xref: /dragonfly/sys/vfs/nfs/nfs_bio.c (revision 5de36205)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.23 2005/06/06 15:09:38 drhodus Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/buf2.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include <sys/thread2.h>
62 
63 #include "rpcv2.h"
64 #include "nfsproto.h"
65 #include "nfs.h"
66 #include "nfsmount.h"
67 #include "nqnfs.h"
68 #include "nfsnode.h"
69 
70 static struct buf *nfs_getcacheblk (struct vnode *vp, daddr_t bn, int size,
71 					struct thread *td);
72 
73 extern int nfs_numasync;
74 extern int nfs_pbuf_freecnt;
75 extern struct nfsstats nfsstats;
76 
77 /*
78  * Vnode op for VM getpages.
79  *
80  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
81  *		int a_reqpage, vm_ooffset_t a_offset)
82  */
83 int
84 nfs_getpages(struct vop_getpages_args *ap)
85 {
86 	struct thread *td = curthread;		/* XXX */
87 	int i, error, nextoff, size, toff, count, npages;
88 	struct uio uio;
89 	struct iovec iov;
90 	char *kva;
91 	struct vnode *vp;
92 	struct nfsmount *nmp;
93 	vm_page_t *pages;
94 	vm_page_t m;
95 	struct msf_buf *msf;
96 
97 	vp = ap->a_vp;
98 	nmp = VFSTONFS(vp->v_mount);
99 	pages = ap->a_m;
100 	count = ap->a_count;
101 
102 	if (vp->v_object == NULL) {
103 		printf("nfs_getpages: called with non-merged cache vnode??\n");
104 		return VM_PAGER_ERROR;
105 	}
106 
107 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
108 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
109 		(void)nfs_fsinfo(nmp, vp, td);
110 
111 	npages = btoc(count);
112 
113 	/*
114 	 * NOTE that partially valid pages may occur in cases other
115 	 * then file EOF, such as when a file is partially written and
116 	 * ftruncate()-extended to a larger size.   It is also possible
117 	 * for the valid bits to be set on garbage beyond the file EOF and
118 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
119 	 * occur due to vtruncbuf() and the buffer cache's handling of
120 	 * pages which 'straddle' buffers or when b_bufsize is not a
121 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
122 	 * clear the extra bits.  This kind of situation occurs when you
123 	 * make a small write() (m->valid == 0x03) and then mmap() and
124 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
125 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
126 	 *
127 	 * This is combined with the possibility that the pages are partially
128 	 * dirty or that there is a buffer backing the pages that is dirty
129 	 * (even if m->dirty is 0).
130 	 *
131 	 * To solve this problem several hacks have been made:  (1) NFS
132 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
133 	 * (2) The buffer cache, when invalidating an NFS buffer, will
134 	 * disregard the buffer's fragmentory b_bufsize and invalidate
135 	 * the whole page rather then just the piece the buffer owns.
136 	 *
137 	 * This allows us to assume that a partially valid page found here
138 	 * is fully valid (vm_fault will zero'd out areas of the page not
139 	 * marked as valid).
140 	 */
141 	m = pages[ap->a_reqpage];
142 	if (m->valid != 0) {
143 		for (i = 0; i < npages; ++i) {
144 			if (i != ap->a_reqpage)
145 				vnode_pager_freepage(pages[i]);
146 		}
147 		return(0);
148 	}
149 
150 	/*
151 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
152 	 */
153 	msf_map_pagelist(&msf, pages, npages, 0);
154 	KKASSERT(msf);
155 	kva = msf_buf_kva(msf);
156 
157 	iov.iov_base = kva;
158 	iov.iov_len = count;
159 	uio.uio_iov = &iov;
160 	uio.uio_iovcnt = 1;
161 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
162 	uio.uio_resid = count;
163 	uio.uio_segflg = UIO_SYSSPACE;
164 	uio.uio_rw = UIO_READ;
165 	uio.uio_td = td;
166 
167 	error = nfs_readrpc(vp, &uio);
168 	msf_buf_free(msf);
169 
170 	if (error && (uio.uio_resid == count)) {
171 		printf("nfs_getpages: error %d\n", error);
172 		for (i = 0; i < npages; ++i) {
173 			if (i != ap->a_reqpage)
174 				vnode_pager_freepage(pages[i]);
175 		}
176 		return VM_PAGER_ERROR;
177 	}
178 
179 	/*
180 	 * Calculate the number of bytes read and validate only that number
181 	 * of bytes.  Note that due to pending writes, size may be 0.  This
182 	 * does not mean that the remaining data is invalid!
183 	 */
184 
185 	size = count - uio.uio_resid;
186 
187 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
188 		nextoff = toff + PAGE_SIZE;
189 		m = pages[i];
190 
191 		m->flags &= ~PG_ZERO;
192 
193 		if (nextoff <= size) {
194 			/*
195 			 * Read operation filled an entire page
196 			 */
197 			m->valid = VM_PAGE_BITS_ALL;
198 			vm_page_undirty(m);
199 		} else if (size > toff) {
200 			/*
201 			 * Read operation filled a partial page.
202 			 */
203 			m->valid = 0;
204 			vm_page_set_validclean(m, 0, size - toff);
205 			/* handled by vm_fault now	  */
206 			/* vm_page_zero_invalid(m, TRUE); */
207 		} else {
208 			/*
209 			 * Read operation was short.  If no error occured
210 			 * we may have hit a zero-fill section.   We simply
211 			 * leave valid set to 0.
212 			 */
213 			;
214 		}
215 		if (i != ap->a_reqpage) {
216 			/*
217 			 * Whether or not to leave the page activated is up in
218 			 * the air, but we should put the page on a page queue
219 			 * somewhere (it already is in the object).  Result:
220 			 * It appears that emperical results show that
221 			 * deactivating pages is best.
222 			 */
223 
224 			/*
225 			 * Just in case someone was asking for this page we
226 			 * now tell them that it is ok to use.
227 			 */
228 			if (!error) {
229 				if (m->flags & PG_WANTED)
230 					vm_page_activate(m);
231 				else
232 					vm_page_deactivate(m);
233 				vm_page_wakeup(m);
234 			} else {
235 				vnode_pager_freepage(m);
236 			}
237 		}
238 	}
239 	return 0;
240 }
241 
242 /*
243  * Vnode op for VM putpages.
244  *
245  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
246  *		int *a_rtvals, vm_ooffset_t a_offset)
247  */
248 int
249 nfs_putpages(struct vop_putpages_args *ap)
250 {
251 	struct thread *td = curthread;
252 	struct uio uio;
253 	struct iovec iov;
254 	char *kva;
255 	int iomode, must_commit, i, error, npages, count;
256 	off_t offset;
257 	int *rtvals;
258 	struct vnode *vp;
259 	struct nfsmount *nmp;
260 	struct nfsnode *np;
261 	vm_page_t *pages;
262 	struct msf_buf *msf;
263 
264 	vp = ap->a_vp;
265 	np = VTONFS(vp);
266 	nmp = VFSTONFS(vp->v_mount);
267 	pages = ap->a_m;
268 	count = ap->a_count;
269 	rtvals = ap->a_rtvals;
270 	npages = btoc(count);
271 	offset = IDX_TO_OFF(pages[0]->pindex);
272 
273 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
274 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
275 		(void)nfs_fsinfo(nmp, vp, td);
276 
277 	for (i = 0; i < npages; i++) {
278 		rtvals[i] = VM_PAGER_AGAIN;
279 	}
280 
281 	/*
282 	 * When putting pages, do not extend file past EOF.
283 	 */
284 
285 	if (offset + count > np->n_size) {
286 		count = np->n_size - offset;
287 		if (count < 0)
288 			count = 0;
289 	}
290 
291 	/*
292 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
293 	 */
294 	msf_map_pagelist(&msf, pages, npages, 0);
295 	KKASSERT(msf);
296 	kva = msf_buf_kva(msf);
297 
298 	iov.iov_base = kva;
299 	iov.iov_len = count;
300 	uio.uio_iov = &iov;
301 	uio.uio_iovcnt = 1;
302 	uio.uio_offset = offset;
303 	uio.uio_resid = count;
304 	uio.uio_segflg = UIO_SYSSPACE;
305 	uio.uio_rw = UIO_WRITE;
306 	uio.uio_td = td;
307 
308 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
309 	    iomode = NFSV3WRITE_UNSTABLE;
310 	else
311 	    iomode = NFSV3WRITE_FILESYNC;
312 
313 	error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
314 
315 	msf_buf_free(msf);
316 
317 	if (!error) {
318 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
319 		for (i = 0; i < nwritten; i++) {
320 			rtvals[i] = VM_PAGER_OK;
321 			vm_page_undirty(pages[i]);
322 		}
323 		if (must_commit)
324 			nfs_clearcommit(vp->v_mount);
325 	}
326 	return rtvals[0];
327 }
328 
329 /*
330  * Vnode op for read using bio
331  */
332 int
333 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
334 {
335 	struct nfsnode *np = VTONFS(vp);
336 	int biosize, i;
337 	struct buf *bp = 0, *rabp;
338 	struct vattr vattr;
339 	struct thread *td;
340 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
341 	daddr_t lbn, rabn;
342 	int bcount;
343 	int seqcount;
344 	int nra, error = 0, n = 0, on = 0;
345 
346 #ifdef DIAGNOSTIC
347 	if (uio->uio_rw != UIO_READ)
348 		panic("nfs_read mode");
349 #endif
350 	if (uio->uio_resid == 0)
351 		return (0);
352 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
353 		return (EINVAL);
354 	td = uio->uio_td;
355 
356 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
357 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
358 		(void)nfs_fsinfo(nmp, vp, td);
359 	if (vp->v_type != VDIR &&
360 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
361 		return (EFBIG);
362 	biosize = vp->v_mount->mnt_stat.f_iosize;
363 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
364 
365 	/*
366 	 * For nfs, cache consistency can only be maintained approximately.
367 	 * Although RFC1094 does not specify the criteria, the following is
368 	 * believed to be compatible with the reference port.
369 	 *
370 	 * NQNFS:	Full cache coherency is maintained within the loop.
371 	 *
372 	 * NFS:		If local changes have been made and this is a
373 	 *		directory, the directory must be invalidated and
374 	 *		the attribute cache must be cleared.
375 	 *
376 	 *		GETATTR is called to synchronize the file size.
377 	 *
378 	 *		If remote changes are detected local data is flushed
379 	 *		and the cache is invalidated.
380 	 *
381 	 *
382 	 *		NOTE: In the normal case the attribute cache is not
383 	 *		cleared which means GETATTR may use cached data and
384 	 *		not immediately detect changes made on the server.
385 	 */
386 	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
387 		if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
388 			nfs_invaldir(vp);
389 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
390 			if (error)
391 				return (error);
392 			np->n_attrstamp = 0;
393 		}
394 		error = VOP_GETATTR(vp, &vattr, td);
395 		if (error)
396 			return (error);
397 		if (np->n_flag & NRMODIFIED) {
398 			if (vp->v_type == VDIR)
399 				nfs_invaldir(vp);
400 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
401 			if (error)
402 				return (error);
403 			np->n_flag &= ~NRMODIFIED;
404 		}
405 	}
406 	do {
407 
408 	    /*
409 	     * Get a valid lease. If cached data is stale, flush it.
410 	     */
411 	    if (nmp->nm_flag & NFSMNT_NQNFS) {
412 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
413 		    do {
414 			error = nqnfs_getlease(vp, ND_READ, td);
415 		    } while (error == NQNFS_EXPIRED);
416 		    if (error)
417 			return (error);
418 		    if (np->n_lrev != np->n_brev ||
419 			(np->n_flag & NQNFSNONCACHE) ||
420 			((np->n_flag & NLMODIFIED) && vp->v_type == VDIR)) {
421 			if (vp->v_type == VDIR)
422 			    nfs_invaldir(vp);
423 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
424 			if (error)
425 			    return (error);
426 			np->n_brev = np->n_lrev;
427 		    }
428 		} else if (vp->v_type == VDIR && (np->n_flag & NLMODIFIED)) {
429 		    nfs_invaldir(vp);
430 		    error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
431 		    if (error)
432 			return (error);
433 		}
434 	    }
435 	    if (np->n_flag & NQNFSNONCACHE) {
436 		switch (vp->v_type) {
437 		case VREG:
438 			return (nfs_readrpc(vp, uio));
439 		case VLNK:
440 			return (nfs_readlinkrpc(vp, uio));
441 		case VDIR:
442 			break;
443 		default:
444 			printf(" NQNFSNONCACHE: type %x unexpected\n",
445 				vp->v_type);
446 		};
447 	    }
448 	    switch (vp->v_type) {
449 	    case VREG:
450 		nfsstats.biocache_reads++;
451 		lbn = uio->uio_offset / biosize;
452 		on = uio->uio_offset & (biosize - 1);
453 
454 		/*
455 		 * Start the read ahead(s), as required.
456 		 */
457 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
458 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
459 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
460 			rabn = lbn + 1 + nra;
461 			if (!incore(vp, rabn)) {
462 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
463 			    if (!rabp)
464 				return (EINTR);
465 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
466 				rabp->b_flags |= (B_READ | B_ASYNC);
467 				vfs_busy_pages(rabp, 0);
468 				if (nfs_asyncio(rabp, td)) {
469 				    rabp->b_flags |= B_INVAL|B_ERROR;
470 				    vfs_unbusy_pages(rabp);
471 				    brelse(rabp);
472 				    break;
473 				}
474 			    } else {
475 				brelse(rabp);
476 			    }
477 			}
478 		    }
479 		}
480 
481 		/*
482 		 * Obtain the buffer cache block.  Figure out the buffer size
483 		 * when we are at EOF.  If we are modifying the size of the
484 		 * buffer based on an EOF condition we need to hold
485 		 * nfs_rslock() through obtaining the buffer to prevent
486 		 * a potential writer-appender from messing with n_size.
487 		 * Otherwise we may accidently truncate the buffer and
488 		 * lose dirty data.
489 		 *
490 		 * Note that bcount is *not* DEV_BSIZE aligned.
491 		 */
492 
493 again:
494 		bcount = biosize;
495 		if ((off_t)lbn * biosize >= np->n_size) {
496 			bcount = 0;
497 		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
498 			bcount = np->n_size - (off_t)lbn * biosize;
499 		}
500 		if (bcount != biosize) {
501 			switch(nfs_rslock(np, td)) {
502 			case ENOLCK:
503 				goto again;
504 				/* not reached */
505 			case EINTR:
506 			case ERESTART:
507 				return(EINTR);
508 				/* not reached */
509 			default:
510 				break;
511 			}
512 		}
513 
514 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
515 
516 		if (bcount != biosize)
517 			nfs_rsunlock(np, td);
518 		if (!bp)
519 			return (EINTR);
520 
521 		/*
522 		 * If B_CACHE is not set, we must issue the read.  If this
523 		 * fails, we return an error.
524 		 */
525 
526 		if ((bp->b_flags & B_CACHE) == 0) {
527 		    bp->b_flags |= B_READ;
528 		    vfs_busy_pages(bp, 0);
529 		    error = nfs_doio(bp, td);
530 		    if (error) {
531 			brelse(bp);
532 			return (error);
533 		    }
534 		}
535 
536 		/*
537 		 * on is the offset into the current bp.  Figure out how many
538 		 * bytes we can copy out of the bp.  Note that bcount is
539 		 * NOT DEV_BSIZE aligned.
540 		 *
541 		 * Then figure out how many bytes we can copy into the uio.
542 		 */
543 
544 		n = 0;
545 		if (on < bcount)
546 			n = min((unsigned)(bcount - on), uio->uio_resid);
547 		break;
548 	    case VLNK:
549 		nfsstats.biocache_readlinks++;
550 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
551 		if (!bp)
552 			return (EINTR);
553 		if ((bp->b_flags & B_CACHE) == 0) {
554 		    bp->b_flags |= B_READ;
555 		    vfs_busy_pages(bp, 0);
556 		    error = nfs_doio(bp, td);
557 		    if (error) {
558 			bp->b_flags |= B_ERROR;
559 			brelse(bp);
560 			return (error);
561 		    }
562 		}
563 		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
564 		on = 0;
565 		break;
566 	    case VDIR:
567 		nfsstats.biocache_readdirs++;
568 		if (np->n_direofoffset
569 		    && uio->uio_offset >= np->n_direofoffset) {
570 		    return (0);
571 		}
572 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
573 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
574 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
575 		if (!bp)
576 		    return (EINTR);
577 		if ((bp->b_flags & B_CACHE) == 0) {
578 		    bp->b_flags |= B_READ;
579 		    vfs_busy_pages(bp, 0);
580 		    error = nfs_doio(bp, td);
581 		    if (error) {
582 			    brelse(bp);
583 		    }
584 		    while (error == NFSERR_BAD_COOKIE) {
585 			printf("got bad cookie vp %p bp %p\n", vp, bp);
586 			nfs_invaldir(vp);
587 			error = nfs_vinvalbuf(vp, 0, td, 1);
588 			/*
589 			 * Yuck! The directory has been modified on the
590 			 * server. The only way to get the block is by
591 			 * reading from the beginning to get all the
592 			 * offset cookies.
593 			 *
594 			 * Leave the last bp intact unless there is an error.
595 			 * Loop back up to the while if the error is another
596 			 * NFSERR_BAD_COOKIE (double yuch!).
597 			 */
598 			for (i = 0; i <= lbn && !error; i++) {
599 			    if (np->n_direofoffset
600 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
601 				    return (0);
602 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
603 			    if (!bp)
604 				return (EINTR);
605 			    if ((bp->b_flags & B_CACHE) == 0) {
606 				    bp->b_flags |= B_READ;
607 				    vfs_busy_pages(bp, 0);
608 				    error = nfs_doio(bp, td);
609 				    /*
610 				     * no error + B_INVAL == directory EOF,
611 				     * use the block.
612 				     */
613 				    if (error == 0 && (bp->b_flags & B_INVAL))
614 					    break;
615 			    }
616 			    /*
617 			     * An error will throw away the block and the
618 			     * for loop will break out.  If no error and this
619 			     * is not the block we want, we throw away the
620 			     * block and go for the next one via the for loop.
621 			     */
622 			    if (error || i < lbn)
623 				    brelse(bp);
624 			}
625 		    }
626 		    /*
627 		     * The above while is repeated if we hit another cookie
628 		     * error.  If we hit an error and it wasn't a cookie error,
629 		     * we give up.
630 		     */
631 		    if (error)
632 			    return (error);
633 		}
634 
635 		/*
636 		 * If not eof and read aheads are enabled, start one.
637 		 * (You need the current block first, so that you have the
638 		 *  directory offset cookie of the next block.)
639 		 */
640 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
641 		    (bp->b_flags & B_INVAL) == 0 &&
642 		    (np->n_direofoffset == 0 ||
643 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
644 		    !(np->n_flag & NQNFSNONCACHE) &&
645 		    !incore(vp, lbn + 1)) {
646 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
647 			if (rabp) {
648 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
649 				rabp->b_flags |= (B_READ | B_ASYNC);
650 				vfs_busy_pages(rabp, 0);
651 				if (nfs_asyncio(rabp, td)) {
652 				    rabp->b_flags |= B_INVAL|B_ERROR;
653 				    vfs_unbusy_pages(rabp);
654 				    brelse(rabp);
655 				}
656 			    } else {
657 				brelse(rabp);
658 			    }
659 			}
660 		}
661 		/*
662 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
663 		 * chopped for the EOF condition, we cannot tell how large
664 		 * NFS directories are going to be until we hit EOF.  So
665 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
666 		 * it just so happens that b_resid will effectively chop it
667 		 * to EOF.  *BUT* this information is lost if the buffer goes
668 		 * away and is reconstituted into a B_CACHE state ( due to
669 		 * being VMIO ) later.  So we keep track of the directory eof
670 		 * in np->n_direofoffset and chop it off as an extra step
671 		 * right here.
672 		 */
673 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
674 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
675 			n = np->n_direofoffset - uio->uio_offset;
676 		break;
677 	    default:
678 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
679 		break;
680 	    };
681 
682 	    if (n > 0) {
683 		    error = uiomove(bp->b_data + on, (int)n, uio);
684 	    }
685 	    switch (vp->v_type) {
686 	    case VREG:
687 		break;
688 	    case VLNK:
689 		n = 0;
690 		break;
691 	    case VDIR:
692 		/*
693 		 * Invalidate buffer if caching is disabled, forcing a
694 		 * re-read from the remote later.
695 		 */
696 		if (np->n_flag & NQNFSNONCACHE)
697 			bp->b_flags |= B_INVAL;
698 		break;
699 	    default:
700 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
701 	    }
702 	    brelse(bp);
703 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
704 	return (error);
705 }
706 
707 /*
708  * Vnode op for write using bio
709  *
710  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
711  *	     struct ucred *a_cred)
712  */
713 int
714 nfs_write(struct vop_write_args *ap)
715 {
716 	int biosize;
717 	struct uio *uio = ap->a_uio;
718 	struct thread *td = uio->uio_td;
719 	struct vnode *vp = ap->a_vp;
720 	struct nfsnode *np = VTONFS(vp);
721 	int ioflag = ap->a_ioflag;
722 	struct buf *bp;
723 	struct vattr vattr;
724 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
725 	daddr_t lbn;
726 	int bcount;
727 	int n, on, error = 0, iomode, must_commit;
728 	int haverslock = 0;
729 
730 #ifdef DIAGNOSTIC
731 	if (uio->uio_rw != UIO_WRITE)
732 		panic("nfs_write mode");
733 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
734 		panic("nfs_write proc");
735 #endif
736 	if (vp->v_type != VREG)
737 		return (EIO);
738 	if (np->n_flag & NWRITEERR) {
739 		np->n_flag &= ~NWRITEERR;
740 		return (np->n_error);
741 	}
742 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
743 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
744 		(void)nfs_fsinfo(nmp, vp, td);
745 
746 	/*
747 	 * Synchronously flush pending buffers if we are in synchronous
748 	 * mode or if we are appending.
749 	 */
750 	if (ioflag & (IO_APPEND | IO_SYNC)) {
751 		if (np->n_flag & NLMODIFIED) {
752 			np->n_attrstamp = 0;
753 			error = nfs_flush(vp, MNT_WAIT, td, 0);
754 			/* error = nfs_vinvalbuf(vp, V_SAVE, td, 1); */
755 			if (error)
756 				return (error);
757 		}
758 	}
759 
760 	/*
761 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
762 	 * get the append lock.
763 	 */
764 restart:
765 	if (ioflag & IO_APPEND) {
766 		np->n_attrstamp = 0;
767 		error = VOP_GETATTR(vp, &vattr, td);
768 		if (error)
769 			return (error);
770 		uio->uio_offset = np->n_size;
771 	}
772 
773 	if (uio->uio_offset < 0)
774 		return (EINVAL);
775 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
776 		return (EFBIG);
777 	if (uio->uio_resid == 0)
778 		return (0);
779 
780 	/*
781 	 * We need to obtain the rslock if we intend to modify np->n_size
782 	 * in order to guarentee the append point with multiple contending
783 	 * writers, to guarentee that no other appenders modify n_size
784 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
785 	 * accidently truncating data written by another appender due to
786 	 * the race), and to ensure that the buffer is populated prior to
787 	 * our extending of the file.  We hold rslock through the entire
788 	 * operation.
789 	 *
790 	 * Note that we do not synchronize the case where someone truncates
791 	 * the file while we are appending to it because attempting to lock
792 	 * this case may deadlock other parts of the system unexpectedly.
793 	 */
794 	if ((ioflag & IO_APPEND) ||
795 	    uio->uio_offset + uio->uio_resid > np->n_size) {
796 		switch(nfs_rslock(np, td)) {
797 		case ENOLCK:
798 			goto restart;
799 			/* not reached */
800 		case EINTR:
801 		case ERESTART:
802 			return(EINTR);
803 			/* not reached */
804 		default:
805 			break;
806 		}
807 		haverslock = 1;
808 	}
809 
810 	/*
811 	 * Maybe this should be above the vnode op call, but so long as
812 	 * file servers have no limits, i don't think it matters
813 	 */
814 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
815 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
816 		psignal(td->td_proc, SIGXFSZ);
817 		if (haverslock)
818 			nfs_rsunlock(np, td);
819 		return (EFBIG);
820 	}
821 
822 	biosize = vp->v_mount->mnt_stat.f_iosize;
823 
824 	do {
825 		/*
826 		 * Check for a valid write lease.
827 		 */
828 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
829 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
830 			do {
831 				error = nqnfs_getlease(vp, ND_WRITE, td);
832 			} while (error == NQNFS_EXPIRED);
833 			if (error)
834 				break;
835 			if (np->n_lrev != np->n_brev ||
836 			    (np->n_flag & NQNFSNONCACHE)) {
837 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
838 				if (error)
839 					break;
840 				np->n_brev = np->n_lrev;
841 			}
842 		}
843 		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
844 		    iomode = NFSV3WRITE_FILESYNC;
845 		    error = nfs_writerpc(vp, uio, &iomode, &must_commit);
846 		    if (must_commit)
847 			    nfs_clearcommit(vp->v_mount);
848 		    break;
849 		}
850 		nfsstats.biocache_writes++;
851 		lbn = uio->uio_offset / biosize;
852 		on = uio->uio_offset & (biosize-1);
853 		n = min((unsigned)(biosize - on), uio->uio_resid);
854 again:
855 		/*
856 		 * Handle direct append and file extension cases, calculate
857 		 * unaligned buffer size.
858 		 */
859 
860 		if (uio->uio_offset == np->n_size && n) {
861 			/*
862 			 * Get the buffer (in its pre-append state to maintain
863 			 * B_CACHE if it was previously set).  Resize the
864 			 * nfsnode after we have locked the buffer to prevent
865 			 * readers from reading garbage.
866 			 */
867 			bcount = on;
868 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
869 
870 			if (bp != NULL) {
871 				long save;
872 
873 				np->n_size = uio->uio_offset + n;
874 				np->n_flag |= NLMODIFIED;
875 				vnode_pager_setsize(vp, np->n_size);
876 
877 				save = bp->b_flags & B_CACHE;
878 				bcount += n;
879 				allocbuf(bp, bcount);
880 				bp->b_flags |= save;
881 			}
882 		} else {
883 			/*
884 			 * Obtain the locked cache block first, and then
885 			 * adjust the file's size as appropriate.
886 			 */
887 			bcount = on + n;
888 			if ((off_t)lbn * biosize + bcount < np->n_size) {
889 				if ((off_t)(lbn + 1) * biosize < np->n_size)
890 					bcount = biosize;
891 				else
892 					bcount = np->n_size - (off_t)lbn * biosize;
893 			}
894 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
895 			if (uio->uio_offset + n > np->n_size) {
896 				np->n_size = uio->uio_offset + n;
897 				np->n_flag |= NLMODIFIED;
898 				vnode_pager_setsize(vp, np->n_size);
899 			}
900 		}
901 
902 		if (!bp) {
903 			error = EINTR;
904 			break;
905 		}
906 
907 		/*
908 		 * Issue a READ if B_CACHE is not set.  In special-append
909 		 * mode, B_CACHE is based on the buffer prior to the write
910 		 * op and is typically set, avoiding the read.  If a read
911 		 * is required in special append mode, the server will
912 		 * probably send us a short-read since we extended the file
913 		 * on our end, resulting in b_resid == 0 and, thusly,
914 		 * B_CACHE getting set.
915 		 *
916 		 * We can also avoid issuing the read if the write covers
917 		 * the entire buffer.  We have to make sure the buffer state
918 		 * is reasonable in this case since we will not be initiating
919 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
920 		 * more information.
921 		 *
922 		 * B_CACHE may also be set due to the buffer being cached
923 		 * normally.
924 		 */
925 
926 		if (on == 0 && n == bcount) {
927 			bp->b_flags |= B_CACHE;
928 			bp->b_flags &= ~(B_ERROR | B_INVAL);
929 		}
930 
931 		if ((bp->b_flags & B_CACHE) == 0) {
932 			bp->b_flags |= B_READ;
933 			vfs_busy_pages(bp, 0);
934 			error = nfs_doio(bp, td);
935 			if (error) {
936 				brelse(bp);
937 				break;
938 			}
939 		}
940 		if (!bp) {
941 			error = EINTR;
942 			break;
943 		}
944 		np->n_flag |= NLMODIFIED;
945 
946 		/*
947 		 * If dirtyend exceeds file size, chop it down.  This should
948 		 * not normally occur but there is an append race where it
949 		 * might occur XXX, so we log it.
950 		 *
951 		 * If the chopping creates a reverse-indexed or degenerate
952 		 * situation with dirtyoff/end, we 0 both of them.
953 		 */
954 
955 		if (bp->b_dirtyend > bcount) {
956 			printf("NFS append race @%lx:%d\n",
957 			    (long)bp->b_blkno * DEV_BSIZE,
958 			    bp->b_dirtyend - bcount);
959 			bp->b_dirtyend = bcount;
960 		}
961 
962 		if (bp->b_dirtyoff >= bp->b_dirtyend)
963 			bp->b_dirtyoff = bp->b_dirtyend = 0;
964 
965 		/*
966 		 * If the new write will leave a contiguous dirty
967 		 * area, just update the b_dirtyoff and b_dirtyend,
968 		 * otherwise force a write rpc of the old dirty area.
969 		 *
970 		 * While it is possible to merge discontiguous writes due to
971 		 * our having a B_CACHE buffer ( and thus valid read data
972 		 * for the hole), we don't because it could lead to
973 		 * significant cache coherency problems with multiple clients,
974 		 * especially if locking is implemented later on.
975 		 *
976 		 * as an optimization we could theoretically maintain
977 		 * a linked list of discontinuous areas, but we would still
978 		 * have to commit them separately so there isn't much
979 		 * advantage to it except perhaps a bit of asynchronization.
980 		 */
981 
982 		if (bp->b_dirtyend > 0 &&
983 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
984 			if (VOP_BWRITE(bp->b_vp, bp) == EINTR) {
985 				error = EINTR;
986 				break;
987 			}
988 			goto again;
989 		}
990 
991 		/*
992 		 * Check for valid write lease and get one as required.
993 		 * In case getblk() and/or bwrite() delayed us.
994 		 */
995 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
996 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
997 			do {
998 				error = nqnfs_getlease(vp, ND_WRITE, td);
999 			} while (error == NQNFS_EXPIRED);
1000 			if (error) {
1001 				brelse(bp);
1002 				break;
1003 			}
1004 			if (np->n_lrev != np->n_brev ||
1005 			    (np->n_flag & NQNFSNONCACHE)) {
1006 				brelse(bp);
1007 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1008 				if (error)
1009 					break;
1010 				np->n_brev = np->n_lrev;
1011 				goto again;
1012 			}
1013 		}
1014 
1015 		error = uiomove((char *)bp->b_data + on, n, uio);
1016 
1017 		/*
1018 		 * Since this block is being modified, it must be written
1019 		 * again and not just committed.  Since write clustering does
1020 		 * not work for the stage 1 data write, only the stage 2
1021 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1022 		 */
1023 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1024 
1025 		if (error) {
1026 			bp->b_flags |= B_ERROR;
1027 			brelse(bp);
1028 			break;
1029 		}
1030 
1031 		/*
1032 		 * Only update dirtyoff/dirtyend if not a degenerate
1033 		 * condition.
1034 		 */
1035 		if (n) {
1036 			if (bp->b_dirtyend > 0) {
1037 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1038 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1039 			} else {
1040 				bp->b_dirtyoff = on;
1041 				bp->b_dirtyend = on + n;
1042 			}
1043 			vfs_bio_set_validclean(bp, on, n);
1044 		}
1045 		/*
1046 		 * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
1047 		 * filesystem).  XXX also use for loopback NFS mounts.
1048 		 */
1049 		if (ioflag & IO_NOWDRAIN)
1050 			bp->b_flags |= B_NOWDRAIN;
1051 
1052 		/*
1053 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1054 		 *
1055 		 * IO_INVAL appears to be unused.  The idea appears to be
1056 		 * to turn off caching in this case.  Very odd.  XXX
1057 		 */
1058 		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
1059 			if (ioflag & IO_INVAL)
1060 				bp->b_flags |= B_NOCACHE;
1061 			error = VOP_BWRITE(bp->b_vp, bp);
1062 			if (error)
1063 				break;
1064 			if (np->n_flag & NQNFSNONCACHE) {
1065 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1066 				if (error)
1067 					break;
1068 			}
1069 		} else if ((n + on) == biosize &&
1070 			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
1071 			bp->b_flags |= B_ASYNC;
1072 			(void)nfs_writebp(bp, 0, 0);
1073 		} else {
1074 			bdwrite(bp);
1075 		}
1076 	} while (uio->uio_resid > 0 && n > 0);
1077 
1078 	if (haverslock)
1079 		nfs_rsunlock(np, td);
1080 
1081 	return (error);
1082 }
1083 
1084 /*
1085  * Get an nfs cache block.
1086  *
1087  * Allocate a new one if the block isn't currently in the cache
1088  * and return the block marked busy. If the calling process is
1089  * interrupted by a signal for an interruptible mount point, return
1090  * NULL.
1091  *
1092  * The caller must carefully deal with the possible B_INVAL state of
1093  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1094  * indirectly), so synchronous reads can be issued without worrying about
1095  * the B_INVAL state.  We have to be a little more careful when dealing
1096  * with writes (see comments in nfs_write()) when extending a file past
1097  * its EOF.
1098  */
1099 static struct buf *
1100 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1101 {
1102 	struct buf *bp;
1103 	struct mount *mp;
1104 	struct nfsmount *nmp;
1105 
1106 	mp = vp->v_mount;
1107 	nmp = VFSTONFS(mp);
1108 
1109 	if (nmp->nm_flag & NFSMNT_INT) {
1110 		bp = getblk(vp, bn, size, PCATCH, 0);
1111 		while (bp == (struct buf *)0) {
1112 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td))
1113 				return ((struct buf *)0);
1114 			bp = getblk(vp, bn, size, 0, 2 * hz);
1115 		}
1116 	} else {
1117 		bp = getblk(vp, bn, size, 0, 0);
1118 	}
1119 
1120 	if (vp->v_type == VREG) {
1121 		int biosize;
1122 
1123 		biosize = mp->mnt_stat.f_iosize;
1124 		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1125 	}
1126 	return (bp);
1127 }
1128 
1129 /*
1130  * Flush and invalidate all dirty buffers. If another process is already
1131  * doing the flush, just wait for completion.
1132  */
1133 int
1134 nfs_vinvalbuf(struct vnode *vp, int flags,
1135 	      struct thread *td, int intrflg)
1136 {
1137 	struct nfsnode *np = VTONFS(vp);
1138 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1139 	int error = 0, slpflag, slptimeo;
1140 
1141 	if (vp->v_flag & VRECLAIMED)
1142 		return (0);
1143 
1144 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1145 		intrflg = 0;
1146 	if (intrflg) {
1147 		slpflag = PCATCH;
1148 		slptimeo = 2 * hz;
1149 	} else {
1150 		slpflag = 0;
1151 		slptimeo = 0;
1152 	}
1153 	/*
1154 	 * First wait for any other process doing a flush to complete.
1155 	 */
1156 	while (np->n_flag & NFLUSHINPROG) {
1157 		np->n_flag |= NFLUSHWANT;
1158 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1159 		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td))
1160 			return (EINTR);
1161 	}
1162 
1163 	/*
1164 	 * Now, flush as required.
1165 	 */
1166 	np->n_flag |= NFLUSHINPROG;
1167 	error = vinvalbuf(vp, flags, td, slpflag, 0);
1168 	while (error) {
1169 		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
1170 			np->n_flag &= ~NFLUSHINPROG;
1171 			if (np->n_flag & NFLUSHWANT) {
1172 				np->n_flag &= ~NFLUSHWANT;
1173 				wakeup((caddr_t)&np->n_flag);
1174 			}
1175 			return (EINTR);
1176 		}
1177 		error = vinvalbuf(vp, flags, td, 0, slptimeo);
1178 	}
1179 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1180 	if (np->n_flag & NFLUSHWANT) {
1181 		np->n_flag &= ~NFLUSHWANT;
1182 		wakeup((caddr_t)&np->n_flag);
1183 	}
1184 	return (0);
1185 }
1186 
1187 /*
1188  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1189  * This is mainly to avoid queueing async I/O requests when the nfsiods
1190  * are all hung on a dead server.
1191  *
1192  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1193  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1194  */
1195 int
1196 nfs_asyncio(struct buf *bp, struct thread *td)
1197 {
1198 	struct nfsmount *nmp;
1199 	int i;
1200 	int gotiod;
1201 	int slpflag = 0;
1202 	int slptimeo = 0;
1203 	int error;
1204 
1205 	/*
1206 	 * If no async daemons then return EIO to force caller to run the rpc
1207 	 * synchronously.
1208 	 */
1209 	if (nfs_numasync == 0)
1210 		return (EIO);
1211 
1212 	nmp = VFSTONFS(bp->b_vp->v_mount);
1213 
1214 	/*
1215 	 * Commits are usually short and sweet so lets save some cpu and
1216 	 * leave the async daemons for more important rpc's (such as reads
1217 	 * and writes).
1218 	 */
1219 	if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
1220 	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1221 		return(EIO);
1222 	}
1223 
1224 again:
1225 	if (nmp->nm_flag & NFSMNT_INT)
1226 		slpflag = PCATCH;
1227 	gotiod = FALSE;
1228 
1229 	/*
1230 	 * Find a free iod to process this request.
1231 	 */
1232 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1233 		if (nfs_iodwant[i]) {
1234 			/*
1235 			 * Found one, so wake it up and tell it which
1236 			 * mount to process.
1237 			 */
1238 			NFS_DPF(ASYNCIO,
1239 				("nfs_asyncio: waking iod %d for mount %p\n",
1240 				 i, nmp));
1241 			nfs_iodwant[i] = NULL;
1242 			nfs_iodmount[i] = nmp;
1243 			nmp->nm_bufqiods++;
1244 			wakeup((caddr_t)&nfs_iodwant[i]);
1245 			gotiod = TRUE;
1246 			break;
1247 		}
1248 
1249 	/*
1250 	 * If none are free, we may already have an iod working on this mount
1251 	 * point.  If so, it will process our request.
1252 	 */
1253 	if (!gotiod) {
1254 		if (nmp->nm_bufqiods > 0) {
1255 			NFS_DPF(ASYNCIO,
1256 				("nfs_asyncio: %d iods are already processing mount %p\n",
1257 				 nmp->nm_bufqiods, nmp));
1258 			gotiod = TRUE;
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * If we have an iod which can process the request, then queue
1264 	 * the buffer.
1265 	 */
1266 	if (gotiod) {
1267 		/*
1268 		 * Ensure that the queue never grows too large.  We still want
1269 		 * to asynchronize so we block rather then return EIO.
1270 		 */
1271 		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1272 			NFS_DPF(ASYNCIO,
1273 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1274 			nmp->nm_bufqwant = TRUE;
1275 			error = tsleep(&nmp->nm_bufq, slpflag,
1276 				       "nfsaio", slptimeo);
1277 			if (error) {
1278 				if (nfs_sigintr(nmp, NULL, td))
1279 					return (EINTR);
1280 				if (slpflag == PCATCH) {
1281 					slpflag = 0;
1282 					slptimeo = 2 * hz;
1283 				}
1284 			}
1285 			/*
1286 			 * We might have lost our iod while sleeping,
1287 			 * so check and loop if nescessary.
1288 			 */
1289 			if (nmp->nm_bufqiods == 0) {
1290 				NFS_DPF(ASYNCIO,
1291 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1292 				goto again;
1293 			}
1294 		}
1295 		BUF_KERNPROC(bp);
1296 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1297 		nmp->nm_bufqlen++;
1298 		return (0);
1299 	}
1300 
1301 	/*
1302 	 * All the iods are busy on other mounts, so return EIO to
1303 	 * force the caller to process the i/o synchronously.
1304 	 */
1305 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1306 	return (EIO);
1307 }
1308 
1309 /*
1310  * Do an I/O operation to/from a cache block. This may be called
1311  * synchronously or from an nfsiod.
1312  *
1313  * NOTE! TD MIGHT BE NULL
1314  */
1315 int
1316 nfs_doio(struct buf *bp, struct thread *td)
1317 {
1318 	struct uio *uiop;
1319 	struct vnode *vp;
1320 	struct nfsnode *np;
1321 	struct nfsmount *nmp;
1322 	int error = 0, iomode, must_commit = 0;
1323 	struct uio uio;
1324 	struct iovec io;
1325 
1326 	vp = bp->b_vp;
1327 	np = VTONFS(vp);
1328 	nmp = VFSTONFS(vp->v_mount);
1329 	uiop = &uio;
1330 	uiop->uio_iov = &io;
1331 	uiop->uio_iovcnt = 1;
1332 	uiop->uio_segflg = UIO_SYSSPACE;
1333 	uiop->uio_td = td;
1334 
1335 	/*
1336 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1337 	 * do this here so we do not have to do it in all the code that
1338 	 * calls us.
1339 	 */
1340 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1341 
1342 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1343 
1344 	/*
1345 	 * Historically, paging was done with physio, but no more.
1346 	 */
1347 	if (bp->b_flags & B_PHYS) {
1348 	    /*
1349 	     * ...though reading /dev/drum still gets us here.
1350 	     */
1351 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1352 	    /* mapping was done by vmapbuf() */
1353 	    io.iov_base = bp->b_data;
1354 	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1355 	    if (bp->b_flags & B_READ) {
1356 		uiop->uio_rw = UIO_READ;
1357 		nfsstats.read_physios++;
1358 		error = nfs_readrpc(vp, uiop);
1359 	    } else {
1360 		int com;
1361 
1362 		iomode = NFSV3WRITE_DATASYNC;
1363 		uiop->uio_rw = UIO_WRITE;
1364 		nfsstats.write_physios++;
1365 		error = nfs_writerpc(vp, uiop, &iomode, &com);
1366 	    }
1367 	    if (error) {
1368 		bp->b_flags |= B_ERROR;
1369 		bp->b_error = error;
1370 	    }
1371 	} else if (bp->b_flags & B_READ) {
1372 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1373 	    io.iov_base = bp->b_data;
1374 	    uiop->uio_rw = UIO_READ;
1375 
1376 	    switch (vp->v_type) {
1377 	    case VREG:
1378 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1379 		nfsstats.read_bios++;
1380 		error = nfs_readrpc(vp, uiop);
1381 
1382 		if (!error) {
1383 		    if (uiop->uio_resid) {
1384 			/*
1385 			 * If we had a short read with no error, we must have
1386 			 * hit a file hole.  We should zero-fill the remainder.
1387 			 * This can also occur if the server hits the file EOF.
1388 			 *
1389 			 * Holes used to be able to occur due to pending
1390 			 * writes, but that is not possible any longer.
1391 			 */
1392 			int nread = bp->b_bcount - uiop->uio_resid;
1393 			int left  = uiop->uio_resid;
1394 
1395 			if (left > 0)
1396 				bzero((char *)bp->b_data + nread, left);
1397 			uiop->uio_resid = 0;
1398 		    }
1399 		}
1400 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1401 			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1402 			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1403 			  np->n_lrev != np->n_brev) ||
1404 			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1405 			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1406 			uprintf("Process killed due to text file modification\n");
1407 			psignal(td->td_proc, SIGKILL);
1408 			PHOLD(td->td_proc);
1409 		}
1410 		break;
1411 	    case VLNK:
1412 		uiop->uio_offset = (off_t)0;
1413 		nfsstats.readlink_bios++;
1414 		error = nfs_readlinkrpc(vp, uiop);
1415 		break;
1416 	    case VDIR:
1417 		nfsstats.readdir_bios++;
1418 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1419 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1420 			error = nfs_readdirplusrpc(vp, uiop);
1421 			if (error == NFSERR_NOTSUPP)
1422 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1423 		}
1424 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1425 			error = nfs_readdirrpc(vp, uiop);
1426 		/*
1427 		 * end-of-directory sets B_INVAL but does not generate an
1428 		 * error.
1429 		 */
1430 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1431 			bp->b_flags |= B_INVAL;
1432 		break;
1433 	    default:
1434 		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1435 		break;
1436 	    };
1437 	    if (error) {
1438 		bp->b_flags |= B_ERROR;
1439 		bp->b_error = error;
1440 	    }
1441 	} else {
1442 	    /*
1443 	     * If we only need to commit, try to commit
1444 	     */
1445 	    if (bp->b_flags & B_NEEDCOMMIT) {
1446 		    int retv;
1447 		    off_t off;
1448 
1449 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1450 		    retv = nfs_commit(bp->b_vp, off,
1451 				bp->b_dirtyend - bp->b_dirtyoff, td);
1452 		    if (retv == 0) {
1453 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1454 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1455 			    bp->b_resid = 0;
1456 			    biodone(bp);
1457 			    return (0);
1458 		    }
1459 		    if (retv == NFSERR_STALEWRITEVERF) {
1460 			    nfs_clearcommit(bp->b_vp->v_mount);
1461 		    }
1462 	    }
1463 
1464 	    /*
1465 	     * Setup for actual write
1466 	     */
1467 
1468 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1469 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1470 
1471 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1472 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1473 		    - bp->b_dirtyoff;
1474 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1475 		    + bp->b_dirtyoff;
1476 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1477 		uiop->uio_rw = UIO_WRITE;
1478 		nfsstats.write_bios++;
1479 
1480 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1481 		    iomode = NFSV3WRITE_UNSTABLE;
1482 		else
1483 		    iomode = NFSV3WRITE_FILESYNC;
1484 
1485 		error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1486 
1487 		/*
1488 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1489 		 * to cluster the buffers needing commit.  This will allow
1490 		 * the system to submit a single commit rpc for the whole
1491 		 * cluster.  We can do this even if the buffer is not 100%
1492 		 * dirty (relative to the NFS blocksize), so we optimize the
1493 		 * append-to-file-case.
1494 		 *
1495 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1496 		 * cleared because write clustering only works for commit
1497 		 * rpc's, not for the data portion of the write).
1498 		 */
1499 
1500 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1501 		    bp->b_flags |= B_NEEDCOMMIT;
1502 		    if (bp->b_dirtyoff == 0
1503 			&& bp->b_dirtyend == bp->b_bcount)
1504 			bp->b_flags |= B_CLUSTEROK;
1505 		} else {
1506 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1507 		}
1508 
1509 		/*
1510 		 * For an interrupted write, the buffer is still valid
1511 		 * and the write hasn't been pushed to the server yet,
1512 		 * so we can't set B_ERROR and report the interruption
1513 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1514 		 * is not relevant, so the rpc attempt is essentially
1515 		 * a noop.  For the case of a V3 write rpc not being
1516 		 * committed to stable storage, the block is still
1517 		 * dirty and requires either a commit rpc or another
1518 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1519 		 * the block is reused. This is indicated by setting
1520 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1521 		 *
1522 		 * If the buffer is marked B_PAGING, it does not reside on
1523 		 * the vp's paging queues so we cannot call bdirty().  The
1524 		 * bp in this case is not an NFS cache block so we should
1525 		 * be safe. XXX
1526 		 */
1527     		if (error == EINTR
1528 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1529 			crit_enter();
1530 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1531 			if ((bp->b_flags & B_PAGING) == 0) {
1532 			    bdirty(bp);
1533 			    bp->b_flags &= ~B_DONE;
1534 			}
1535 			if (error && (bp->b_flags & B_ASYNC) == 0)
1536 			    bp->b_flags |= B_EINTR;
1537 			crit_exit();
1538 	    	} else {
1539 		    if (error) {
1540 			bp->b_flags |= B_ERROR;
1541 			bp->b_error = np->n_error = error;
1542 			np->n_flag |= NWRITEERR;
1543 		    }
1544 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1545 		}
1546 	    } else {
1547 		bp->b_resid = 0;
1548 		biodone(bp);
1549 		return (0);
1550 	    }
1551 	}
1552 	bp->b_resid = uiop->uio_resid;
1553 	if (must_commit)
1554 	    nfs_clearcommit(vp->v_mount);
1555 	biodone(bp);
1556 	return (error);
1557 }
1558 
1559 /*
1560  * Used to aid in handling ftruncate() operations on the NFS client side.
1561  * Truncation creates a number of special problems for NFS.  We have to
1562  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1563  * we have to properly handle VM pages or (potentially dirty) buffers
1564  * that straddle the truncation point.
1565  */
1566 
1567 int
1568 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1569 {
1570 	struct nfsnode *np = VTONFS(vp);
1571 	u_quad_t tsize = np->n_size;
1572 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1573 	int error = 0;
1574 
1575 	np->n_size = nsize;
1576 
1577 	if (np->n_size < tsize) {
1578 		struct buf *bp;
1579 		daddr_t lbn;
1580 		int bufsize;
1581 
1582 		/*
1583 		 * vtruncbuf() doesn't get the buffer overlapping the
1584 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1585 		 * buffer that now needs to be truncated.
1586 		 */
1587 		error = vtruncbuf(vp, td, nsize, biosize);
1588 		lbn = nsize / biosize;
1589 		bufsize = nsize & (biosize - 1);
1590 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1591 		if (bp->b_dirtyoff > bp->b_bcount)
1592 			bp->b_dirtyoff = bp->b_bcount;
1593 		if (bp->b_dirtyend > bp->b_bcount)
1594 			bp->b_dirtyend = bp->b_bcount;
1595 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1596 		brelse(bp);
1597 	} else {
1598 		vnode_pager_setsize(vp, nsize);
1599 	}
1600 	return(error);
1601 }
1602 
1603