xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 1d1731fa)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.12 2003/09/23 05:03:53 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/socket.h>
59 #include <sys/vnode.h>
60 #include <sys/dirent.h>
61 #include <sys/fcntl.h>
62 #include <sys/lockf.h>
63 #include <sys/stat.h>
64 #include <sys/sysctl.h>
65 #include <sys/conf.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_extern.h>
69 #include <vm/vm_zone.h>
70 
71 #include <sys/buf2.h>
72 
73 #include <vfs/fifofs/fifo.h>
74 
75 #include "rpcv2.h"
76 #include "nfsproto.h"
77 #include "nfs.h"
78 #include "nfsnode.h"
79 #include "nfsmount.h"
80 #include "xdr_subs.h"
81 #include "nfsm_subs.h"
82 #include "nqnfs.h"
83 
84 #include <net/if.h>
85 #include <netinet/in.h>
86 #include <netinet/in_var.h>
87 
88 /* Defs */
89 #define	TRUE	1
90 #define	FALSE	0
91 
92 /*
93  * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
94  * calls are not in getblk() and brelse() so that they would not be necessary
95  * here.
96  */
97 #ifndef B_VMIO
98 #define vfs_busy_pages(bp, f)
99 #endif
100 
101 static int	nfsspec_read (struct vop_read_args *);
102 static int	nfsspec_write (struct vop_write_args *);
103 static int	nfsfifo_read (struct vop_read_args *);
104 static int	nfsfifo_write (struct vop_write_args *);
105 static int	nfsspec_close (struct vop_close_args *);
106 static int	nfsfifo_close (struct vop_close_args *);
107 #define nfs_poll vop_nopoll
108 static int	nfs_flush (struct vnode *,int,struct thread *,int);
109 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
110 static	int	nfs_lookup (struct vop_lookup_args *);
111 static	int	nfs_create (struct vop_create_args *);
112 static	int	nfs_mknod (struct vop_mknod_args *);
113 static	int	nfs_open (struct vop_open_args *);
114 static	int	nfs_close (struct vop_close_args *);
115 static	int	nfs_access (struct vop_access_args *);
116 static	int	nfs_getattr (struct vop_getattr_args *);
117 static	int	nfs_setattr (struct vop_setattr_args *);
118 static	int	nfs_read (struct vop_read_args *);
119 static	int	nfs_mmap (struct vop_mmap_args *);
120 static	int	nfs_fsync (struct vop_fsync_args *);
121 static	int	nfs_remove (struct vop_remove_args *);
122 static	int	nfs_link (struct vop_link_args *);
123 static	int	nfs_rename (struct vop_rename_args *);
124 static	int	nfs_mkdir (struct vop_mkdir_args *);
125 static	int	nfs_rmdir (struct vop_rmdir_args *);
126 static	int	nfs_symlink (struct vop_symlink_args *);
127 static	int	nfs_readdir (struct vop_readdir_args *);
128 static	int	nfs_bmap (struct vop_bmap_args *);
129 static	int	nfs_strategy (struct vop_strategy_args *);
130 static	int	nfs_lookitup (struct vnode *, const char *, int,
131 			struct ucred *, struct thread *, struct nfsnode **);
132 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
133 static int	nfsspec_access (struct vop_access_args *);
134 static int	nfs_readlink (struct vop_readlink_args *);
135 static int	nfs_print (struct vop_print_args *);
136 static int	nfs_advlock (struct vop_advlock_args *);
137 static int	nfs_bwrite (struct vop_bwrite_args *);
138 /*
139  * Global vfs data structures for nfs
140  */
141 vop_t **nfsv2_vnodeop_p;
142 static struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = {
143 	{ &vop_default_desc,		(vop_t *) vop_defaultop },
144 	{ &vop_access_desc,		(vop_t *) nfs_access },
145 	{ &vop_advlock_desc,		(vop_t *) nfs_advlock },
146 	{ &vop_bmap_desc,		(vop_t *) nfs_bmap },
147 	{ &vop_bwrite_desc,		(vop_t *) nfs_bwrite },
148 	{ &vop_close_desc,		(vop_t *) nfs_close },
149 	{ &vop_create_desc,		(vop_t *) nfs_create },
150 	{ &vop_fsync_desc,		(vop_t *) nfs_fsync },
151 	{ &vop_getattr_desc,		(vop_t *) nfs_getattr },
152 	{ &vop_getpages_desc,		(vop_t *) nfs_getpages },
153 	{ &vop_putpages_desc,		(vop_t *) nfs_putpages },
154 	{ &vop_inactive_desc,		(vop_t *) nfs_inactive },
155 	{ &vop_islocked_desc,		(vop_t *) vop_stdislocked },
156 	{ &vop_lease_desc,		(vop_t *) vop_null },
157 	{ &vop_link_desc,		(vop_t *) nfs_link },
158 	{ &vop_lock_desc,		(vop_t *) vop_sharedlock },
159 	{ &vop_lookup_desc,		(vop_t *) nfs_lookup },
160 	{ &vop_mkdir_desc,		(vop_t *) nfs_mkdir },
161 	{ &vop_mknod_desc,		(vop_t *) nfs_mknod },
162 	{ &vop_mmap_desc,		(vop_t *) nfs_mmap },
163 	{ &vop_open_desc,		(vop_t *) nfs_open },
164 	{ &vop_poll_desc,		(vop_t *) nfs_poll },
165 	{ &vop_print_desc,		(vop_t *) nfs_print },
166 	{ &vop_read_desc,		(vop_t *) nfs_read },
167 	{ &vop_readdir_desc,		(vop_t *) nfs_readdir },
168 	{ &vop_readlink_desc,		(vop_t *) nfs_readlink },
169 	{ &vop_reclaim_desc,		(vop_t *) nfs_reclaim },
170 	{ &vop_remove_desc,		(vop_t *) nfs_remove },
171 	{ &vop_rename_desc,		(vop_t *) nfs_rename },
172 	{ &vop_rmdir_desc,		(vop_t *) nfs_rmdir },
173 	{ &vop_setattr_desc,		(vop_t *) nfs_setattr },
174 	{ &vop_strategy_desc,		(vop_t *) nfs_strategy },
175 	{ &vop_symlink_desc,		(vop_t *) nfs_symlink },
176 	{ &vop_unlock_desc,		(vop_t *) vop_stdunlock },
177 	{ &vop_write_desc,		(vop_t *) nfs_write },
178 	{ NULL, NULL }
179 };
180 static struct vnodeopv_desc nfsv2_vnodeop_opv_desc =
181 	{ &nfsv2_vnodeop_p, nfsv2_vnodeop_entries };
182 VNODEOP_SET(nfsv2_vnodeop_opv_desc);
183 
184 /*
185  * Special device vnode ops
186  */
187 vop_t **spec_nfsv2nodeop_p;
188 static struct vnodeopv_entry_desc nfsv2_specop_entries[] = {
189 	{ &vop_default_desc,		(vop_t *) spec_vnoperate },
190 	{ &vop_access_desc,		(vop_t *) nfsspec_access },
191 	{ &vop_close_desc,		(vop_t *) nfsspec_close },
192 	{ &vop_fsync_desc,		(vop_t *) nfs_fsync },
193 	{ &vop_getattr_desc,		(vop_t *) nfs_getattr },
194 	{ &vop_inactive_desc,		(vop_t *) nfs_inactive },
195 	{ &vop_islocked_desc,		(vop_t *) vop_stdislocked },
196 	{ &vop_lock_desc,		(vop_t *) vop_sharedlock },
197 	{ &vop_print_desc,		(vop_t *) nfs_print },
198 	{ &vop_read_desc,		(vop_t *) nfsspec_read },
199 	{ &vop_reclaim_desc,		(vop_t *) nfs_reclaim },
200 	{ &vop_setattr_desc,		(vop_t *) nfs_setattr },
201 	{ &vop_unlock_desc,		(vop_t *) vop_stdunlock },
202 	{ &vop_write_desc,		(vop_t *) nfsspec_write },
203 	{ NULL, NULL }
204 };
205 static struct vnodeopv_desc spec_nfsv2nodeop_opv_desc =
206 	{ &spec_nfsv2nodeop_p, nfsv2_specop_entries };
207 VNODEOP_SET(spec_nfsv2nodeop_opv_desc);
208 
209 vop_t **fifo_nfsv2nodeop_p;
210 static struct vnodeopv_entry_desc nfsv2_fifoop_entries[] = {
211 	{ &vop_default_desc,		(vop_t *) fifo_vnoperate },
212 	{ &vop_access_desc,		(vop_t *) nfsspec_access },
213 	{ &vop_close_desc,		(vop_t *) nfsfifo_close },
214 	{ &vop_fsync_desc,		(vop_t *) nfs_fsync },
215 	{ &vop_getattr_desc,		(vop_t *) nfs_getattr },
216 	{ &vop_inactive_desc,		(vop_t *) nfs_inactive },
217 	{ &vop_islocked_desc,		(vop_t *) vop_stdislocked },
218 	{ &vop_lock_desc,		(vop_t *) vop_sharedlock },
219 	{ &vop_print_desc,		(vop_t *) nfs_print },
220 	{ &vop_read_desc,		(vop_t *) nfsfifo_read },
221 	{ &vop_reclaim_desc,		(vop_t *) nfs_reclaim },
222 	{ &vop_setattr_desc,		(vop_t *) nfs_setattr },
223 	{ &vop_unlock_desc,		(vop_t *) vop_stdunlock },
224 	{ &vop_write_desc,		(vop_t *) nfsfifo_write },
225 	{ NULL, NULL }
226 };
227 static struct vnodeopv_desc fifo_nfsv2nodeop_opv_desc =
228 	{ &fifo_nfsv2nodeop_p, nfsv2_fifoop_entries };
229 VNODEOP_SET(fifo_nfsv2nodeop_opv_desc);
230 
231 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
232 				  struct componentname *cnp,
233 				  struct vattr *vap);
234 static int	nfs_removerpc (struct vnode *dvp, const char *name,
235 				   int namelen,
236 				   struct ucred *cred, struct thread *td);
237 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
238 				   int fnamelen, struct vnode *tdvp,
239 				   const char *tnameptr, int tnamelen,
240 				   struct ucred *cred, struct thread *td);
241 static int	nfs_renameit (struct vnode *sdvp,
242 				  struct componentname *scnp,
243 				  struct sillyrename *sp);
244 
245 /*
246  * Global variables
247  */
248 extern u_int32_t nfs_true, nfs_false;
249 extern u_int32_t nfs_xdrneg1;
250 extern struct nfsstats nfsstats;
251 extern nfstype nfsv3_type[9];
252 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
253 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
254 int nfs_numasync = 0;
255 #define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
256 
257 SYSCTL_DECL(_vfs_nfs);
258 
259 static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
260 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
261 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
262 
263 static int	nfsv3_commit_on_close = 0;
264 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
265 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
266 #if 0
267 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
268 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
269 
270 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
271 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
272 #endif
273 
274 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
275 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
276 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
277 static int
278 nfs3_access_otw(struct vnode *vp, int wmode,
279 	struct thread *td, struct ucred *cred)
280 {
281 	const int v3 = 1;
282 	u_int32_t *tl;
283 	int error = 0, attrflag;
284 
285 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
286 	caddr_t bpos, dpos, cp2;
287 	int32_t t1, t2;
288 	caddr_t cp;
289 	u_int32_t rmode;
290 	struct nfsnode *np = VTONFS(vp);
291 
292 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
293 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
294 	nfsm_fhtom(vp, v3);
295 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
296 	*tl = txdr_unsigned(wmode);
297 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
298 	nfsm_postop_attr(vp, attrflag);
299 	if (!error) {
300 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
301 		rmode = fxdr_unsigned(u_int32_t, *tl);
302 		np->n_mode = rmode;
303 		np->n_modeuid = cred->cr_uid;
304 		np->n_modestamp = time_second;
305 	}
306 	nfsm_reqdone;
307 	return error;
308 }
309 
310 /*
311  * nfs access vnode op.
312  * For nfs version 2, just return ok. File accesses may fail later.
313  * For nfs version 3, use the access rpc to check accessibility. If file modes
314  * are changed on the server, accesses might still fail later.
315  */
316 static int
317 nfs_access(ap)
318 	struct vop_access_args /* {
319 		struct vnode *a_vp;
320 		int  a_mode;
321 		struct ucred *a_cred;
322 		struct thread *a_td;
323 	} */ *ap;
324 {
325 	struct vnode *vp = ap->a_vp;
326 	int error = 0;
327 	u_int32_t mode, wmode;
328 	int v3 = NFS_ISV3(vp);
329 	struct nfsnode *np = VTONFS(vp);
330 
331 	/*
332 	 * Disallow write attempts on filesystems mounted read-only;
333 	 * unless the file is a socket, fifo, or a block or character
334 	 * device resident on the filesystem.
335 	 */
336 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
337 		switch (vp->v_type) {
338 		case VREG:
339 		case VDIR:
340 		case VLNK:
341 			return (EROFS);
342 		default:
343 			break;
344 		}
345 	}
346 	/*
347 	 * For nfs v3, check to see if we have done this recently, and if
348 	 * so return our cached result instead of making an ACCESS call.
349 	 * If not, do an access rpc, otherwise you are stuck emulating
350 	 * ufs_access() locally using the vattr. This may not be correct,
351 	 * since the server may apply other access criteria such as
352 	 * client uid-->server uid mapping that we do not know about.
353 	 */
354 	if (v3) {
355 		if (ap->a_mode & VREAD)
356 			mode = NFSV3ACCESS_READ;
357 		else
358 			mode = 0;
359 		if (vp->v_type != VDIR) {
360 			if (ap->a_mode & VWRITE)
361 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
362 			if (ap->a_mode & VEXEC)
363 				mode |= NFSV3ACCESS_EXECUTE;
364 		} else {
365 			if (ap->a_mode & VWRITE)
366 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
367 					 NFSV3ACCESS_DELETE);
368 			if (ap->a_mode & VEXEC)
369 				mode |= NFSV3ACCESS_LOOKUP;
370 		}
371 		/* XXX safety belt, only make blanket request if caching */
372 		if (nfsaccess_cache_timeout > 0) {
373 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
374 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
375 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
376 		} else {
377 			wmode = mode;
378 		}
379 
380 		/*
381 		 * Does our cached result allow us to give a definite yes to
382 		 * this request?
383 		 */
384 		if ((time_second < (np->n_modestamp + nfsaccess_cache_timeout)) &&
385 		    (ap->a_cred->cr_uid == np->n_modeuid) &&
386 		    ((np->n_mode & mode) == mode)) {
387 			nfsstats.accesscache_hits++;
388 		} else {
389 			/*
390 			 * Either a no, or a don't know.  Go to the wire.
391 			 */
392 			nfsstats.accesscache_misses++;
393 		        error = nfs3_access_otw(vp, wmode, ap->a_td,ap->a_cred);
394 			if (!error) {
395 				if ((np->n_mode & mode) != mode) {
396 					error = EACCES;
397 				}
398 			}
399 		}
400 		return (error);
401 	} else {
402 		if ((error = nfsspec_access(ap)) != 0)
403 			return (error);
404 
405 		/*
406 		 * Attempt to prevent a mapped root from accessing a file
407 		 * which it shouldn't.  We try to read a byte from the file
408 		 * if the user is root and the file is not zero length.
409 		 * After calling nfsspec_access, we should have the correct
410 		 * file size cached.
411 		 */
412 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
413 		    && VTONFS(vp)->n_size > 0) {
414 			struct iovec aiov;
415 			struct uio auio;
416 			char buf[1];
417 
418 			aiov.iov_base = buf;
419 			aiov.iov_len = 1;
420 			auio.uio_iov = &aiov;
421 			auio.uio_iovcnt = 1;
422 			auio.uio_offset = 0;
423 			auio.uio_resid = 1;
424 			auio.uio_segflg = UIO_SYSSPACE;
425 			auio.uio_rw = UIO_READ;
426 			auio.uio_td = ap->a_td;
427 
428 			if (vp->v_type == VREG)
429 				error = nfs_readrpc(vp, &auio);
430 			else if (vp->v_type == VDIR) {
431 				char* bp;
432 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
433 				aiov.iov_base = bp;
434 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
435 				error = nfs_readdirrpc(vp, &auio);
436 				free(bp, M_TEMP);
437 			} else if (vp->v_type == VLNK)
438 				error = nfs_readlinkrpc(vp, &auio);
439 			else
440 				error = EACCES;
441 		}
442 		return (error);
443 	}
444 }
445 
446 /*
447  * nfs open vnode op
448  * Check to see if the type is ok
449  * and that deletion is not in progress.
450  * For paged in text files, you will need to flush the page cache
451  * if consistency is lost.
452  */
453 /* ARGSUSED */
454 static int
455 nfs_open(ap)
456 	struct vop_open_args /* {
457 		struct vnode *a_vp;
458 		int  a_mode;
459 		struct ucred *a_cred;
460 		struct thread *a_td;
461 	} */ *ap;
462 {
463 	struct vnode *vp = ap->a_vp;
464 	struct nfsnode *np = VTONFS(vp);
465 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
466 	struct vattr vattr;
467 	int error;
468 
469 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
470 #ifdef DIAGNOSTIC
471 		printf("open eacces vtyp=%d\n",vp->v_type);
472 #endif
473 		return (EACCES);
474 	}
475 	/*
476 	 * Get a valid lease. If cached data is stale, flush it.
477 	 */
478 	if (nmp->nm_flag & NFSMNT_NQNFS) {
479 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
480 		    do {
481 			error = nqnfs_getlease(vp, ND_READ, ap->a_td);
482 		    } while (error == NQNFS_EXPIRED);
483 		    if (error)
484 			return (error);
485 		    if (np->n_lrev != np->n_brev ||
486 			(np->n_flag & NQNFSNONCACHE)) {
487 			if ((error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1))
488 			    == EINTR) {
489 				return (error);
490 			}
491 			np->n_brev = np->n_lrev;
492 		    }
493 		}
494 	} else {
495 		if (np->n_flag & NMODIFIED) {
496 			if ((error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1))
497 			    == EINTR) {
498 				return (error);
499 			}
500 			np->n_attrstamp = 0;
501 			if (vp->v_type == VDIR)
502 				np->n_direofoffset = 0;
503 			error = VOP_GETATTR(vp, &vattr, ap->a_td);
504 			if (error)
505 				return (error);
506 			np->n_mtime = vattr.va_mtime.tv_sec;
507 		} else {
508 			error = VOP_GETATTR(vp, &vattr, ap->a_td);
509 			if (error)
510 				return (error);
511 			if (np->n_mtime != vattr.va_mtime.tv_sec) {
512 				if (vp->v_type == VDIR)
513 					np->n_direofoffset = 0;
514 				if ((error = nfs_vinvalbuf(vp, V_SAVE,
515 				    ap->a_td, 1)) == EINTR) {
516 					return (error);
517 				}
518 				np->n_mtime = vattr.va_mtime.tv_sec;
519 			}
520 		}
521 	}
522 	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0)
523 		np->n_attrstamp = 0; /* For Open/Close consistency */
524 	return (0);
525 }
526 
527 /*
528  * nfs close vnode op
529  * What an NFS client should do upon close after writing is a debatable issue.
530  * Most NFS clients push delayed writes to the server upon close, basically for
531  * two reasons:
532  * 1 - So that any write errors may be reported back to the client process
533  *     doing the close system call. By far the two most likely errors are
534  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
535  * 2 - To put a worst case upper bound on cache inconsistency between
536  *     multiple clients for the file.
537  * There is also a consistency problem for Version 2 of the protocol w.r.t.
538  * not being able to tell if other clients are writing a file concurrently,
539  * since there is no way of knowing if the changed modify time in the reply
540  * is only due to the write for this client.
541  * (NFS Version 3 provides weak cache consistency data in the reply that
542  *  should be sufficient to detect and handle this case.)
543  *
544  * The current code does the following:
545  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
546  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
547  *                     or commit them (this satisfies 1 and 2 except for the
548  *                     case where the server crashes after this close but
549  *                     before the commit RPC, which is felt to be "good
550  *                     enough". Changing the last argument to nfs_flush() to
551  *                     a 1 would force a commit operation, if it is felt a
552  *                     commit is necessary now.
553  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
554  *                     1 should be dealt with via an fsync() system call for
555  *                     cases where write errors are important.
556  */
557 /* ARGSUSED */
558 static int
559 nfs_close(ap)
560 	struct vop_close_args /* {
561 		struct vnodeop_desc *a_desc;
562 		struct vnode *a_vp;
563 		int  a_fflag;
564 		struct ucred *a_cred;
565 		struct thread *a_td;
566 	} */ *ap;
567 {
568 	struct vnode *vp = ap->a_vp;
569 	struct nfsnode *np = VTONFS(vp);
570 	int error = 0;
571 
572 	if (vp->v_type == VREG) {
573 	    if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) == 0 &&
574 		(np->n_flag & NMODIFIED)) {
575 		if (NFS_ISV3(vp)) {
576 		    /*
577 		     * Under NFSv3 we have dirty buffers to dispose of.  We
578 		     * must flush them to the NFS server.  We have the option
579 		     * of waiting all the way through the commit rpc or just
580 		     * waiting for the initial write.  The default is to only
581 		     * wait through the initial write so the data is in the
582 		     * server's cache, which is roughly similar to the state
583 		     * a standard disk subsystem leaves the file in on close().
584 		     *
585 		     * We cannot clear the NMODIFIED bit in np->n_flag due to
586 		     * potential races with other processes, and certainly
587 		     * cannot clear it if we don't commit.
588 		     */
589 		    int cm = nfsv3_commit_on_close ? 1 : 0;
590 		    error = nfs_flush(vp, MNT_WAIT, ap->a_td, cm);
591 		    /* np->n_flag &= ~NMODIFIED; */
592 		} else {
593 		    error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
594 		}
595 		np->n_attrstamp = 0;
596 	    }
597 	    if (np->n_flag & NWRITEERR) {
598 		np->n_flag &= ~NWRITEERR;
599 		error = np->n_error;
600 	    }
601 	}
602 	return (error);
603 }
604 
605 /*
606  * nfs getattr call from vfs.
607  */
608 static int
609 nfs_getattr(ap)
610 	struct vop_getattr_args /* {
611 		struct vnode *a_vp;
612 		struct vattr *a_vap;
613 		struct ucred *a_cred;
614 		struct thread *a_td;
615 	} */ *ap;
616 {
617 	struct vnode *vp = ap->a_vp;
618 	struct nfsnode *np = VTONFS(vp);
619 	caddr_t cp;
620 	u_int32_t *tl;
621 	int32_t t1, t2;
622 	caddr_t bpos, dpos;
623 	int error = 0;
624 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
625 	int v3 = NFS_ISV3(vp);
626 
627 	/*
628 	 * Update local times for special files.
629 	 */
630 	if (np->n_flag & (NACC | NUPD))
631 		np->n_flag |= NCHG;
632 	/*
633 	 * First look in the cache.
634 	 */
635 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
636 		return (0);
637 
638 	if (v3 && nfsaccess_cache_timeout > 0) {
639 		nfsstats.accesscache_misses++;
640 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, ap->a_td, NFSVPCRED(vp));
641 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
642 			return (0);
643 	}
644 
645 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
646 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
647 	nfsm_fhtom(vp, v3);
648 	nfsm_request(vp, NFSPROC_GETATTR, ap->a_td, NFSVPCRED(vp));
649 	if (!error) {
650 		nfsm_loadattr(vp, ap->a_vap);
651 	}
652 	nfsm_reqdone;
653 	return (error);
654 }
655 
656 /*
657  * nfs setattr call.
658  */
659 static int
660 nfs_setattr(ap)
661 	struct vop_setattr_args /* {
662 		struct vnodeop_desc *a_desc;
663 		struct vnode *a_vp;
664 		struct vattr *a_vap;
665 		struct ucred *a_cred;
666 		struct thread *a_td;
667 	} */ *ap;
668 {
669 	struct vnode *vp = ap->a_vp;
670 	struct nfsnode *np = VTONFS(vp);
671 	struct vattr *vap = ap->a_vap;
672 	int error = 0;
673 	u_quad_t tsize;
674 
675 #ifndef nolint
676 	tsize = (u_quad_t)0;
677 #endif
678 
679 	/*
680 	 * Setting of flags is not supported.
681 	 */
682 	if (vap->va_flags != VNOVAL)
683 		return (EOPNOTSUPP);
684 
685 	/*
686 	 * Disallow write attempts if the filesystem is mounted read-only.
687 	 */
688   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
689 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
690 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
691 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
692 		return (EROFS);
693 	if (vap->va_size != VNOVAL) {
694  		switch (vp->v_type) {
695  		case VDIR:
696  			return (EISDIR);
697  		case VCHR:
698  		case VBLK:
699  		case VSOCK:
700  		case VFIFO:
701 			if (vap->va_mtime.tv_sec == VNOVAL &&
702 			    vap->va_atime.tv_sec == VNOVAL &&
703 			    vap->va_mode == (mode_t)VNOVAL &&
704 			    vap->va_uid == (uid_t)VNOVAL &&
705 			    vap->va_gid == (gid_t)VNOVAL)
706 				return (0);
707  			vap->va_size = VNOVAL;
708  			break;
709  		default:
710 			/*
711 			 * Disallow write attempts if the filesystem is
712 			 * mounted read-only.
713 			 */
714 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
715 				return (EROFS);
716 
717 			/*
718 			 * We run vnode_pager_setsize() early (why?),
719 			 * we must set np->n_size now to avoid vinvalbuf
720 			 * V_SAVE races that might setsize a lower
721 			 * value.
722 			 */
723 
724 			tsize = np->n_size;
725 			error = nfs_meta_setsize(vp, ap->a_td, vap->va_size);
726 
727  			if (np->n_flag & NMODIFIED) {
728  			    if (vap->va_size == 0)
729  				error = nfs_vinvalbuf(vp, 0, ap->a_td, 1);
730  			    else
731  				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
732  			    if (error) {
733 				np->n_size = tsize;
734 				vnode_pager_setsize(vp, np->n_size);
735  				return (error);
736 			    }
737  			}
738 			/* np->n_size has already been set to vap->va_size
739 			 * in nfs_meta_setsize(). We must set it again since
740 			 * nfs_loadattrcache() could be called through
741 			 * nfs_meta_setsize() and could modify np->n_size.
742 			 */
743 			np->n_vattr.va_size = np->n_size = vap->va_size;
744 		};
745   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
746 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NMODIFIED) &&
747 		vp->v_type == VREG &&
748   		(error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1)) == EINTR)
749 		return (error);
750 	error = nfs_setattrrpc(vp, vap, ap->a_cred, ap->a_td);
751 	if (error && vap->va_size != VNOVAL) {
752 		np->n_size = np->n_vattr.va_size = tsize;
753 		vnode_pager_setsize(vp, np->n_size);
754 	}
755 	return (error);
756 }
757 
758 /*
759  * Do an nfs setattr rpc.
760  */
761 static int
762 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
763 	struct ucred *cred, struct thread *td)
764 {
765 	struct nfsv2_sattr *sp;
766 	caddr_t cp;
767 	int32_t t1, t2;
768 	caddr_t bpos, dpos, cp2;
769 	u_int32_t *tl;
770 	int error = 0, wccflag = NFSV3_WCCRATTR;
771 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
772 	int v3 = NFS_ISV3(vp);
773 
774 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
775 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
776 	nfsm_fhtom(vp, v3);
777 	if (v3) {
778 		nfsm_v3attrbuild(vap, TRUE);
779 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
780 		*tl = nfs_false;
781 	} else {
782 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
783 		if (vap->va_mode == (mode_t)VNOVAL)
784 			sp->sa_mode = nfs_xdrneg1;
785 		else
786 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
787 		if (vap->va_uid == (uid_t)VNOVAL)
788 			sp->sa_uid = nfs_xdrneg1;
789 		else
790 			sp->sa_uid = txdr_unsigned(vap->va_uid);
791 		if (vap->va_gid == (gid_t)VNOVAL)
792 			sp->sa_gid = nfs_xdrneg1;
793 		else
794 			sp->sa_gid = txdr_unsigned(vap->va_gid);
795 		sp->sa_size = txdr_unsigned(vap->va_size);
796 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
797 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
798 	}
799 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
800 	if (v3) {
801 		nfsm_wcc_data(vp, wccflag);
802 	} else
803 		nfsm_loadattr(vp, (struct vattr *)0);
804 	nfsm_reqdone;
805 	return (error);
806 }
807 
808 /*
809  * nfs lookup call, one step at a time...
810  * First look in cache
811  * If not found, unlock the directory nfsnode and do the rpc
812  */
813 static int
814 nfs_lookup(ap)
815 	struct vop_lookup_args /* {
816 		struct vnodeop_desc *a_desc;
817 		struct vnode *a_dvp;
818 		struct vnode **a_vpp;
819 		struct componentname *a_cnp;
820 	} */ *ap;
821 {
822 	struct componentname *cnp = ap->a_cnp;
823 	struct vnode *dvp = ap->a_dvp;
824 	struct vnode **vpp = ap->a_vpp;
825 	int flags = cnp->cn_flags;
826 	struct vnode *newvp;
827 	u_int32_t *tl;
828 	caddr_t cp;
829 	int32_t t1, t2;
830 	struct nfsmount *nmp;
831 	caddr_t bpos, dpos, cp2;
832 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
833 	long len;
834 	nfsfh_t *fhp;
835 	struct nfsnode *np;
836 	int lockparent, wantparent, error = 0, attrflag, fhsize;
837 	int v3 = NFS_ISV3(dvp);
838 	struct thread *td = cnp->cn_td;
839 
840 	*vpp = NULLVP;
841 	if ((flags & CNP_ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
842 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
843 		return (EROFS);
844 	if (dvp->v_type != VDIR)
845 		return (ENOTDIR);
846 	lockparent = flags & CNP_LOCKPARENT;
847 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
848 	nmp = VFSTONFS(dvp->v_mount);
849 	np = VTONFS(dvp);
850 	if ((error = cache_lookup(dvp, vpp, cnp)) && error != ENOENT) {
851 		struct vattr vattr;
852 		int vpid;
853 
854 		if ((error = VOP_ACCESS(dvp, VEXEC, cnp->cn_cred, td)) != 0) {
855 			*vpp = NULLVP;
856 			return (error);
857 		}
858 
859 		newvp = *vpp;
860 		vpid = newvp->v_id;
861 		/*
862 		 * See the comment starting `Step through' in ufs/ufs_lookup.c
863 		 * for an explanation of the locking protocol
864 		 */
865 		if (dvp == newvp) {
866 			VREF(newvp);
867 			error = 0;
868 		} else if (flags & CNP_ISDOTDOT) {
869 			VOP_UNLOCK(dvp, 0, td);
870 			error = vget(newvp, LK_EXCLUSIVE, td);
871 			if (!error && lockparent && (flags & CNP_ISLASTCN))
872 				error = vn_lock(dvp, LK_EXCLUSIVE, td);
873 		} else {
874 			error = vget(newvp, LK_EXCLUSIVE, td);
875 			if (!lockparent || error || !(flags & CNP_ISLASTCN))
876 				VOP_UNLOCK(dvp, 0, td);
877 		}
878 		if (!error) {
879 			if (vpid == newvp->v_id) {
880 			   if (!VOP_GETATTR(newvp, &vattr, td)
881 			    && vattr.va_ctime.tv_sec == VTONFS(newvp)->n_ctime) {
882 				nfsstats.lookupcache_hits++;
883 				if (cnp->cn_nameiop != NAMEI_LOOKUP &&
884 				    (flags & CNP_ISLASTCN))
885 					cnp->cn_flags |= CNP_SAVENAME;
886 				return (0);
887 			   }
888 			   cache_purge(newvp);
889 			}
890 			vput(newvp);
891 			if (lockparent && dvp != newvp && (flags & CNP_ISLASTCN))
892 				VOP_UNLOCK(dvp, 0, td);
893 		}
894 		error = vn_lock(dvp, LK_EXCLUSIVE, td);
895 		*vpp = NULLVP;
896 		if (error)
897 			return (error);
898 	}
899 	error = 0;
900 	newvp = NULLVP;
901 	nfsstats.lookupcache_misses++;
902 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
903 	len = cnp->cn_namelen;
904 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
905 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
906 	nfsm_fhtom(dvp, v3);
907 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
908 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
909 	if (error) {
910 		nfsm_postop_attr(dvp, attrflag);
911 		m_freem(mrep);
912 		goto nfsmout;
913 	}
914 	nfsm_getfh(fhp, fhsize, v3);
915 
916 	/*
917 	 * Handle RENAME case...
918 	 */
919 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent && (flags & CNP_ISLASTCN)) {
920 		if (NFS_CMPFH(np, fhp, fhsize)) {
921 			m_freem(mrep);
922 			return (EISDIR);
923 		}
924 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
925 		if (error) {
926 			m_freem(mrep);
927 			return (error);
928 		}
929 		newvp = NFSTOV(np);
930 		if (v3) {
931 			nfsm_postop_attr(newvp, attrflag);
932 			nfsm_postop_attr(dvp, attrflag);
933 		} else
934 			nfsm_loadattr(newvp, (struct vattr *)0);
935 		*vpp = newvp;
936 		m_freem(mrep);
937 		cnp->cn_flags |= CNP_SAVENAME;
938 		if (!lockparent)
939 			VOP_UNLOCK(dvp, 0, td);
940 		return (0);
941 	}
942 
943 	if (flags & CNP_ISDOTDOT) {
944 		VOP_UNLOCK(dvp, 0, td);
945 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
946 		if (error) {
947 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, td);
948 			return (error);
949 		}
950 		newvp = NFSTOV(np);
951 		if (lockparent && (flags & CNP_ISLASTCN) &&
952 		    (error = vn_lock(dvp, LK_EXCLUSIVE, td))) {
953 		    	vput(newvp);
954 			return (error);
955 		}
956 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
957 		VREF(dvp);
958 		newvp = dvp;
959 	} else {
960 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
961 		if (error) {
962 			m_freem(mrep);
963 			return (error);
964 		}
965 		if (!lockparent || !(flags & CNP_ISLASTCN))
966 			VOP_UNLOCK(dvp, 0, td);
967 		newvp = NFSTOV(np);
968 	}
969 	if (v3) {
970 		nfsm_postop_attr(newvp, attrflag);
971 		nfsm_postop_attr(dvp, attrflag);
972 	} else
973 		nfsm_loadattr(newvp, (struct vattr *)0);
974 	if (cnp->cn_nameiop != NAMEI_LOOKUP && (flags & CNP_ISLASTCN))
975 		cnp->cn_flags |= CNP_SAVENAME;
976 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
977 	    (cnp->cn_nameiop != NAMEI_DELETE || !(flags & CNP_ISLASTCN))) {
978 		np->n_ctime = np->n_vattr.va_ctime.tv_sec;
979 		cache_enter(dvp, newvp, cnp);
980 	}
981 	*vpp = newvp;
982 	nfsm_reqdone;
983 	if (error) {
984 		if (newvp != NULLVP) {
985 			vrele(newvp);
986 			*vpp = NULLVP;
987 		}
988 		if ((cnp->cn_nameiop == NAMEI_CREATE || cnp->cn_nameiop == NAMEI_RENAME) &&
989 		    (flags & CNP_ISLASTCN) && error == ENOENT) {
990 			if (!lockparent)
991 				VOP_UNLOCK(dvp, 0, td);
992 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
993 				error = EROFS;
994 			else
995 				error = EJUSTRETURN;
996 		}
997 		if (cnp->cn_nameiop != NAMEI_LOOKUP && (flags & CNP_ISLASTCN))
998 			cnp->cn_flags |= CNP_SAVENAME;
999 	}
1000 	return (error);
1001 }
1002 
1003 /*
1004  * nfs read call.
1005  * Just call nfs_bioread() to do the work.
1006  */
1007 static int
1008 nfs_read(ap)
1009 	struct vop_read_args /* {
1010 		struct vnode *a_vp;
1011 		struct uio *a_uio;
1012 		int  a_ioflag;
1013 		struct ucred *a_cred;
1014 	} */ *ap;
1015 {
1016 	struct vnode *vp = ap->a_vp;
1017 
1018 	if (vp->v_type != VREG)
1019 		return (EPERM);
1020 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1021 }
1022 
1023 /*
1024  * nfs readlink call
1025  */
1026 static int
1027 nfs_readlink(ap)
1028 	struct vop_readlink_args /* {
1029 		struct vnode *a_vp;
1030 		struct uio *a_uio;
1031 		struct ucred *a_cred;
1032 	} */ *ap;
1033 {
1034 	struct vnode *vp = ap->a_vp;
1035 
1036 	if (vp->v_type != VLNK)
1037 		return (EINVAL);
1038 	return (nfs_bioread(vp, ap->a_uio, 0));
1039 }
1040 
1041 /*
1042  * Do a readlink rpc.
1043  * Called by nfs_doio() from below the buffer cache.
1044  */
1045 int
1046 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1047 {
1048 	u_int32_t *tl;
1049 	caddr_t cp;
1050 	int32_t t1, t2;
1051 	caddr_t bpos, dpos, cp2;
1052 	int error = 0, len, attrflag;
1053 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1054 	int v3 = NFS_ISV3(vp);
1055 
1056 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1057 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1058 	nfsm_fhtom(vp, v3);
1059 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, NFSVPCRED(vp));
1060 	if (v3)
1061 		nfsm_postop_attr(vp, attrflag);
1062 	if (!error) {
1063 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1064 		if (len == NFS_MAXPATHLEN) {
1065 			struct nfsnode *np = VTONFS(vp);
1066 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1067 				len = np->n_size;
1068 		}
1069 		nfsm_mtouio(uiop, len);
1070 	}
1071 	nfsm_reqdone;
1072 	return (error);
1073 }
1074 
1075 /*
1076  * nfs read rpc call
1077  * Ditto above
1078  */
1079 int
1080 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1081 {
1082 	u_int32_t *tl;
1083 	caddr_t cp;
1084 	int32_t t1, t2;
1085 	caddr_t bpos, dpos, cp2;
1086 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1087 	struct nfsmount *nmp;
1088 	int error = 0, len, retlen, tsiz, eof, attrflag;
1089 	int v3 = NFS_ISV3(vp);
1090 
1091 #ifndef nolint
1092 	eof = 0;
1093 #endif
1094 	nmp = VFSTONFS(vp->v_mount);
1095 	tsiz = uiop->uio_resid;
1096 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1097 		return (EFBIG);
1098 	while (tsiz > 0) {
1099 		nfsstats.rpccnt[NFSPROC_READ]++;
1100 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1101 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1102 		nfsm_fhtom(vp, v3);
1103 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1104 		if (v3) {
1105 			txdr_hyper(uiop->uio_offset, tl);
1106 			*(tl + 2) = txdr_unsigned(len);
1107 		} else {
1108 			*tl++ = txdr_unsigned(uiop->uio_offset);
1109 			*tl++ = txdr_unsigned(len);
1110 			*tl = 0;
1111 		}
1112 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, NFSVPCRED(vp));
1113 		if (v3) {
1114 			nfsm_postop_attr(vp, attrflag);
1115 			if (error) {
1116 				m_freem(mrep);
1117 				goto nfsmout;
1118 			}
1119 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1120 			eof = fxdr_unsigned(int, *(tl + 1));
1121 		} else
1122 			nfsm_loadattr(vp, (struct vattr *)0);
1123 		nfsm_strsiz(retlen, nmp->nm_rsize);
1124 		nfsm_mtouio(uiop, retlen);
1125 		m_freem(mrep);
1126 		tsiz -= retlen;
1127 		if (v3) {
1128 			if (eof || retlen == 0) {
1129 				tsiz = 0;
1130 			}
1131 		} else if (retlen < len) {
1132 			tsiz = 0;
1133 		}
1134 	}
1135 nfsmout:
1136 	return (error);
1137 }
1138 
1139 /*
1140  * nfs write call
1141  */
1142 int
1143 nfs_writerpc(vp, uiop, iomode, must_commit)
1144 	struct vnode *vp;
1145 	struct uio *uiop;
1146 	int *iomode, *must_commit;
1147 {
1148 	u_int32_t *tl;
1149 	caddr_t cp;
1150 	int32_t t1, t2, backup;
1151 	caddr_t bpos, dpos, cp2;
1152 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1153 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1154 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1155 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1156 
1157 #ifndef DIAGNOSTIC
1158 	if (uiop->uio_iovcnt != 1)
1159 		panic("nfs: writerpc iovcnt > 1");
1160 #endif
1161 	*must_commit = 0;
1162 	tsiz = uiop->uio_resid;
1163 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1164 		return (EFBIG);
1165 	while (tsiz > 0) {
1166 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1167 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1168 		nfsm_reqhead(vp, NFSPROC_WRITE,
1169 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1170 		nfsm_fhtom(vp, v3);
1171 		if (v3) {
1172 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1173 			txdr_hyper(uiop->uio_offset, tl);
1174 			tl += 2;
1175 			*tl++ = txdr_unsigned(len);
1176 			*tl++ = txdr_unsigned(*iomode);
1177 			*tl = txdr_unsigned(len);
1178 		} else {
1179 			u_int32_t x;
1180 
1181 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1182 			/* Set both "begin" and "current" to non-garbage. */
1183 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1184 			*tl++ = x;	/* "begin offset" */
1185 			*tl++ = x;	/* "current offset" */
1186 			x = txdr_unsigned(len);
1187 			*tl++ = x;	/* total to this offset */
1188 			*tl = x;	/* size of this write */
1189 		}
1190 		nfsm_uiotom(uiop, len);
1191 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, NFSVPCRED(vp));
1192 		if (v3) {
1193 			wccflag = NFSV3_WCCCHK;
1194 			nfsm_wcc_data(vp, wccflag);
1195 			if (!error) {
1196 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1197 					+ NFSX_V3WRITEVERF);
1198 				rlen = fxdr_unsigned(int, *tl++);
1199 				if (rlen == 0) {
1200 					error = NFSERR_IO;
1201 					m_freem(mrep);
1202 					break;
1203 				} else if (rlen < len) {
1204 					backup = len - rlen;
1205 					uiop->uio_iov->iov_base -= backup;
1206 					uiop->uio_iov->iov_len += backup;
1207 					uiop->uio_offset -= backup;
1208 					uiop->uio_resid += backup;
1209 					len = rlen;
1210 				}
1211 				commit = fxdr_unsigned(int, *tl++);
1212 
1213 				/*
1214 				 * Return the lowest committment level
1215 				 * obtained by any of the RPCs.
1216 				 */
1217 				if (committed == NFSV3WRITE_FILESYNC)
1218 					committed = commit;
1219 				else if (committed == NFSV3WRITE_DATASYNC &&
1220 					commit == NFSV3WRITE_UNSTABLE)
1221 					committed = commit;
1222 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1223 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1224 					NFSX_V3WRITEVERF);
1225 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1226 				} else if (bcmp((caddr_t)tl,
1227 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1228 				    *must_commit = 1;
1229 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1230 					NFSX_V3WRITEVERF);
1231 				}
1232 			}
1233 		} else
1234 		    nfsm_loadattr(vp, (struct vattr *)0);
1235 		if (wccflag)
1236 		    VTONFS(vp)->n_mtime = VTONFS(vp)->n_vattr.va_mtime.tv_sec;
1237 		m_freem(mrep);
1238 		if (error)
1239 			break;
1240 		tsiz -= len;
1241 	}
1242 nfsmout:
1243 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1244 		committed = NFSV3WRITE_FILESYNC;
1245 	*iomode = committed;
1246 	if (error)
1247 		uiop->uio_resid = tsiz;
1248 	return (error);
1249 }
1250 
1251 /*
1252  * nfs mknod rpc
1253  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1254  * mode set to specify the file type and the size field for rdev.
1255  */
1256 static int
1257 nfs_mknodrpc(dvp, vpp, cnp, vap)
1258 	struct vnode *dvp;
1259 	struct vnode **vpp;
1260 	struct componentname *cnp;
1261 	struct vattr *vap;
1262 {
1263 	struct nfsv2_sattr *sp;
1264 	u_int32_t *tl;
1265 	caddr_t cp;
1266 	int32_t t1, t2;
1267 	struct vnode *newvp = (struct vnode *)0;
1268 	struct nfsnode *np = (struct nfsnode *)0;
1269 	struct vattr vattr;
1270 	char *cp2;
1271 	caddr_t bpos, dpos;
1272 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1273 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1274 	u_int32_t rdev;
1275 	int v3 = NFS_ISV3(dvp);
1276 
1277 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1278 		rdev = txdr_unsigned(vap->va_rdev);
1279 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1280 		rdev = nfs_xdrneg1;
1281 	else {
1282 		return (EOPNOTSUPP);
1283 	}
1284 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1285 		return (error);
1286 	}
1287 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1288 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1289 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1290 	nfsm_fhtom(dvp, v3);
1291 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1292 	if (v3) {
1293 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1294 		*tl++ = vtonfsv3_type(vap->va_type);
1295 		nfsm_v3attrbuild(vap, FALSE);
1296 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1297 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1298 			*tl++ = txdr_unsigned(umajor(vap->va_rdev));
1299 			*tl = txdr_unsigned(uminor(vap->va_rdev));
1300 		}
1301 	} else {
1302 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1303 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1304 		sp->sa_uid = nfs_xdrneg1;
1305 		sp->sa_gid = nfs_xdrneg1;
1306 		sp->sa_size = rdev;
1307 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1308 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1309 	}
1310 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1311 	if (!error) {
1312 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1313 		if (!gotvp) {
1314 			if (newvp) {
1315 				vput(newvp);
1316 				newvp = (struct vnode *)0;
1317 			}
1318 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1319 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1320 			if (!error)
1321 				newvp = NFSTOV(np);
1322 		}
1323 	}
1324 	if (v3)
1325 		nfsm_wcc_data(dvp, wccflag);
1326 	nfsm_reqdone;
1327 	if (error) {
1328 		if (newvp)
1329 			vput(newvp);
1330 	} else {
1331 		if (cnp->cn_flags & CNP_MAKEENTRY)
1332 			cache_enter(dvp, newvp, cnp);
1333 		*vpp = newvp;
1334 	}
1335 	VTONFS(dvp)->n_flag |= NMODIFIED;
1336 	if (!wccflag)
1337 		VTONFS(dvp)->n_attrstamp = 0;
1338 	return (error);
1339 }
1340 
1341 /*
1342  * nfs mknod vop
1343  * just call nfs_mknodrpc() to do the work.
1344  */
1345 /* ARGSUSED */
1346 static int
1347 nfs_mknod(ap)
1348 	struct vop_mknod_args /* {
1349 		struct vnode *a_dvp;
1350 		struct vnode **a_vpp;
1351 		struct componentname *a_cnp;
1352 		struct vattr *a_vap;
1353 	} */ *ap;
1354 {
1355 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1356 }
1357 
1358 static u_long create_verf;
1359 /*
1360  * nfs file create call
1361  */
1362 static int
1363 nfs_create(ap)
1364 	struct vop_create_args /* {
1365 		struct vnode *a_dvp;
1366 		struct vnode **a_vpp;
1367 		struct componentname *a_cnp;
1368 		struct vattr *a_vap;
1369 	} */ *ap;
1370 {
1371 	struct vnode *dvp = ap->a_dvp;
1372 	struct vattr *vap = ap->a_vap;
1373 	struct componentname *cnp = ap->a_cnp;
1374 	struct nfsv2_sattr *sp;
1375 	u_int32_t *tl;
1376 	caddr_t cp;
1377 	int32_t t1, t2;
1378 	struct nfsnode *np = (struct nfsnode *)0;
1379 	struct vnode *newvp = (struct vnode *)0;
1380 	caddr_t bpos, dpos, cp2;
1381 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1382 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1383 	struct vattr vattr;
1384 	int v3 = NFS_ISV3(dvp);
1385 
1386 	/*
1387 	 * Oops, not for me..
1388 	 */
1389 	if (vap->va_type == VSOCK)
1390 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1391 
1392 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1393 		return (error);
1394 	}
1395 	if (vap->va_vaflags & VA_EXCLUSIVE)
1396 		fmode |= O_EXCL;
1397 again:
1398 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1399 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1400 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1401 	nfsm_fhtom(dvp, v3);
1402 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1403 	if (v3) {
1404 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1405 		if (fmode & O_EXCL) {
1406 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1407 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1408 #ifdef INET
1409 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1410 				*tl++ = IA_SIN(in_ifaddrhead.tqh_first)->sin_addr.s_addr;
1411 			else
1412 #endif
1413 				*tl++ = create_verf;
1414 			*tl = ++create_verf;
1415 		} else {
1416 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1417 			nfsm_v3attrbuild(vap, FALSE);
1418 		}
1419 	} else {
1420 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1421 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1422 		sp->sa_uid = nfs_xdrneg1;
1423 		sp->sa_gid = nfs_xdrneg1;
1424 		sp->sa_size = 0;
1425 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1426 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1427 	}
1428 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1429 	if (!error) {
1430 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1431 		if (!gotvp) {
1432 			if (newvp) {
1433 				vput(newvp);
1434 				newvp = (struct vnode *)0;
1435 			}
1436 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1437 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1438 			if (!error)
1439 				newvp = NFSTOV(np);
1440 		}
1441 	}
1442 	if (v3)
1443 		nfsm_wcc_data(dvp, wccflag);
1444 	nfsm_reqdone;
1445 	if (error) {
1446 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1447 			fmode &= ~O_EXCL;
1448 			goto again;
1449 		}
1450 		if (newvp)
1451 			vput(newvp);
1452 	} else if (v3 && (fmode & O_EXCL)) {
1453 		/*
1454 		 * We are normally called with only a partially initialized
1455 		 * VAP.  Since the NFSv3 spec says that server may use the
1456 		 * file attributes to store the verifier, the spec requires
1457 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1458 		 * in atime, but we can't really assume that all servers will
1459 		 * so we ensure that our SETATTR sets both atime and mtime.
1460 		 */
1461 		if (vap->va_mtime.tv_sec == VNOVAL)
1462 			vfs_timestamp(&vap->va_mtime);
1463 		if (vap->va_atime.tv_sec == VNOVAL)
1464 			vap->va_atime = vap->va_mtime;
1465 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1466 	}
1467 	if (!error) {
1468 		if (cnp->cn_flags & CNP_MAKEENTRY)
1469 			cache_enter(dvp, newvp, cnp);
1470 		*ap->a_vpp = newvp;
1471 	}
1472 	VTONFS(dvp)->n_flag |= NMODIFIED;
1473 	if (!wccflag)
1474 		VTONFS(dvp)->n_attrstamp = 0;
1475 	return (error);
1476 }
1477 
1478 /*
1479  * nfs file remove call
1480  * To try and make nfs semantics closer to ufs semantics, a file that has
1481  * other processes using the vnode is renamed instead of removed and then
1482  * removed later on the last close.
1483  * - If v_usecount > 1
1484  *	  If a rename is not already in the works
1485  *	     call nfs_sillyrename() to set it up
1486  *     else
1487  *	  do the remove rpc
1488  */
1489 static int
1490 nfs_remove(ap)
1491 	struct vop_remove_args /* {
1492 		struct vnodeop_desc *a_desc;
1493 		struct vnode * a_dvp;
1494 		struct vnode * a_vp;
1495 		struct componentname * a_cnp;
1496 	} */ *ap;
1497 {
1498 	struct vnode *vp = ap->a_vp;
1499 	struct vnode *dvp = ap->a_dvp;
1500 	struct componentname *cnp = ap->a_cnp;
1501 	struct nfsnode *np = VTONFS(vp);
1502 	int error = 0;
1503 	struct vattr vattr;
1504 
1505 #ifndef DIAGNOSTIC
1506 	if ((cnp->cn_flags & CNP_HASBUF) == 0)
1507 		panic("nfs_remove: no name");
1508 	if (vp->v_usecount < 1)
1509 		panic("nfs_remove: bad v_usecount");
1510 #endif
1511 	if (vp->v_type == VDIR)
1512 		error = EPERM;
1513 	else if (vp->v_usecount == 1 || (np->n_sillyrename &&
1514 	    VOP_GETATTR(vp, &vattr, cnp->cn_td) == 0 &&
1515 	    vattr.va_nlink > 1)) {
1516 		/*
1517 		 * Purge the name cache so that the chance of a lookup for
1518 		 * the name succeeding while the remove is in progress is
1519 		 * minimized. Without node locking it can still happen, such
1520 		 * that an I/O op returns ESTALE, but since you get this if
1521 		 * another host removes the file..
1522 		 */
1523 		cache_purge(vp);
1524 		/*
1525 		 * throw away biocache buffers, mainly to avoid
1526 		 * unnecessary delayed writes later.
1527 		 */
1528 		error = nfs_vinvalbuf(vp, 0, cnp->cn_td, 1);
1529 		/* Do the rpc */
1530 		if (error != EINTR)
1531 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1532 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1533 		/*
1534 		 * Kludge City: If the first reply to the remove rpc is lost..
1535 		 *   the reply to the retransmitted request will be ENOENT
1536 		 *   since the file was in fact removed
1537 		 *   Therefore, we cheat and return success.
1538 		 */
1539 		if (error == ENOENT)
1540 			error = 0;
1541 	} else if (!np->n_sillyrename)
1542 		error = nfs_sillyrename(dvp, vp, cnp);
1543 	np->n_attrstamp = 0;
1544 	return (error);
1545 }
1546 
1547 /*
1548  * nfs file remove rpc called from nfs_inactive
1549  */
1550 int
1551 nfs_removeit(struct sillyrename *sp)
1552 {
1553 
1554 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1555 		sp->s_cred, NULL));
1556 }
1557 
1558 /*
1559  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1560  */
1561 static int
1562 nfs_removerpc(dvp, name, namelen, cred, td)
1563 	struct vnode *dvp;
1564 	const char *name;
1565 	int namelen;
1566 	struct ucred *cred;
1567 	struct thread *td;
1568 {
1569 	u_int32_t *tl;
1570 	caddr_t cp;
1571 	int32_t t1, t2;
1572 	caddr_t bpos, dpos, cp2;
1573 	int error = 0, wccflag = NFSV3_WCCRATTR;
1574 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1575 	int v3 = NFS_ISV3(dvp);
1576 
1577 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1578 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1579 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1580 	nfsm_fhtom(dvp, v3);
1581 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1582 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1583 	if (v3)
1584 		nfsm_wcc_data(dvp, wccflag);
1585 	nfsm_reqdone;
1586 	VTONFS(dvp)->n_flag |= NMODIFIED;
1587 	if (!wccflag)
1588 		VTONFS(dvp)->n_attrstamp = 0;
1589 	return (error);
1590 }
1591 
1592 /*
1593  * nfs file rename call
1594  */
1595 static int
1596 nfs_rename(ap)
1597 	struct vop_rename_args  /* {
1598 		struct vnode *a_fdvp;
1599 		struct vnode *a_fvp;
1600 		struct componentname *a_fcnp;
1601 		struct vnode *a_tdvp;
1602 		struct vnode *a_tvp;
1603 		struct componentname *a_tcnp;
1604 	} */ *ap;
1605 {
1606 	struct vnode *fvp = ap->a_fvp;
1607 	struct vnode *tvp = ap->a_tvp;
1608 	struct vnode *fdvp = ap->a_fdvp;
1609 	struct vnode *tdvp = ap->a_tdvp;
1610 	struct componentname *tcnp = ap->a_tcnp;
1611 	struct componentname *fcnp = ap->a_fcnp;
1612 	int error;
1613 
1614 #ifndef DIAGNOSTIC
1615 	if ((tcnp->cn_flags & CNP_HASBUF) == 0 ||
1616 	    (fcnp->cn_flags & CNP_HASBUF) == 0)
1617 		panic("nfs_rename: no name");
1618 #endif
1619 	/* Check for cross-device rename */
1620 	if ((fvp->v_mount != tdvp->v_mount) ||
1621 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1622 		error = EXDEV;
1623 		goto out;
1624 	}
1625 
1626 	/*
1627 	 * We have to flush B_DELWRI data prior to renaming
1628 	 * the file.  If we don't, the delayed-write buffers
1629 	 * can be flushed out later after the file has gone stale
1630 	 * under NFSV3.  NFSV2 does not have this problem because
1631 	 * ( as far as I can tell ) it flushes dirty buffers more
1632 	 * often.
1633 	 */
1634 
1635 	VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_td);
1636 	if (tvp)
1637 	    VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_td);
1638 
1639 	/*
1640 	 * If the tvp exists and is in use, sillyrename it before doing the
1641 	 * rename of the new file over it.
1642 	 * XXX Can't sillyrename a directory.
1643 	 */
1644 	if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename &&
1645 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1646 		vput(tvp);
1647 		tvp = NULL;
1648 	}
1649 
1650 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1651 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1652 		tcnp->cn_td);
1653 
1654 	if (fvp->v_type == VDIR) {
1655 		if (tvp != NULL && tvp->v_type == VDIR)
1656 			cache_purge(tdvp);
1657 		cache_purge(fdvp);
1658 	}
1659 
1660 out:
1661 	if (tdvp == tvp)
1662 		vrele(tdvp);
1663 	else
1664 		vput(tdvp);
1665 	if (tvp)
1666 		vput(tvp);
1667 	vrele(fdvp);
1668 	vrele(fvp);
1669 	/*
1670 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1671 	 */
1672 	if (error == ENOENT)
1673 		error = 0;
1674 	return (error);
1675 }
1676 
1677 /*
1678  * nfs file rename rpc called from nfs_remove() above
1679  */
1680 static int
1681 nfs_renameit(sdvp, scnp, sp)
1682 	struct vnode *sdvp;
1683 	struct componentname *scnp;
1684 	struct sillyrename *sp;
1685 {
1686 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1687 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1688 }
1689 
1690 /*
1691  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1692  */
1693 static int
1694 nfs_renamerpc(fdvp, fnameptr, fnamelen, tdvp, tnameptr, tnamelen, cred, td)
1695 	struct vnode *fdvp;
1696 	const char *fnameptr;
1697 	int fnamelen;
1698 	struct vnode *tdvp;
1699 	const char *tnameptr;
1700 	int tnamelen;
1701 	struct ucred *cred;
1702 	struct thread *td;
1703 {
1704 	u_int32_t *tl;
1705 	caddr_t cp;
1706 	int32_t t1, t2;
1707 	caddr_t bpos, dpos, cp2;
1708 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1709 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1710 	int v3 = NFS_ISV3(fdvp);
1711 
1712 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1713 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1714 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1715 		nfsm_rndup(tnamelen));
1716 	nfsm_fhtom(fdvp, v3);
1717 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1718 	nfsm_fhtom(tdvp, v3);
1719 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1720 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1721 	if (v3) {
1722 		nfsm_wcc_data(fdvp, fwccflag);
1723 		nfsm_wcc_data(tdvp, twccflag);
1724 	}
1725 	nfsm_reqdone;
1726 	VTONFS(fdvp)->n_flag |= NMODIFIED;
1727 	VTONFS(tdvp)->n_flag |= NMODIFIED;
1728 	if (!fwccflag)
1729 		VTONFS(fdvp)->n_attrstamp = 0;
1730 	if (!twccflag)
1731 		VTONFS(tdvp)->n_attrstamp = 0;
1732 	return (error);
1733 }
1734 
1735 /*
1736  * nfs hard link create call
1737  */
1738 static int
1739 nfs_link(ap)
1740 	struct vop_link_args /* {
1741 		struct vnode *a_tdvp;
1742 		struct vnode *a_vp;
1743 		struct componentname *a_cnp;
1744 	} */ *ap;
1745 {
1746 	struct vnode *vp = ap->a_vp;
1747 	struct vnode *tdvp = ap->a_tdvp;
1748 	struct componentname *cnp = ap->a_cnp;
1749 	u_int32_t *tl;
1750 	caddr_t cp;
1751 	int32_t t1, t2;
1752 	caddr_t bpos, dpos, cp2;
1753 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1754 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1755 	int v3;
1756 
1757 	if (vp->v_mount != tdvp->v_mount) {
1758 		return (EXDEV);
1759 	}
1760 
1761 	/*
1762 	 * Push all writes to the server, so that the attribute cache
1763 	 * doesn't get "out of sync" with the server.
1764 	 * XXX There should be a better way!
1765 	 */
1766 	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_td);
1767 
1768 	v3 = NFS_ISV3(vp);
1769 	nfsstats.rpccnt[NFSPROC_LINK]++;
1770 	nfsm_reqhead(vp, NFSPROC_LINK,
1771 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1772 	nfsm_fhtom(vp, v3);
1773 	nfsm_fhtom(tdvp, v3);
1774 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1775 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1776 	if (v3) {
1777 		nfsm_postop_attr(vp, attrflag);
1778 		nfsm_wcc_data(tdvp, wccflag);
1779 	}
1780 	nfsm_reqdone;
1781 	VTONFS(tdvp)->n_flag |= NMODIFIED;
1782 	if (!attrflag)
1783 		VTONFS(vp)->n_attrstamp = 0;
1784 	if (!wccflag)
1785 		VTONFS(tdvp)->n_attrstamp = 0;
1786 	/*
1787 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1788 	 */
1789 	if (error == EEXIST)
1790 		error = 0;
1791 	return (error);
1792 }
1793 
1794 /*
1795  * nfs symbolic link create call
1796  */
1797 static int
1798 nfs_symlink(ap)
1799 	struct vop_symlink_args /* {
1800 		struct vnode *a_dvp;
1801 		struct vnode **a_vpp;
1802 		struct componentname *a_cnp;
1803 		struct vattr *a_vap;
1804 		char *a_target;
1805 	} */ *ap;
1806 {
1807 	struct vnode *dvp = ap->a_dvp;
1808 	struct vattr *vap = ap->a_vap;
1809 	struct componentname *cnp = ap->a_cnp;
1810 	struct nfsv2_sattr *sp;
1811 	u_int32_t *tl;
1812 	caddr_t cp;
1813 	int32_t t1, t2;
1814 	caddr_t bpos, dpos, cp2;
1815 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1816 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1817 	struct vnode *newvp = (struct vnode *)0;
1818 	int v3 = NFS_ISV3(dvp);
1819 
1820 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1821 	slen = strlen(ap->a_target);
1822 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1823 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1824 	nfsm_fhtom(dvp, v3);
1825 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1826 	if (v3) {
1827 		nfsm_v3attrbuild(vap, FALSE);
1828 	}
1829 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1830 	if (!v3) {
1831 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1832 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1833 		sp->sa_uid = nfs_xdrneg1;
1834 		sp->sa_gid = nfs_xdrneg1;
1835 		sp->sa_size = nfs_xdrneg1;
1836 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1837 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1838 	}
1839 
1840 	/*
1841 	 * Issue the NFS request and get the rpc response.
1842 	 *
1843 	 * Only NFSv3 responses returning an error of 0 actually return
1844 	 * a file handle that can be converted into newvp without having
1845 	 * to do an extra lookup rpc.
1846 	 */
1847 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1848 	if (v3) {
1849 		if (error == 0)
1850 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1851 		nfsm_wcc_data(dvp, wccflag);
1852 	}
1853 
1854 	/*
1855 	 * out code jumps -> here, mrep is also freed.
1856 	 */
1857 
1858 	nfsm_reqdone;
1859 
1860 	/*
1861 	 * If we get an EEXIST error, silently convert it to no-error
1862 	 * in case of an NFS retry.
1863 	 */
1864 	if (error == EEXIST)
1865 		error = 0;
1866 
1867 	/*
1868 	 * If we do not have (or no longer have) an error, and we could
1869 	 * not extract the newvp from the response due to the request being
1870 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1871 	 * to obtain a newvp to return.
1872 	 */
1873 	if (error == 0 && newvp == NULL) {
1874 		struct nfsnode *np = NULL;
1875 
1876 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1877 		    cnp->cn_cred, cnp->cn_td, &np);
1878 		if (!error)
1879 			newvp = NFSTOV(np);
1880 	}
1881 	if (error) {
1882 		if (newvp)
1883 			vput(newvp);
1884 	} else {
1885 		*ap->a_vpp = newvp;
1886 	}
1887 	VTONFS(dvp)->n_flag |= NMODIFIED;
1888 	if (!wccflag)
1889 		VTONFS(dvp)->n_attrstamp = 0;
1890 	return (error);
1891 }
1892 
1893 /*
1894  * nfs make dir call
1895  */
1896 static int
1897 nfs_mkdir(ap)
1898 	struct vop_mkdir_args /* {
1899 		struct vnode *a_dvp;
1900 		struct vnode **a_vpp;
1901 		struct componentname *a_cnp;
1902 		struct vattr *a_vap;
1903 	} */ *ap;
1904 {
1905 	struct vnode *dvp = ap->a_dvp;
1906 	struct vattr *vap = ap->a_vap;
1907 	struct componentname *cnp = ap->a_cnp;
1908 	struct nfsv2_sattr *sp;
1909 	u_int32_t *tl;
1910 	caddr_t cp;
1911 	int32_t t1, t2;
1912 	int len;
1913 	struct nfsnode *np = (struct nfsnode *)0;
1914 	struct vnode *newvp = (struct vnode *)0;
1915 	caddr_t bpos, dpos, cp2;
1916 	int error = 0, wccflag = NFSV3_WCCRATTR;
1917 	int gotvp = 0;
1918 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1919 	struct vattr vattr;
1920 	int v3 = NFS_ISV3(dvp);
1921 
1922 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1923 		return (error);
1924 	}
1925 	len = cnp->cn_namelen;
1926 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
1927 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
1928 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1929 	nfsm_fhtom(dvp, v3);
1930 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1931 	if (v3) {
1932 		nfsm_v3attrbuild(vap, FALSE);
1933 	} else {
1934 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1935 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
1936 		sp->sa_uid = nfs_xdrneg1;
1937 		sp->sa_gid = nfs_xdrneg1;
1938 		sp->sa_size = nfs_xdrneg1;
1939 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1940 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1941 	}
1942 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
1943 	if (!error)
1944 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1945 	if (v3)
1946 		nfsm_wcc_data(dvp, wccflag);
1947 	nfsm_reqdone;
1948 	VTONFS(dvp)->n_flag |= NMODIFIED;
1949 	if (!wccflag)
1950 		VTONFS(dvp)->n_attrstamp = 0;
1951 	/*
1952 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
1953 	 * if we can succeed in looking up the directory.
1954 	 */
1955 	if (error == EEXIST || (!error && !gotvp)) {
1956 		if (newvp) {
1957 			vrele(newvp);
1958 			newvp = (struct vnode *)0;
1959 		}
1960 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
1961 			cnp->cn_td, &np);
1962 		if (!error) {
1963 			newvp = NFSTOV(np);
1964 			if (newvp->v_type != VDIR)
1965 				error = EEXIST;
1966 		}
1967 	}
1968 	if (error) {
1969 		if (newvp)
1970 			vrele(newvp);
1971 	} else
1972 		*ap->a_vpp = newvp;
1973 	return (error);
1974 }
1975 
1976 /*
1977  * nfs remove directory call
1978  */
1979 static int
1980 nfs_rmdir(ap)
1981 	struct vop_rmdir_args /* {
1982 		struct vnode *a_dvp;
1983 		struct vnode *a_vp;
1984 		struct componentname *a_cnp;
1985 	} */ *ap;
1986 {
1987 	struct vnode *vp = ap->a_vp;
1988 	struct vnode *dvp = ap->a_dvp;
1989 	struct componentname *cnp = ap->a_cnp;
1990 	u_int32_t *tl;
1991 	caddr_t cp;
1992 	int32_t t1, t2;
1993 	caddr_t bpos, dpos, cp2;
1994 	int error = 0, wccflag = NFSV3_WCCRATTR;
1995 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1996 	int v3 = NFS_ISV3(dvp);
1997 
1998 	if (dvp == vp)
1999 		return (EINVAL);
2000 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2001 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2002 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2003 	nfsm_fhtom(dvp, v3);
2004 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2005 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2006 	if (v3)
2007 		nfsm_wcc_data(dvp, wccflag);
2008 	nfsm_reqdone;
2009 	VTONFS(dvp)->n_flag |= NMODIFIED;
2010 	if (!wccflag)
2011 		VTONFS(dvp)->n_attrstamp = 0;
2012 	cache_purge(dvp);
2013 	cache_purge(vp);
2014 	/*
2015 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2016 	 */
2017 	if (error == ENOENT)
2018 		error = 0;
2019 	return (error);
2020 }
2021 
2022 /*
2023  * nfs readdir call
2024  */
2025 static int
2026 nfs_readdir(ap)
2027 	struct vop_readdir_args /* {
2028 		struct vnode *a_vp;
2029 		struct uio *a_uio;
2030 		struct ucred *a_cred;
2031 	} */ *ap;
2032 {
2033 	struct vnode *vp = ap->a_vp;
2034 	struct nfsnode *np = VTONFS(vp);
2035 	struct uio *uio = ap->a_uio;
2036 	int tresid, error;
2037 	struct vattr vattr;
2038 
2039 	if (vp->v_type != VDIR)
2040 		return (EPERM);
2041 	/*
2042 	 * First, check for hit on the EOF offset cache
2043 	 */
2044 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2045 	    (np->n_flag & NMODIFIED) == 0) {
2046 		if (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) {
2047 			if (NQNFS_CKCACHABLE(vp, ND_READ)) {
2048 				nfsstats.direofcache_hits++;
2049 				return (0);
2050 			}
2051 		} else if (VOP_GETATTR(vp, &vattr, uio->uio_td) == 0 &&
2052 			np->n_mtime == vattr.va_mtime.tv_sec) {
2053 			nfsstats.direofcache_hits++;
2054 			return (0);
2055 		}
2056 	}
2057 
2058 	/*
2059 	 * Call nfs_bioread() to do the real work.
2060 	 */
2061 	tresid = uio->uio_resid;
2062 	error = nfs_bioread(vp, uio, 0);
2063 
2064 	if (!error && uio->uio_resid == tresid)
2065 		nfsstats.direofcache_misses++;
2066 	return (error);
2067 }
2068 
2069 /*
2070  * Readdir rpc call.
2071  * Called from below the buffer cache by nfs_doio().
2072  */
2073 int
2074 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2075 {
2076 	int len, left;
2077 	struct dirent *dp = NULL;
2078 	u_int32_t *tl;
2079 	caddr_t cp;
2080 	int32_t t1, t2;
2081 	nfsuint64 *cookiep;
2082 	caddr_t bpos, dpos, cp2;
2083 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2084 	nfsuint64 cookie;
2085 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2086 	struct nfsnode *dnp = VTONFS(vp);
2087 	u_quad_t fileno;
2088 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2089 	int attrflag;
2090 	int v3 = NFS_ISV3(vp);
2091 
2092 #ifndef DIAGNOSTIC
2093 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2094 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2095 		panic("nfs readdirrpc bad uio");
2096 #endif
2097 
2098 	/*
2099 	 * If there is no cookie, assume directory was stale.
2100 	 */
2101 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2102 	if (cookiep)
2103 		cookie = *cookiep;
2104 	else
2105 		return (NFSERR_BAD_COOKIE);
2106 	/*
2107 	 * Loop around doing readdir rpc's of size nm_readdirsize
2108 	 * truncated to a multiple of DIRBLKSIZ.
2109 	 * The stopping criteria is EOF or buffer full.
2110 	 */
2111 	while (more_dirs && bigenough) {
2112 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2113 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2114 			NFSX_READDIR(v3));
2115 		nfsm_fhtom(vp, v3);
2116 		if (v3) {
2117 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2118 			*tl++ = cookie.nfsuquad[0];
2119 			*tl++ = cookie.nfsuquad[1];
2120 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2121 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2122 		} else {
2123 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2124 			*tl++ = cookie.nfsuquad[0];
2125 		}
2126 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2127 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, NFSVPCRED(vp));
2128 		if (v3) {
2129 			nfsm_postop_attr(vp, attrflag);
2130 			if (!error) {
2131 				nfsm_dissect(tl, u_int32_t *,
2132 				    2 * NFSX_UNSIGNED);
2133 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2134 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2135 			} else {
2136 				m_freem(mrep);
2137 				goto nfsmout;
2138 			}
2139 		}
2140 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2141 		more_dirs = fxdr_unsigned(int, *tl);
2142 
2143 		/* loop thru the dir entries, doctoring them to 4bsd form */
2144 		while (more_dirs && bigenough) {
2145 			if (v3) {
2146 				nfsm_dissect(tl, u_int32_t *,
2147 				    3 * NFSX_UNSIGNED);
2148 				fileno = fxdr_hyper(tl);
2149 				len = fxdr_unsigned(int, *(tl + 2));
2150 			} else {
2151 				nfsm_dissect(tl, u_int32_t *,
2152 				    2 * NFSX_UNSIGNED);
2153 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2154 				len = fxdr_unsigned(int, *tl);
2155 			}
2156 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2157 				error = EBADRPC;
2158 				m_freem(mrep);
2159 				goto nfsmout;
2160 			}
2161 			tlen = nfsm_rndup(len);
2162 			if (tlen == len)
2163 				tlen += 4;	/* To ensure null termination */
2164 			left = DIRBLKSIZ - blksiz;
2165 			if ((tlen + DIRHDSIZ) > left) {
2166 				dp->d_reclen += left;
2167 				uiop->uio_iov->iov_base += left;
2168 				uiop->uio_iov->iov_len -= left;
2169 				uiop->uio_offset += left;
2170 				uiop->uio_resid -= left;
2171 				blksiz = 0;
2172 			}
2173 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2174 				bigenough = 0;
2175 			if (bigenough) {
2176 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2177 				dp->d_fileno = (int)fileno;
2178 				dp->d_namlen = len;
2179 				dp->d_reclen = tlen + DIRHDSIZ;
2180 				dp->d_type = DT_UNKNOWN;
2181 				blksiz += dp->d_reclen;
2182 				if (blksiz == DIRBLKSIZ)
2183 					blksiz = 0;
2184 				uiop->uio_offset += DIRHDSIZ;
2185 				uiop->uio_resid -= DIRHDSIZ;
2186 				uiop->uio_iov->iov_base += DIRHDSIZ;
2187 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2188 				nfsm_mtouio(uiop, len);
2189 				cp = uiop->uio_iov->iov_base;
2190 				tlen -= len;
2191 				*cp = '\0';	/* null terminate */
2192 				uiop->uio_iov->iov_base += tlen;
2193 				uiop->uio_iov->iov_len -= tlen;
2194 				uiop->uio_offset += tlen;
2195 				uiop->uio_resid -= tlen;
2196 			} else
2197 				nfsm_adv(nfsm_rndup(len));
2198 			if (v3) {
2199 				nfsm_dissect(tl, u_int32_t *,
2200 				    3 * NFSX_UNSIGNED);
2201 			} else {
2202 				nfsm_dissect(tl, u_int32_t *,
2203 				    2 * NFSX_UNSIGNED);
2204 			}
2205 			if (bigenough) {
2206 				cookie.nfsuquad[0] = *tl++;
2207 				if (v3)
2208 					cookie.nfsuquad[1] = *tl++;
2209 			} else if (v3)
2210 				tl += 2;
2211 			else
2212 				tl++;
2213 			more_dirs = fxdr_unsigned(int, *tl);
2214 		}
2215 		/*
2216 		 * If at end of rpc data, get the eof boolean
2217 		 */
2218 		if (!more_dirs) {
2219 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2220 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2221 		}
2222 		m_freem(mrep);
2223 	}
2224 	/*
2225 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2226 	 * by increasing d_reclen for the last record.
2227 	 */
2228 	if (blksiz > 0) {
2229 		left = DIRBLKSIZ - blksiz;
2230 		dp->d_reclen += left;
2231 		uiop->uio_iov->iov_base += left;
2232 		uiop->uio_iov->iov_len -= left;
2233 		uiop->uio_offset += left;
2234 		uiop->uio_resid -= left;
2235 	}
2236 
2237 	/*
2238 	 * We are now either at the end of the directory or have filled the
2239 	 * block.
2240 	 */
2241 	if (bigenough)
2242 		dnp->n_direofoffset = uiop->uio_offset;
2243 	else {
2244 		if (uiop->uio_resid > 0)
2245 			printf("EEK! readdirrpc resid > 0\n");
2246 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2247 		*cookiep = cookie;
2248 	}
2249 nfsmout:
2250 	return (error);
2251 }
2252 
2253 /*
2254  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2255  */
2256 int
2257 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2258 {
2259 	int len, left;
2260 	struct dirent *dp;
2261 	u_int32_t *tl;
2262 	caddr_t cp;
2263 	int32_t t1, t2;
2264 	struct vnode *newvp;
2265 	nfsuint64 *cookiep;
2266 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2267 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2268 	struct nameidata nami, *ndp = &nami;
2269 	struct componentname *cnp = &ndp->ni_cnd;
2270 	nfsuint64 cookie;
2271 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2272 	struct nfsnode *dnp = VTONFS(vp), *np;
2273 	nfsfh_t *fhp;
2274 	u_quad_t fileno;
2275 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2276 	int attrflag, fhsize;
2277 
2278 #ifndef nolint
2279 	dp = (struct dirent *)0;
2280 #endif
2281 #ifndef DIAGNOSTIC
2282 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2283 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2284 		panic("nfs readdirplusrpc bad uio");
2285 #endif
2286 	ndp->ni_dvp = vp;
2287 	newvp = NULLVP;
2288 
2289 	/*
2290 	 * If there is no cookie, assume directory was stale.
2291 	 */
2292 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2293 	if (cookiep)
2294 		cookie = *cookiep;
2295 	else
2296 		return (NFSERR_BAD_COOKIE);
2297 	/*
2298 	 * Loop around doing readdir rpc's of size nm_readdirsize
2299 	 * truncated to a multiple of DIRBLKSIZ.
2300 	 * The stopping criteria is EOF or buffer full.
2301 	 */
2302 	while (more_dirs && bigenough) {
2303 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2304 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2305 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2306 		nfsm_fhtom(vp, 1);
2307  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2308 		*tl++ = cookie.nfsuquad[0];
2309 		*tl++ = cookie.nfsuquad[1];
2310 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2311 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2312 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2313 		*tl = txdr_unsigned(nmp->nm_rsize);
2314 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, NFSVPCRED(vp));
2315 		nfsm_postop_attr(vp, attrflag);
2316 		if (error) {
2317 			m_freem(mrep);
2318 			goto nfsmout;
2319 		}
2320 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2321 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2322 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2323 		more_dirs = fxdr_unsigned(int, *tl);
2324 
2325 		/* loop thru the dir entries, doctoring them to 4bsd form */
2326 		while (more_dirs && bigenough) {
2327 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2328 			fileno = fxdr_hyper(tl);
2329 			len = fxdr_unsigned(int, *(tl + 2));
2330 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2331 				error = EBADRPC;
2332 				m_freem(mrep);
2333 				goto nfsmout;
2334 			}
2335 			tlen = nfsm_rndup(len);
2336 			if (tlen == len)
2337 				tlen += 4;	/* To ensure null termination*/
2338 			left = DIRBLKSIZ - blksiz;
2339 			if ((tlen + DIRHDSIZ) > left) {
2340 				dp->d_reclen += left;
2341 				uiop->uio_iov->iov_base += left;
2342 				uiop->uio_iov->iov_len -= left;
2343 				uiop->uio_offset += left;
2344 				uiop->uio_resid -= left;
2345 				blksiz = 0;
2346 			}
2347 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2348 				bigenough = 0;
2349 			if (bigenough) {
2350 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2351 				dp->d_fileno = (int)fileno;
2352 				dp->d_namlen = len;
2353 				dp->d_reclen = tlen + DIRHDSIZ;
2354 				dp->d_type = DT_UNKNOWN;
2355 				blksiz += dp->d_reclen;
2356 				if (blksiz == DIRBLKSIZ)
2357 					blksiz = 0;
2358 				uiop->uio_offset += DIRHDSIZ;
2359 				uiop->uio_resid -= DIRHDSIZ;
2360 				uiop->uio_iov->iov_base += DIRHDSIZ;
2361 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2362 				cnp->cn_nameptr = uiop->uio_iov->iov_base;
2363 				cnp->cn_namelen = len;
2364 				nfsm_mtouio(uiop, len);
2365 				cp = uiop->uio_iov->iov_base;
2366 				tlen -= len;
2367 				*cp = '\0';
2368 				uiop->uio_iov->iov_base += tlen;
2369 				uiop->uio_iov->iov_len -= tlen;
2370 				uiop->uio_offset += tlen;
2371 				uiop->uio_resid -= tlen;
2372 			} else
2373 				nfsm_adv(nfsm_rndup(len));
2374 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2375 			if (bigenough) {
2376 				cookie.nfsuquad[0] = *tl++;
2377 				cookie.nfsuquad[1] = *tl++;
2378 			} else
2379 				tl += 2;
2380 
2381 			/*
2382 			 * Since the attributes are before the file handle
2383 			 * (sigh), we must skip over the attributes and then
2384 			 * come back and get them.
2385 			 */
2386 			attrflag = fxdr_unsigned(int, *tl);
2387 			if (attrflag) {
2388 			    dpossav1 = dpos;
2389 			    mdsav1 = md;
2390 			    nfsm_adv(NFSX_V3FATTR);
2391 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2392 			    doit = fxdr_unsigned(int, *tl);
2393 			    if (doit) {
2394 				nfsm_getfh(fhp, fhsize, 1);
2395 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2396 				    VREF(vp);
2397 				    newvp = vp;
2398 				    np = dnp;
2399 				} else {
2400 				    error = nfs_nget(vp->v_mount, fhp,
2401 					fhsize, &np);
2402 				    if (error)
2403 					doit = 0;
2404 				    else
2405 					newvp = NFSTOV(np);
2406 				}
2407 			    }
2408 			    if (doit && bigenough) {
2409 				dpossav2 = dpos;
2410 				dpos = dpossav1;
2411 				mdsav2 = md;
2412 				md = mdsav1;
2413 				nfsm_loadattr(newvp, (struct vattr *)0);
2414 				dpos = dpossav2;
2415 				md = mdsav2;
2416 				dp->d_type =
2417 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2418 				ndp->ni_vp = newvp;
2419 			        cache_enter(ndp->ni_dvp, ndp->ni_vp, cnp);
2420 			    }
2421 			} else {
2422 			    /* Just skip over the file handle */
2423 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2424 			    i = fxdr_unsigned(int, *tl);
2425 			    nfsm_adv(nfsm_rndup(i));
2426 			}
2427 			if (newvp != NULLVP) {
2428 			    if (newvp == vp)
2429 				vrele(newvp);
2430 			    else
2431 				vput(newvp);
2432 			    newvp = NULLVP;
2433 			}
2434 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2435 			more_dirs = fxdr_unsigned(int, *tl);
2436 		}
2437 		/*
2438 		 * If at end of rpc data, get the eof boolean
2439 		 */
2440 		if (!more_dirs) {
2441 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2442 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2443 		}
2444 		m_freem(mrep);
2445 	}
2446 	/*
2447 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2448 	 * by increasing d_reclen for the last record.
2449 	 */
2450 	if (blksiz > 0) {
2451 		left = DIRBLKSIZ - blksiz;
2452 		dp->d_reclen += left;
2453 		uiop->uio_iov->iov_base += left;
2454 		uiop->uio_iov->iov_len -= left;
2455 		uiop->uio_offset += left;
2456 		uiop->uio_resid -= left;
2457 	}
2458 
2459 	/*
2460 	 * We are now either at the end of the directory or have filled the
2461 	 * block.
2462 	 */
2463 	if (bigenough)
2464 		dnp->n_direofoffset = uiop->uio_offset;
2465 	else {
2466 		if (uiop->uio_resid > 0)
2467 			printf("EEK! readdirplusrpc resid > 0\n");
2468 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2469 		*cookiep = cookie;
2470 	}
2471 nfsmout:
2472 	if (newvp != NULLVP) {
2473 	        if (newvp == vp)
2474 			vrele(newvp);
2475 		else
2476 			vput(newvp);
2477 		newvp = NULLVP;
2478 	}
2479 	return (error);
2480 }
2481 
2482 /*
2483  * Silly rename. To make the NFS filesystem that is stateless look a little
2484  * more like the "ufs" a remove of an active vnode is translated to a rename
2485  * to a funny looking filename that is removed by nfs_inactive on the
2486  * nfsnode. There is the potential for another process on a different client
2487  * to create the same funny name between the nfs_lookitup() fails and the
2488  * nfs_rename() completes, but...
2489  */
2490 static int
2491 nfs_sillyrename(dvp, vp, cnp)
2492 	struct vnode *dvp, *vp;
2493 	struct componentname *cnp;
2494 {
2495 	struct sillyrename *sp;
2496 	struct nfsnode *np;
2497 	int error;
2498 
2499 	cache_purge(dvp);
2500 	np = VTONFS(vp);
2501 #ifndef DIAGNOSTIC
2502 	if (vp->v_type == VDIR)
2503 		panic("nfs: sillyrename dir");
2504 #endif
2505 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2506 		M_NFSREQ, M_WAITOK);
2507 	sp->s_cred = crdup(cnp->cn_cred);
2508 	sp->s_dvp = dvp;
2509 	VREF(dvp);
2510 
2511 	/* Fudge together a funny name */
2512 	sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2513 
2514 	/* Try lookitups until we get one that isn't there */
2515 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2516 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2517 		sp->s_name[4]++;
2518 		if (sp->s_name[4] > 'z') {
2519 			error = EINVAL;
2520 			goto bad;
2521 		}
2522 	}
2523 	error = nfs_renameit(dvp, cnp, sp);
2524 	if (error)
2525 		goto bad;
2526 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2527 		cnp->cn_td, &np);
2528 	np->n_sillyrename = sp;
2529 	return (0);
2530 bad:
2531 	vrele(sp->s_dvp);
2532 	crfree(sp->s_cred);
2533 	free((caddr_t)sp, M_NFSREQ);
2534 	return (error);
2535 }
2536 
2537 /*
2538  * Look up a file name and optionally either update the file handle or
2539  * allocate an nfsnode, depending on the value of npp.
2540  * npp == NULL	--> just do the lookup
2541  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2542  *			handled too
2543  * *npp != NULL --> update the file handle in the vnode
2544  */
2545 static int
2546 nfs_lookitup(dvp, name, len, cred, td, npp)
2547 	struct vnode *dvp;
2548 	const char *name;
2549 	int len;
2550 	struct ucred *cred;
2551 	struct thread *td;
2552 	struct nfsnode **npp;
2553 {
2554 	u_int32_t *tl;
2555 	caddr_t cp;
2556 	int32_t t1, t2;
2557 	struct vnode *newvp = (struct vnode *)0;
2558 	struct nfsnode *np, *dnp = VTONFS(dvp);
2559 	caddr_t bpos, dpos, cp2;
2560 	int error = 0, fhlen, attrflag;
2561 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2562 	nfsfh_t *nfhp;
2563 	int v3 = NFS_ISV3(dvp);
2564 
2565 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2566 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2567 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2568 	nfsm_fhtom(dvp, v3);
2569 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2570 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2571 	if (npp && !error) {
2572 		nfsm_getfh(nfhp, fhlen, v3);
2573 		if (*npp) {
2574 		    np = *npp;
2575 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2576 			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2577 			np->n_fhp = &np->n_fh;
2578 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2579 			np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK);
2580 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2581 		    np->n_fhsize = fhlen;
2582 		    newvp = NFSTOV(np);
2583 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2584 		    VREF(dvp);
2585 		    newvp = dvp;
2586 		} else {
2587 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2588 		    if (error) {
2589 			m_freem(mrep);
2590 			return (error);
2591 		    }
2592 		    newvp = NFSTOV(np);
2593 		}
2594 		if (v3) {
2595 			nfsm_postop_attr(newvp, attrflag);
2596 			if (!attrflag && *npp == NULL) {
2597 				m_freem(mrep);
2598 				if (newvp == dvp)
2599 					vrele(newvp);
2600 				else
2601 					vput(newvp);
2602 				return (ENOENT);
2603 			}
2604 		} else
2605 			nfsm_loadattr(newvp, (struct vattr *)0);
2606 	}
2607 	nfsm_reqdone;
2608 	if (npp && *npp == NULL) {
2609 		if (error) {
2610 			if (newvp) {
2611 				if (newvp == dvp)
2612 					vrele(newvp);
2613 				else
2614 					vput(newvp);
2615 			}
2616 		} else
2617 			*npp = np;
2618 	}
2619 	return (error);
2620 }
2621 
2622 /*
2623  * Nfs Version 3 commit rpc
2624  */
2625 int
2626 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2627 {
2628 	caddr_t cp;
2629 	u_int32_t *tl;
2630 	int32_t t1, t2;
2631 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2632 	caddr_t bpos, dpos, cp2;
2633 	int error = 0, wccflag = NFSV3_WCCRATTR;
2634 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2635 
2636 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2637 		return (0);
2638 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2639 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2640 	nfsm_fhtom(vp, 1);
2641 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2642 	txdr_hyper(offset, tl);
2643 	tl += 2;
2644 	*tl = txdr_unsigned(cnt);
2645 	nfsm_request(vp, NFSPROC_COMMIT, td, NFSVPCRED(vp));
2646 	nfsm_wcc_data(vp, wccflag);
2647 	if (!error) {
2648 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2649 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2650 			NFSX_V3WRITEVERF)) {
2651 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2652 				NFSX_V3WRITEVERF);
2653 			error = NFSERR_STALEWRITEVERF;
2654 		}
2655 	}
2656 	nfsm_reqdone;
2657 	return (error);
2658 }
2659 
2660 /*
2661  * Kludge City..
2662  * - make nfs_bmap() essentially a no-op that does no translation
2663  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2664  *   (Maybe I could use the process's page mapping, but I was concerned that
2665  *    Kernel Write might not be enabled and also figured copyout() would do
2666  *    a lot more work than bcopy() and also it currently happens in the
2667  *    context of the swapper process (2).
2668  */
2669 static int
2670 nfs_bmap(ap)
2671 	struct vop_bmap_args /* {
2672 		struct vnode *a_vp;
2673 		daddr_t  a_bn;
2674 		struct vnode **a_vpp;
2675 		daddr_t *a_bnp;
2676 		int *a_runp;
2677 		int *a_runb;
2678 	} */ *ap;
2679 {
2680 	struct vnode *vp = ap->a_vp;
2681 
2682 	if (ap->a_vpp != NULL)
2683 		*ap->a_vpp = vp;
2684 	if (ap->a_bnp != NULL)
2685 		*ap->a_bnp = ap->a_bn * btodb(vp->v_mount->mnt_stat.f_iosize);
2686 	if (ap->a_runp != NULL)
2687 		*ap->a_runp = 0;
2688 	if (ap->a_runb != NULL)
2689 		*ap->a_runb = 0;
2690 	return (0);
2691 }
2692 
2693 /*
2694  * Strategy routine.
2695  * For async requests when nfsiod(s) are running, queue the request by
2696  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2697  * request.
2698  */
2699 static int
2700 nfs_strategy(ap)
2701 	struct vop_strategy_args *ap;
2702 {
2703 	struct buf *bp = ap->a_bp;
2704 	struct thread *td;
2705 	int error = 0;
2706 
2707 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2708 	KASSERT(BUF_REFCNT(bp) > 0, ("nfs_strategy: buffer %p not locked", bp));
2709 
2710 	if (bp->b_flags & B_PHYS)
2711 		panic("nfs physio");
2712 
2713 	if (bp->b_flags & B_ASYNC)
2714 		td = NULL;
2715 	else
2716 		td = curthread;	/* XXX */
2717 
2718 	/*
2719 	 * If the op is asynchronous and an i/o daemon is waiting
2720 	 * queue the request, wake it up and wait for completion
2721 	 * otherwise just do it ourselves.
2722 	 */
2723 	if ((bp->b_flags & B_ASYNC) == 0 ||
2724 		nfs_asyncio(bp, td))
2725 		error = nfs_doio(bp, td);
2726 	return (error);
2727 }
2728 
2729 /*
2730  * Mmap a file
2731  *
2732  * NB Currently unsupported.
2733  */
2734 /* ARGSUSED */
2735 static int
2736 nfs_mmap(ap)
2737 	struct vop_mmap_args /* {
2738 		struct vnode *a_vp;
2739 		int  a_fflags;
2740 		struct ucred *a_cred;
2741 		struct thread *a_td;
2742 	} */ *ap;
2743 {
2744 
2745 	return (EINVAL);
2746 }
2747 
2748 /*
2749  * fsync vnode op. Just call nfs_flush() with commit == 1.
2750  */
2751 /* ARGSUSED */
2752 static int
2753 nfs_fsync(ap)
2754 	struct vop_fsync_args /* {
2755 		struct vnodeop_desc *a_desc;
2756 		struct vnode * a_vp;
2757 		struct ucred * a_cred;
2758 		int  a_waitfor;
2759 		struct thread * a_td;
2760 	} */ *ap;
2761 {
2762 
2763 	return (nfs_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1));
2764 }
2765 
2766 /*
2767  * Flush all the blocks associated with a vnode.
2768  * 	Walk through the buffer pool and push any dirty pages
2769  *	associated with the vnode.
2770  */
2771 static int
2772 nfs_flush(vp, waitfor, td, commit)
2773 	struct vnode *vp;
2774 	int waitfor;
2775 	struct thread *td;
2776 	int commit;
2777 {
2778 	struct nfsnode *np = VTONFS(vp);
2779 	struct buf *bp;
2780 	int i;
2781 	struct buf *nbp;
2782 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2783 	int s, error = 0, slptimeo = 0, slpflag = 0, retv, bvecpos;
2784 	int passone = 1;
2785 	u_quad_t off, endoff, toff;
2786 	struct buf **bvec = NULL;
2787 #ifndef NFS_COMMITBVECSIZ
2788 #define NFS_COMMITBVECSIZ	20
2789 #endif
2790 	struct buf *bvec_on_stack[NFS_COMMITBVECSIZ];
2791 	int bvecsize = 0, bveccount;
2792 
2793 	if (nmp->nm_flag & NFSMNT_INT)
2794 		slpflag = PCATCH;
2795 	if (!commit)
2796 		passone = 0;
2797 	/*
2798 	 * A b_flags == (B_DELWRI | B_NEEDCOMMIT) block has been written to the
2799 	 * server, but nas not been committed to stable storage on the server
2800 	 * yet. On the first pass, the byte range is worked out and the commit
2801 	 * rpc is done. On the second pass, nfs_writebp() is called to do the
2802 	 * job.
2803 	 */
2804 again:
2805 	off = (u_quad_t)-1;
2806 	endoff = 0;
2807 	bvecpos = 0;
2808 	if (NFS_ISV3(vp) && commit) {
2809 		s = splbio();
2810 		/*
2811 		 * Count up how many buffers waiting for a commit.
2812 		 */
2813 		bveccount = 0;
2814 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2815 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2816 			if (BUF_REFCNT(bp) == 0 &&
2817 			    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT))
2818 				== (B_DELWRI | B_NEEDCOMMIT))
2819 				bveccount++;
2820 		}
2821 		/*
2822 		 * Allocate space to remember the list of bufs to commit.  It is
2823 		 * important to use M_NOWAIT here to avoid a race with nfs_write.
2824 		 * If we can't get memory (for whatever reason), we will end up
2825 		 * committing the buffers one-by-one in the loop below.
2826 		 */
2827 		if (bvec != NULL && bvec != bvec_on_stack)
2828 			free(bvec, M_TEMP);
2829 		if (bveccount > NFS_COMMITBVECSIZ) {
2830 			bvec = (struct buf **)
2831 				malloc(bveccount * sizeof(struct buf *),
2832 				       M_TEMP, M_NOWAIT);
2833 			if (bvec == NULL) {
2834 				bvec = bvec_on_stack;
2835 				bvecsize = NFS_COMMITBVECSIZ;
2836 			} else
2837 				bvecsize = bveccount;
2838 		} else {
2839 			bvec = bvec_on_stack;
2840 			bvecsize = NFS_COMMITBVECSIZ;
2841 		}
2842 		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2843 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2844 			if (bvecpos >= bvecsize)
2845 				break;
2846 			if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
2847 			    (B_DELWRI | B_NEEDCOMMIT) ||
2848 			    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
2849 				continue;
2850 			bremfree(bp);
2851 			/*
2852 			 * NOTE: we are not clearing B_DONE here, so we have
2853 			 * to do it later on in this routine if we intend to
2854 			 * initiate I/O on the bp.
2855 			 *
2856 			 * Note: to avoid loopback deadlocks, we do not
2857 			 * assign b_runningbufspace.
2858 			 */
2859 			bp->b_flags |= B_WRITEINPROG;
2860 			vfs_busy_pages(bp, 1);
2861 
2862 			/*
2863 			 * bp is protected by being locked, but nbp is not
2864 			 * and vfs_busy_pages() may sleep.  We have to
2865 			 * recalculate nbp.
2866 			 */
2867 			nbp = TAILQ_NEXT(bp, b_vnbufs);
2868 
2869 			/*
2870 			 * A list of these buffers is kept so that the
2871 			 * second loop knows which buffers have actually
2872 			 * been committed. This is necessary, since there
2873 			 * may be a race between the commit rpc and new
2874 			 * uncommitted writes on the file.
2875 			 */
2876 			bvec[bvecpos++] = bp;
2877 			toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
2878 				bp->b_dirtyoff;
2879 			if (toff < off)
2880 				off = toff;
2881 			toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
2882 			if (toff > endoff)
2883 				endoff = toff;
2884 		}
2885 		splx(s);
2886 	}
2887 	if (bvecpos > 0) {
2888 		/*
2889 		 * Commit data on the server, as required.  Note that
2890 		 * nfs_commit will use the vnode's cred for the commit.
2891 		 */
2892 		retv = nfs_commit(vp, off, (int)(endoff - off), td);
2893 
2894 		if (retv == NFSERR_STALEWRITEVERF)
2895 			nfs_clearcommit(vp->v_mount);
2896 
2897 		/*
2898 		 * Now, either mark the blocks I/O done or mark the
2899 		 * blocks dirty, depending on whether the commit
2900 		 * succeeded.
2901 		 */
2902 		for (i = 0; i < bvecpos; i++) {
2903 			bp = bvec[i];
2904 			bp->b_flags &= ~(B_NEEDCOMMIT | B_WRITEINPROG | B_CLUSTEROK);
2905 			if (retv) {
2906 				/*
2907 				 * Error, leave B_DELWRI intact
2908 				 */
2909 				vfs_unbusy_pages(bp);
2910 				brelse(bp);
2911 			} else {
2912 				/*
2913 				 * Success, remove B_DELWRI ( bundirty() ).
2914 				 *
2915 				 * b_dirtyoff/b_dirtyend seem to be NFS
2916 				 * specific.  We should probably move that
2917 				 * into bundirty(). XXX
2918 				 */
2919 				s = splbio();
2920 				vp->v_numoutput++;
2921 				bp->b_flags |= B_ASYNC;
2922 				bundirty(bp);
2923 				bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
2924 				bp->b_dirtyoff = bp->b_dirtyend = 0;
2925 				splx(s);
2926 				biodone(bp);
2927 			}
2928 		}
2929 	}
2930 
2931 	/*
2932 	 * Start/do any write(s) that are required.
2933 	 */
2934 loop:
2935 	s = splbio();
2936 	for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
2937 		nbp = TAILQ_NEXT(bp, b_vnbufs);
2938 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2939 			if (waitfor != MNT_WAIT || passone)
2940 				continue;
2941 			error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2942 			    "nfsfsync", slpflag, slptimeo);
2943 			splx(s);
2944 			if (error == 0)
2945 				panic("nfs_fsync: inconsistent lock");
2946 			if (error == ENOLCK)
2947 				goto loop;
2948 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2949 				error = EINTR;
2950 				goto done;
2951 			}
2952 			if (slpflag == PCATCH) {
2953 				slpflag = 0;
2954 				slptimeo = 2 * hz;
2955 			}
2956 			goto loop;
2957 		}
2958 		if ((bp->b_flags & B_DELWRI) == 0)
2959 			panic("nfs_fsync: not dirty");
2960 		if ((passone || !commit) && (bp->b_flags & B_NEEDCOMMIT)) {
2961 			BUF_UNLOCK(bp);
2962 			continue;
2963 		}
2964 		bremfree(bp);
2965 		if (passone || !commit)
2966 		    bp->b_flags |= B_ASYNC;
2967 		else
2968 		    bp->b_flags |= B_ASYNC | B_WRITEINPROG;
2969 		splx(s);
2970 		VOP_BWRITE(bp->b_vp, bp);
2971 		goto loop;
2972 	}
2973 	splx(s);
2974 	if (passone) {
2975 		passone = 0;
2976 		goto again;
2977 	}
2978 	if (waitfor == MNT_WAIT) {
2979 		while (vp->v_numoutput) {
2980 			vp->v_flag |= VBWAIT;
2981 			error = tsleep((caddr_t)&vp->v_numoutput,
2982 				slpflag, "nfsfsync", slptimeo);
2983 			if (error) {
2984 			    if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2985 				error = EINTR;
2986 				goto done;
2987 			    }
2988 			    if (slpflag == PCATCH) {
2989 				slpflag = 0;
2990 				slptimeo = 2 * hz;
2991 			    }
2992 			}
2993 		}
2994 		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) && commit) {
2995 			goto loop;
2996 		}
2997 	}
2998 	if (np->n_flag & NWRITEERR) {
2999 		error = np->n_error;
3000 		np->n_flag &= ~NWRITEERR;
3001 	}
3002 done:
3003 	if (bvec != NULL && bvec != bvec_on_stack)
3004 		free(bvec, M_TEMP);
3005 	return (error);
3006 }
3007 
3008 /*
3009  * NFS advisory byte-level locks.
3010  * Currently unsupported.
3011  */
3012 static int
3013 nfs_advlock(ap)
3014 	struct vop_advlock_args /* {
3015 		struct vnode *a_vp;
3016 		caddr_t  a_id;
3017 		int  a_op;
3018 		struct flock *a_fl;
3019 		int  a_flags;
3020 	} */ *ap;
3021 {
3022 	struct nfsnode *np = VTONFS(ap->a_vp);
3023 
3024 	/*
3025 	 * The following kludge is to allow diskless support to work
3026 	 * until a real NFS lockd is implemented. Basically, just pretend
3027 	 * that this is a local lock.
3028 	 */
3029 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3030 }
3031 
3032 /*
3033  * Print out the contents of an nfsnode.
3034  */
3035 static int
3036 nfs_print(ap)
3037 	struct vop_print_args /* {
3038 		struct vnode *a_vp;
3039 	} */ *ap;
3040 {
3041 	struct vnode *vp = ap->a_vp;
3042 	struct nfsnode *np = VTONFS(vp);
3043 
3044 	printf("tag VT_NFS, fileid %ld fsid 0x%x",
3045 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3046 	if (vp->v_type == VFIFO)
3047 		fifo_printinfo(vp);
3048 	printf("\n");
3049 	return (0);
3050 }
3051 
3052 /*
3053  * Just call nfs_writebp() with the force argument set to 1.
3054  *
3055  * NOTE: B_DONE may or may not be set in a_bp on call.
3056  */
3057 static int
3058 nfs_bwrite(ap)
3059 	struct vop_bwrite_args /* {
3060 		struct vnode *a_bp;
3061 	} */ *ap;
3062 {
3063 	return (nfs_writebp(ap->a_bp, 1, curthread));
3064 }
3065 
3066 /*
3067  * This is a clone of vn_bwrite(), except that B_WRITEINPROG isn't set unless
3068  * the force flag is one and it also handles the B_NEEDCOMMIT flag.  We set
3069  * B_CACHE if this is a VMIO buffer.
3070  */
3071 int
3072 nfs_writebp(bp, force, td)
3073 	struct buf *bp;
3074 	int force;
3075 	struct thread *td;
3076 {
3077 	int s;
3078 	int oldflags = bp->b_flags;
3079 #if 0
3080 	int retv = 1;
3081 	off_t off;
3082 #endif
3083 
3084 	if (BUF_REFCNT(bp) == 0)
3085 		panic("bwrite: buffer is not locked???");
3086 
3087 	if (bp->b_flags & B_INVAL) {
3088 		brelse(bp);
3089 		return(0);
3090 	}
3091 
3092 	bp->b_flags |= B_CACHE;
3093 
3094 	/*
3095 	 * Undirty the bp.  We will redirty it later if the I/O fails.
3096 	 */
3097 
3098 	s = splbio();
3099 	bundirty(bp);
3100 	bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3101 
3102 	bp->b_vp->v_numoutput++;
3103 	splx(s);
3104 
3105 	/*
3106 	 * Note: to avoid loopback deadlocks, we do not
3107 	 * assign b_runningbufspace.
3108 	 */
3109 	vfs_busy_pages(bp, 1);
3110 
3111 	if (force)
3112 		bp->b_flags |= B_WRITEINPROG;
3113 	BUF_KERNPROC(bp);
3114 	VOP_STRATEGY(bp->b_vp, bp);
3115 
3116 	if( (oldflags & B_ASYNC) == 0) {
3117 		int rtval = biowait(bp);
3118 
3119 		if (oldflags & B_DELWRI) {
3120 			s = splbio();
3121 			reassignbuf(bp, bp->b_vp);
3122 			splx(s);
3123 		}
3124 
3125 		brelse(bp);
3126 		return (rtval);
3127 	}
3128 
3129 	return (0);
3130 }
3131 
3132 /*
3133  * nfs special file access vnode op.
3134  * Essentially just get vattr and then imitate iaccess() since the device is
3135  * local to the client.
3136  */
3137 static int
3138 nfsspec_access(ap)
3139 	struct vop_access_args /* {
3140 		struct vnode *a_vp;
3141 		int  a_mode;
3142 		struct ucred *a_cred;
3143 		struct thread *a_td;
3144 	} */ *ap;
3145 {
3146 	struct vattr *vap;
3147 	gid_t *gp;
3148 	struct ucred *cred = ap->a_cred;
3149 	struct vnode *vp = ap->a_vp;
3150 	mode_t mode = ap->a_mode;
3151 	struct vattr vattr;
3152 	int i;
3153 	int error;
3154 
3155 	/*
3156 	 * Disallow write attempts on filesystems mounted read-only;
3157 	 * unless the file is a socket, fifo, or a block or character
3158 	 * device resident on the filesystem.
3159 	 */
3160 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3161 		switch (vp->v_type) {
3162 		case VREG:
3163 		case VDIR:
3164 		case VLNK:
3165 			return (EROFS);
3166 		default:
3167 			break;
3168 		}
3169 	}
3170 	/*
3171 	 * If you're the super-user,
3172 	 * you always get access.
3173 	 */
3174 	if (cred->cr_uid == 0)
3175 		return (0);
3176 	vap = &vattr;
3177 	error = VOP_GETATTR(vp, vap, ap->a_td);
3178 	if (error)
3179 		return (error);
3180 	/*
3181 	 * Access check is based on only one of owner, group, public.
3182 	 * If not owner, then check group. If not a member of the
3183 	 * group, then check public access.
3184 	 */
3185 	if (cred->cr_uid != vap->va_uid) {
3186 		mode >>= 3;
3187 		gp = cred->cr_groups;
3188 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3189 			if (vap->va_gid == *gp)
3190 				goto found;
3191 		mode >>= 3;
3192 found:
3193 		;
3194 	}
3195 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3196 	return (error);
3197 }
3198 
3199 /*
3200  * Read wrapper for special devices.
3201  */
3202 static int
3203 nfsspec_read(ap)
3204 	struct vop_read_args /* {
3205 		struct vnode *a_vp;
3206 		struct uio *a_uio;
3207 		int  a_ioflag;
3208 		struct ucred *a_cred;
3209 	} */ *ap;
3210 {
3211 	struct nfsnode *np = VTONFS(ap->a_vp);
3212 
3213 	/*
3214 	 * Set access flag.
3215 	 */
3216 	np->n_flag |= NACC;
3217 	getnanotime(&np->n_atim);
3218 	return (VOCALL(spec_vnodeop_p, VOFFSET(vop_read), ap));
3219 }
3220 
3221 /*
3222  * Write wrapper for special devices.
3223  */
3224 static int
3225 nfsspec_write(ap)
3226 	struct vop_write_args /* {
3227 		struct vnode *a_vp;
3228 		struct uio *a_uio;
3229 		int  a_ioflag;
3230 		struct ucred *a_cred;
3231 	} */ *ap;
3232 {
3233 	struct nfsnode *np = VTONFS(ap->a_vp);
3234 
3235 	/*
3236 	 * Set update flag.
3237 	 */
3238 	np->n_flag |= NUPD;
3239 	getnanotime(&np->n_mtim);
3240 	return (VOCALL(spec_vnodeop_p, VOFFSET(vop_write), ap));
3241 }
3242 
3243 /*
3244  * Close wrapper for special devices.
3245  *
3246  * Update the times on the nfsnode then do device close.
3247  */
3248 static int
3249 nfsspec_close(ap)
3250 	struct vop_close_args /* {
3251 		struct vnode *a_vp;
3252 		int  a_fflag;
3253 		struct ucred *a_cred;
3254 		struct thread *a_td;
3255 	} */ *ap;
3256 {
3257 	struct vnode *vp = ap->a_vp;
3258 	struct nfsnode *np = VTONFS(vp);
3259 	struct vattr vattr;
3260 
3261 	if (np->n_flag & (NACC | NUPD)) {
3262 		np->n_flag |= NCHG;
3263 		if (vp->v_usecount == 1 &&
3264 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3265 			VATTR_NULL(&vattr);
3266 			if (np->n_flag & NACC)
3267 				vattr.va_atime = np->n_atim;
3268 			if (np->n_flag & NUPD)
3269 				vattr.va_mtime = np->n_mtim;
3270 			(void)VOP_SETATTR(vp, &vattr, NFSVPCRED(vp), ap->a_td);
3271 		}
3272 	}
3273 	return (VOCALL(spec_vnodeop_p, VOFFSET(vop_close), ap));
3274 }
3275 
3276 /*
3277  * Read wrapper for fifos.
3278  */
3279 static int
3280 nfsfifo_read(ap)
3281 	struct vop_read_args /* {
3282 		struct vnode *a_vp;
3283 		struct uio *a_uio;
3284 		int  a_ioflag;
3285 		struct ucred *a_cred;
3286 	} */ *ap;
3287 {
3288 	struct nfsnode *np = VTONFS(ap->a_vp);
3289 
3290 	/*
3291 	 * Set access flag.
3292 	 */
3293 	np->n_flag |= NACC;
3294 	getnanotime(&np->n_atim);
3295 	return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_read), ap));
3296 }
3297 
3298 /*
3299  * Write wrapper for fifos.
3300  */
3301 static int
3302 nfsfifo_write(ap)
3303 	struct vop_write_args /* {
3304 		struct vnode *a_vp;
3305 		struct uio *a_uio;
3306 		int  a_ioflag;
3307 		struct ucred *a_cred;
3308 	} */ *ap;
3309 {
3310 	struct nfsnode *np = VTONFS(ap->a_vp);
3311 
3312 	/*
3313 	 * Set update flag.
3314 	 */
3315 	np->n_flag |= NUPD;
3316 	getnanotime(&np->n_mtim);
3317 	return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_write), ap));
3318 }
3319 
3320 /*
3321  * Close wrapper for fifos.
3322  *
3323  * Update the times on the nfsnode then do fifo close.
3324  */
3325 static int
3326 nfsfifo_close(ap)
3327 	struct vop_close_args /* {
3328 		struct vnode *a_vp;
3329 		int  a_fflag;
3330 		struct thread *a_td;
3331 	} */ *ap;
3332 {
3333 	struct vnode *vp = ap->a_vp;
3334 	struct nfsnode *np = VTONFS(vp);
3335 	struct vattr vattr;
3336 	struct timespec ts;
3337 
3338 	if (np->n_flag & (NACC | NUPD)) {
3339 		getnanotime(&ts);
3340 		if (np->n_flag & NACC)
3341 			np->n_atim = ts;
3342 		if (np->n_flag & NUPD)
3343 			np->n_mtim = ts;
3344 		np->n_flag |= NCHG;
3345 		if (vp->v_usecount == 1 &&
3346 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3347 			VATTR_NULL(&vattr);
3348 			if (np->n_flag & NACC)
3349 				vattr.va_atime = np->n_atim;
3350 			if (np->n_flag & NUPD)
3351 				vattr.va_mtime = np->n_mtim;
3352 			(void)VOP_SETATTR(vp, &vattr, NFSVPCRED(vp), ap->a_td);
3353 		}
3354 	}
3355 	return (VOCALL(fifo_vnodeop_p, VOFFSET(vop_close), ap));
3356 }
3357 
3358