to make sure the buffer state
919 		 * is reasonable in this case since we will not be initiating
920 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
921 		 * more information.
922 		 *
923 		 * B_CACHE may also be set due to the buffer being cached
924 		 * normally.
925 		 */
926 
927 		if (on == 0 && n == bcount) {
928 			bp->b_flags |= B_CACHE;
929 			bp->b_flags &= ~(B_ERROR | B_INVAL);
930 		}
931 
932 		if ((bp->b_flags & B_CACHE) == 0) {
933 			bp->b_flags |= B_READ;
934 			vfs_busy_pages(bp, 0);
935 			error = nfs_doio(bp, td);
936 			if (error) {
937 				brelse(bp);
938 				break;
939 			}
940 		}
941 		if (!bp) {
942 			error = EINTR;
943 			break;
944 		}
945 		np->n_flag |= NMODIFIED;
946 
947 		/*
948 		 * If dirtyend exceeds file size, chop it down.  This should
949 		 * not normally occur but there is an append race where it
950 		 * might occur XXX, so we log it.
951 		 *
952 		 * If the chopping creates a reverse-indexed or degenerate
953 		 * situation with dirtyoff/end, we 0 both of them.
954 		 */
955 
956 		if (bp->b_dirtyend > bcount) {
957 			printf("NFS append race @%lx:%d\n",
958 			    (long)bp->b_blkno * DEV_BSIZE,
959 			    bp->b_dirtyend - bcount);
960 			bp->b_dirtyend = bcount;
961 		}
962 
963 		if (bp->b_dirtyoff >= bp->b_dirtyend)
964 			bp->b_dirtyoff = bp->b_dirtyend = 0;
965 
966 		/*
967 		 * If the new write will leave a contiguous dirty
968 		 * area, just update the b_dirtyoff and b_dirtyend,
969 		 * otherwise force a write rpc of the old dirty area.
970 		 *
971 		 * While it is possible to merge discontiguous writes due to
972 		 * our having a B_CACHE buffer ( and thus valid read data
973 		 * for the hole), we don't because it could lead to
974 		 * significant cache coherency problems with multiple clients,
975 		 * especially if locking is implemented later on.
976 		 *
977 		 * as an optimization we could theoretically maintain
978 		 * a linked list of discontinuous areas, but we would still
979 		 * have to commit them separately so there isn't much
980 		 * advantage to it except perhaps a bit of asynchronization.
981 		 */
982 
983 		if (bp->b_dirtyend > 0 &&
984 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
985 			if (VOP_BWRITE(bp->b_vp, bp) == EINTR) {
986 				error = EINTR;
987 				break;
988 			}
989 			goto again;
990 		}
991 
992 		/*
993 		 * Check for valid write lease and get one as required.
994 		 * In case getblk() and/or bwrite() delayed us.
995 		 */
996 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
997 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
998 			do {
999 				error = nqnfs_getlease(vp, ND_WRITE, td);
1000 			} while (error == NQNFS_EXPIRED);
1001 			if (error) {
1002 				brelse(bp);
1003 				break;
1004 			}
1005 			if (np->n_lrev != np->n_brev ||
1006 			    (np->n_flag & NQNFSNONCACHE)) {
1007 				brelse(bp);
1008 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1009 				if (error)
1010 					break;
1011 				np->n_brev = np->n_lrev;
1012 				goto again;
1013 			}
1014 		}
1015 
1016 		error = uiomove((char *)bp->b_data + on, n, uio);
1017 
1018 		/*
1019 		 * Since this block is being modified, it must be written
1020 		 * again and not just committed.  Since write clustering does
1021 		 * not work for the stage 1 data write, only the stage 2
1022 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1023 		 */
1024 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1025 
1026 		if (error) {
1027 			bp->b_flags |= B_ERROR;
1028 			brelse(bp);
1029 			break;
1030 		}
1031 
1032 		/*
1033 		 * Only update dirtyoff/dirtyend if not a degenerate
1034 		 * condition.
1035 		 */
1036 		if (n) {
1037 			if (bp->b_dirtyend > 0) {
1038 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1039 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1040 			} else {
1041 				bp->b_dirtyoff = on;
1042 				bp->b_dirtyend = on + n;
1043 			}
1044 			vfs_bio_set_validclean(bp, on, n);
1045 		}
1046 		/*
1047 		 * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
1048 		 * filesystem).  XXX also use for loopback NFS mounts.
1049 		 */
1050 		if (ioflag & IO_NOWDRAIN)
1051 			bp->b_flags |= B_NOWDRAIN;
1052 
1053 		/*
1054 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1055 		 *
1056 		 * IO_INVAL appears to be unused.  The idea appears to be
1057 		 * to turn off caching in this case.  Very odd.  XXX
1058 		 */
1059 		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
1060 			if (ioflag & IO_INVAL)
1061 				bp->b_flags |= B_NOCACHE;
1062 			error = VOP_BWRITE(bp->b_vp, bp);
1063 			if (error)
1064 				break;
1065 			if (np->n_flag & NQNFSNONCACHE) {
1066 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1067 				if (error)
1068 					break;
1069 			}
1070 		} else if ((n + on) == biosize &&
1071 			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
1072 			bp->b_flags |= B_ASYNC;
1073 			(void)nfs_writebp(bp, 0, 0);
1074 		} else {
1075 			bdwrite(bp);
1076 		}
1077 	} while (uio->uio_resid > 0 && n > 0);
1078 
1079 	if (haverslock)
1080 		nfs_rsunlock(np, td);
1081 
1082 	return (error);
1083 }
1084 
1085 /*
1086  * Get an nfs cache block.
1087  *
1088  * Allocate a new one if the block isn't currently in the cache
1089  * and return the block marked busy. If the calling process is
1090  * interrupted by a signal for an interruptible mount point, return
1091  * NULL.
1092  *
1093  * The caller must carefully deal with the possible B_INVAL state of
1094  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1095  * indirectly), so synchronous reads can be issued without worrying about
1096  * the B_INVAL state.  We have to be a little more careful when dealing
1097  * with writes (see comments in nfs_write()) when extending a file past
1098  * its EOF.
1099  */
1100 static struct buf *
1101 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1102 {
1103 	struct buf *bp;
1104 	struct mount *mp;
1105 	struct nfsmount *nmp;
1106 
1107 	mp = vp->v_mount;
1108 	nmp = VFSTONFS(mp);
1109 
1110 	if (nmp->nm_flag & NFSMNT_INT) {
1111 		bp = getblk(vp, bn, size, PCATCH, 0);
1112 		while (bp == (struct buf *)0) {
1113 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td))
1114 				return ((struct buf *)0);
1115 			bp = getblk(vp, bn, size, 0, 2 * hz);
1116 		}
1117 	} else {
1118 		bp = getblk(vp, bn, size, 0, 0);
1119 	}
1120 
1121 	if (vp->v_type == VREG) {
1122 		int biosize;
1123 
1124 		biosize = mp->mnt_stat.f_iosize;
1125 		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1126 	}
1127 	return (bp);
1128 }
1129 
1130 /*
1131  * Flush and invalidate all dirty buffers. If another process is already
1132  * doing the flush, just wait for completion.
1133  */
1134 int
1135 nfs_vinvalbuf(struct vnode *vp, int flags,
1136 	      struct thread *td, int intrflg)
1137 {
1138 	struct nfsnode *np = VTONFS(vp);
1139 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1140 	int error = 0, slpflag, slptimeo;
1141 
1142 	if (vp->v_flag & VRECLAIMED)
1143 		return (0);
1144 
1145 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1146 		intrflg = 0;
1147 	if (intrflg) {
1148 		slpflag = PCATCH;
1149 		slptimeo = 2 * hz;
1150 	} else {
1151 		slpflag = 0;
1152 		slptimeo = 0;
1153 	}
1154 	/*
1155 	 * First wait for any other process doing a flush to complete.
1156 	 */
1157 	while (np->n_flag & NFLUSHINPROG) {
1158 		np->n_flag |= NFLUSHWANT;
1159 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1160 		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td))
1161 			return (EINTR);
1162 	}
1163 
1164 	/*
1165 	 * Now, flush as required.
1166 	 */
1167 	np->n_flag |= NFLUSHINPROG;
1168 	error = vinvalbuf(vp, flags, td, slpflag, 0);
1169 	while (error) {
1170 		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
1171 			np->n_flag &= ~NFLUSHINPROG;
1172 			if (np->n_flag & NFLUSHWANT) {
1173 				np->n_flag &= ~NFLUSHWANT;
1174 				wakeup((caddr_t)&np->n_flag);
1175 			}
1176 			return (EINTR);
1177 		}
1178 		error = vinvalbuf(vp, flags, td, 0, slptimeo);
1179 	}
1180 	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1181 	if (np->n_flag & NFLUSHWANT) {
1182 		np->n_flag &= ~NFLUSHWANT;
1183 		wakeup((caddr_t)&np->n_flag);
1184 	}
1185 	return (0);
1186 }
1187 
1188 /*
1189  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1190  * This is mainly to avoid queueing async I/O requests when the nfsiods
1191  * are all hung on a dead server.
1192  *
1193  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1194  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1195  */
1196 int
1197 nfs_asyncio(struct buf *bp, struct thread *td)
1198 {
1199 	struct nfsmount *nmp;
1200 	int i;
1201 	int gotiod;
1202 	int slpflag = 0;
1203 	int slptimeo = 0;
1204 	int error;
1205 
1206 	/*
1207 	 * If no async daemons then return EIO to force caller to run the rpc
1208 	 * synchronously.
1209 	 */
1210 	if (nfs_numasync == 0)
1211 		return (EIO);
1212 
1213 	nmp = VFSTONFS(bp->b_vp->v_mount);
1214 
1215 	/*
1216 	 * Commits are usually short and sweet so lets save some cpu and
1217 	 * leave the async daemons for more important rpc's (such as reads
1218 	 * and writes).
1219 	 */
1220 	if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
1221 	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1222 		return(EIO);
1223 	}
1224 
1225 again:
1226 	if (nmp->nm_flag & NFSMNT_INT)
1227 		slpflag = PCATCH;
1228 	gotiod = FALSE;
1229 
1230 	/*
1231 	 * Find a free iod to process this request.
1232 	 */
1233 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1234 		if (nfs_iodwant[i]) {
1235 			/*
1236 			 * Found one, so wake it up and tell it which
1237 			 * mount to process.
1238 			 */
1239 			NFS_DPF(ASYNCIO,
1240 				("nfs_asyncio: waking iod %d for mount %p\n",
1241 				 i, nmp));
1242 			nfs_iodwant[i] = NULL;
1243 			nfs_iodmount[i] = nmp;
1244 			nmp->nm_bufqiods++;
1245 			wakeup((caddr_t)&nfs_iodwant[i]);
1246 			gotiod = TRUE;
1247 			break;
1248 		}
1249 
1250 	/*
1251 	 * If none are free, we may already have an iod working on this mount
1252 	 * point.  If so, it will process our request.
1253 	 */
1254 	if (!gotiod) {
1255 		if (nmp->nm_bufqiods > 0) {
1256 			NFS_DPF(ASYNCIO,
1257 				("nfs_asyncio: %d iods are already processing mount %p\n",
1258 				 nmp->nm_bufqiods, nmp));
1259 			gotiod = TRUE;
1260 		}
1261 	}
1262 
1263 	/*
1264 	 * If we have an iod which can process the request, then queue
1265 	 * the buffer.
1266 	 */
1267 	if (gotiod) {
1268 		/*
1269 		 * Ensure that the queue never grows too large.  We still want
1270 		 * to asynchronize so we block rather then return EIO.
1271 		 */
1272 		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1273 			NFS_DPF(ASYNCIO,
1274 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1275 			nmp->nm_bufqwant = TRUE;
1276 			error = tsleep(&nmp->nm_bufq, slpflag,
1277 				       "nfsaio", slptimeo);
1278 			if (error) {
1279 				if (nfs_sigintr(nmp, NULL, td))
1280 					return (EINTR);
1281 				if (slpflag == PCATCH) {
1282 					slpflag = 0;
1283 					slptimeo = 2 * hz;
1284 				}
1285 			}
1286 			/*
1287 			 * We might have lost our iod while sleeping,
1288 			 * so check and loop if nescessary.
1289 			 */
1290 			if (nmp->nm_bufqiods == 0) {
1291 				NFS_DPF(ASYNCIO,
1292 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1293 				goto again;
1294 			}
1295 		}
1296 
1297 		if ((bp->b_flags & B_READ) == 0)
1298 			bp->b_flags |= B_WRITEINPROG;
1299 
1300 		BUF_KERNPROC(bp);
1301 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1302 		nmp->nm_bufqlen++;
1303 		return (0);
1304 	}
1305 
1306 	/*
1307 	 * All the iods are busy on other mounts, so return EIO to
1308 	 * force the caller to process the i/o synchronously.
1309 	 */
1310 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1311 	return (EIO);
1312 }
1313 
1314 /*
1315  * Do an I/O operation to/from a cache block. This may be called
1316  * synchronously or from an nfsiod.
1317  *
1318  * NOTE! TD MIGHT BE NULL
1319  */
1320 int
1321 nfs_doio(struct buf *bp, struct thread *td)
1322 {
1323 	struct uio *uiop;
1324 	struct vnode *vp;
1325 	struct nfsnode *np;
1326 	struct nfsmount *nmp;
1327 	int error = 0, iomode, must_commit = 0;
1328 	struct uio uio;
1329 	struct iovec io;
1330 
1331 	vp = bp->b_vp;
1332 	np = VTONFS(vp);
1333 	nmp = VFSTONFS(vp->v_mount);
1334 	uiop = &uio;
1335 	uiop->uio_iov = &io;
1336 	uiop->uio_iovcnt = 1;
1337 	uiop->uio_segflg = UIO_SYSSPACE;
1338 	uiop->uio_td = td;
1339 
1340 	/*
1341 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1342 	 * do this here so we do not have to do it in all the code that
1343 	 * calls us.
1344 	 */
1345 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1346 
1347 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1348 
1349 	/*
1350 	 * Historically, paging was done with physio, but no more.
1351 	 */
1352 	if (bp->b_flags & B_PHYS) {
1353 	    /*
1354 	     * ...though reading /dev/drum still gets us here.
1355 	     */
1356 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1357 	    /* mapping was done by vmapbuf() */
1358 	    io.iov_base = bp->b_data;
1359 	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1360 	    if (bp->b_flags & B_READ) {
1361 		uiop->uio_rw = UIO_READ;
1362 		nfsstats.read_physios++;
1363 		error = nfs_readrpc(vp, uiop);
1364 	    } else {
1365 		int com;
1366 
1367 		iomode = NFSV3WRITE_DATASYNC;
1368 		uiop->uio_rw = UIO_WRITE;
1369 		nfsstats.write_physios++;
1370 		error = nfs_writerpc(vp, uiop, &iomode, &com);
1371 	    }
1372 	    if (error) {
1373 		bp->b_flags |= B_ERROR;
1374 		bp->b_error = error;
1375 	    }
1376 	} else if (bp->b_flags & B_READ) {
1377 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1378 	    io.iov_base = bp->b_data;
1379 	    uiop->uio_rw = UIO_READ;
1380 
1381 	    switch (vp->v_type) {
1382 	    case VREG:
1383 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1384 		nfsstats.read_bios++;
1385 		error = nfs_readrpc(vp, uiop);
1386 
1387 		if (!error) {
1388 		    if (uiop->uio_resid) {
1389 			/*
1390 			 * If we had a short read with no error, we must have
1391 			 * hit a file hole.  We should zero-fill the remainder.
1392 			 * This can also occur if the server hits the file EOF.
1393 			 *
1394 			 * Holes used to be able to occur due to pending
1395 			 * writes, but that is not possible any longer.
1396 			 */
1397 			int nread = bp->b_bcount - uiop->uio_resid;
1398 			int left  = uiop->uio_resid;
1399 
1400 			if (left > 0)
1401 				bzero((char *)bp->b_data + nread, left);
1402 			uiop->uio_resid = 0;
1403 		    }
1404 		}
1405 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1406 			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1407 			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1408 			  np->n_lrev != np->n_brev) ||
1409 			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1410 			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1411 			uprintf("Process killed due to text file modification\n");
1412 			psignal(td->td_proc, SIGKILL);
1413 			PHOLD(td->td_proc);
1414 		}
1415 		break;
1416 	    case VLNK:
1417 		uiop->uio_offset = (off_t)0;
1418 		nfsstats.readlink_bios++;
1419 		error = nfs_readlinkrpc(vp, uiop);
1420 		break;
1421 	    case VDIR:
1422 		nfsstats.readdir_bios++;
1423 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1424 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1425 			error = nfs_readdirplusrpc(vp, uiop);
1426 			if (error == NFSERR_NOTSUPP)
1427 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1428 		}
1429 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1430 			error = nfs_readdirrpc(vp, uiop);
1431 		/*
1432 		 * end-of-directory sets B_INVAL but does not generate an
1433 		 * error.
1434 		 */
1435 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1436 			bp->b_flags |= B_INVAL;
1437 		break;
1438 	    default:
1439 		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1440 		break;
1441 	    };
1442 	    if (error) {
1443 		bp->b_flags |= B_ERROR;
1444 		bp->b_error = error;
1445 	    }
1446 	} else {
1447 	    /*
1448 	     * If we only need to commit, try to commit
1449 	     */
1450 	    if (bp->b_flags & B_NEEDCOMMIT) {
1451 		    int retv;
1452 		    off_t off;
1453 
1454 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1455 		    bp->b_flags |= B_WRITEINPROG;
1456 		    retv = nfs_commit(bp->b_vp, off,
1457 				bp->b_dirtyend - bp->b_dirtyoff, td);
1458 		    bp->b_flags &= ~B_WRITEINPROG;
1459 		    if (retv == 0) {
1460 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1461 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1462 			    bp->b_resid = 0;
1463 			    biodone(bp);
1464 			    return (0);
1465 		    }
1466 		    if (retv == NFSERR_STALEWRITEVERF) {
1467 			    nfs_clearcommit(bp->b_vp->v_mount);
1468 		    }
1469 	    }
1470 
1471 	    /*
1472 	     * Setup for actual write
1473 	     */
1474 
1475 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1476 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1477 
1478 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1479 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1480 		    - bp->b_dirtyoff;
1481 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1482 		    + bp->b_dirtyoff;
1483 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1484 		uiop->uio_rw = UIO_WRITE;
1485 		nfsstats.write_bios++;
1486 
1487 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1488 		    iomode = NFSV3WRITE_UNSTABLE;
1489 		else
1490 		    iomode = NFSV3WRITE_FILESYNC;
1491 
1492 		bp->b_flags |= B_WRITEINPROG;
1493 		error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1494 
1495 		/*
1496 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1497 		 * to cluster the buffers needing commit.  This will allow
1498 		 * the system to submit a single commit rpc for the whole
1499 		 * cluster.  We can do this even if the buffer is not 100%
1500 		 * dirty (relative to the NFS blocksize), so we optimize the
1501 		 * append-to-file-case.
1502 		 *
1503 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1504 		 * cleared because write clustering only works for commit
1505 		 * rpc's, not for the data portion of the write).
1506 		 */
1507 
1508 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1509 		    bp->b_flags |= B_NEEDCOMMIT;
1510 		    if (bp->b_dirtyoff == 0
1511 			&& bp->b_dirtyend == bp->b_bcount)
1512 			bp->b_flags |= B_CLUSTEROK;
1513 		} else {
1514 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1515 		}
1516 		bp->b_flags &= ~B_WRITEINPROG;
1517 
1518 		/*
1519 		 * For an interrupted write, the buffer is still valid
1520 		 * and the write hasn't been pushed to the server yet,
1521 		 * so we can't set B_ERROR and report the interruption
1522 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1523 		 * is not relevant, so the rpc attempt is essentially
1524 		 * a noop.  For the case of a V3 write rpc not being
1525 		 * committed to stable storage, the block is still
1526 		 * dirty and requires either a commit rpc or another
1527 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1528 		 * the block is reused. This is indicated by setting
1529 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1530 		 *
1531 		 * If the buffer is marked B_PAGING, it does not reside on
1532 		 * the vp's paging queues so we cannot call bdirty().  The
1533 		 * bp in this case is not an NFS cache block so we should
1534 		 * be safe. XXX
1535 		 */
1536     		if (error == EINTR
1537 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1538 			int s;
1539 
1540 			s = splbio();
1541 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1542 			if ((bp->b_flags & B_PAGING) == 0) {
1543 			    bdirty(bp);
1544 			    bp->b_flags &= ~B_DONE;
1545 			}
1546 			if (error && (bp->b_flags & B_ASYNC) == 0)
1547 			    bp->b_flags |= B_EINTR;
1548 			splx(s);
1549 	    	} else {
1550 		    if (error) {
1551 			bp->b_flags |= B_ERROR;
1552 			bp->b_error = np->n_error = error;
1553 			np->n_flag |= NWRITEERR;
1554 		    }
1555 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1556 		}
1557 	    } else {
1558 		bp->b_resid = 0;
1559 		biodone(bp);
1560 		return (0);
1561 	    }
1562 	}
1563 	bp->b_resid = uiop->uio_resid;
1564 	if (must_commit)
1565 	    nfs_clearcommit(vp->v_mount);
1566 	biodone(bp);
1567 	return (error);
1568 }
1569 
1570 /*
1571  * Used to aid in handling ftruncate() operations on the NFS client side.
1572  * Truncation creates a number of special problems for NFS.  We have to
1573  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1574  * we have to properly handle VM pages or (potentially dirty) buffers
1575  * that straddle the truncation point.
1576  */
1577 
1578 int
1579 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1580 {
1581 	struct nfsnode *np = VTONFS(vp);
1582 	u_quad_t tsize = np->n_size;
1583 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1584 	int error = 0;
1585 
1586 	np->n_size = nsize;
1587 
1588 	if (np->n_size < tsize) {
1589 		struct buf *bp;
1590 		daddr_t lbn;
1591 		int bufsize;
1592 
1593 		/*
1594 		 * vtruncbuf() doesn't get the buffer overlapping the
1595 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1596 		 * buffer that now needs to be truncated.
1597 		 */
1598 		error = vtruncbuf(vp, td, nsize, biosize);
1599 		lbn = nsize / biosize;
1600 		bufsize = nsize & (biosize - 1);
1601 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1602 		if (bp->b_dirtyoff > bp->b_bcount)
1603 			bp->b_dirtyoff = bp->b_bcount;
1604 		if (bp->b_dirtyend > bp->b_bcount)
1605 			bp->b_dirtyend = bp->b_bcount;
1606 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1607 		brelse(bp);
1608 	} else {
1609 		vnode_pager_setsize(vp, nsize);
1610 	}
1611 	return(error);
1612 }
1613 
1614