xref: /dragonfly/sys/vfs/nfs/nfs_socket.c (revision 783d47c4)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  */
39 
40 /*
41  * Socket operations for use by nfs
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/mbuf.h>
51 #include <sys/vnode.h>
52 #include <sys/fcntl.h>
53 #include <sys/protosw.h>
54 #include <sys/resourcevar.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/socketops.h>
58 #include <sys/syslog.h>
59 #include <sys/thread.h>
60 #include <sys/tprintf.h>
61 #include <sys/sysctl.h>
62 #include <sys/signalvar.h>
63 
64 #include <sys/signal2.h>
65 #include <sys/mutex2.h>
66 #include <sys/socketvar2.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <sys/thread2.h>
71 
72 #include "rpcv2.h"
73 #include "nfsproto.h"
74 #include "nfs.h"
75 #include "xdr_subs.h"
76 #include "nfsm_subs.h"
77 #include "nfsmount.h"
78 #include "nfsnode.h"
79 #include "nfsrtt.h"
80 
81 #define	TRUE	1
82 #define	FALSE	0
83 
84 /*
85  * RTT calculations are scaled by 256 (8 bits).  A proper fractional
86  * RTT will still be calculated even with a slow NFS timer.
87  */
88 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
89 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
90 #define NFS_RTT_SCALE_BITS	8	/* bits */
91 #define NFS_RTT_SCALE		256	/* value */
92 
93 /*
94  * Defines which timer to use for the procnum.
95  * 0 - default
96  * 1 - getattr
97  * 2 - lookup
98  * 3 - read
99  * 4 - write
100  */
101 static int proct[NFS_NPROCS] = {
102 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0,	/* 00-09	*/
103 	0, 0, 0, 0, 0, 0, 3, 3, 0, 0,	/* 10-19	*/
104 	0, 5, 0, 0, 0, 0,		/* 20-29	*/
105 };
106 
107 static int multt[NFS_NPROCS] = {
108 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 00-09	*/
109 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	/* 10-19	*/
110 	1, 2, 1, 1, 1, 1,		/* 20-29	*/
111 };
112 
113 static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
114 static int nfs_realign_test;
115 static int nfs_realign_count;
116 static int nfs_showrtt;
117 static int nfs_showrexmit;
118 int nfs_maxasyncbio = NFS_MAXASYNCBIO;
119 
120 SYSCTL_DECL(_vfs_nfs);
121 
122 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0,
123     "Number of times mbufs have been tested for bad alignment");
124 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0,
125     "Number of realignments for badly aligned mbuf data");
126 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0,
127     "Show round trip time output");
128 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0,
129     "Show retransmits info");
130 SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0,
131     "Max number of asynchronous bio's");
132 
133 static int nfs_request_setup(nfsm_info_t info);
134 static int nfs_request_auth(struct nfsreq *rep);
135 static int nfs_request_try(struct nfsreq *rep);
136 static int nfs_request_waitreply(struct nfsreq *rep);
137 static int nfs_request_processreply(nfsm_info_t info, int);
138 
139 int nfsrtton = 0;
140 struct nfsrtt nfsrtt;
141 struct callout	nfs_timer_handle;
142 
143 static int	nfs_msg (struct thread *,char *,char *);
144 static int	nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
145 static void	nfs_rcvunlock (struct nfsmount *nmp);
146 static void	nfs_realign (struct mbuf **pm, int hsiz);
147 static int	nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
148 				struct sockaddr **aname, struct mbuf **mp);
149 static void	nfs_softterm (struct nfsreq *rep, int islocked);
150 static void	nfs_hardterm (struct nfsreq *rep, int islocked);
151 static int	nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
152 #ifndef NFS_NOSERVER
153 static int	nfsrv_getstream (struct nfssvc_sock *, int, int *);
154 static void	nfs_timer_req(struct nfsreq *req);
155 static void	nfs_checkpkt(struct mbuf *m, int len);
156 
157 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
158 				    struct nfssvc_sock *slp,
159 				    struct thread *td,
160 				    struct mbuf **mreqp) = {
161 	nfsrv_null,
162 	nfsrv_getattr,
163 	nfsrv_setattr,
164 	nfsrv_lookup,
165 	nfsrv3_access,
166 	nfsrv_readlink,
167 	nfsrv_read,
168 	nfsrv_write,
169 	nfsrv_create,
170 	nfsrv_mkdir,
171 	nfsrv_symlink,
172 	nfsrv_mknod,
173 	nfsrv_remove,
174 	nfsrv_rmdir,
175 	nfsrv_rename,
176 	nfsrv_link,
177 	nfsrv_readdir,
178 	nfsrv_readdirplus,
179 	nfsrv_statfs,
180 	nfsrv_fsinfo,
181 	nfsrv_pathconf,
182 	nfsrv_commit,
183 	nfsrv_noop,
184 	nfsrv_noop,
185 	nfsrv_noop,
186 	nfsrv_noop
187 };
188 #endif /* NFS_NOSERVER */
189 
190 /*
191  * Initialize sockets and congestion for a new NFS connection.
192  * We do not free the sockaddr if error.
193  */
194 int
195 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
196 {
197 	struct socket *so;
198 	int error;
199 	struct sockaddr *saddr;
200 	struct sockaddr_in *sin;
201 	struct thread *td = &thread0; /* only used for socreate and sobind */
202 
203 	nmp->nm_so = so = NULL;
204 	if (nmp->nm_flag & NFSMNT_FORCE)
205 		return (EINVAL);
206 	saddr = nmp->nm_nam;
207 	error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
208 		nmp->nm_soproto, td);
209 	if (error)
210 		goto bad;
211 	nmp->nm_soflags = so->so_proto->pr_flags;
212 
213 	/*
214 	 * Some servers require that the client port be a reserved port number.
215 	 */
216 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
217 		struct sockopt sopt;
218 		int ip;
219 		struct sockaddr_in ssin;
220 
221 		bzero(&sopt, sizeof sopt);
222 		ip = IP_PORTRANGE_LOW;
223 		sopt.sopt_level = IPPROTO_IP;
224 		sopt.sopt_name = IP_PORTRANGE;
225 		sopt.sopt_val = (void *)&ip;
226 		sopt.sopt_valsize = sizeof(ip);
227 		sopt.sopt_td = NULL;
228 		error = sosetopt(so, &sopt);
229 		if (error)
230 			goto bad;
231 		bzero(&ssin, sizeof ssin);
232 		sin = &ssin;
233 		sin->sin_len = sizeof (struct sockaddr_in);
234 		sin->sin_family = AF_INET;
235 		sin->sin_addr.s_addr = INADDR_ANY;
236 		sin->sin_port = htons(0);
237 		error = sobind(so, (struct sockaddr *)sin, td);
238 		if (error)
239 			goto bad;
240 		bzero(&sopt, sizeof sopt);
241 		ip = IP_PORTRANGE_DEFAULT;
242 		sopt.sopt_level = IPPROTO_IP;
243 		sopt.sopt_name = IP_PORTRANGE;
244 		sopt.sopt_val = (void *)&ip;
245 		sopt.sopt_valsize = sizeof(ip);
246 		sopt.sopt_td = NULL;
247 		error = sosetopt(so, &sopt);
248 		if (error)
249 			goto bad;
250 	}
251 
252 	/*
253 	 * Protocols that do not require connections may be optionally left
254 	 * unconnected for servers that reply from a port other than NFS_PORT.
255 	 */
256 	if (nmp->nm_flag & NFSMNT_NOCONN) {
257 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
258 			error = ENOTCONN;
259 			goto bad;
260 		}
261 	} else {
262 		error = soconnect(so, nmp->nm_nam, td);
263 		if (error)
264 			goto bad;
265 
266 		/*
267 		 * Wait for the connection to complete. Cribbed from the
268 		 * connect system call but with the wait timing out so
269 		 * that interruptible mounts don't hang here for a long time.
270 		 */
271 		crit_enter();
272 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
273 			(void) tsleep((caddr_t)&so->so_timeo, 0,
274 				"nfscon", 2 * hz);
275 			if ((so->so_state & SS_ISCONNECTING) &&
276 			    so->so_error == 0 && rep &&
277 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
278 				soclrstate(so, SS_ISCONNECTING);
279 				crit_exit();
280 				goto bad;
281 			}
282 		}
283 		if (so->so_error) {
284 			error = so->so_error;
285 			so->so_error = 0;
286 			crit_exit();
287 			goto bad;
288 		}
289 		crit_exit();
290 	}
291 	so->so_rcv.ssb_timeo = (5 * hz);
292 	so->so_snd.ssb_timeo = (5 * hz);
293 
294 	/*
295 	 * Get buffer reservation size from sysctl, but impose reasonable
296 	 * limits.
297 	 */
298 	if (nmp->nm_sotype == SOCK_STREAM) {
299 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
300 			struct sockopt sopt;
301 			int val;
302 
303 			bzero(&sopt, sizeof sopt);
304 			sopt.sopt_level = SOL_SOCKET;
305 			sopt.sopt_name = SO_KEEPALIVE;
306 			sopt.sopt_val = &val;
307 			sopt.sopt_valsize = sizeof val;
308 			val = 1;
309 			sosetopt(so, &sopt);
310 		}
311 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
312 			struct sockopt sopt;
313 			int val;
314 
315 			bzero(&sopt, sizeof sopt);
316 			sopt.sopt_level = IPPROTO_TCP;
317 			sopt.sopt_name = TCP_NODELAY;
318 			sopt.sopt_val = &val;
319 			sopt.sopt_valsize = sizeof val;
320 			val = 1;
321 			sosetopt(so, &sopt);
322 
323 			bzero(&sopt, sizeof sopt);
324 			sopt.sopt_level = IPPROTO_TCP;
325 			sopt.sopt_name = TCP_FASTKEEP;
326 			sopt.sopt_val = &val;
327 			sopt.sopt_valsize = sizeof val;
328 			val = 1;
329 			sosetopt(so, &sopt);
330 		}
331 	}
332 	error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
333 	if (error)
334 		goto bad;
335 	atomic_set_int(&so->so_rcv.ssb_flags, SSB_NOINTR);
336 	atomic_set_int(&so->so_snd.ssb_flags, SSB_NOINTR);
337 
338 	/* Initialize other non-zero congestion variables */
339 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
340 		nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
341 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
342 		nmp->nm_sdrtt[3] = 0;
343 	nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
344 	nmp->nm_timeouts = 0;
345 
346 	/*
347 	 * Assign nm_so last.  The moment nm_so is assigned the nfs_timer()
348 	 * can mess with the socket.
349 	 */
350 	nmp->nm_so = so;
351 	return (0);
352 
353 bad:
354 	if (so) {
355 		soshutdown(so, SHUT_RDWR);
356 		soclose(so, FNONBLOCK);
357 	}
358 	return (error);
359 }
360 
361 /*
362  * Reconnect routine:
363  * Called when a connection is broken on a reliable protocol.
364  * - clean up the old socket
365  * - nfs_connect() again
366  * - set R_NEEDSXMIT for all outstanding requests on mount point
367  * If this fails the mount point is DEAD!
368  * nb: Must be called with the nfs_sndlock() set on the mount point.
369  */
370 static int
371 nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
372 {
373 	struct nfsreq *req;
374 	int error;
375 
376 	nfs_disconnect(nmp);
377 	if (nmp->nm_rxstate >= NFSSVC_STOPPING)
378 		return (EINTR);
379 	while ((error = nfs_connect(nmp, rep)) != 0) {
380 		if (error == EINTR || error == ERESTART)
381 			return (EINTR);
382 		if (error == EINVAL)
383 			return (error);
384 		if (nmp->nm_rxstate >= NFSSVC_STOPPING)
385 			return (EINTR);
386 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
387 	}
388 
389 	/*
390 	 * Loop through outstanding request list and fix up all requests
391 	 * on old socket.
392 	 */
393 	crit_enter();
394 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
395 		KKASSERT(req->r_nmp == nmp);
396 		req->r_flags |= R_NEEDSXMIT;
397 	}
398 	crit_exit();
399 	return (0);
400 }
401 
402 /*
403  * NFS disconnect. Clean up and unlink.
404  */
405 void
406 nfs_disconnect(struct nfsmount *nmp)
407 {
408 	struct socket *so;
409 
410 	if (nmp->nm_so) {
411 		so = nmp->nm_so;
412 		nmp->nm_so = NULL;
413 		soshutdown(so, SHUT_RDWR);
414 		soclose(so, FNONBLOCK);
415 	}
416 }
417 
418 void
419 nfs_safedisconnect(struct nfsmount *nmp)
420 {
421 	nfs_rcvlock(nmp, NULL);
422 	nfs_disconnect(nmp);
423 	nfs_rcvunlock(nmp);
424 }
425 
426 /*
427  * This is the nfs send routine. For connection based socket types, it
428  * must be called with an nfs_sndlock() on the socket.
429  * "rep == NULL" indicates that it has been called from a server.
430  * For the client side:
431  * - return EINTR if the RPC is terminated, 0 otherwise
432  * - set R_NEEDSXMIT if the send fails for any reason
433  * - do any cleanup required by recoverable socket errors (?)
434  * For the server side:
435  * - return EINTR or ERESTART if interrupted by a signal
436  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
437  * - do any cleanup required by recoverable socket errors (?)
438  */
439 int
440 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
441 	 struct nfsreq *rep)
442 {
443 	struct sockaddr *sendnam;
444 	int error, soflags, flags;
445 
446 	if (rep) {
447 		if (rep->r_flags & R_SOFTTERM) {
448 			m_freem(top);
449 			return (EINTR);
450 		}
451 		if ((so = rep->r_nmp->nm_so) == NULL) {
452 			rep->r_flags |= R_NEEDSXMIT;
453 			m_freem(top);
454 			return (0);
455 		}
456 		rep->r_flags &= ~R_NEEDSXMIT;
457 		soflags = rep->r_nmp->nm_soflags;
458 	} else {
459 		soflags = so->so_proto->pr_flags;
460 	}
461 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
462 		sendnam = NULL;
463 	else
464 		sendnam = nam;
465 	if (so->so_type == SOCK_SEQPACKET)
466 		flags = MSG_EOR;
467 	else
468 		flags = 0;
469 
470 	/*
471 	 * calls pru_sosend -> sosend -> so_pru_send -> netrpc
472 	 */
473 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
474 			      curthread /*XXX*/);
475 
476 	/*
477 	 * ENOBUFS for dgram sockets is transient and non fatal.
478 	 * No need to log, and no need to break a soft mount.
479 	 */
480 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
481 		error = 0;
482 		/*
483 		 * do backoff retransmit on client
484 		 */
485 		if (rep) {
486 			if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
487 				rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
488 				kprintf("Warning: NFS: Insufficient sendspace "
489 					"(%lu),\n"
490 					"\t You must increase vfs.nfs.soreserve"
491 					"or decrease vfs.nfs.maxasyncbio\n",
492 					so->so_snd.ssb_hiwat);
493 			}
494 			rep->r_flags |= R_NEEDSXMIT;
495 		}
496 	}
497 
498 	if (error) {
499 		if (rep) {
500 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
501 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
502 			/*
503 			 * Deal with errors for the client side.
504 			 */
505 			if (rep->r_flags & R_SOFTTERM)
506 				error = EINTR;
507 			else
508 				rep->r_flags |= R_NEEDSXMIT;
509 		} else {
510 			log(LOG_INFO, "nfsd send error %d\n", error);
511 		}
512 
513 		/*
514 		 * Handle any recoverable (soft) socket errors here. (?)
515 		 */
516 		if (error != EINTR && error != ERESTART &&
517 			error != EWOULDBLOCK && error != EPIPE)
518 			error = 0;
519 	}
520 	return (error);
521 }
522 
523 /*
524  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
525  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
526  * Mark and consolidate the data into a new mbuf list.
527  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
528  *     small mbufs.
529  * For SOCK_STREAM we must be very careful to read an entire record once
530  * we have read any of it, even if the system call has been interrupted.
531  */
532 static int
533 nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
534 	    struct sockaddr **aname, struct mbuf **mp)
535 {
536 	struct socket *so;
537 	struct sockbuf sio;
538 	struct uio auio;
539 	struct iovec aio;
540 	struct mbuf *m;
541 	struct mbuf *control;
542 	u_int32_t len;
543 	struct sockaddr **getnam;
544 	int error, sotype, rcvflg;
545 	struct thread *td = curthread;	/* XXX */
546 
547 	/*
548 	 * Set up arguments for soreceive()
549 	 */
550 	*mp = NULL;
551 	*aname = NULL;
552 	sotype = nmp->nm_sotype;
553 
554 	/*
555 	 * For reliable protocols, lock against other senders/receivers
556 	 * in case a reconnect is necessary.
557 	 * For SOCK_STREAM, first get the Record Mark to find out how much
558 	 * more there is to get.
559 	 * We must lock the socket against other receivers
560 	 * until we have an entire rpc request/reply.
561 	 */
562 	if (sotype != SOCK_DGRAM) {
563 		error = nfs_sndlock(nmp, rep);
564 		if (error)
565 			return (error);
566 tryagain:
567 		/*
568 		 * Check for fatal errors and resending request.
569 		 */
570 		/*
571 		 * Ugh: If a reconnect attempt just happened, nm_so
572 		 * would have changed. NULL indicates a failed
573 		 * attempt that has essentially shut down this
574 		 * mount point.
575 		 */
576 		if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
577 			nfs_sndunlock(nmp);
578 			return (EINTR);
579 		}
580 		so = nmp->nm_so;
581 		if (so == NULL) {
582 			error = nfs_reconnect(nmp, rep);
583 			if (error) {
584 				nfs_sndunlock(nmp);
585 				return (error);
586 			}
587 			goto tryagain;
588 		}
589 		while (rep && (rep->r_flags & R_NEEDSXMIT)) {
590 			m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
591 			nfsstats.rpcretries++;
592 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
593 			if (error) {
594 				if (error == EINTR || error == ERESTART ||
595 				    (error = nfs_reconnect(nmp, rep)) != 0) {
596 					nfs_sndunlock(nmp);
597 					return (error);
598 				}
599 				goto tryagain;
600 			}
601 		}
602 		nfs_sndunlock(nmp);
603 		if (sotype == SOCK_STREAM) {
604 			/*
605 			 * Get the length marker from the stream
606 			 */
607 			aio.iov_base = (caddr_t)&len;
608 			aio.iov_len = sizeof(u_int32_t);
609 			auio.uio_iov = &aio;
610 			auio.uio_iovcnt = 1;
611 			auio.uio_segflg = UIO_SYSSPACE;
612 			auio.uio_rw = UIO_READ;
613 			auio.uio_offset = 0;
614 			auio.uio_resid = sizeof(u_int32_t);
615 			auio.uio_td = td;
616 			do {
617 			   rcvflg = MSG_WAITALL;
618 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
619 						    NULL, &rcvflg);
620 			   if (error == EWOULDBLOCK && rep) {
621 				if (rep->r_flags & R_SOFTTERM)
622 					return (EINTR);
623 			   }
624 			} while (error == EWOULDBLOCK);
625 
626 			if (error == 0 && auio.uio_resid > 0) {
627 			    /*
628 			     * Only log short packets if not EOF
629 			     */
630 			    if (auio.uio_resid != sizeof(u_int32_t)) {
631 				log(LOG_INFO,
632 				    "short receive (%d/%d) from nfs server %s\n",
633 				    (int)(sizeof(u_int32_t) - auio.uio_resid),
634 				    (int)sizeof(u_int32_t),
635 				    nmp->nm_mountp->mnt_stat.f_mntfromname);
636 			    }
637 			    error = EPIPE;
638 			}
639 			if (error)
640 				goto errout;
641 			len = ntohl(len) & ~0x80000000;
642 			/*
643 			 * This is SERIOUS! We are out of sync with the sender
644 			 * and forcing a disconnect/reconnect is all I can do.
645 			 */
646 			if (len > NFS_MAXPACKET) {
647 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
648 				"impossible packet length",
649 				len,
650 				nmp->nm_mountp->mnt_stat.f_mntfromname);
651 			    error = EFBIG;
652 			    goto errout;
653 			}
654 
655 			/*
656 			 * Get the rest of the packet as an mbuf chain
657 			 */
658 			sbinit(&sio, len);
659 			do {
660 			    rcvflg = MSG_WAITALL;
661 			    error = so_pru_soreceive(so, NULL, NULL, &sio,
662 						     NULL, &rcvflg);
663 			} while (error == EWOULDBLOCK || error == EINTR ||
664 				 error == ERESTART);
665 			if (error == 0 && sio.sb_cc != len) {
666 			    if (sio.sb_cc != 0) {
667 				log(LOG_INFO,
668 				    "short receive (%zu/%d) from nfs server %s\n",
669 				    (size_t)len - auio.uio_resid, len,
670 				    nmp->nm_mountp->mnt_stat.f_mntfromname);
671 			    }
672 			    error = EPIPE;
673 			}
674 			*mp = sio.sb_mb;
675 		} else {
676 			/*
677 			 * Non-stream, so get the whole packet by not
678 			 * specifying MSG_WAITALL and by specifying a large
679 			 * length.
680 			 *
681 			 * We have no use for control msg., but must grab them
682 			 * and then throw them away so we know what is going
683 			 * on.
684 			 */
685 			sbinit(&sio, 100000000);
686 			do {
687 			    rcvflg = 0;
688 			    error =  so_pru_soreceive(so, NULL, NULL, &sio,
689 						      &control, &rcvflg);
690 			    if (control)
691 				m_freem(control);
692 			    if (error == EWOULDBLOCK && rep) {
693 				if (rep->r_flags & R_SOFTTERM) {
694 					m_freem(sio.sb_mb);
695 					return (EINTR);
696 				}
697 			    }
698 			} while (error == EWOULDBLOCK ||
699 				 (error == 0 && sio.sb_mb == NULL && control));
700 			if ((rcvflg & MSG_EOR) == 0)
701 				kprintf("Egad!!\n");
702 			if (error == 0 && sio.sb_mb == NULL)
703 				error = EPIPE;
704 			len = sio.sb_cc;
705 			*mp = sio.sb_mb;
706 		}
707 errout:
708 		if (error && error != EINTR && error != ERESTART) {
709 			m_freem(*mp);
710 			*mp = NULL;
711 			if (error != EPIPE) {
712 				log(LOG_INFO,
713 				    "receive error %d from nfs server %s\n",
714 				    error,
715 				 nmp->nm_mountp->mnt_stat.f_mntfromname);
716 			}
717 			error = nfs_sndlock(nmp, rep);
718 			if (!error) {
719 				error = nfs_reconnect(nmp, rep);
720 				if (!error)
721 					goto tryagain;
722 				else
723 					nfs_sndunlock(nmp);
724 			}
725 		}
726 	} else {
727 		if ((so = nmp->nm_so) == NULL)
728 			return (EACCES);
729 		if (so->so_state & SS_ISCONNECTED)
730 			getnam = NULL;
731 		else
732 			getnam = aname;
733 		sbinit(&sio, 100000000);
734 		do {
735 			rcvflg = 0;
736 			error =  so_pru_soreceive(so, getnam, NULL, &sio,
737 						  NULL, &rcvflg);
738 			if (error == EWOULDBLOCK && rep &&
739 			    (rep->r_flags & R_SOFTTERM)) {
740 				m_freem(sio.sb_mb);
741 				return (EINTR);
742 			}
743 		} while (error == EWOULDBLOCK);
744 
745 		len = sio.sb_cc;
746 		*mp = sio.sb_mb;
747 
748 		/*
749 		 * A shutdown may result in no error and no mbuf.
750 		 * Convert to EPIPE.
751 		 */
752 		if (*mp == NULL && error == 0)
753 			error = EPIPE;
754 	}
755 	if (error) {
756 		m_freem(*mp);
757 		*mp = NULL;
758 	}
759 
760 	/*
761 	 * Search for any mbufs that are not a multiple of 4 bytes long
762 	 * or with m_data not longword aligned.
763 	 * These could cause pointer alignment problems, so copy them to
764 	 * well aligned mbufs.
765 	 */
766 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
767 	return (error);
768 }
769 
770 /*
771  * Implement receipt of reply on a socket.
772  *
773  * We must search through the list of received datagrams matching them
774  * with outstanding requests using the xid, until ours is found.
775  *
776  * If myrep is NULL we process packets on the socket until
777  * interrupted or until nm_reqrxq is non-empty.
778  */
779 /* ARGSUSED */
780 int
781 nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
782 {
783 	struct nfsreq *rep;
784 	struct sockaddr *nam;
785 	u_int32_t rxid;
786 	u_int32_t *tl;
787 	int error;
788 	struct nfsm_info info;
789 
790 	/*
791 	 * Loop around until we get our own reply
792 	 */
793 	for (;;) {
794 		/*
795 		 * Lock against other receivers so that I don't get stuck in
796 		 * sbwait() after someone else has received my reply for me.
797 		 * Also necessary for connection based protocols to avoid
798 		 * race conditions during a reconnect.
799 		 *
800 		 * If nfs_rcvlock() returns EALREADY, that means that
801 		 * the reply has already been recieved by another
802 		 * process and we can return immediately.  In this
803 		 * case, the lock is not taken to avoid races with
804 		 * other processes.
805 		 */
806 		info.mrep = NULL;
807 
808 		error = nfs_rcvlock(nmp, myrep);
809 		if (error == EALREADY)
810 			return (0);
811 		if (error)
812 			return (error);
813 
814 		/*
815 		 * If myrep is NULL we are the receiver helper thread.
816 		 * Stop waiting for incoming replies if there are
817 		 * messages sitting on reqrxq that we need to process,
818 		 * or if a shutdown request is pending.
819 		 */
820 		if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
821 		    nmp->nm_rxstate > NFSSVC_PENDING)) {
822 			nfs_rcvunlock(nmp);
823 			return(EWOULDBLOCK);
824 		}
825 
826 		/*
827 		 * Get the next Rpc reply off the socket
828 		 *
829 		 * We cannot release the receive lock until we've
830 		 * filled in rep->r_mrep, otherwise a waiting
831 		 * thread may deadlock in soreceive with no incoming
832 		 * packets expected.
833 		 */
834 		error = nfs_receive(nmp, myrep, &nam, &info.mrep);
835 		if (error) {
836 			/*
837 			 * Ignore routing errors on connectionless protocols??
838 			 */
839 			nfs_rcvunlock(nmp);
840 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
841 				if (nmp->nm_so == NULL)
842 					return (error);
843 				nmp->nm_so->so_error = 0;
844 				continue;
845 			}
846 			return (error);
847 		}
848 		if (nam)
849 			kfree(nam, M_SONAME);
850 
851 		/*
852 		 * Get the xid and check that it is an rpc reply
853 		 */
854 		info.md = info.mrep;
855 		info.dpos = mtod(info.md, caddr_t);
856 		NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
857 		rxid = *tl++;
858 		if (*tl != rpc_reply) {
859 			nfsstats.rpcinvalid++;
860 			m_freem(info.mrep);
861 			info.mrep = NULL;
862 nfsmout:
863 			nfs_rcvunlock(nmp);
864 			continue;
865 		}
866 
867 		/*
868 		 * Loop through the request list to match up the reply
869 		 * Iff no match, just drop the datagram.  On match, set
870 		 * r_mrep atomically to prevent the timer from messing
871 		 * around with the request after we have exited the critical
872 		 * section.
873 		 */
874 		crit_enter();
875 		TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
876 			if (rep->r_mrep == NULL && rxid == rep->r_xid)
877 				break;
878 		}
879 
880 		/*
881 		 * Fill in the rest of the reply if we found a match.
882 		 *
883 		 * Deal with duplicate responses if there was no match.
884 		 */
885 		if (rep) {
886 			rep->r_md = info.md;
887 			rep->r_dpos = info.dpos;
888 			if (nfsrtton) {
889 				struct rttl *rt;
890 
891 				rt = &nfsrtt.rttl[nfsrtt.pos];
892 				rt->proc = rep->r_procnum;
893 				rt->rto = 0;
894 				rt->sent = 0;
895 				rt->cwnd = nmp->nm_maxasync_scaled;
896 				rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
897 				rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
898 				rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
899 				getmicrotime(&rt->tstamp);
900 				if (rep->r_flags & R_TIMING)
901 					rt->rtt = rep->r_rtt;
902 				else
903 					rt->rtt = 1000000;
904 				nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
905 			}
906 
907 			/*
908 			 * New congestion control is based only on async
909 			 * requests.
910 			 */
911 			if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
912 				++nmp->nm_maxasync_scaled;
913 			if (rep->r_flags & R_SENT) {
914 				rep->r_flags &= ~R_SENT;
915 			}
916 			/*
917 			 * Update rtt using a gain of 0.125 on the mean
918 			 * and a gain of 0.25 on the deviation.
919 			 *
920 			 * NOTE SRTT/SDRTT are only good if R_TIMING is set.
921 			 */
922 			if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
923 				/*
924 				 * Since the timer resolution of
925 				 * NFS_HZ is so course, it can often
926 				 * result in r_rtt == 0. Since
927 				 * r_rtt == N means that the actual
928 				 * rtt is between N+dt and N+2-dt ticks,
929 				 * add 1.
930 				 */
931 				int n;
932 				int d;
933 
934 #define NFSRSB	NFS_RTT_SCALE_BITS
935 				n = ((NFS_SRTT(rep) * 7) +
936 				     (rep->r_rtt << NFSRSB)) >> 3;
937 				d = n - NFS_SRTT(rep);
938 				NFS_SRTT(rep) = n;
939 
940 				/*
941 				 * Don't let the jitter calculation decay
942 				 * too quickly, but we want a fast rampup.
943 				 */
944 				if (d < 0)
945 					d = -d;
946 				d <<= NFSRSB;
947 				if (d < NFS_SDRTT(rep))
948 					n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
949 				else
950 					n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
951 				NFS_SDRTT(rep) = n;
952 #undef NFSRSB
953 			}
954 			nmp->nm_timeouts = 0;
955 			rep->r_mrep = info.mrep;
956 			nfs_hardterm(rep, 0);
957 		} else {
958 			/*
959 			 * Extract vers, prog, nfsver, procnum.  A duplicate
960 			 * response means we didn't wait long enough so
961 			 * we increase the SRTT to avoid future spurious
962 			 * timeouts.
963 			 */
964 			u_int procnum = nmp->nm_lastreprocnum;
965 			int n;
966 
967 			if (procnum < NFS_NPROCS && proct[procnum]) {
968 				if (nfs_showrexmit)
969 					kprintf("D");
970 				n = nmp->nm_srtt[proct[procnum]];
971 				n += NFS_ASYSCALE * NFS_HZ;
972 				if (n < NFS_ASYSCALE * NFS_HZ * 10)
973 					n = NFS_ASYSCALE * NFS_HZ * 10;
974 				nmp->nm_srtt[proct[procnum]] = n;
975 			}
976 		}
977 		nfs_rcvunlock(nmp);
978 		crit_exit();
979 
980 		/*
981 		 * If not matched to a request, drop it.
982 		 * If it's mine, get out.
983 		 */
984 		if (rep == NULL) {
985 			nfsstats.rpcunexpected++;
986 			m_freem(info.mrep);
987 			info.mrep = NULL;
988 		} else if (rep == myrep) {
989 			if (rep->r_mrep == NULL)
990 				panic("nfsreply nil");
991 			return (0);
992 		}
993 	}
994 }
995 
996 /*
997  * Run the request state machine until the target state is reached
998  * or a fatal error occurs.  The target state is not run.  Specifying
999  * a target of NFSM_STATE_DONE runs the state machine until the rpc
1000  * is complete.
1001  *
1002  * EINPROGRESS is returned for all states other then the DONE state,
1003  * indicating that the rpc is still in progress.
1004  */
1005 int
1006 nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
1007 {
1008 	struct nfsreq *req;
1009 
1010 	while (info->state >= bstate && info->state < estate) {
1011 		switch(info->state) {
1012 		case NFSM_STATE_SETUP:
1013 			/*
1014 			 * Setup the nfsreq.  Any error which occurs during
1015 			 * this state is fatal.
1016 			 */
1017 			info->error = nfs_request_setup(info);
1018 			if (info->error) {
1019 				info->state = NFSM_STATE_DONE;
1020 				return (info->error);
1021 			} else {
1022 				req = info->req;
1023 				req->r_mrp = &info->mrep;
1024 				req->r_mdp = &info->md;
1025 				req->r_dposp = &info->dpos;
1026 				info->state = NFSM_STATE_AUTH;
1027 			}
1028 			break;
1029 		case NFSM_STATE_AUTH:
1030 			/*
1031 			 * Authenticate the nfsreq.  Any error which occurs
1032 			 * during this state is fatal.
1033 			 */
1034 			info->error = nfs_request_auth(info->req);
1035 			if (info->error) {
1036 				info->state = NFSM_STATE_DONE;
1037 				return (info->error);
1038 			} else {
1039 				info->state = NFSM_STATE_TRY;
1040 			}
1041 			break;
1042 		case NFSM_STATE_TRY:
1043 			/*
1044 			 * Transmit or retransmit attempt.  An error in this
1045 			 * state is ignored and we always move on to the
1046 			 * next state.
1047 			 *
1048 			 * This can trivially race the receiver if the
1049 			 * request is asynchronous.  nfs_request_try()
1050 			 * will thus set the state for us and we
1051 			 * must also return immediately if we are
1052 			 * running an async state machine, because
1053 			 * info can become invalid due to races after
1054 			 * try() returns.
1055 			 */
1056 			if (info->req->r_flags & R_ASYNC) {
1057 				nfs_request_try(info->req);
1058 				if (estate == NFSM_STATE_WAITREPLY)
1059 					return (EINPROGRESS);
1060 			} else {
1061 				nfs_request_try(info->req);
1062 				info->state = NFSM_STATE_WAITREPLY;
1063 			}
1064 			break;
1065 		case NFSM_STATE_WAITREPLY:
1066 			/*
1067 			 * Wait for a reply or timeout and move on to the
1068 			 * next state.  The error returned by this state
1069 			 * is passed to the processing code in the next
1070 			 * state.
1071 			 */
1072 			info->error = nfs_request_waitreply(info->req);
1073 			info->state = NFSM_STATE_PROCESSREPLY;
1074 			break;
1075 		case NFSM_STATE_PROCESSREPLY:
1076 			/*
1077 			 * Process the reply or timeout.  Errors which occur
1078 			 * in this state may cause the state machine to
1079 			 * go back to an earlier state, and are fatal
1080 			 * otherwise.
1081 			 */
1082 			info->error = nfs_request_processreply(info,
1083 							       info->error);
1084 			switch(info->error) {
1085 			case ENEEDAUTH:
1086 				info->state = NFSM_STATE_AUTH;
1087 				break;
1088 			case EAGAIN:
1089 				info->state = NFSM_STATE_TRY;
1090 				break;
1091 			default:
1092 				/*
1093 				 * Operation complete, with or without an
1094 				 * error.  We are done.
1095 				 */
1096 				info->req = NULL;
1097 				info->state = NFSM_STATE_DONE;
1098 				return (info->error);
1099 			}
1100 			break;
1101 		case NFSM_STATE_DONE:
1102 			/*
1103 			 * Shouldn't be reached
1104 			 */
1105 			return (info->error);
1106 			/* NOT REACHED */
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * If we are done return the error code (if any).
1112 	 * Otherwise return EINPROGRESS.
1113 	 */
1114 	if (info->state == NFSM_STATE_DONE)
1115 		return (info->error);
1116 	return (EINPROGRESS);
1117 }
1118 
1119 /*
1120  * nfs_request - goes something like this
1121  *	- fill in request struct
1122  *	- links it into list
1123  *	- calls nfs_send() for first transmit
1124  *	- calls nfs_receive() to get reply
1125  *	- break down rpc header and return with nfs reply pointed to
1126  *	  by mrep or error
1127  * nb: always frees up mreq mbuf list
1128  */
1129 static int
1130 nfs_request_setup(nfsm_info_t info)
1131 {
1132 	struct nfsreq *req;
1133 	struct nfsmount *nmp;
1134 	struct mbuf *m;
1135 	int i;
1136 
1137 	/*
1138 	 * Reject requests while attempting a forced unmount.
1139 	 */
1140 	if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1141 		m_freem(info->mreq);
1142 		info->mreq = NULL;
1143 		return (EIO);
1144 	}
1145 	nmp = VFSTONFS(info->vp->v_mount);
1146 	req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1147 	req->r_nmp = nmp;
1148 	req->r_vp = info->vp;
1149 	req->r_td = info->td;
1150 	req->r_procnum = info->procnum;
1151 	req->r_mreq = NULL;
1152 	req->r_cred = info->cred;
1153 
1154 	i = 0;
1155 	m = info->mreq;
1156 	while (m) {
1157 		i += m->m_len;
1158 		m = m->m_next;
1159 	}
1160 	req->r_mrest = info->mreq;
1161 	req->r_mrest_len = i;
1162 
1163 	/*
1164 	 * The presence of a non-NULL r_info in req indicates
1165 	 * async completion via our helper threads.  See the receiver
1166 	 * code.
1167 	 */
1168 	if (info->bio) {
1169 		req->r_info = info;
1170 		req->r_flags = R_ASYNC;
1171 	} else {
1172 		req->r_info = NULL;
1173 		req->r_flags = 0;
1174 	}
1175 	info->req = req;
1176 	return(0);
1177 }
1178 
1179 static int
1180 nfs_request_auth(struct nfsreq *rep)
1181 {
1182 	struct nfsmount *nmp = rep->r_nmp;
1183 	struct mbuf *m;
1184 	char nickv[RPCX_NICKVERF];
1185 	int error = 0, auth_len, auth_type;
1186 	int verf_len;
1187 	u_int32_t xid;
1188 	char *auth_str, *verf_str;
1189 	struct ucred *cred;
1190 
1191 	cred = rep->r_cred;
1192 	rep->r_failed_auth = 0;
1193 
1194 	/*
1195 	 * Get the RPC header with authorization.
1196 	 */
1197 	verf_str = auth_str = NULL;
1198 	if (nmp->nm_flag & NFSMNT_KERB) {
1199 		verf_str = nickv;
1200 		verf_len = sizeof (nickv);
1201 		auth_type = RPCAUTH_KERB4;
1202 		bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1203 		if (rep->r_failed_auth ||
1204 		    nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1205 				    verf_str, verf_len)) {
1206 			error = nfs_getauth(nmp, rep, cred, &auth_str,
1207 				&auth_len, verf_str, &verf_len, rep->r_key);
1208 			if (error) {
1209 				m_freem(rep->r_mrest);
1210 				rep->r_mrest = NULL;
1211 				kfree((caddr_t)rep, M_NFSREQ);
1212 				return (error);
1213 			}
1214 		}
1215 	} else {
1216 		auth_type = RPCAUTH_UNIX;
1217 		if (cred->cr_ngroups < 1)
1218 			panic("nfsreq nogrps");
1219 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1220 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1221 			5 * NFSX_UNSIGNED;
1222 	}
1223 	if (rep->r_mrest)
1224 		nfs_checkpkt(rep->r_mrest, rep->r_mrest_len);
1225 	m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1226 			auth_len, auth_str, verf_len, verf_str,
1227 			rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1228 	rep->r_mrest = NULL;
1229 	if (auth_str)
1230 		kfree(auth_str, M_TEMP);
1231 
1232 	/*
1233 	 * For stream protocols, insert a Sun RPC Record Mark.
1234 	 */
1235 	if (nmp->nm_sotype == SOCK_STREAM) {
1236 		M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1237 		if (m == NULL) {
1238 			kfree(rep, M_NFSREQ);
1239 			return (ENOBUFS);
1240 		}
1241 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1242 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1243 	}
1244 
1245 	nfs_checkpkt(m, m->m_pkthdr.len);
1246 
1247 	rep->r_mreq = m;
1248 	rep->r_xid = xid;
1249 	return (0);
1250 }
1251 
1252 static int
1253 nfs_request_try(struct nfsreq *rep)
1254 {
1255 	struct nfsmount *nmp = rep->r_nmp;
1256 	struct mbuf *m2;
1257 	int error;
1258 
1259 	/*
1260 	 * Request is not on any queue, only the owner has access to it
1261 	 * so it should not be locked by anyone atm.
1262 	 *
1263 	 * Interlock to prevent races.  While locked the only remote
1264 	 * action possible is for r_mrep to be set (once we enqueue it).
1265 	 */
1266 	if (rep->r_flags == 0xdeadc0de) {
1267 		print_backtrace(-1);
1268 		panic("flags nbad");
1269 	}
1270 	KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1271 	if (nmp->nm_flag & NFSMNT_SOFT)
1272 		rep->r_retry = nmp->nm_retry;
1273 	else
1274 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1275 	rep->r_rtt = rep->r_rexmit = 0;
1276 	if (proct[rep->r_procnum] > 0)
1277 		rep->r_flags |= R_TIMING | R_LOCKED;
1278 	else
1279 		rep->r_flags |= R_LOCKED;
1280 	rep->r_mrep = NULL;
1281 
1282 	nfsstats.rpcrequests++;
1283 
1284 	if (nmp->nm_flag & NFSMNT_FORCE) {
1285 		rep->r_flags |= R_SOFTTERM;
1286 		rep->r_flags &= ~R_LOCKED;
1287 		return (0);
1288 	}
1289 	rep->r_flags |= R_NEEDSXMIT;	/* in case send lock races us */
1290 
1291 	/*
1292 	 * Do the client side RPC.
1293 	 *
1294 	 * Chain request into list of outstanding requests. Be sure
1295 	 * to put it LAST so timer finds oldest requests first.  Note
1296 	 * that our control of R_LOCKED prevents the request from
1297 	 * getting ripped out from under us or transmitted by the
1298 	 * timer code.
1299 	 *
1300 	 * For requests with info structures we must atomically set the
1301 	 * info's state because the structure could become invalid upon
1302 	 * return due to races (i.e., if async)
1303 	 */
1304 	crit_enter();
1305 	mtx_link_init(&rep->r_link);
1306 	KKASSERT((rep->r_flags & R_ONREQQ) == 0);
1307 	TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1308 	rep->r_flags |= R_ONREQQ;
1309 	++nmp->nm_reqqlen;
1310 	if (rep->r_flags & R_ASYNC)
1311 		rep->r_info->state = NFSM_STATE_WAITREPLY;
1312 	crit_exit();
1313 
1314 	error = 0;
1315 
1316 	/*
1317 	 * Send if we can.  Congestion control is not handled here any more
1318 	 * becausing trying to defer the initial send based on the nfs_timer
1319 	 * requires having a very fast nfs_timer, which is silly.
1320 	 */
1321 	if (nmp->nm_so) {
1322 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1323 			error = nfs_sndlock(nmp, rep);
1324 		if (error == 0 && (rep->r_flags & R_NEEDSXMIT)) {
1325 			m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1326 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1327 			rep->r_flags &= ~R_NEEDSXMIT;
1328 			if ((rep->r_flags & R_SENT) == 0) {
1329 				rep->r_flags |= R_SENT;
1330 			}
1331 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1332 				nfs_sndunlock(nmp);
1333 		}
1334 	} else {
1335 		rep->r_rtt = -1;
1336 	}
1337 	if (error == EPIPE)
1338 		error = 0;
1339 
1340 	/*
1341 	 * Release the lock.  The only remote action that may have occurred
1342 	 * would have been the setting of rep->r_mrep.  If this occured
1343 	 * and the request was async we have to move it to the reader
1344 	 * thread's queue for action.
1345 	 *
1346 	 * For async requests also make sure the reader is woken up so
1347 	 * it gets on the socket to read responses.
1348 	 */
1349 	crit_enter();
1350 	if (rep->r_flags & R_ASYNC) {
1351 		if (rep->r_mrep)
1352 			nfs_hardterm(rep, 1);
1353 		rep->r_flags &= ~R_LOCKED;
1354 		nfssvc_iod_reader_wakeup(nmp);
1355 	} else {
1356 		rep->r_flags &= ~R_LOCKED;
1357 	}
1358 	if (rep->r_flags & R_WANTED) {
1359 		rep->r_flags &= ~R_WANTED;
1360 		wakeup(rep);
1361 	}
1362 	crit_exit();
1363 	return (error);
1364 }
1365 
1366 /*
1367  * This code is only called for synchronous requests.  Completed synchronous
1368  * requests are left on reqq and we remove them before moving on to the
1369  * processing state.
1370  */
1371 static int
1372 nfs_request_waitreply(struct nfsreq *rep)
1373 {
1374 	struct nfsmount *nmp = rep->r_nmp;
1375 	int error;
1376 
1377 	KKASSERT((rep->r_flags & R_ASYNC) == 0);
1378 
1379 	/*
1380 	 * Wait until the request is finished.
1381 	 */
1382 	error = nfs_reply(nmp, rep);
1383 
1384 	/*
1385 	 * RPC done, unlink the request, but don't rip it out from under
1386 	 * the callout timer.
1387 	 *
1388 	 * Once unlinked no other receiver or the timer will have
1389 	 * visibility, so we do not have to set R_LOCKED.
1390 	 */
1391 	crit_enter();
1392 	while (rep->r_flags & R_LOCKED) {
1393 		rep->r_flags |= R_WANTED;
1394 		tsleep(rep, 0, "nfstrac", 0);
1395 	}
1396 	KKASSERT(rep->r_flags & R_ONREQQ);
1397 	TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1398 	rep->r_flags &= ~R_ONREQQ;
1399 	--nmp->nm_reqqlen;
1400 	if (TAILQ_FIRST(&nmp->nm_bioq) &&
1401 	    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1402 		nfssvc_iod_writer_wakeup(nmp);
1403 	}
1404 	crit_exit();
1405 
1406 	/*
1407 	 * Decrement the outstanding request count.
1408 	 */
1409 	if (rep->r_flags & R_SENT) {
1410 		rep->r_flags &= ~R_SENT;
1411 	}
1412 	return (error);
1413 }
1414 
1415 /*
1416  * Process reply with error returned from nfs_requet_waitreply().
1417  *
1418  * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1419  * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1420  */
1421 static int
1422 nfs_request_processreply(nfsm_info_t info, int error)
1423 {
1424 	struct nfsreq *req = info->req;
1425 	struct nfsmount *nmp = req->r_nmp;
1426 	u_int32_t *tl;
1427 	int verf_type;
1428 	int i;
1429 
1430 	/*
1431 	 * If there was a successful reply and a tprintf msg.
1432 	 * tprintf a response.
1433 	 */
1434 	if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1435 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1436 		    "is alive again");
1437 	}
1438 	info->mrep = req->r_mrep;
1439 	info->md = req->r_md;
1440 	info->dpos = req->r_dpos;
1441 	if (error) {
1442 		m_freem(req->r_mreq);
1443 		req->r_mreq = NULL;
1444 		kfree(req, M_NFSREQ);
1445 		info->req = NULL;
1446 		return (error);
1447 	}
1448 
1449 	/*
1450 	 * break down the rpc header and check if ok
1451 	 */
1452 	NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1453 	if (*tl++ == rpc_msgdenied) {
1454 		if (*tl == rpc_mismatch) {
1455 			error = EOPNOTSUPP;
1456 		} else if ((nmp->nm_flag & NFSMNT_KERB) &&
1457 			   *tl++ == rpc_autherr) {
1458 			if (req->r_failed_auth == 0) {
1459 				req->r_failed_auth++;
1460 				req->r_mheadend->m_next = NULL;
1461 				m_freem(info->mrep);
1462 				info->mrep = NULL;
1463 				m_freem(req->r_mreq);
1464 				req->r_mreq = NULL;
1465 				return (ENEEDAUTH);
1466 			} else {
1467 				error = EAUTH;
1468 			}
1469 		} else {
1470 			error = EACCES;
1471 		}
1472 		m_freem(info->mrep);
1473 		info->mrep = NULL;
1474 		m_freem(req->r_mreq);
1475 		req->r_mreq = NULL;
1476 		kfree(req, M_NFSREQ);
1477 		info->req = NULL;
1478 		return (error);
1479 	}
1480 
1481 	/*
1482 	 * Grab any Kerberos verifier, otherwise just throw it away.
1483 	 */
1484 	verf_type = fxdr_unsigned(int, *tl++);
1485 	i = fxdr_unsigned(int32_t, *tl);
1486 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1487 		error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1488 					 &info->md, &info->dpos, info->mrep);
1489 		if (error)
1490 			goto nfsmout;
1491 	} else if (i > 0) {
1492 		ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1493 	}
1494 	NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1495 	/* 0 == ok */
1496 	if (*tl == 0) {
1497 		NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1498 		if (*tl != 0) {
1499 			error = fxdr_unsigned(int, *tl);
1500 
1501 			/*
1502 			 * Does anyone even implement this?  Just impose
1503 			 * a 1-second delay.
1504 			 */
1505 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1506 				error == NFSERR_TRYLATER) {
1507 				m_freem(info->mrep);
1508 				info->mrep = NULL;
1509 				error = 0;
1510 
1511 				tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1512 				return (EAGAIN);	/* goto tryagain */
1513 			}
1514 
1515 			/*
1516 			 * If the File Handle was stale, invalidate the
1517 			 * lookup cache, just in case.
1518 			 *
1519 			 * To avoid namecache<->vnode deadlocks we must
1520 			 * release the vnode lock if we hold it.
1521 			 */
1522 			if (error == ESTALE) {
1523 				struct vnode *vp = req->r_vp;
1524 				int ltype;
1525 
1526 				ltype = lockstatus(&vp->v_lock, curthread);
1527 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1528 					lockmgr(&vp->v_lock, LK_RELEASE);
1529 				cache_inval_vp(vp, CINV_CHILDREN);
1530 				if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1531 					lockmgr(&vp->v_lock, ltype);
1532 			}
1533 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1534 				KKASSERT(*req->r_mrp == info->mrep);
1535 				KKASSERT(*req->r_mdp == info->md);
1536 				KKASSERT(*req->r_dposp == info->dpos);
1537 				error |= NFSERR_RETERR;
1538 			} else {
1539 				m_freem(info->mrep);
1540 				info->mrep = NULL;
1541 			}
1542 			m_freem(req->r_mreq);
1543 			req->r_mreq = NULL;
1544 			kfree(req, M_NFSREQ);
1545 			info->req = NULL;
1546 			return (error);
1547 		}
1548 
1549 		KKASSERT(*req->r_mrp == info->mrep);
1550 		KKASSERT(*req->r_mdp == info->md);
1551 		KKASSERT(*req->r_dposp == info->dpos);
1552 		m_freem(req->r_mreq);
1553 		req->r_mreq = NULL;
1554 		kfree(req, M_NFSREQ);
1555 		return (0);
1556 	}
1557 	m_freem(info->mrep);
1558 	info->mrep = NULL;
1559 	error = EPROTONOSUPPORT;
1560 nfsmout:
1561 	m_freem(req->r_mreq);
1562 	req->r_mreq = NULL;
1563 	kfree(req, M_NFSREQ);
1564 	info->req = NULL;
1565 	return (error);
1566 }
1567 
1568 #ifndef NFS_NOSERVER
1569 /*
1570  * Generate the rpc reply header
1571  * siz arg. is used to decide if adding a cluster is worthwhile
1572  */
1573 int
1574 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1575 	    int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1576 {
1577 	u_int32_t *tl;
1578 	struct nfsm_info info;
1579 
1580 	siz += RPC_REPLYSIZ;
1581 	info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1582 	info.mreq = info.mb;
1583 	info.mreq->m_pkthdr.len = 0;
1584 	/*
1585 	 * If this is not a cluster, try and leave leading space
1586 	 * for the lower level headers.
1587 	 */
1588 	if ((max_hdr + siz) < MINCLSIZE)
1589 		info.mreq->m_data += max_hdr;
1590 	tl = mtod(info.mreq, u_int32_t *);
1591 	info.mreq->m_len = 6 * NFSX_UNSIGNED;
1592 	info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1593 	*tl++ = txdr_unsigned(nd->nd_retxid);
1594 	*tl++ = rpc_reply;
1595 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1596 		*tl++ = rpc_msgdenied;
1597 		if (err & NFSERR_AUTHERR) {
1598 			*tl++ = rpc_autherr;
1599 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1600 			info.mreq->m_len -= NFSX_UNSIGNED;
1601 			info.bpos -= NFSX_UNSIGNED;
1602 		} else {
1603 			*tl++ = rpc_mismatch;
1604 			*tl++ = txdr_unsigned(RPC_VER2);
1605 			*tl = txdr_unsigned(RPC_VER2);
1606 		}
1607 	} else {
1608 		*tl++ = rpc_msgaccepted;
1609 
1610 		/*
1611 		 * For Kerberos authentication, we must send the nickname
1612 		 * verifier back, otherwise just RPCAUTH_NULL.
1613 		 */
1614 		if (nd->nd_flag & ND_KERBFULL) {
1615 		    struct nfsuid *nuidp;
1616 		    struct timeval ktvin, ktvout;
1617 
1618 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1619 			nuidp != NULL; nuidp = nuidp->nu_hash.le_next) {
1620 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1621 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1622 			     &nuidp->nu_haddr, nd->nd_nam2)))
1623 			    break;
1624 		    }
1625 		    if (nuidp) {
1626 			ktvin.tv_sec =
1627 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1628 			ktvin.tv_usec =
1629 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1630 
1631 			/*
1632 			 * Encrypt the timestamp in ecb mode using the
1633 			 * session key.
1634 			 */
1635 #ifdef NFSKERB
1636 			XXX
1637 #else
1638 			ktvout.tv_sec = 0;
1639 			ktvout.tv_usec = 0;
1640 #endif
1641 
1642 			*tl++ = rpc_auth_kerb;
1643 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1644 			*tl = ktvout.tv_sec;
1645 			tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1646 			*tl++ = ktvout.tv_usec;
1647 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1648 		    } else {
1649 			*tl++ = 0;
1650 			*tl++ = 0;
1651 		    }
1652 		} else {
1653 			*tl++ = 0;
1654 			*tl++ = 0;
1655 		}
1656 		switch (err) {
1657 		case EPROGUNAVAIL:
1658 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1659 			break;
1660 		case EPROGMISMATCH:
1661 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1662 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1663 			*tl++ = txdr_unsigned(2);
1664 			*tl = txdr_unsigned(3);
1665 			break;
1666 		case EPROCUNAVAIL:
1667 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1668 			break;
1669 		case EBADRPC:
1670 			*tl = txdr_unsigned(RPC_GARBAGE);
1671 			break;
1672 		default:
1673 			*tl = 0;
1674 			if (err != NFSERR_RETVOID) {
1675 				tl = nfsm_build(&info, NFSX_UNSIGNED);
1676 				if (err)
1677 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1678 				else
1679 				    *tl = 0;
1680 			}
1681 			break;
1682 		};
1683 	}
1684 
1685 	if (mrq != NULL)
1686 	    *mrq = info.mreq;
1687 	*mbp = info.mb;
1688 	*bposp = info.bpos;
1689 	if (err != 0 && err != NFSERR_RETVOID)
1690 		nfsstats.srvrpc_errs++;
1691 	return (0);
1692 }
1693 
1694 
1695 #endif /* NFS_NOSERVER */
1696 
1697 /*
1698  * Nfs timer routine.
1699  *
1700  * Scan the nfsreq list and retranmit any requests that have timed out
1701  * To avoid retransmission attempts on STREAM sockets (in the future) make
1702  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1703  *
1704  * Requests with attached responses, terminated requests, and
1705  * locked requests are ignored.  Locked requests will be picked up
1706  * in a later timer call.
1707  */
1708 void
1709 nfs_timer_callout(void *arg /* never used */)
1710 {
1711 	struct nfsmount *nmp;
1712 	struct nfsreq *req;
1713 #ifndef NFS_NOSERVER
1714 	struct nfssvc_sock *slp;
1715 	u_quad_t cur_usec;
1716 #endif /* NFS_NOSERVER */
1717 
1718 	lwkt_gettoken(&nfs_token);
1719 	TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1720 		lwkt_gettoken(&nmp->nm_token);
1721 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1722 			KKASSERT(nmp == req->r_nmp);
1723 			if (req->r_mrep)
1724 				continue;
1725 			if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1726 				continue;
1727 
1728 			/*
1729 			 * Handle timeout/retry.  Be sure to process r_mrep
1730 			 * for async requests that completed while we had
1731 			 * the request locked or they will hang in the reqq
1732 			 * forever.
1733 			 */
1734 			req->r_flags |= R_LOCKED;
1735 			if (nfs_sigintr(nmp, req, req->r_td)) {
1736 				nfs_softterm(req, 1);
1737 				req->r_flags &= ~R_LOCKED;
1738 			} else {
1739 				nfs_timer_req(req);
1740 				if (req->r_flags & R_ASYNC) {
1741 					if (req->r_mrep)
1742 						nfs_hardterm(req, 1);
1743 					req->r_flags &= ~R_LOCKED;
1744 					nfssvc_iod_reader_wakeup(nmp);
1745 				} else {
1746 					req->r_flags &= ~R_LOCKED;
1747 				}
1748 			}
1749 			if (req->r_flags & R_WANTED) {
1750 				req->r_flags &= ~R_WANTED;
1751 				wakeup(req);
1752 			}
1753 		}
1754 		lwkt_reltoken(&nmp->nm_token);
1755 	}
1756 #ifndef NFS_NOSERVER
1757 
1758 	/*
1759 	 * Scan the write gathering queues for writes that need to be
1760 	 * completed now.
1761 	 */
1762 	cur_usec = nfs_curusec();
1763 
1764 	TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1765 		/* XXX race against removal */
1766 		if (lwkt_trytoken(&slp->ns_token)) {
1767 			if (slp->ns_tq.lh_first &&
1768 			    (slp->ns_tq.lh_first->nd_time <= cur_usec)) {
1769 				nfsrv_wakenfsd(slp, 1);
1770 			}
1771 			lwkt_reltoken(&slp->ns_token);
1772 		}
1773 	}
1774 #endif /* NFS_NOSERVER */
1775 
1776 	callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer_callout, NULL);
1777 	lwkt_reltoken(&nfs_token);
1778 }
1779 
1780 static
1781 void
1782 nfs_timer_req(struct nfsreq *req)
1783 {
1784 	struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1785 	struct nfsmount *nmp = req->r_nmp;
1786 	struct mbuf *m;
1787 	struct socket *so;
1788 	int timeo;
1789 	int error;
1790 
1791 	/*
1792 	 * rtt ticks and timeout calculation.  Return if the timeout
1793 	 * has not been reached yet, unless the packet is flagged
1794 	 * for an immediate send.
1795 	 *
1796 	 * The mean rtt doesn't help when we get random I/Os, we have
1797 	 * to multiply by fairly large numbers.
1798 	 */
1799 	if (req->r_rtt >= 0) {
1800 		/*
1801 		 * Calculate the timeout to test against.
1802 		 */
1803 		req->r_rtt++;
1804 		if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1805 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1806 		} else if (req->r_flags & R_TIMING) {
1807 			timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1808 		} else {
1809 			timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1810 		}
1811 		timeo *= multt[req->r_procnum];
1812 		/* timeo is still scaled by SCALE_BITS */
1813 
1814 #define NFSFS	(NFS_RTT_SCALE * NFS_HZ)
1815 		if (req->r_flags & R_TIMING) {
1816 			static long last_time;
1817 			if (nfs_showrtt && last_time != time_second) {
1818 				kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1819 					"timeo %d.%03d\n",
1820 					proct[req->r_procnum],
1821 					NFS_SRTT(req), NFS_SDRTT(req),
1822 					timeo / NFSFS,
1823 					timeo % NFSFS * 1000 /  NFSFS);
1824 				last_time = time_second;
1825 			}
1826 		}
1827 #undef NFSFS
1828 
1829 		/*
1830 		 * deal with nfs_timer jitter.
1831 		 */
1832 		timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1833 		if (timeo < 2)
1834 			timeo = 2;
1835 
1836 		if (nmp->nm_timeouts > 0)
1837 			timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1838 		if (timeo > NFS_MAXTIMEO)
1839 			timeo = NFS_MAXTIMEO;
1840 		if (req->r_rtt <= timeo) {
1841 			if ((req->r_flags & R_NEEDSXMIT) == 0)
1842 				return;
1843 		} else if (nmp->nm_timeouts < 8) {
1844 			nmp->nm_timeouts++;
1845 		}
1846 	}
1847 
1848 	/*
1849 	 * Check for server not responding
1850 	 */
1851 	if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1852 	     req->r_rexmit > nmp->nm_deadthresh) {
1853 		nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1854 			"not responding");
1855 		req->r_flags |= R_TPRINTFMSG;
1856 	}
1857 	if (req->r_rexmit >= req->r_retry) {	/* too many */
1858 		nfsstats.rpctimeouts++;
1859 		nfs_softterm(req, 1);
1860 		return;
1861 	}
1862 
1863 	/*
1864 	 * Generally disable retransmission on reliable sockets,
1865 	 * unless the request is flagged for immediate send.
1866 	 */
1867 	if (nmp->nm_sotype != SOCK_DGRAM) {
1868 		if (++req->r_rexmit > NFS_MAXREXMIT)
1869 			req->r_rexmit = NFS_MAXREXMIT;
1870 		if ((req->r_flags & R_NEEDSXMIT) == 0)
1871 			return;
1872 	}
1873 
1874 	/*
1875 	 * Stop here if we do not have a socket!
1876 	 */
1877 	if ((so = nmp->nm_so) == NULL)
1878 		return;
1879 
1880 	/*
1881 	 * If there is enough space and the window allows.. resend it.
1882 	 *
1883 	 * r_rtt is left intact in case we get an answer after the
1884 	 * retry that was a reply to the original packet.
1885 	 *
1886 	 * NOTE: so_pru_send()
1887 	 */
1888 	if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1889 	    (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1890 	   (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1891 		if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1892 		    error = so_pru_send(so, 0, m, NULL, NULL, td);
1893 		else
1894 		    error = so_pru_send(so, 0, m, nmp->nm_nam, NULL, td);
1895 		if (error) {
1896 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1897 				so->so_error = 0;
1898 			req->r_flags |= R_NEEDSXMIT;
1899 		} else if (req->r_mrep == NULL) {
1900 			/*
1901 			 * Iff first send, start timing
1902 			 * else turn timing off, backoff timer
1903 			 * and divide congestion window by 2.
1904 			 *
1905 			 * It is possible for the so_pru_send() to
1906 			 * block and for us to race a reply so we
1907 			 * only do this if the reply field has not
1908 			 * been filled in.  R_LOCKED will prevent
1909 			 * the request from being ripped out from under
1910 			 * us entirely.
1911 			 *
1912 			 * Record the last resent procnum to aid us
1913 			 * in duplicate detection on receive.
1914 			 */
1915 			if ((req->r_flags & R_NEEDSXMIT) == 0) {
1916 				if (nfs_showrexmit)
1917 					kprintf("X");
1918 				if (++req->r_rexmit > NFS_MAXREXMIT)
1919 					req->r_rexmit = NFS_MAXREXMIT;
1920 				nmp->nm_maxasync_scaled >>= 1;
1921 				if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1922 					nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1923 				nfsstats.rpcretries++;
1924 				nmp->nm_lastreprocnum = req->r_procnum;
1925 			} else {
1926 				req->r_flags |= R_SENT;
1927 				req->r_flags &= ~R_NEEDSXMIT;
1928 			}
1929 		}
1930 	}
1931 }
1932 
1933 /*
1934  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1935  * wait for all requests to complete. This is used by forced unmounts
1936  * to terminate any outstanding RPCs.
1937  *
1938  * Locked requests cannot be canceled but will be marked for
1939  * soft-termination.
1940  */
1941 int
1942 nfs_nmcancelreqs(struct nfsmount *nmp)
1943 {
1944 	struct nfsreq *req;
1945 	int i;
1946 
1947 	crit_enter();
1948 	TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1949 		if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1950 			continue;
1951 		nfs_softterm(req, 0);
1952 	}
1953 	/* XXX  the other two queues as well */
1954 	crit_exit();
1955 
1956 	for (i = 0; i < 30; i++) {
1957 		crit_enter();
1958 		TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1959 			if (nmp == req->r_nmp)
1960 				break;
1961 		}
1962 		crit_exit();
1963 		if (req == NULL)
1964 			return (0);
1965 		tsleep(&lbolt, 0, "nfscancel", 0);
1966 	}
1967 	return (EBUSY);
1968 }
1969 
1970 /*
1971  * Soft-terminate a request, effectively marking it as failed.
1972  *
1973  * Must be called from within a critical section.
1974  */
1975 static void
1976 nfs_softterm(struct nfsreq *rep, int islocked)
1977 {
1978 	rep->r_flags |= R_SOFTTERM;
1979 	nfs_hardterm(rep, islocked);
1980 }
1981 
1982 /*
1983  * Hard-terminate a request, typically after getting a response.
1984  *
1985  * The state machine can still decide to re-issue it later if necessary.
1986  *
1987  * Must be called from within a critical section.
1988  */
1989 static void
1990 nfs_hardterm(struct nfsreq *rep, int islocked)
1991 {
1992 	struct nfsmount *nmp = rep->r_nmp;
1993 
1994 	/*
1995 	 * The nm_send count is decremented now to avoid deadlocks
1996 	 * when the process in soreceive() hasn't yet managed to send
1997 	 * its own request.
1998 	 */
1999 	if (rep->r_flags & R_SENT) {
2000 		rep->r_flags &= ~R_SENT;
2001 	}
2002 
2003 	/*
2004 	 * If we locked the request or nobody else has locked the request,
2005 	 * and the request is async, we can move it to the reader thread's
2006 	 * queue now and fix up the state.
2007 	 *
2008 	 * If we locked the request or nobody else has locked the request,
2009 	 * we can wake up anyone blocked waiting for a response on the
2010 	 * request.
2011 	 */
2012 	if (islocked || (rep->r_flags & R_LOCKED) == 0) {
2013 		if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
2014 		    (R_ONREQQ | R_ASYNC)) {
2015 			rep->r_flags &= ~R_ONREQQ;
2016 			TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
2017 			--nmp->nm_reqqlen;
2018 			TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
2019 			KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
2020 				 rep->r_info->state == NFSM_STATE_WAITREPLY);
2021 			rep->r_info->state = NFSM_STATE_PROCESSREPLY;
2022 			nfssvc_iod_reader_wakeup(nmp);
2023 			if (TAILQ_FIRST(&nmp->nm_bioq) &&
2024 			    nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
2025 				nfssvc_iod_writer_wakeup(nmp);
2026 			}
2027 		}
2028 		mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
2029 	}
2030 }
2031 
2032 /*
2033  * Test for a termination condition pending on the process.
2034  * This is used for NFSMNT_INT mounts.
2035  */
2036 int
2037 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
2038 {
2039 	sigset_t tmpset;
2040 	struct proc *p;
2041 	struct lwp *lp;
2042 
2043 	if (rep && (rep->r_flags & R_SOFTTERM))
2044 		return (EINTR);
2045 	/* Terminate all requests while attempting a forced unmount. */
2046 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
2047 		return (EINTR);
2048 	if (!(nmp->nm_flag & NFSMNT_INT))
2049 		return (0);
2050 	/* td might be NULL YYY */
2051 	if (td == NULL || (p = td->td_proc) == NULL)
2052 		return (0);
2053 
2054 	lp = td->td_lwp;
2055 	tmpset = lwp_sigpend(lp);
2056 	SIGSETNAND(tmpset, lp->lwp_sigmask);
2057 	SIGSETNAND(tmpset, p->p_sigignore);
2058 	if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2059 		return (EINTR);
2060 
2061 	return (0);
2062 }
2063 
2064 /*
2065  * Lock a socket against others.
2066  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2067  * and also to avoid race conditions between the processes with nfs requests
2068  * in progress when a reconnect is necessary.
2069  */
2070 int
2071 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2072 {
2073 	mtx_t mtx = &nmp->nm_txlock;
2074 	struct thread *td;
2075 	int slptimeo;
2076 	int slpflag;
2077 	int error;
2078 
2079 	slpflag = 0;
2080 	slptimeo = 0;
2081 	td = rep ? rep->r_td : NULL;
2082 	if (nmp->nm_flag & NFSMNT_INT)
2083 		slpflag = PCATCH;
2084 
2085 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2086 		if (nfs_sigintr(nmp, rep, td)) {
2087 			error = EINTR;
2088 			break;
2089 		}
2090 		error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2091 		if (error == 0)
2092 			break;
2093 		if (slpflag == PCATCH) {
2094 			slpflag = 0;
2095 			slptimeo = 2 * hz;
2096 		}
2097 	}
2098 	/* Always fail if our request has been cancelled. */
2099 	if (rep && (rep->r_flags & R_SOFTTERM)) {
2100 		if (error == 0)
2101 			mtx_unlock(mtx);
2102 		error = EINTR;
2103 	}
2104 	return (error);
2105 }
2106 
2107 /*
2108  * Unlock the stream socket for others.
2109  */
2110 void
2111 nfs_sndunlock(struct nfsmount *nmp)
2112 {
2113 	mtx_unlock(&nmp->nm_txlock);
2114 }
2115 
2116 /*
2117  * Lock the receiver side of the socket.
2118  *
2119  * rep may be NULL.
2120  */
2121 static int
2122 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2123 {
2124 	mtx_t mtx = &nmp->nm_rxlock;
2125 	int slpflag;
2126 	int slptimeo;
2127 	int error;
2128 
2129 	/*
2130 	 * Unconditionally check for completion in case another nfsiod
2131 	 * get the packet while the caller was blocked, before the caller
2132 	 * called us.  Packet reception is handled by mainline code which
2133 	 * is protected by the BGL at the moment.
2134 	 *
2135 	 * We do not strictly need the second check just before the
2136 	 * tsleep(), but it's good defensive programming.
2137 	 */
2138 	if (rep && rep->r_mrep != NULL)
2139 		return (EALREADY);
2140 
2141 	if (nmp->nm_flag & NFSMNT_INT)
2142 		slpflag = PCATCH;
2143 	else
2144 		slpflag = 0;
2145 	slptimeo = 0;
2146 
2147 	while ((error = mtx_lock_ex_try(mtx)) != 0) {
2148 		if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2149 			error = EINTR;
2150 			break;
2151 		}
2152 		if (rep && rep->r_mrep != NULL) {
2153 			error = EALREADY;
2154 			break;
2155 		}
2156 
2157 		/*
2158 		 * NOTE: can return ENOLCK, but in that case rep->r_mrep
2159 		 *       will already be set.
2160 		 */
2161 		if (rep) {
2162 			error = mtx_lock_ex_link(mtx, &rep->r_link,
2163 						 "nfsrcvlk",
2164 						 slpflag, slptimeo);
2165 		} else {
2166 			error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2167 		}
2168 		if (error == 0)
2169 			break;
2170 
2171 		/*
2172 		 * If our reply was recieved while we were sleeping,
2173 		 * then just return without taking the lock to avoid a
2174 		 * situation where a single iod could 'capture' the
2175 		 * recieve lock.
2176 		 */
2177 		if (rep && rep->r_mrep != NULL) {
2178 			error = EALREADY;
2179 			break;
2180 		}
2181 		if (slpflag == PCATCH) {
2182 			slpflag = 0;
2183 			slptimeo = 2 * hz;
2184 		}
2185 	}
2186 	if (error == 0) {
2187 		if (rep && rep->r_mrep != NULL) {
2188 			error = EALREADY;
2189 			mtx_unlock(mtx);
2190 		}
2191 	}
2192 	return (error);
2193 }
2194 
2195 /*
2196  * Unlock the stream socket for others.
2197  */
2198 static void
2199 nfs_rcvunlock(struct nfsmount *nmp)
2200 {
2201 	mtx_unlock(&nmp->nm_rxlock);
2202 }
2203 
2204 /*
2205  * nfs_realign:
2206  *
2207  * Check for badly aligned mbuf data and realign by copying the unaligned
2208  * portion of the data into a new mbuf chain and freeing the portions
2209  * of the old chain that were replaced.
2210  *
2211  * We cannot simply realign the data within the existing mbuf chain
2212  * because the underlying buffers may contain other rpc commands and
2213  * we cannot afford to overwrite them.
2214  *
2215  * We would prefer to avoid this situation entirely.  The situation does
2216  * not occur with NFS/UDP and is supposed to only occassionally occur
2217  * with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
2218  *
2219  * NOTE!  MB_DONTWAIT cannot be used here.  The mbufs must be acquired
2220  *	  because the rpc request OR reply cannot be thrown away.  TCP NFS
2221  *	  mounts do not retry their RPCs unless the TCP connection itself
2222  *	  is dropped so throwing away a RPC will basically cause the NFS
2223  *	  operation to lockup indefinitely.
2224  */
2225 static void
2226 nfs_realign(struct mbuf **pm, int hsiz)
2227 {
2228 	struct mbuf *m;
2229 	struct mbuf *n = NULL;
2230 
2231 	/*
2232 	 * Check for misalignemnt
2233 	 */
2234 	++nfs_realign_test;
2235 	while ((m = *pm) != NULL) {
2236 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3))
2237 			break;
2238 		pm = &m->m_next;
2239 	}
2240 
2241 	/*
2242 	 * If misalignment found make a completely new copy.
2243 	 */
2244 	if (m) {
2245 		++nfs_realign_count;
2246 		n = m_dup_data(m, MB_WAIT);
2247 		m_freem(*pm);
2248 		*pm = n;
2249 	}
2250 }
2251 
2252 #ifndef NFS_NOSERVER
2253 
2254 /*
2255  * Parse an RPC request
2256  * - verify it
2257  * - fill in the cred struct.
2258  */
2259 int
2260 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2261 {
2262 	int len, i;
2263 	u_int32_t *tl;
2264 	struct uio uio;
2265 	struct iovec iov;
2266 	caddr_t cp;
2267 	u_int32_t nfsvers, auth_type;
2268 	uid_t nickuid;
2269 	int error = 0, ticklen;
2270 	struct nfsuid *nuidp;
2271 	struct timeval tvin, tvout;
2272 	struct nfsm_info info;
2273 #if 0				/* until encrypted keys are implemented */
2274 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
2275 #endif
2276 
2277 	info.mrep = nd->nd_mrep;
2278 	info.md = nd->nd_md;
2279 	info.dpos = nd->nd_dpos;
2280 
2281 	if (has_header) {
2282 		NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2283 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2284 		if (*tl++ != rpc_call) {
2285 			m_freem(info.mrep);
2286 			return (EBADRPC);
2287 		}
2288 	} else {
2289 		NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2290 	}
2291 	nd->nd_repstat = 0;
2292 	nd->nd_flag = 0;
2293 	if (*tl++ != rpc_vers) {
2294 		nd->nd_repstat = ERPCMISMATCH;
2295 		nd->nd_procnum = NFSPROC_NOOP;
2296 		return (0);
2297 	}
2298 	if (*tl != nfs_prog) {
2299 		nd->nd_repstat = EPROGUNAVAIL;
2300 		nd->nd_procnum = NFSPROC_NOOP;
2301 		return (0);
2302 	}
2303 	tl++;
2304 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2305 	if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2306 		nd->nd_repstat = EPROGMISMATCH;
2307 		nd->nd_procnum = NFSPROC_NOOP;
2308 		return (0);
2309 	}
2310 	if (nfsvers == NFS_VER3)
2311 		nd->nd_flag = ND_NFSV3;
2312 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2313 	if (nd->nd_procnum == NFSPROC_NULL)
2314 		return (0);
2315 	if (nd->nd_procnum >= NFS_NPROCS ||
2316 		(nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2317 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2318 		nd->nd_repstat = EPROCUNAVAIL;
2319 		nd->nd_procnum = NFSPROC_NOOP;
2320 		return (0);
2321 	}
2322 	if ((nd->nd_flag & ND_NFSV3) == 0)
2323 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2324 	auth_type = *tl++;
2325 	len = fxdr_unsigned(int, *tl++);
2326 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
2327 		m_freem(info.mrep);
2328 		return (EBADRPC);
2329 	}
2330 
2331 	nd->nd_flag &= ~ND_KERBAUTH;
2332 	/*
2333 	 * Handle auth_unix or auth_kerb.
2334 	 */
2335 	if (auth_type == rpc_auth_unix) {
2336 		len = fxdr_unsigned(int, *++tl);
2337 		if (len < 0 || len > NFS_MAXNAMLEN) {
2338 			m_freem(info.mrep);
2339 			return (EBADRPC);
2340 		}
2341 		ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2342 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2343 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2344 		nd->nd_cr.cr_ref = 1;
2345 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2346 		nd->nd_cr.cr_ruid = nd->nd_cr.cr_svuid = nd->nd_cr.cr_uid;
2347 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2348 		nd->nd_cr.cr_rgid = nd->nd_cr.cr_svgid = nd->nd_cr.cr_gid;
2349 		len = fxdr_unsigned(int, *tl);
2350 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2351 			m_freem(info.mrep);
2352 			return (EBADRPC);
2353 		}
2354 		NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2355 		for (i = 1; i <= len; i++)
2356 		    if (i < NGROUPS)
2357 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2358 		    else
2359 			tl++;
2360 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2361 		if (nd->nd_cr.cr_ngroups > 1)
2362 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2363 		len = fxdr_unsigned(int, *++tl);
2364 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
2365 			m_freem(info.mrep);
2366 			return (EBADRPC);
2367 		}
2368 		if (len > 0) {
2369 			ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2370 		}
2371 	} else if (auth_type == rpc_auth_kerb) {
2372 		switch (fxdr_unsigned(int, *tl++)) {
2373 		case RPCAKN_FULLNAME:
2374 			ticklen = fxdr_unsigned(int, *tl);
2375 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2376 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2377 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2378 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2379 				m_freem(info.mrep);
2380 				return (EBADRPC);
2381 			}
2382 			uio.uio_offset = 0;
2383 			uio.uio_iov = &iov;
2384 			uio.uio_iovcnt = 1;
2385 			uio.uio_segflg = UIO_SYSSPACE;
2386 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2387 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
2388 			ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2389 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2390 			if (*tl++ != rpc_auth_kerb ||
2391 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2392 				kprintf("Bad kerb verifier\n");
2393 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2394 				nd->nd_procnum = NFSPROC_NOOP;
2395 				return (0);
2396 			}
2397 			NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2398 			tl = (u_int32_t *)cp;
2399 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2400 				kprintf("Not fullname kerb verifier\n");
2401 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2402 				nd->nd_procnum = NFSPROC_NOOP;
2403 				return (0);
2404 			}
2405 			cp += NFSX_UNSIGNED;
2406 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2407 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2408 			nd->nd_flag |= ND_KERBFULL;
2409 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2410 			break;
2411 		case RPCAKN_NICKNAME:
2412 			if (len != 2 * NFSX_UNSIGNED) {
2413 				kprintf("Kerb nickname short\n");
2414 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2415 				nd->nd_procnum = NFSPROC_NOOP;
2416 				return (0);
2417 			}
2418 			nickuid = fxdr_unsigned(uid_t, *tl);
2419 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2420 			if (*tl++ != rpc_auth_kerb ||
2421 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2422 				kprintf("Kerb nick verifier bad\n");
2423 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2424 				nd->nd_procnum = NFSPROC_NOOP;
2425 				return (0);
2426 			}
2427 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2428 			tvin.tv_sec = *tl++;
2429 			tvin.tv_usec = *tl;
2430 
2431 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2432 			    nuidp != NULL; nuidp = nuidp->nu_hash.le_next) {
2433 				if (nuidp->nu_cr.cr_uid == nickuid &&
2434 				    (!nd->nd_nam2 ||
2435 				     netaddr_match(NU_NETFAM(nuidp),
2436 				      &nuidp->nu_haddr, nd->nd_nam2)))
2437 					break;
2438 			}
2439 			if (!nuidp) {
2440 				nd->nd_repstat =
2441 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
2442 				nd->nd_procnum = NFSPROC_NOOP;
2443 				return (0);
2444 			}
2445 
2446 			/*
2447 			 * Now, decrypt the timestamp using the session key
2448 			 * and validate it.
2449 			 */
2450 #ifdef NFSKERB
2451 			XXX
2452 #else
2453 			tvout.tv_sec = 0;
2454 			tvout.tv_usec = 0;
2455 #endif
2456 
2457 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2458 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2459 			if (nuidp->nu_expire < time_second ||
2460 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2461 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2462 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2463 				nuidp->nu_expire = 0;
2464 				nd->nd_repstat =
2465 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
2466 				nd->nd_procnum = NFSPROC_NOOP;
2467 				return (0);
2468 			}
2469 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2470 			nd->nd_flag |= ND_KERBNICK;
2471 		};
2472 	} else {
2473 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2474 		nd->nd_procnum = NFSPROC_NOOP;
2475 		return (0);
2476 	}
2477 
2478 	nd->nd_md = info.md;
2479 	nd->nd_dpos = info.dpos;
2480 	return (0);
2481 nfsmout:
2482 	return (error);
2483 }
2484 
2485 #endif
2486 
2487 /*
2488  * Send a message to the originating process's terminal.  The thread and/or
2489  * process may be NULL.  YYY the thread should not be NULL but there may
2490  * still be some uio_td's that are still being passed as NULL through to
2491  * nfsm_request().
2492  */
2493 static int
2494 nfs_msg(struct thread *td, char *server, char *msg)
2495 {
2496 	tpr_t tpr;
2497 
2498 	if (td && td->td_proc)
2499 		tpr = tprintf_open(td->td_proc);
2500 	else
2501 		tpr = NULL;
2502 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2503 	tprintf_close(tpr);
2504 	return (0);
2505 }
2506 
2507 #ifndef NFS_NOSERVER
2508 
2509 /*
2510  * Socket upcall routine for nfsd sockets.  This runs in the protocol
2511  * thread and passes waitflag == MB_DONTWAIT.
2512  */
2513 void
2514 nfsrv_rcv_upcall(struct socket *so, void *arg, int waitflag)
2515 {
2516 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2517 
2518 	if (slp->ns_needq_upcall == 0) {
2519 		slp->ns_needq_upcall = 1;	/* ok to race */
2520 		lwkt_gettoken(&nfs_token);
2521 		nfsrv_wakenfsd(slp, 1);
2522 		lwkt_reltoken(&nfs_token);
2523 	}
2524 #if 0
2525 	lwkt_gettoken(&slp->ns_token);
2526 	slp->ns_flag |= SLP_NEEDQ;
2527 	nfsrv_rcv(so, arg, waitflag);
2528 	lwkt_reltoken(&slp->ns_token);
2529 #endif
2530 }
2531 
2532 /*
2533  * Process new data on a receive socket.  Essentially do as much as we can
2534  * non-blocking, else punt and it will be called with MB_WAIT from an nfsd.
2535  *
2536  * slp->ns_token is held on call
2537  */
2538 void
2539 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2540 {
2541 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2542 	struct mbuf *m;
2543 	struct sockaddr *nam;
2544 	struct sockbuf sio;
2545 	int flags, error;
2546 	int nparallel_wakeup = 0;
2547 
2548 	ASSERT_LWKT_TOKEN_HELD(&slp->ns_token);
2549 
2550 	if ((slp->ns_flag & SLP_VALID) == 0)
2551 		return;
2552 
2553 	/*
2554 	 * Do not allow an infinite number of completed RPC records to build
2555 	 * up before we stop reading data from the socket.  Otherwise we could
2556 	 * end up holding onto an unreasonable number of mbufs for requests
2557 	 * waiting for service.
2558 	 *
2559 	 * This should give pretty good feedback to the TCP layer and
2560 	 * prevents a memory crunch for other protocols.
2561 	 *
2562 	 * Note that the same service socket can be dispatched to several
2563 	 * nfs servers simultaniously.  The tcp protocol callback calls us
2564 	 * with MB_DONTWAIT.  nfsd calls us with MB_WAIT (typically).
2565 	 */
2566 	if (NFSRV_RECLIMIT(slp))
2567 		return;
2568 
2569 	/*
2570 	 * Handle protocol specifics to parse an RPC request.  We always
2571 	 * pull from the socket using non-blocking I/O.
2572 	 */
2573 	if (so->so_type == SOCK_STREAM) {
2574 		/*
2575 		 * The data has to be read in an orderly fashion from a TCP
2576 		 * stream, unlike a UDP socket.  It is possible for soreceive
2577 		 * and/or nfsrv_getstream() to block, so make sure only one
2578 		 * entity is messing around with the TCP stream at any given
2579 		 * moment.  The receive sockbuf's lock in soreceive is not
2580 		 * sufficient.
2581 		 */
2582 		if (slp->ns_flag & SLP_GETSTREAM)
2583 			return;
2584 		slp->ns_flag |= SLP_GETSTREAM;
2585 
2586 		/*
2587 		 * Do soreceive().  Pull out as much data as possible without
2588 		 * blocking.
2589 		 */
2590 		sbinit(&sio, 1000000000);
2591 		flags = MSG_DONTWAIT;
2592 		error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2593 		if (error || sio.sb_mb == NULL) {
2594 			if (error != EWOULDBLOCK)
2595 				slp->ns_flag |= SLP_DISCONN;
2596 			slp->ns_flag &= ~(SLP_GETSTREAM | SLP_NEEDQ);
2597 			goto done;
2598 		}
2599 		m = sio.sb_mb;
2600 		if (slp->ns_rawend) {
2601 			slp->ns_rawend->m_next = m;
2602 			slp->ns_cc += sio.sb_cc;
2603 		} else {
2604 			slp->ns_raw = m;
2605 			slp->ns_cc = sio.sb_cc;
2606 		}
2607 		while (m->m_next)
2608 			m = m->m_next;
2609 		slp->ns_rawend = m;
2610 
2611 		/*
2612 		 * Now try and parse as many record(s) as we can out of the
2613 		 * raw stream data.  This will set SLP_DOREC.
2614 		 */
2615 		error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2616 		if (error && error != EWOULDBLOCK)
2617 			slp->ns_flag |= SLP_DISCONN;
2618 		slp->ns_flag &= ~SLP_GETSTREAM;
2619 	} else {
2620 		/*
2621 		 * For UDP soreceive typically pulls just one packet, loop
2622 		 * to get the whole batch.
2623 		 */
2624 		do {
2625 			sbinit(&sio, 1000000000);
2626 			flags = MSG_DONTWAIT;
2627 			error = so_pru_soreceive(so, &nam, NULL, &sio,
2628 						 NULL, &flags);
2629 			if (sio.sb_mb) {
2630 				struct nfsrv_rec *rec;
2631 				int mf = (waitflag & MB_DONTWAIT) ?
2632 					    M_NOWAIT : M_WAITOK;
2633 				rec = kmalloc(sizeof(struct nfsrv_rec),
2634 					     M_NFSRVDESC, mf);
2635 				if (!rec) {
2636 					if (nam)
2637 						kfree(nam, M_SONAME);
2638 					m_freem(sio.sb_mb);
2639 					continue;
2640 				}
2641 				nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2642 				rec->nr_address = nam;
2643 				rec->nr_packet = sio.sb_mb;
2644 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2645 				++slp->ns_numrec;
2646 				slp->ns_flag |= SLP_DOREC;
2647 				++nparallel_wakeup;
2648 			} else {
2649 				slp->ns_flag &= ~SLP_NEEDQ;
2650 			}
2651 			if (error) {
2652 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2653 				    && error != EWOULDBLOCK) {
2654 					slp->ns_flag |= SLP_DISCONN;
2655 					break;
2656 				}
2657 			}
2658 			if (NFSRV_RECLIMIT(slp))
2659 				break;
2660 		} while (sio.sb_mb);
2661 	}
2662 
2663 	/*
2664 	 * If we were upcalled from the tcp protocol layer and we have
2665 	 * fully parsed records ready to go, or there is new data pending,
2666 	 * or something went wrong, try to wake up a nfsd thread to deal
2667 	 * with it.
2668 	 */
2669 done:
2670 	/* XXX this code is currently not executed (nfsrv_rcv_upcall) */
2671 	if (waitflag == MB_DONTWAIT && (slp->ns_flag & SLP_ACTION_MASK)) {
2672 		lwkt_gettoken(&nfs_token);
2673 		nfsrv_wakenfsd(slp, nparallel_wakeup);
2674 		lwkt_reltoken(&nfs_token);
2675 	}
2676 }
2677 
2678 /*
2679  * Try and extract an RPC request from the mbuf data list received on a
2680  * stream socket. The "waitflag" argument indicates whether or not it
2681  * can sleep.
2682  */
2683 static int
2684 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2685 {
2686 	struct mbuf *m, **mpp;
2687 	char *cp1, *cp2;
2688 	int len;
2689 	struct mbuf *om, *m2, *recm;
2690 	u_int32_t recmark;
2691 
2692 	for (;;) {
2693 	    if (slp->ns_reclen == 0) {
2694 		if (slp->ns_cc < NFSX_UNSIGNED)
2695 			return (0);
2696 		m = slp->ns_raw;
2697 		if (m->m_len >= NFSX_UNSIGNED) {
2698 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2699 			m->m_data += NFSX_UNSIGNED;
2700 			m->m_len -= NFSX_UNSIGNED;
2701 		} else {
2702 			cp1 = (caddr_t)&recmark;
2703 			cp2 = mtod(m, caddr_t);
2704 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2705 				while (m->m_len == 0) {
2706 					m = m->m_next;
2707 					cp2 = mtod(m, caddr_t);
2708 				}
2709 				*cp1++ = *cp2++;
2710 				m->m_data++;
2711 				m->m_len--;
2712 			}
2713 		}
2714 		slp->ns_cc -= NFSX_UNSIGNED;
2715 		recmark = ntohl(recmark);
2716 		slp->ns_reclen = recmark & ~0x80000000;
2717 		if (recmark & 0x80000000)
2718 			slp->ns_flag |= SLP_LASTFRAG;
2719 		else
2720 			slp->ns_flag &= ~SLP_LASTFRAG;
2721 		if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2722 			log(LOG_ERR, "%s (%d) from nfs client\n",
2723 			    "impossible packet length",
2724 			    slp->ns_reclen);
2725 			return (EPERM);
2726 		}
2727 	    }
2728 
2729 	    /*
2730 	     * Now get the record part.
2731 	     *
2732 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2733 	     * generates 0-length RPCs
2734 	     */
2735 	    recm = NULL;
2736 	    if (slp->ns_cc == slp->ns_reclen) {
2737 		recm = slp->ns_raw;
2738 		slp->ns_raw = slp->ns_rawend = NULL;
2739 		slp->ns_cc = slp->ns_reclen = 0;
2740 	    } else if (slp->ns_cc > slp->ns_reclen) {
2741 		len = 0;
2742 		m = slp->ns_raw;
2743 		om = NULL;
2744 
2745 		while (len < slp->ns_reclen) {
2746 			if ((len + m->m_len) > slp->ns_reclen) {
2747 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2748 					waitflag);
2749 				if (m2) {
2750 					if (om) {
2751 						om->m_next = m2;
2752 						recm = slp->ns_raw;
2753 					} else
2754 						recm = m2;
2755 					m->m_data += slp->ns_reclen - len;
2756 					m->m_len -= slp->ns_reclen - len;
2757 					len = slp->ns_reclen;
2758 				} else {
2759 					return (EWOULDBLOCK);
2760 				}
2761 			} else if ((len + m->m_len) == slp->ns_reclen) {
2762 				om = m;
2763 				len += m->m_len;
2764 				m = m->m_next;
2765 				recm = slp->ns_raw;
2766 				om->m_next = NULL;
2767 			} else {
2768 				om = m;
2769 				len += m->m_len;
2770 				m = m->m_next;
2771 			}
2772 		}
2773 		slp->ns_raw = m;
2774 		slp->ns_cc -= len;
2775 		slp->ns_reclen = 0;
2776 	    } else {
2777 		return (0);
2778 	    }
2779 
2780 	    /*
2781 	     * Accumulate the fragments into a record.
2782 	     */
2783 	    mpp = &slp->ns_frag;
2784 	    while (*mpp)
2785 		mpp = &((*mpp)->m_next);
2786 	    *mpp = recm;
2787 	    if (slp->ns_flag & SLP_LASTFRAG) {
2788 		struct nfsrv_rec *rec;
2789 		int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2790 		rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2791 		if (!rec) {
2792 		    m_freem(slp->ns_frag);
2793 		} else {
2794 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2795 		    rec->nr_address = NULL;
2796 		    rec->nr_packet = slp->ns_frag;
2797 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2798 		    ++slp->ns_numrec;
2799 		    slp->ns_flag |= SLP_DOREC;
2800 		    ++*countp;
2801 		}
2802 		slp->ns_frag = NULL;
2803 	    }
2804 	}
2805 }
2806 
2807 #ifdef INVARIANTS
2808 
2809 /*
2810  * Sanity check our mbuf chain.
2811  */
2812 static void
2813 nfs_checkpkt(struct mbuf *m, int len)
2814 {
2815 	int xlen = 0;
2816 	while (m) {
2817 		xlen += m->m_len;
2818 		m = m->m_next;
2819 	}
2820 	if (xlen != len) {
2821 		panic("nfs_checkpkt: len mismatch %d/%d mbuf %p",
2822 			xlen, len, m);
2823 	}
2824 }
2825 
2826 #else
2827 
2828 static void
2829 nfs_checkpkt(struct mbuf *m __unused, int len __unused)
2830 {
2831 }
2832 
2833 #endif
2834 
2835 /*
2836  * Parse an RPC header.
2837  *
2838  * If the socket is invalid or no records are pending we return ENOBUFS.
2839  * The caller must deal with NEEDQ races.
2840  */
2841 int
2842 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2843 	    struct nfsrv_descript **ndp)
2844 {
2845 	struct nfsrv_rec *rec;
2846 	struct mbuf *m;
2847 	struct sockaddr *nam;
2848 	struct nfsrv_descript *nd;
2849 	int error;
2850 
2851 	*ndp = NULL;
2852 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2853 		return (ENOBUFS);
2854 	rec = STAILQ_FIRST(&slp->ns_rec);
2855 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2856 	KKASSERT(slp->ns_numrec > 0);
2857 	if (--slp->ns_numrec == 0)
2858 		slp->ns_flag &= ~SLP_DOREC;
2859 	nam = rec->nr_address;
2860 	m = rec->nr_packet;
2861 	kfree(rec, M_NFSRVDESC);
2862 	nd = kmalloc(sizeof(struct nfsrv_descript), M_NFSRVDESC, M_WAITOK);
2863 	nd->nd_md = nd->nd_mrep = m;
2864 	nd->nd_nam2 = nam;
2865 	nd->nd_dpos = mtod(m, caddr_t);
2866 	error = nfs_getreq(nd, nfsd, TRUE);
2867 	if (error) {
2868 		if (nam) {
2869 			kfree(nam, M_SONAME);
2870 		}
2871 		kfree((caddr_t)nd, M_NFSRVDESC);
2872 		return (error);
2873 	}
2874 	*ndp = nd;
2875 	nfsd->nfsd_nd = nd;
2876 	return (0);
2877 }
2878 
2879 /*
2880  * Try to assign service sockets to nfsd threads based on the number
2881  * of new rpc requests that have been queued on the service socket.
2882  *
2883  * If no nfsd's are available or additonal requests are pending, set the
2884  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2885  * the work in the nfssvc_sock list when it is finished processing its
2886  * current work.  This flag is only cleared when an nfsd can not find
2887  * any new work to perform.
2888  */
2889 void
2890 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2891 {
2892 	struct nfsd *nd;
2893 
2894 	if ((slp->ns_flag & SLP_VALID) == 0)
2895 		return;
2896 	if (nparallel <= 1)
2897 		nparallel = 1;
2898 	TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2899 		if (nd->nfsd_flag & NFSD_WAITING) {
2900 			nd->nfsd_flag &= ~NFSD_WAITING;
2901 			if (nd->nfsd_slp)
2902 				panic("nfsd wakeup");
2903 			nfsrv_slpref(slp);
2904 			nd->nfsd_slp = slp;
2905 			wakeup((caddr_t)nd);
2906 			if (--nparallel == 0)
2907 				break;
2908 		}
2909 	}
2910 
2911 	/*
2912 	 * If we couldn't assign slp then the NFSDs are all busy and
2913 	 * we set a flag indicating that there is pending work.
2914 	 */
2915 	if (nparallel)
2916 		nfsd_head_flag |= NFSD_CHECKSLP;
2917 }
2918 #endif /* NFS_NOSERVER */
2919