xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision 8a7bdfea)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.76 2007/11/02 19:52:28 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
231 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
232 
233 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
234 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
235 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
236 
237 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
239 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
240 
241 static int	nfsv3_commit_on_close = 0;
242 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
243 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
244 #if 0
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
246 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
247 
248 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
249 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
250 #endif
251 
252 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
253 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
254 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
255 static int
256 nfs3_access_otw(struct vnode *vp, int wmode,
257 		struct thread *td, struct ucred *cred)
258 {
259 	const int v3 = 1;
260 	u_int32_t *tl;
261 	int error = 0, attrflag;
262 
263 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
264 	caddr_t bpos, dpos, cp2;
265 	int32_t t1, t2;
266 	caddr_t cp;
267 	u_int32_t rmode;
268 	struct nfsnode *np = VTONFS(vp);
269 
270 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
271 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
272 	nfsm_fhtom(vp, v3);
273 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
274 	*tl = txdr_unsigned(wmode);
275 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
276 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
277 	if (!error) {
278 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
279 		rmode = fxdr_unsigned(u_int32_t, *tl);
280 		np->n_mode = rmode;
281 		np->n_modeuid = cred->cr_uid;
282 		np->n_modestamp = mycpu->gd_time_seconds;
283 	}
284 	m_freem(mrep);
285 nfsmout:
286 	return error;
287 }
288 
289 /*
290  * nfs access vnode op.
291  * For nfs version 2, just return ok. File accesses may fail later.
292  * For nfs version 3, use the access rpc to check accessibility. If file modes
293  * are changed on the server, accesses might still fail later.
294  *
295  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
296  */
297 static int
298 nfs_access(struct vop_access_args *ap)
299 {
300 	struct vnode *vp = ap->a_vp;
301 	thread_t td = curthread;
302 	int error = 0;
303 	u_int32_t mode, wmode;
304 	int v3 = NFS_ISV3(vp);
305 	struct nfsnode *np = VTONFS(vp);
306 
307 	/*
308 	 * Disallow write attempts on filesystems mounted read-only;
309 	 * unless the file is a socket, fifo, or a block or character
310 	 * device resident on the filesystem.
311 	 */
312 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
313 		switch (vp->v_type) {
314 		case VREG:
315 		case VDIR:
316 		case VLNK:
317 			return (EROFS);
318 		default:
319 			break;
320 		}
321 	}
322 	/*
323 	 * For nfs v3, check to see if we have done this recently, and if
324 	 * so return our cached result instead of making an ACCESS call.
325 	 * If not, do an access rpc, otherwise you are stuck emulating
326 	 * ufs_access() locally using the vattr. This may not be correct,
327 	 * since the server may apply other access criteria such as
328 	 * client uid-->server uid mapping that we do not know about.
329 	 */
330 	if (v3) {
331 		if (ap->a_mode & VREAD)
332 			mode = NFSV3ACCESS_READ;
333 		else
334 			mode = 0;
335 		if (vp->v_type != VDIR) {
336 			if (ap->a_mode & VWRITE)
337 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
338 			if (ap->a_mode & VEXEC)
339 				mode |= NFSV3ACCESS_EXECUTE;
340 		} else {
341 			if (ap->a_mode & VWRITE)
342 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
343 					 NFSV3ACCESS_DELETE);
344 			if (ap->a_mode & VEXEC)
345 				mode |= NFSV3ACCESS_LOOKUP;
346 		}
347 		/* XXX safety belt, only make blanket request if caching */
348 		if (nfsaccess_cache_timeout > 0) {
349 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
350 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
351 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
352 		} else {
353 			wmode = mode;
354 		}
355 
356 		/*
357 		 * Does our cached result allow us to give a definite yes to
358 		 * this request?
359 		 */
360 		if (np->n_modestamp &&
361 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
362 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
363 		   ((np->n_mode & mode) == mode)) {
364 			nfsstats.accesscache_hits++;
365 		} else {
366 			/*
367 			 * Either a no, or a don't know.  Go to the wire.
368 			 */
369 			nfsstats.accesscache_misses++;
370 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
371 			if (!error) {
372 				if ((np->n_mode & mode) != mode) {
373 					error = EACCES;
374 				}
375 			}
376 		}
377 	} else {
378 		if ((error = nfsspec_access(ap)) != 0)
379 			return (error);
380 
381 		/*
382 		 * Attempt to prevent a mapped root from accessing a file
383 		 * which it shouldn't.  We try to read a byte from the file
384 		 * if the user is root and the file is not zero length.
385 		 * After calling nfsspec_access, we should have the correct
386 		 * file size cached.
387 		 */
388 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
389 		    && VTONFS(vp)->n_size > 0) {
390 			struct iovec aiov;
391 			struct uio auio;
392 			char buf[1];
393 
394 			aiov.iov_base = buf;
395 			aiov.iov_len = 1;
396 			auio.uio_iov = &aiov;
397 			auio.uio_iovcnt = 1;
398 			auio.uio_offset = 0;
399 			auio.uio_resid = 1;
400 			auio.uio_segflg = UIO_SYSSPACE;
401 			auio.uio_rw = UIO_READ;
402 			auio.uio_td = td;
403 
404 			if (vp->v_type == VREG) {
405 				error = nfs_readrpc(vp, &auio);
406 			} else if (vp->v_type == VDIR) {
407 				char* bp;
408 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
409 				aiov.iov_base = bp;
410 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
411 				error = nfs_readdirrpc(vp, &auio);
412 				kfree(bp, M_TEMP);
413 			} else if (vp->v_type == VLNK) {
414 				error = nfs_readlinkrpc(vp, &auio);
415 			} else {
416 				error = EACCES;
417 			}
418 		}
419 	}
420 	/*
421 	 * [re]record creds for reading and/or writing if access
422 	 * was granted.  Assume the NFS server will grant read access
423 	 * for execute requests.
424 	 */
425 	if (error == 0) {
426 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
427 			crhold(ap->a_cred);
428 			if (np->n_rucred)
429 				crfree(np->n_rucred);
430 			np->n_rucred = ap->a_cred;
431 		}
432 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
433 			crhold(ap->a_cred);
434 			if (np->n_wucred)
435 				crfree(np->n_wucred);
436 			np->n_wucred = ap->a_cred;
437 		}
438 	}
439 	return(error);
440 }
441 
442 /*
443  * nfs open vnode op
444  * Check to see if the type is ok
445  * and that deletion is not in progress.
446  * For paged in text files, you will need to flush the page cache
447  * if consistency is lost.
448  *
449  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
450  *	    struct file *a_fp)
451  */
452 /* ARGSUSED */
453 static int
454 nfs_open(struct vop_open_args *ap)
455 {
456 	struct vnode *vp = ap->a_vp;
457 	struct nfsnode *np = VTONFS(vp);
458 	struct vattr vattr;
459 	int error;
460 
461 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
462 #ifdef DIAGNOSTIC
463 		kprintf("open eacces vtyp=%d\n",vp->v_type);
464 #endif
465 		return (EOPNOTSUPP);
466 	}
467 
468 	/*
469 	 * Clear the attribute cache only if opening with write access.  It
470 	 * is unclear if we should do this at all here, but we certainly
471 	 * should not clear the cache unconditionally simply because a file
472 	 * is being opened.
473 	 */
474 	if (ap->a_mode & FWRITE)
475 		np->n_attrstamp = 0;
476 
477 	/*
478 	 * For normal NFS, reconcile changes made locally verses
479 	 * changes made remotely.  Note that VOP_GETATTR only goes
480 	 * to the wire if the cached attribute has timed out or been
481 	 * cleared.
482 	 *
483 	 * If local modifications have been made clear the attribute
484 	 * cache to force an attribute and modified time check.  If
485 	 * GETATTR detects that the file has been changed by someone
486 	 * other then us it will set NRMODIFIED.
487 	 *
488 	 * If we are opening a directory and local changes have been
489 	 * made we have to invalidate the cache in order to ensure
490 	 * that we get the most up-to-date information from the
491 	 * server.  XXX
492 	 */
493 	if (np->n_flag & NLMODIFIED) {
494 		np->n_attrstamp = 0;
495 		if (vp->v_type == VDIR) {
496 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
497 			if (error == EINTR)
498 				return (error);
499 			nfs_invaldir(vp);
500 		}
501 	}
502 	error = VOP_GETATTR(vp, &vattr);
503 	if (error)
504 		return (error);
505 	if (np->n_flag & NRMODIFIED) {
506 		if (vp->v_type == VDIR)
507 			nfs_invaldir(vp);
508 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
509 		if (error == EINTR)
510 			return (error);
511 		np->n_flag &= ~NRMODIFIED;
512 	}
513 
514 	return (vop_stdopen(ap));
515 }
516 
517 /*
518  * nfs close vnode op
519  * What an NFS client should do upon close after writing is a debatable issue.
520  * Most NFS clients push delayed writes to the server upon close, basically for
521  * two reasons:
522  * 1 - So that any write errors may be reported back to the client process
523  *     doing the close system call. By far the two most likely errors are
524  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
525  * 2 - To put a worst case upper bound on cache inconsistency between
526  *     multiple clients for the file.
527  * There is also a consistency problem for Version 2 of the protocol w.r.t.
528  * not being able to tell if other clients are writing a file concurrently,
529  * since there is no way of knowing if the changed modify time in the reply
530  * is only due to the write for this client.
531  * (NFS Version 3 provides weak cache consistency data in the reply that
532  *  should be sufficient to detect and handle this case.)
533  *
534  * The current code does the following:
535  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
536  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
537  *                     or commit them (this satisfies 1 and 2 except for the
538  *                     case where the server crashes after this close but
539  *                     before the commit RPC, which is felt to be "good
540  *                     enough". Changing the last argument to nfs_flush() to
541  *                     a 1 would force a commit operation, if it is felt a
542  *                     commit is necessary now.
543  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
544  *                     1 should be dealt with via an fsync() system call for
545  *                     cases where write errors are important.
546  *
547  * nfs_close(struct vnode *a_vp, int a_fflag)
548  */
549 /* ARGSUSED */
550 static int
551 nfs_close(struct vop_close_args *ap)
552 {
553 	struct vnode *vp = ap->a_vp;
554 	struct nfsnode *np = VTONFS(vp);
555 	int error = 0;
556 	thread_t td = curthread;
557 
558 	if (vp->v_type == VREG) {
559 	    if (np->n_flag & NLMODIFIED) {
560 		if (NFS_ISV3(vp)) {
561 		    /*
562 		     * Under NFSv3 we have dirty buffers to dispose of.  We
563 		     * must flush them to the NFS server.  We have the option
564 		     * of waiting all the way through the commit rpc or just
565 		     * waiting for the initial write.  The default is to only
566 		     * wait through the initial write so the data is in the
567 		     * server's cache, which is roughly similar to the state
568 		     * a standard disk subsystem leaves the file in on close().
569 		     *
570 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
571 		     * potential races with other processes, and certainly
572 		     * cannot clear it if we don't commit.
573 		     */
574 		    int cm = nfsv3_commit_on_close ? 1 : 0;
575 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
576 		    /* np->n_flag &= ~NLMODIFIED; */
577 		} else {
578 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
579 		}
580 		np->n_attrstamp = 0;
581 	    }
582 	    if (np->n_flag & NWRITEERR) {
583 		np->n_flag &= ~NWRITEERR;
584 		error = np->n_error;
585 	    }
586 	}
587 	vop_stdclose(ap);
588 	return (error);
589 }
590 
591 /*
592  * nfs getattr call from vfs.
593  *
594  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
595  */
596 static int
597 nfs_getattr(struct vop_getattr_args *ap)
598 {
599 	struct vnode *vp = ap->a_vp;
600 	struct nfsnode *np = VTONFS(vp);
601 	caddr_t cp;
602 	u_int32_t *tl;
603 	int32_t t1, t2;
604 	caddr_t bpos, dpos;
605 	int error = 0;
606 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
607 	int v3 = NFS_ISV3(vp);
608 	thread_t td = curthread;
609 
610 	/*
611 	 * Update local times for special files.
612 	 */
613 	if (np->n_flag & (NACC | NUPD))
614 		np->n_flag |= NCHG;
615 	/*
616 	 * First look in the cache.
617 	 */
618 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
619 		return (0);
620 
621 	if (v3 && nfsaccess_cache_timeout > 0) {
622 		nfsstats.accesscache_misses++;
623 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
624 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
625 			return (0);
626 	}
627 
628 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
629 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
630 	nfsm_fhtom(vp, v3);
631 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
632 	if (!error) {
633 		nfsm_loadattr(vp, ap->a_vap);
634 	}
635 	m_freem(mrep);
636 nfsmout:
637 	return (error);
638 }
639 
640 /*
641  * nfs setattr call.
642  *
643  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
644  */
645 static int
646 nfs_setattr(struct vop_setattr_args *ap)
647 {
648 	struct vnode *vp = ap->a_vp;
649 	struct nfsnode *np = VTONFS(vp);
650 	struct vattr *vap = ap->a_vap;
651 	int error = 0;
652 	u_quad_t tsize;
653 	thread_t td = curthread;
654 
655 #ifndef nolint
656 	tsize = (u_quad_t)0;
657 #endif
658 
659 	/*
660 	 * Setting of flags is not supported.
661 	 */
662 	if (vap->va_flags != VNOVAL)
663 		return (EOPNOTSUPP);
664 
665 	/*
666 	 * Disallow write attempts if the filesystem is mounted read-only.
667 	 */
668   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
669 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
670 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
671 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
672 		return (EROFS);
673 	if (vap->va_size != VNOVAL) {
674  		switch (vp->v_type) {
675  		case VDIR:
676  			return (EISDIR);
677  		case VCHR:
678  		case VBLK:
679  		case VSOCK:
680  		case VFIFO:
681 			if (vap->va_mtime.tv_sec == VNOVAL &&
682 			    vap->va_atime.tv_sec == VNOVAL &&
683 			    vap->va_mode == (mode_t)VNOVAL &&
684 			    vap->va_uid == (uid_t)VNOVAL &&
685 			    vap->va_gid == (gid_t)VNOVAL)
686 				return (0);
687  			vap->va_size = VNOVAL;
688  			break;
689  		default:
690 			/*
691 			 * Disallow write attempts if the filesystem is
692 			 * mounted read-only.
693 			 */
694 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
695 				return (EROFS);
696 
697 			/*
698 			 * This is nasty.  The RPCs we send to flush pending
699 			 * data often return attribute information which is
700 			 * cached via a callback to nfs_loadattrcache(), which
701 			 * has the effect of changing our notion of the file
702 			 * size.  Due to flushed appends and other operations
703 			 * the file size can be set to virtually anything,
704 			 * including values that do not match either the old
705 			 * or intended file size.
706 			 *
707 			 * When this condition is detected we must loop to
708 			 * try the operation again.  Hopefully no more
709 			 * flushing is required on the loop so it works the
710 			 * second time around.  THIS CASE ALMOST ALWAYS
711 			 * HAPPENS!
712 			 */
713 			tsize = np->n_size;
714 again:
715 			error = nfs_meta_setsize(vp, td, vap->va_size);
716 
717  			if (np->n_flag & NLMODIFIED) {
718  			    if (vap->va_size == 0)
719  				error = nfs_vinvalbuf(vp, 0, 1);
720  			    else
721  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
722  			}
723 			/*
724 			 * note: this loop case almost always happens at
725 			 * least once per truncation.
726 			 */
727 			if (error == 0 && np->n_size != vap->va_size)
728 				goto again;
729 			np->n_vattr.va_size = vap->va_size;
730 			break;
731 		}
732   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
733 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
734 		vp->v_type == VREG &&
735   		(error = nfs_vinvalbuf(vp, V_SAVE, 1)) == EINTR
736 	) {
737 		return (error);
738 	}
739 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
740 
741 	/*
742 	 * Sanity check if a truncation was issued.  This should only occur
743 	 * if multiple processes are racing on the same file.
744 	 */
745 	if (error == 0 && vap->va_size != VNOVAL &&
746 	    np->n_size != vap->va_size) {
747 		kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
748 		goto again;
749 	}
750 	if (error && vap->va_size != VNOVAL) {
751 		np->n_size = np->n_vattr.va_size = tsize;
752 		vnode_pager_setsize(vp, np->n_size);
753 	}
754 	return (error);
755 }
756 
757 /*
758  * Do an nfs setattr rpc.
759  */
760 static int
761 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
762 	       struct ucred *cred, struct thread *td)
763 {
764 	struct nfsv2_sattr *sp;
765 	struct nfsnode *np = VTONFS(vp);
766 	caddr_t cp;
767 	int32_t t1, t2;
768 	caddr_t bpos, dpos, cp2;
769 	u_int32_t *tl;
770 	int error = 0, wccflag = NFSV3_WCCRATTR;
771 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
772 	int v3 = NFS_ISV3(vp);
773 
774 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
775 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
776 	nfsm_fhtom(vp, v3);
777 	if (v3) {
778 		nfsm_v3attrbuild(vap, TRUE);
779 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
780 		*tl = nfs_false;
781 	} else {
782 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
783 		if (vap->va_mode == (mode_t)VNOVAL)
784 			sp->sa_mode = nfs_xdrneg1;
785 		else
786 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
787 		if (vap->va_uid == (uid_t)VNOVAL)
788 			sp->sa_uid = nfs_xdrneg1;
789 		else
790 			sp->sa_uid = txdr_unsigned(vap->va_uid);
791 		if (vap->va_gid == (gid_t)VNOVAL)
792 			sp->sa_gid = nfs_xdrneg1;
793 		else
794 			sp->sa_gid = txdr_unsigned(vap->va_gid);
795 		sp->sa_size = txdr_unsigned(vap->va_size);
796 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
797 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
798 	}
799 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
800 	if (v3) {
801 		np->n_modestamp = 0;
802 		nfsm_wcc_data(vp, wccflag);
803 	} else
804 		nfsm_loadattr(vp, (struct vattr *)0);
805 	m_freem(mrep);
806 nfsmout:
807 	return (error);
808 }
809 
810 static
811 void
812 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
813 {
814 	if (nctimeout == 0)
815 		nctimeout = 1;
816 	else
817 		nctimeout *= hz;
818 	cache_setvp(nch, vp);
819 	cache_settimeout(nch, nctimeout);
820 }
821 
822 /*
823  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
824  * nfs_lookup() until all remaining new api calls are implemented.
825  *
826  * Resolve a namecache entry.  This function is passed a locked ncp and
827  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
828  */
829 static int
830 nfs_nresolve(struct vop_nresolve_args *ap)
831 {
832 	struct thread *td = curthread;
833 	struct namecache *ncp;
834 	struct ucred *cred;
835 	struct nfsnode *np;
836 	struct vnode *dvp;
837 	struct vnode *nvp;
838 	nfsfh_t *fhp;
839 	int attrflag;
840 	int fhsize;
841 	int error;
842 	int len;
843 	int v3;
844 	/******NFSM MACROS********/
845 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
846 	caddr_t bpos, dpos, cp, cp2;
847 	u_int32_t *tl;
848 	int32_t t1, t2;
849 
850 	cred = ap->a_cred;
851 	dvp = ap->a_dvp;
852 
853 	if ((error = vget(dvp, LK_SHARED)) != 0)
854 		return (error);
855 
856 	nvp = NULL;
857 	v3 = NFS_ISV3(dvp);
858 	nfsstats.lookupcache_misses++;
859 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
860 	ncp = ap->a_nch->ncp;
861 	len = ncp->nc_nlen;
862 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
863 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
864 	nfsm_fhtom(dvp, v3);
865 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
866 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
867 	if (error) {
868 		/*
869 		 * Cache negatve lookups to reduce NFS traffic, but use
870 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
871 		 * XXX we should add a namecache flag for no-caching
872 		 * to uncache the negative hit as soon as possible, but
873 		 * we cannot simply destroy the entry because it is used
874 		 * as a placeholder by the caller.
875 		 */
876 		if (error == ENOENT)
877 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
878 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
879 		m_freem(mrep);
880 		goto nfsmout;
881 	}
882 
883 	/*
884 	 * Success, get the file handle, do various checks, and load
885 	 * post-operation data from the reply packet.  Theoretically
886 	 * we should never be looking up "." so, theoretically, we
887 	 * should never get the same file handle as our directory.  But
888 	 * we check anyway. XXX
889 	 *
890 	 * Note that no timeout is set for the positive cache hit.  We
891 	 * assume, theoretically, that ESTALE returns will be dealt with
892 	 * properly to handle NFS races and in anycase we cannot depend
893 	 * on a timeout to deal with NFS open/create/excl issues so instead
894 	 * of a bad hack here the rest of the NFS client code needs to do
895 	 * the right thing.
896 	 */
897 	nfsm_getfh(fhp, fhsize, v3);
898 
899 	np = VTONFS(dvp);
900 	if (NFS_CMPFH(np, fhp, fhsize)) {
901 		vref(dvp);
902 		nvp = dvp;
903 	} else {
904 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
905 		if (error) {
906 			m_freem(mrep);
907 			vput(dvp);
908 			return (error);
909 		}
910 		nvp = NFSTOV(np);
911 	}
912 	if (v3) {
913 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
914 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
915 	} else {
916 		nfsm_loadattr(nvp, NULL);
917 	}
918 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
919 	m_freem(mrep);
920 nfsmout:
921 	vput(dvp);
922 	if (nvp) {
923 		if (nvp == dvp)
924 			vrele(nvp);
925 		else
926 			vput(nvp);
927 	}
928 	return (error);
929 }
930 
931 /*
932  * 'cached' nfs directory lookup
933  *
934  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
935  *
936  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
937  *	      struct componentname *a_cnp)
938  */
939 static int
940 nfs_lookup(struct vop_old_lookup_args *ap)
941 {
942 	struct componentname *cnp = ap->a_cnp;
943 	struct vnode *dvp = ap->a_dvp;
944 	struct vnode **vpp = ap->a_vpp;
945 	int flags = cnp->cn_flags;
946 	struct vnode *newvp;
947 	u_int32_t *tl;
948 	caddr_t cp;
949 	int32_t t1, t2;
950 	struct nfsmount *nmp;
951 	caddr_t bpos, dpos, cp2;
952 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
953 	long len;
954 	nfsfh_t *fhp;
955 	struct nfsnode *np;
956 	int lockparent, wantparent, error = 0, attrflag, fhsize;
957 	int v3 = NFS_ISV3(dvp);
958 
959 	/*
960 	 * Read-only mount check and directory check.
961 	 */
962 	*vpp = NULLVP;
963 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
964 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
965 		return (EROFS);
966 
967 	if (dvp->v_type != VDIR)
968 		return (ENOTDIR);
969 
970 	/*
971 	 * Look it up in the cache.  Note that ENOENT is only returned if we
972 	 * previously entered a negative hit (see later on).  The additional
973 	 * nfsneg_cache_timeout check causes previously cached results to
974 	 * be instantly ignored if the negative caching is turned off.
975 	 */
976 	lockparent = flags & CNP_LOCKPARENT;
977 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
978 	nmp = VFSTONFS(dvp->v_mount);
979 	np = VTONFS(dvp);
980 
981 	/*
982 	 * Go to the wire.
983 	 */
984 	error = 0;
985 	newvp = NULLVP;
986 	nfsstats.lookupcache_misses++;
987 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
988 	len = cnp->cn_namelen;
989 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
990 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
991 	nfsm_fhtom(dvp, v3);
992 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
993 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
994 	if (error) {
995 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
996 		m_freem(mrep);
997 		goto nfsmout;
998 	}
999 	nfsm_getfh(fhp, fhsize, v3);
1000 
1001 	/*
1002 	 * Handle RENAME case...
1003 	 */
1004 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1005 		if (NFS_CMPFH(np, fhp, fhsize)) {
1006 			m_freem(mrep);
1007 			return (EISDIR);
1008 		}
1009 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1010 		if (error) {
1011 			m_freem(mrep);
1012 			return (error);
1013 		}
1014 		newvp = NFSTOV(np);
1015 		if (v3) {
1016 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1017 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1018 		} else
1019 			nfsm_loadattr(newvp, (struct vattr *)0);
1020 		*vpp = newvp;
1021 		m_freem(mrep);
1022 		if (!lockparent) {
1023 			vn_unlock(dvp);
1024 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1025 		}
1026 		return (0);
1027 	}
1028 
1029 	if (flags & CNP_ISDOTDOT) {
1030 		vn_unlock(dvp);
1031 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1032 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1033 		if (error) {
1034 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1035 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1036 			return (error); /* NOTE: return error from nget */
1037 		}
1038 		newvp = NFSTOV(np);
1039 		if (lockparent) {
1040 			error = vn_lock(dvp, LK_EXCLUSIVE);
1041 			if (error) {
1042 				vput(newvp);
1043 				return (error);
1044 			}
1045 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1046 		}
1047 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1048 		vref(dvp);
1049 		newvp = dvp;
1050 	} else {
1051 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1052 		if (error) {
1053 			m_freem(mrep);
1054 			return (error);
1055 		}
1056 		if (!lockparent) {
1057 			vn_unlock(dvp);
1058 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1059 		}
1060 		newvp = NFSTOV(np);
1061 	}
1062 	if (v3) {
1063 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1064 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1065 	} else
1066 		nfsm_loadattr(newvp, (struct vattr *)0);
1067 #if 0
1068 	/* XXX MOVE TO nfs_nremove() */
1069 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1070 	    cnp->cn_nameiop != NAMEI_DELETE) {
1071 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1072 	}
1073 #endif
1074 	*vpp = newvp;
1075 	m_freem(mrep);
1076 nfsmout:
1077 	if (error) {
1078 		if (newvp != NULLVP) {
1079 			vrele(newvp);
1080 			*vpp = NULLVP;
1081 		}
1082 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1083 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1084 		    error == ENOENT) {
1085 			if (!lockparent) {
1086 				vn_unlock(dvp);
1087 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1088 			}
1089 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1090 				error = EROFS;
1091 			else
1092 				error = EJUSTRETURN;
1093 		}
1094 	}
1095 	return (error);
1096 }
1097 
1098 /*
1099  * nfs read call.
1100  * Just call nfs_bioread() to do the work.
1101  *
1102  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1103  *	    struct ucred *a_cred)
1104  */
1105 static int
1106 nfs_read(struct vop_read_args *ap)
1107 {
1108 	struct vnode *vp = ap->a_vp;
1109 
1110 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1111 	switch (vp->v_type) {
1112 	case VREG:
1113 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1114 	case VDIR:
1115 		return (EISDIR);
1116 	default:
1117 		return EOPNOTSUPP;
1118 	}
1119 }
1120 
1121 /*
1122  * nfs readlink call
1123  *
1124  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1125  */
1126 static int
1127 nfs_readlink(struct vop_readlink_args *ap)
1128 {
1129 	struct vnode *vp = ap->a_vp;
1130 
1131 	if (vp->v_type != VLNK)
1132 		return (EINVAL);
1133 	return (nfs_bioread(vp, ap->a_uio, 0));
1134 }
1135 
1136 /*
1137  * Do a readlink rpc.
1138  * Called by nfs_doio() from below the buffer cache.
1139  */
1140 int
1141 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1142 {
1143 	u_int32_t *tl;
1144 	caddr_t cp;
1145 	int32_t t1, t2;
1146 	caddr_t bpos, dpos, cp2;
1147 	int error = 0, len, attrflag;
1148 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1149 	int v3 = NFS_ISV3(vp);
1150 
1151 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1152 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1153 	nfsm_fhtom(vp, v3);
1154 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1155 	if (v3)
1156 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1157 	if (!error) {
1158 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1159 		if (len == NFS_MAXPATHLEN) {
1160 			struct nfsnode *np = VTONFS(vp);
1161 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1162 				len = np->n_size;
1163 		}
1164 		nfsm_mtouio(uiop, len);
1165 	}
1166 	m_freem(mrep);
1167 nfsmout:
1168 	return (error);
1169 }
1170 
1171 /*
1172  * nfs read rpc call
1173  * Ditto above
1174  */
1175 int
1176 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1177 {
1178 	u_int32_t *tl;
1179 	caddr_t cp;
1180 	int32_t t1, t2;
1181 	caddr_t bpos, dpos, cp2;
1182 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1183 	struct nfsmount *nmp;
1184 	int error = 0, len, retlen, tsiz, eof, attrflag;
1185 	int v3 = NFS_ISV3(vp);
1186 
1187 #ifndef nolint
1188 	eof = 0;
1189 #endif
1190 	nmp = VFSTONFS(vp->v_mount);
1191 	tsiz = uiop->uio_resid;
1192 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1193 		return (EFBIG);
1194 	while (tsiz > 0) {
1195 		nfsstats.rpccnt[NFSPROC_READ]++;
1196 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1197 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1198 		nfsm_fhtom(vp, v3);
1199 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1200 		if (v3) {
1201 			txdr_hyper(uiop->uio_offset, tl);
1202 			*(tl + 2) = txdr_unsigned(len);
1203 		} else {
1204 			*tl++ = txdr_unsigned(uiop->uio_offset);
1205 			*tl++ = txdr_unsigned(len);
1206 			*tl = 0;
1207 		}
1208 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1209 		if (v3) {
1210 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1211 			if (error) {
1212 				m_freem(mrep);
1213 				goto nfsmout;
1214 			}
1215 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1216 			eof = fxdr_unsigned(int, *(tl + 1));
1217 		} else
1218 			nfsm_loadattr(vp, (struct vattr *)0);
1219 		nfsm_strsiz(retlen, nmp->nm_rsize);
1220 		nfsm_mtouio(uiop, retlen);
1221 		m_freem(mrep);
1222 		tsiz -= retlen;
1223 		if (v3) {
1224 			if (eof || retlen == 0) {
1225 				tsiz = 0;
1226 			}
1227 		} else if (retlen < len) {
1228 			tsiz = 0;
1229 		}
1230 	}
1231 nfsmout:
1232 	return (error);
1233 }
1234 
1235 /*
1236  * nfs write call
1237  */
1238 int
1239 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1240 {
1241 	u_int32_t *tl;
1242 	caddr_t cp;
1243 	int32_t t1, t2, backup;
1244 	caddr_t bpos, dpos, cp2;
1245 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1246 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1247 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1248 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1249 
1250 #ifndef DIAGNOSTIC
1251 	if (uiop->uio_iovcnt != 1)
1252 		panic("nfs: writerpc iovcnt > 1");
1253 #endif
1254 	*must_commit = 0;
1255 	tsiz = uiop->uio_resid;
1256 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1257 		return (EFBIG);
1258 	while (tsiz > 0) {
1259 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1260 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1261 		nfsm_reqhead(vp, NFSPROC_WRITE,
1262 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1263 		nfsm_fhtom(vp, v3);
1264 		if (v3) {
1265 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1266 			txdr_hyper(uiop->uio_offset, tl);
1267 			tl += 2;
1268 			*tl++ = txdr_unsigned(len);
1269 			*tl++ = txdr_unsigned(*iomode);
1270 			*tl = txdr_unsigned(len);
1271 		} else {
1272 			u_int32_t x;
1273 
1274 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1275 			/* Set both "begin" and "current" to non-garbage. */
1276 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1277 			*tl++ = x;	/* "begin offset" */
1278 			*tl++ = x;	/* "current offset" */
1279 			x = txdr_unsigned(len);
1280 			*tl++ = x;	/* total to this offset */
1281 			*tl = x;	/* size of this write */
1282 		}
1283 		nfsm_uiotom(uiop, len);
1284 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1285 		if (v3) {
1286 			/*
1287 			 * The write RPC returns a before and after mtime.  The
1288 			 * nfsm_wcc_data() macro checks the before n_mtime
1289 			 * against the before time and stores the after time
1290 			 * in the nfsnode's cached vattr and n_mtime field.
1291 			 * The NRMODIFIED bit will be set if the before
1292 			 * time did not match the original mtime.
1293 			 */
1294 			wccflag = NFSV3_WCCCHK;
1295 			nfsm_wcc_data(vp, wccflag);
1296 			if (!error) {
1297 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1298 					+ NFSX_V3WRITEVERF);
1299 				rlen = fxdr_unsigned(int, *tl++);
1300 				if (rlen == 0) {
1301 					error = NFSERR_IO;
1302 					m_freem(mrep);
1303 					break;
1304 				} else if (rlen < len) {
1305 					backup = len - rlen;
1306 					uiop->uio_iov->iov_base -= backup;
1307 					uiop->uio_iov->iov_len += backup;
1308 					uiop->uio_offset -= backup;
1309 					uiop->uio_resid += backup;
1310 					len = rlen;
1311 				}
1312 				commit = fxdr_unsigned(int, *tl++);
1313 
1314 				/*
1315 				 * Return the lowest committment level
1316 				 * obtained by any of the RPCs.
1317 				 */
1318 				if (committed == NFSV3WRITE_FILESYNC)
1319 					committed = commit;
1320 				else if (committed == NFSV3WRITE_DATASYNC &&
1321 					commit == NFSV3WRITE_UNSTABLE)
1322 					committed = commit;
1323 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1324 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1325 					NFSX_V3WRITEVERF);
1326 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1327 				} else if (bcmp((caddr_t)tl,
1328 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1329 				    *must_commit = 1;
1330 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1331 					NFSX_V3WRITEVERF);
1332 				}
1333 			}
1334 		} else {
1335 			nfsm_loadattr(vp, (struct vattr *)0);
1336 		}
1337 		m_freem(mrep);
1338 		if (error)
1339 			break;
1340 		tsiz -= len;
1341 	}
1342 nfsmout:
1343 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1344 		committed = NFSV3WRITE_FILESYNC;
1345 	*iomode = committed;
1346 	if (error)
1347 		uiop->uio_resid = tsiz;
1348 	return (error);
1349 }
1350 
1351 /*
1352  * nfs mknod rpc
1353  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1354  * mode set to specify the file type and the size field for rdev.
1355  */
1356 static int
1357 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1358 	     struct vattr *vap)
1359 {
1360 	struct nfsv2_sattr *sp;
1361 	u_int32_t *tl;
1362 	caddr_t cp;
1363 	int32_t t1, t2;
1364 	struct vnode *newvp = (struct vnode *)0;
1365 	struct nfsnode *np = (struct nfsnode *)0;
1366 	struct vattr vattr;
1367 	char *cp2;
1368 	caddr_t bpos, dpos;
1369 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1370 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1371 	int rmajor, rminor;
1372 	int v3 = NFS_ISV3(dvp);
1373 
1374 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1375 		rmajor = txdr_unsigned(vap->va_rmajor);
1376 		rminor = txdr_unsigned(vap->va_rminor);
1377 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1378 		rmajor = nfs_xdrneg1;
1379 		rminor = nfs_xdrneg1;
1380 	} else {
1381 		return (EOPNOTSUPP);
1382 	}
1383 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1384 		return (error);
1385 	}
1386 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1387 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1388 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1389 	nfsm_fhtom(dvp, v3);
1390 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1391 	if (v3) {
1392 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1393 		*tl++ = vtonfsv3_type(vap->va_type);
1394 		nfsm_v3attrbuild(vap, FALSE);
1395 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1396 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1397 			*tl++ = txdr_unsigned(vap->va_rmajor);
1398 			*tl = txdr_unsigned(vap->va_rminor);
1399 		}
1400 	} else {
1401 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1402 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1403 		sp->sa_uid = nfs_xdrneg1;
1404 		sp->sa_gid = nfs_xdrneg1;
1405 		sp->sa_size = makeudev(rmajor, rminor);
1406 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1407 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1408 	}
1409 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1410 	if (!error) {
1411 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1412 		if (!gotvp) {
1413 			if (newvp) {
1414 				vput(newvp);
1415 				newvp = (struct vnode *)0;
1416 			}
1417 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1418 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1419 			if (!error)
1420 				newvp = NFSTOV(np);
1421 		}
1422 	}
1423 	if (v3)
1424 		nfsm_wcc_data(dvp, wccflag);
1425 	m_freem(mrep);
1426 nfsmout:
1427 	if (error) {
1428 		if (newvp)
1429 			vput(newvp);
1430 	} else {
1431 		*vpp = newvp;
1432 	}
1433 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1434 	if (!wccflag)
1435 		VTONFS(dvp)->n_attrstamp = 0;
1436 	return (error);
1437 }
1438 
1439 /*
1440  * nfs mknod vop
1441  * just call nfs_mknodrpc() to do the work.
1442  *
1443  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1444  *	     struct componentname *a_cnp, struct vattr *a_vap)
1445  */
1446 /* ARGSUSED */
1447 static int
1448 nfs_mknod(struct vop_old_mknod_args *ap)
1449 {
1450 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1451 }
1452 
1453 static u_long create_verf;
1454 /*
1455  * nfs file create call
1456  *
1457  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1458  *	      struct componentname *a_cnp, struct vattr *a_vap)
1459  */
1460 static int
1461 nfs_create(struct vop_old_create_args *ap)
1462 {
1463 	struct vnode *dvp = ap->a_dvp;
1464 	struct vattr *vap = ap->a_vap;
1465 	struct componentname *cnp = ap->a_cnp;
1466 	struct nfsv2_sattr *sp;
1467 	u_int32_t *tl;
1468 	caddr_t cp;
1469 	int32_t t1, t2;
1470 	struct nfsnode *np = (struct nfsnode *)0;
1471 	struct vnode *newvp = (struct vnode *)0;
1472 	caddr_t bpos, dpos, cp2;
1473 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1474 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1475 	struct vattr vattr;
1476 	int v3 = NFS_ISV3(dvp);
1477 
1478 	/*
1479 	 * Oops, not for me..
1480 	 */
1481 	if (vap->va_type == VSOCK)
1482 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1483 
1484 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1485 		return (error);
1486 	}
1487 	if (vap->va_vaflags & VA_EXCLUSIVE)
1488 		fmode |= O_EXCL;
1489 again:
1490 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1491 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1492 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1493 	nfsm_fhtom(dvp, v3);
1494 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1495 	if (v3) {
1496 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1497 		if (fmode & O_EXCL) {
1498 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1499 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1500 #ifdef INET
1501 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1502 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1503 			else
1504 #endif
1505 				*tl++ = create_verf;
1506 			*tl = ++create_verf;
1507 		} else {
1508 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1509 			nfsm_v3attrbuild(vap, FALSE);
1510 		}
1511 	} else {
1512 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1513 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1514 		sp->sa_uid = nfs_xdrneg1;
1515 		sp->sa_gid = nfs_xdrneg1;
1516 		sp->sa_size = 0;
1517 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1518 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1519 	}
1520 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1521 	if (!error) {
1522 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1523 		if (!gotvp) {
1524 			if (newvp) {
1525 				vput(newvp);
1526 				newvp = (struct vnode *)0;
1527 			}
1528 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1529 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1530 			if (!error)
1531 				newvp = NFSTOV(np);
1532 		}
1533 	}
1534 	if (v3)
1535 		nfsm_wcc_data(dvp, wccflag);
1536 	m_freem(mrep);
1537 nfsmout:
1538 	if (error) {
1539 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1540 			fmode &= ~O_EXCL;
1541 			goto again;
1542 		}
1543 		if (newvp)
1544 			vput(newvp);
1545 	} else if (v3 && (fmode & O_EXCL)) {
1546 		/*
1547 		 * We are normally called with only a partially initialized
1548 		 * VAP.  Since the NFSv3 spec says that server may use the
1549 		 * file attributes to store the verifier, the spec requires
1550 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1551 		 * in atime, but we can't really assume that all servers will
1552 		 * so we ensure that our SETATTR sets both atime and mtime.
1553 		 */
1554 		if (vap->va_mtime.tv_sec == VNOVAL)
1555 			vfs_timestamp(&vap->va_mtime);
1556 		if (vap->va_atime.tv_sec == VNOVAL)
1557 			vap->va_atime = vap->va_mtime;
1558 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1559 	}
1560 	if (!error) {
1561 		/*
1562 		 * The new np may have enough info for access
1563 		 * checks, make sure rucred and wucred are
1564 		 * initialized for read and write rpc's.
1565 		 */
1566 		np = VTONFS(newvp);
1567 		if (np->n_rucred == NULL)
1568 			np->n_rucred = crhold(cnp->cn_cred);
1569 		if (np->n_wucred == NULL)
1570 			np->n_wucred = crhold(cnp->cn_cred);
1571 		*ap->a_vpp = newvp;
1572 	}
1573 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1574 	if (!wccflag)
1575 		VTONFS(dvp)->n_attrstamp = 0;
1576 	return (error);
1577 }
1578 
1579 /*
1580  * nfs file remove call
1581  * To try and make nfs semantics closer to ufs semantics, a file that has
1582  * other processes using the vnode is renamed instead of removed and then
1583  * removed later on the last close.
1584  * - If v_sysref.refcnt > 1
1585  *	  If a rename is not already in the works
1586  *	     call nfs_sillyrename() to set it up
1587  *     else
1588  *	  do the remove rpc
1589  *
1590  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1591  *	      struct componentname *a_cnp)
1592  */
1593 static int
1594 nfs_remove(struct vop_old_remove_args *ap)
1595 {
1596 	struct vnode *vp = ap->a_vp;
1597 	struct vnode *dvp = ap->a_dvp;
1598 	struct componentname *cnp = ap->a_cnp;
1599 	struct nfsnode *np = VTONFS(vp);
1600 	int error = 0;
1601 	struct vattr vattr;
1602 
1603 #ifndef DIAGNOSTIC
1604 	if (vp->v_sysref.refcnt < 1)
1605 		panic("nfs_remove: bad v_sysref.refcnt");
1606 #endif
1607 	if (vp->v_type == VDIR)
1608 		error = EPERM;
1609 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1610 	    VOP_GETATTR(vp, &vattr) == 0 &&
1611 	    vattr.va_nlink > 1)) {
1612 		/*
1613 		 * throw away biocache buffers, mainly to avoid
1614 		 * unnecessary delayed writes later.
1615 		 */
1616 		error = nfs_vinvalbuf(vp, 0, 1);
1617 		/* Do the rpc */
1618 		if (error != EINTR)
1619 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1620 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1621 		/*
1622 		 * Kludge City: If the first reply to the remove rpc is lost..
1623 		 *   the reply to the retransmitted request will be ENOENT
1624 		 *   since the file was in fact removed
1625 		 *   Therefore, we cheat and return success.
1626 		 */
1627 		if (error == ENOENT)
1628 			error = 0;
1629 	} else if (!np->n_sillyrename) {
1630 		error = nfs_sillyrename(dvp, vp, cnp);
1631 	}
1632 	np->n_attrstamp = 0;
1633 	return (error);
1634 }
1635 
1636 /*
1637  * nfs file remove rpc called from nfs_inactive
1638  */
1639 int
1640 nfs_removeit(struct sillyrename *sp)
1641 {
1642 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1643 		sp->s_cred, NULL));
1644 }
1645 
1646 /*
1647  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1648  */
1649 static int
1650 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1651 	      struct ucred *cred, struct thread *td)
1652 {
1653 	u_int32_t *tl;
1654 	caddr_t cp;
1655 	int32_t t1, t2;
1656 	caddr_t bpos, dpos, cp2;
1657 	int error = 0, wccflag = NFSV3_WCCRATTR;
1658 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1659 	int v3 = NFS_ISV3(dvp);
1660 
1661 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1662 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1663 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1664 	nfsm_fhtom(dvp, v3);
1665 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1666 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1667 	if (v3)
1668 		nfsm_wcc_data(dvp, wccflag);
1669 	m_freem(mrep);
1670 nfsmout:
1671 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1672 	if (!wccflag)
1673 		VTONFS(dvp)->n_attrstamp = 0;
1674 	return (error);
1675 }
1676 
1677 /*
1678  * nfs file rename call
1679  *
1680  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1681  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1682  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1683  */
1684 static int
1685 nfs_rename(struct vop_old_rename_args *ap)
1686 {
1687 	struct vnode *fvp = ap->a_fvp;
1688 	struct vnode *tvp = ap->a_tvp;
1689 	struct vnode *fdvp = ap->a_fdvp;
1690 	struct vnode *tdvp = ap->a_tdvp;
1691 	struct componentname *tcnp = ap->a_tcnp;
1692 	struct componentname *fcnp = ap->a_fcnp;
1693 	int error;
1694 
1695 	/* Check for cross-device rename */
1696 	if ((fvp->v_mount != tdvp->v_mount) ||
1697 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1698 		error = EXDEV;
1699 		goto out;
1700 	}
1701 
1702 	/*
1703 	 * We have to flush B_DELWRI data prior to renaming
1704 	 * the file.  If we don't, the delayed-write buffers
1705 	 * can be flushed out later after the file has gone stale
1706 	 * under NFSV3.  NFSV2 does not have this problem because
1707 	 * ( as far as I can tell ) it flushes dirty buffers more
1708 	 * often.
1709 	 */
1710 
1711 	VOP_FSYNC(fvp, MNT_WAIT);
1712 	if (tvp)
1713 	    VOP_FSYNC(tvp, MNT_WAIT);
1714 
1715 	/*
1716 	 * If the tvp exists and is in use, sillyrename it before doing the
1717 	 * rename of the new file over it.
1718 	 *
1719 	 * XXX Can't sillyrename a directory.
1720 	 *
1721 	 * We do not attempt to do any namecache purges in this old API
1722 	 * routine.  The new API compat functions have access to the actual
1723 	 * namecache structures and will do it for us.
1724 	 */
1725 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1726 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1727 		vput(tvp);
1728 		tvp = NULL;
1729 	} else if (tvp) {
1730 		;
1731 	}
1732 
1733 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1734 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1735 		tcnp->cn_td);
1736 
1737 out:
1738 	if (tdvp == tvp)
1739 		vrele(tdvp);
1740 	else
1741 		vput(tdvp);
1742 	if (tvp)
1743 		vput(tvp);
1744 	vrele(fdvp);
1745 	vrele(fvp);
1746 	/*
1747 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1748 	 */
1749 	if (error == ENOENT)
1750 		error = 0;
1751 	return (error);
1752 }
1753 
1754 /*
1755  * nfs file rename rpc called from nfs_remove() above
1756  */
1757 static int
1758 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1759 	     struct sillyrename *sp)
1760 {
1761 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1762 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1763 }
1764 
1765 /*
1766  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1767  */
1768 static int
1769 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1770 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1771 	      struct ucred *cred, struct thread *td)
1772 {
1773 	u_int32_t *tl;
1774 	caddr_t cp;
1775 	int32_t t1, t2;
1776 	caddr_t bpos, dpos, cp2;
1777 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1778 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1779 	int v3 = NFS_ISV3(fdvp);
1780 
1781 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1782 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1783 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1784 		nfsm_rndup(tnamelen));
1785 	nfsm_fhtom(fdvp, v3);
1786 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1787 	nfsm_fhtom(tdvp, v3);
1788 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1789 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1790 	if (v3) {
1791 		nfsm_wcc_data(fdvp, fwccflag);
1792 		nfsm_wcc_data(tdvp, twccflag);
1793 	}
1794 	m_freem(mrep);
1795 nfsmout:
1796 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1797 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1798 	if (!fwccflag)
1799 		VTONFS(fdvp)->n_attrstamp = 0;
1800 	if (!twccflag)
1801 		VTONFS(tdvp)->n_attrstamp = 0;
1802 	return (error);
1803 }
1804 
1805 /*
1806  * nfs hard link create call
1807  *
1808  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1809  *	    struct componentname *a_cnp)
1810  */
1811 static int
1812 nfs_link(struct vop_old_link_args *ap)
1813 {
1814 	struct vnode *vp = ap->a_vp;
1815 	struct vnode *tdvp = ap->a_tdvp;
1816 	struct componentname *cnp = ap->a_cnp;
1817 	u_int32_t *tl;
1818 	caddr_t cp;
1819 	int32_t t1, t2;
1820 	caddr_t bpos, dpos, cp2;
1821 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1822 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1823 	int v3;
1824 
1825 	if (vp->v_mount != tdvp->v_mount) {
1826 		return (EXDEV);
1827 	}
1828 
1829 	/*
1830 	 * Push all writes to the server, so that the attribute cache
1831 	 * doesn't get "out of sync" with the server.
1832 	 * XXX There should be a better way!
1833 	 */
1834 	VOP_FSYNC(vp, MNT_WAIT);
1835 
1836 	v3 = NFS_ISV3(vp);
1837 	nfsstats.rpccnt[NFSPROC_LINK]++;
1838 	nfsm_reqhead(vp, NFSPROC_LINK,
1839 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1840 	nfsm_fhtom(vp, v3);
1841 	nfsm_fhtom(tdvp, v3);
1842 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1843 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1844 	if (v3) {
1845 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1846 		nfsm_wcc_data(tdvp, wccflag);
1847 	}
1848 	m_freem(mrep);
1849 nfsmout:
1850 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1851 	if (!attrflag)
1852 		VTONFS(vp)->n_attrstamp = 0;
1853 	if (!wccflag)
1854 		VTONFS(tdvp)->n_attrstamp = 0;
1855 	/*
1856 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1857 	 */
1858 	if (error == EEXIST)
1859 		error = 0;
1860 	return (error);
1861 }
1862 
1863 /*
1864  * nfs symbolic link create call
1865  *
1866  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1867  *		struct componentname *a_cnp, struct vattr *a_vap,
1868  *		char *a_target)
1869  */
1870 static int
1871 nfs_symlink(struct vop_old_symlink_args *ap)
1872 {
1873 	struct vnode *dvp = ap->a_dvp;
1874 	struct vattr *vap = ap->a_vap;
1875 	struct componentname *cnp = ap->a_cnp;
1876 	struct nfsv2_sattr *sp;
1877 	u_int32_t *tl;
1878 	caddr_t cp;
1879 	int32_t t1, t2;
1880 	caddr_t bpos, dpos, cp2;
1881 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1882 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1883 	struct vnode *newvp = (struct vnode *)0;
1884 	int v3 = NFS_ISV3(dvp);
1885 
1886 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1887 	slen = strlen(ap->a_target);
1888 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1889 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1890 	nfsm_fhtom(dvp, v3);
1891 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1892 	if (v3) {
1893 		nfsm_v3attrbuild(vap, FALSE);
1894 	}
1895 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1896 	if (!v3) {
1897 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1898 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1899 		sp->sa_uid = nfs_xdrneg1;
1900 		sp->sa_gid = nfs_xdrneg1;
1901 		sp->sa_size = nfs_xdrneg1;
1902 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1903 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1904 	}
1905 
1906 	/*
1907 	 * Issue the NFS request and get the rpc response.
1908 	 *
1909 	 * Only NFSv3 responses returning an error of 0 actually return
1910 	 * a file handle that can be converted into newvp without having
1911 	 * to do an extra lookup rpc.
1912 	 */
1913 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1914 	if (v3) {
1915 		if (error == 0)
1916 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1917 		nfsm_wcc_data(dvp, wccflag);
1918 	}
1919 
1920 	/*
1921 	 * out code jumps -> here, mrep is also freed.
1922 	 */
1923 
1924 	m_freem(mrep);
1925 nfsmout:
1926 
1927 	/*
1928 	 * If we get an EEXIST error, silently convert it to no-error
1929 	 * in case of an NFS retry.
1930 	 */
1931 	if (error == EEXIST)
1932 		error = 0;
1933 
1934 	/*
1935 	 * If we do not have (or no longer have) an error, and we could
1936 	 * not extract the newvp from the response due to the request being
1937 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1938 	 * to obtain a newvp to return.
1939 	 */
1940 	if (error == 0 && newvp == NULL) {
1941 		struct nfsnode *np = NULL;
1942 
1943 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1944 		    cnp->cn_cred, cnp->cn_td, &np);
1945 		if (!error)
1946 			newvp = NFSTOV(np);
1947 	}
1948 	if (error) {
1949 		if (newvp)
1950 			vput(newvp);
1951 	} else {
1952 		*ap->a_vpp = newvp;
1953 	}
1954 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1955 	if (!wccflag)
1956 		VTONFS(dvp)->n_attrstamp = 0;
1957 	return (error);
1958 }
1959 
1960 /*
1961  * nfs make dir call
1962  *
1963  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
1964  *	     struct componentname *a_cnp, struct vattr *a_vap)
1965  */
1966 static int
1967 nfs_mkdir(struct vop_old_mkdir_args *ap)
1968 {
1969 	struct vnode *dvp = ap->a_dvp;
1970 	struct vattr *vap = ap->a_vap;
1971 	struct componentname *cnp = ap->a_cnp;
1972 	struct nfsv2_sattr *sp;
1973 	u_int32_t *tl;
1974 	caddr_t cp;
1975 	int32_t t1, t2;
1976 	int len;
1977 	struct nfsnode *np = (struct nfsnode *)0;
1978 	struct vnode *newvp = (struct vnode *)0;
1979 	caddr_t bpos, dpos, cp2;
1980 	int error = 0, wccflag = NFSV3_WCCRATTR;
1981 	int gotvp = 0;
1982 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1983 	struct vattr vattr;
1984 	int v3 = NFS_ISV3(dvp);
1985 
1986 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1987 		return (error);
1988 	}
1989 	len = cnp->cn_namelen;
1990 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
1991 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
1992 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
1993 	nfsm_fhtom(dvp, v3);
1994 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1995 	if (v3) {
1996 		nfsm_v3attrbuild(vap, FALSE);
1997 	} else {
1998 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1999 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2000 		sp->sa_uid = nfs_xdrneg1;
2001 		sp->sa_gid = nfs_xdrneg1;
2002 		sp->sa_size = nfs_xdrneg1;
2003 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2004 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2005 	}
2006 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2007 	if (!error)
2008 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2009 	if (v3)
2010 		nfsm_wcc_data(dvp, wccflag);
2011 	m_freem(mrep);
2012 nfsmout:
2013 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2014 	if (!wccflag)
2015 		VTONFS(dvp)->n_attrstamp = 0;
2016 	/*
2017 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2018 	 * if we can succeed in looking up the directory.
2019 	 */
2020 	if (error == EEXIST || (!error && !gotvp)) {
2021 		if (newvp) {
2022 			vrele(newvp);
2023 			newvp = (struct vnode *)0;
2024 		}
2025 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2026 			cnp->cn_td, &np);
2027 		if (!error) {
2028 			newvp = NFSTOV(np);
2029 			if (newvp->v_type != VDIR)
2030 				error = EEXIST;
2031 		}
2032 	}
2033 	if (error) {
2034 		if (newvp)
2035 			vrele(newvp);
2036 	} else
2037 		*ap->a_vpp = newvp;
2038 	return (error);
2039 }
2040 
2041 /*
2042  * nfs remove directory call
2043  *
2044  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2045  *	     struct componentname *a_cnp)
2046  */
2047 static int
2048 nfs_rmdir(struct vop_old_rmdir_args *ap)
2049 {
2050 	struct vnode *vp = ap->a_vp;
2051 	struct vnode *dvp = ap->a_dvp;
2052 	struct componentname *cnp = ap->a_cnp;
2053 	u_int32_t *tl;
2054 	caddr_t cp;
2055 	int32_t t1, t2;
2056 	caddr_t bpos, dpos, cp2;
2057 	int error = 0, wccflag = NFSV3_WCCRATTR;
2058 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2059 	int v3 = NFS_ISV3(dvp);
2060 
2061 	if (dvp == vp)
2062 		return (EINVAL);
2063 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2064 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2065 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2066 	nfsm_fhtom(dvp, v3);
2067 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2068 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2069 	if (v3)
2070 		nfsm_wcc_data(dvp, wccflag);
2071 	m_freem(mrep);
2072 nfsmout:
2073 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2074 	if (!wccflag)
2075 		VTONFS(dvp)->n_attrstamp = 0;
2076 	/*
2077 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2078 	 */
2079 	if (error == ENOENT)
2080 		error = 0;
2081 	return (error);
2082 }
2083 
2084 /*
2085  * nfs readdir call
2086  *
2087  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2088  */
2089 static int
2090 nfs_readdir(struct vop_readdir_args *ap)
2091 {
2092 	struct vnode *vp = ap->a_vp;
2093 	struct nfsnode *np = VTONFS(vp);
2094 	struct uio *uio = ap->a_uio;
2095 	int tresid, error;
2096 	struct vattr vattr;
2097 
2098 	if (vp->v_type != VDIR)
2099 		return (EPERM);
2100 
2101 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2102 		return (error);
2103 
2104 	/*
2105 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2106 	 * and then check that is still valid, or if this is an NQNFS mount
2107 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2108 	 * VOP_GETATTR() does not necessarily go to the wire.
2109 	 */
2110 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2111 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2112 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2113 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2114 		) {
2115 			nfsstats.direofcache_hits++;
2116 			goto done;
2117 		}
2118 	}
2119 
2120 	/*
2121 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2122 	 * own cache coherency checks so we do not have to.
2123 	 */
2124 	tresid = uio->uio_resid;
2125 	error = nfs_bioread(vp, uio, 0);
2126 
2127 	if (!error && uio->uio_resid == tresid)
2128 		nfsstats.direofcache_misses++;
2129 done:
2130 	vn_unlock(vp);
2131 	return (error);
2132 }
2133 
2134 /*
2135  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2136  *
2137  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2138  * offset/block and converts the nfs formatted directory entries for userland
2139  * consumption as well as deals with offsets into the middle of blocks.
2140  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2141  * be block-bounded.  It must convert to cookies for the actual RPC.
2142  */
2143 int
2144 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2145 {
2146 	int len, left;
2147 	struct nfs_dirent *dp = NULL;
2148 	u_int32_t *tl;
2149 	caddr_t cp;
2150 	int32_t t1, t2;
2151 	nfsuint64 *cookiep;
2152 	caddr_t bpos, dpos, cp2;
2153 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2154 	nfsuint64 cookie;
2155 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2156 	struct nfsnode *dnp = VTONFS(vp);
2157 	u_quad_t fileno;
2158 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2159 	int attrflag;
2160 	int v3 = NFS_ISV3(vp);
2161 
2162 #ifndef DIAGNOSTIC
2163 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2164 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2165 		panic("nfs readdirrpc bad uio");
2166 #endif
2167 
2168 	/*
2169 	 * If there is no cookie, assume directory was stale.
2170 	 */
2171 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2172 	if (cookiep)
2173 		cookie = *cookiep;
2174 	else
2175 		return (NFSERR_BAD_COOKIE);
2176 	/*
2177 	 * Loop around doing readdir rpc's of size nm_readdirsize
2178 	 * truncated to a multiple of DIRBLKSIZ.
2179 	 * The stopping criteria is EOF or buffer full.
2180 	 */
2181 	while (more_dirs && bigenough) {
2182 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2183 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2184 			NFSX_READDIR(v3));
2185 		nfsm_fhtom(vp, v3);
2186 		if (v3) {
2187 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2188 			*tl++ = cookie.nfsuquad[0];
2189 			*tl++ = cookie.nfsuquad[1];
2190 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2191 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2192 		} else {
2193 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2194 			*tl++ = cookie.nfsuquad[0];
2195 		}
2196 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2197 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2198 		if (v3) {
2199 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2200 			if (!error) {
2201 				nfsm_dissect(tl, u_int32_t *,
2202 				    2 * NFSX_UNSIGNED);
2203 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2204 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2205 			} else {
2206 				m_freem(mrep);
2207 				goto nfsmout;
2208 			}
2209 		}
2210 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2211 		more_dirs = fxdr_unsigned(int, *tl);
2212 
2213 		/* loop thru the dir entries, converting them to std form */
2214 		while (more_dirs && bigenough) {
2215 			if (v3) {
2216 				nfsm_dissect(tl, u_int32_t *,
2217 				    3 * NFSX_UNSIGNED);
2218 				fileno = fxdr_hyper(tl);
2219 				len = fxdr_unsigned(int, *(tl + 2));
2220 			} else {
2221 				nfsm_dissect(tl, u_int32_t *,
2222 				    2 * NFSX_UNSIGNED);
2223 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2224 				len = fxdr_unsigned(int, *tl);
2225 			}
2226 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2227 				error = EBADRPC;
2228 				m_freem(mrep);
2229 				goto nfsmout;
2230 			}
2231 
2232 			/*
2233 			 * len is the number of bytes in the path element
2234 			 * name, not including the \0 termination.
2235 			 *
2236 			 * tlen is the number of bytes w have to reserve for
2237 			 * the path element name.
2238 			 */
2239 			tlen = nfsm_rndup(len);
2240 			if (tlen == len)
2241 				tlen += 4;	/* To ensure null termination */
2242 
2243 			/*
2244 			 * If the entry would cross a DIRBLKSIZ boundary,
2245 			 * extend the previous nfs_dirent to cover the
2246 			 * remaining space.
2247 			 */
2248 			left = DIRBLKSIZ - blksiz;
2249 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2250 				dp->nfs_reclen += left;
2251 				uiop->uio_iov->iov_base += left;
2252 				uiop->uio_iov->iov_len -= left;
2253 				uiop->uio_offset += left;
2254 				uiop->uio_resid -= left;
2255 				blksiz = 0;
2256 			}
2257 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2258 				bigenough = 0;
2259 			if (bigenough) {
2260 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2261 				dp->nfs_ino = fileno;
2262 				dp->nfs_namlen = len;
2263 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2264 				dp->nfs_type = DT_UNKNOWN;
2265 				blksiz += dp->nfs_reclen;
2266 				if (blksiz == DIRBLKSIZ)
2267 					blksiz = 0;
2268 				uiop->uio_offset += sizeof(struct nfs_dirent);
2269 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2270 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2271 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2272 				nfsm_mtouio(uiop, len);
2273 
2274 				/*
2275 				 * The uiop has advanced by nfs_dirent + len
2276 				 * but really needs to advance by
2277 				 * nfs_dirent + tlen
2278 				 */
2279 				cp = uiop->uio_iov->iov_base;
2280 				tlen -= len;
2281 				*cp = '\0';	/* null terminate */
2282 				uiop->uio_iov->iov_base += tlen;
2283 				uiop->uio_iov->iov_len -= tlen;
2284 				uiop->uio_offset += tlen;
2285 				uiop->uio_resid -= tlen;
2286 			} else {
2287 				/*
2288 				 * NFS strings must be rounded up (nfsm_myouio
2289 				 * handled that in the bigenough case).
2290 				 */
2291 				nfsm_adv(nfsm_rndup(len));
2292 			}
2293 			if (v3) {
2294 				nfsm_dissect(tl, u_int32_t *,
2295 				    3 * NFSX_UNSIGNED);
2296 			} else {
2297 				nfsm_dissect(tl, u_int32_t *,
2298 				    2 * NFSX_UNSIGNED);
2299 			}
2300 
2301 			/*
2302 			 * If we were able to accomodate the last entry,
2303 			 * get the cookie for the next one.  Otherwise
2304 			 * hold-over the cookie for the one we were not
2305 			 * able to accomodate.
2306 			 */
2307 			if (bigenough) {
2308 				cookie.nfsuquad[0] = *tl++;
2309 				if (v3)
2310 					cookie.nfsuquad[1] = *tl++;
2311 			} else if (v3) {
2312 				tl += 2;
2313 			} else {
2314 				tl++;
2315 			}
2316 			more_dirs = fxdr_unsigned(int, *tl);
2317 		}
2318 		/*
2319 		 * If at end of rpc data, get the eof boolean
2320 		 */
2321 		if (!more_dirs) {
2322 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2323 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2324 		}
2325 		m_freem(mrep);
2326 	}
2327 	/*
2328 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2329 	 * by increasing d_reclen for the last record.
2330 	 */
2331 	if (blksiz > 0) {
2332 		left = DIRBLKSIZ - blksiz;
2333 		dp->nfs_reclen += left;
2334 		uiop->uio_iov->iov_base += left;
2335 		uiop->uio_iov->iov_len -= left;
2336 		uiop->uio_offset += left;
2337 		uiop->uio_resid -= left;
2338 	}
2339 
2340 	if (bigenough) {
2341 		/*
2342 		 * We hit the end of the directory, update direofoffset.
2343 		 */
2344 		dnp->n_direofoffset = uiop->uio_offset;
2345 	} else {
2346 		/*
2347 		 * There is more to go, insert the link cookie so the
2348 		 * next block can be read.
2349 		 */
2350 		if (uiop->uio_resid > 0)
2351 			kprintf("EEK! readdirrpc resid > 0\n");
2352 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2353 		*cookiep = cookie;
2354 	}
2355 nfsmout:
2356 	return (error);
2357 }
2358 
2359 /*
2360  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2361  */
2362 int
2363 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2364 {
2365 	int len, left;
2366 	struct nfs_dirent *dp;
2367 	u_int32_t *tl;
2368 	caddr_t cp;
2369 	int32_t t1, t2;
2370 	struct vnode *newvp;
2371 	nfsuint64 *cookiep;
2372 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2373 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2374 	nfsuint64 cookie;
2375 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2376 	struct nfsnode *dnp = VTONFS(vp), *np;
2377 	nfsfh_t *fhp;
2378 	u_quad_t fileno;
2379 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2380 	int attrflag, fhsize;
2381 	struct nchandle nch;
2382 	struct nchandle dnch;
2383 	struct nlcomponent nlc;
2384 
2385 #ifndef nolint
2386 	dp = NULL;
2387 #endif
2388 #ifndef DIAGNOSTIC
2389 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2390 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2391 		panic("nfs readdirplusrpc bad uio");
2392 #endif
2393 	/*
2394 	 * Obtain the namecache record for the directory so we have something
2395 	 * to use as a basis for creating the entries.  This function will
2396 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2397 	 * from the tree and cannot be used for upward traversals, and the
2398 	 * ncp may be unnamed.  Note that other unrelated operations may
2399 	 * cause the ncp to be named at any time.
2400 	 */
2401 	cache_fromdvp(vp, NULL, 0, &dnch);
2402 	bzero(&nlc, sizeof(nlc));
2403 	newvp = NULLVP;
2404 
2405 	/*
2406 	 * If there is no cookie, assume directory was stale.
2407 	 */
2408 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2409 	if (cookiep)
2410 		cookie = *cookiep;
2411 	else
2412 		return (NFSERR_BAD_COOKIE);
2413 	/*
2414 	 * Loop around doing readdir rpc's of size nm_readdirsize
2415 	 * truncated to a multiple of DIRBLKSIZ.
2416 	 * The stopping criteria is EOF or buffer full.
2417 	 */
2418 	while (more_dirs && bigenough) {
2419 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2420 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2421 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2422 		nfsm_fhtom(vp, 1);
2423  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2424 		*tl++ = cookie.nfsuquad[0];
2425 		*tl++ = cookie.nfsuquad[1];
2426 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2427 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2428 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2429 		*tl = txdr_unsigned(nmp->nm_rsize);
2430 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2431 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2432 		if (error) {
2433 			m_freem(mrep);
2434 			goto nfsmout;
2435 		}
2436 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2437 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2438 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2439 		more_dirs = fxdr_unsigned(int, *tl);
2440 
2441 		/* loop thru the dir entries, doctoring them to 4bsd form */
2442 		while (more_dirs && bigenough) {
2443 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2444 			fileno = fxdr_hyper(tl);
2445 			len = fxdr_unsigned(int, *(tl + 2));
2446 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2447 				error = EBADRPC;
2448 				m_freem(mrep);
2449 				goto nfsmout;
2450 			}
2451 			tlen = nfsm_rndup(len);
2452 			if (tlen == len)
2453 				tlen += 4;	/* To ensure null termination*/
2454 			left = DIRBLKSIZ - blksiz;
2455 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2456 				dp->nfs_reclen += left;
2457 				uiop->uio_iov->iov_base += left;
2458 				uiop->uio_iov->iov_len -= left;
2459 				uiop->uio_offset += left;
2460 				uiop->uio_resid -= left;
2461 				blksiz = 0;
2462 			}
2463 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2464 				bigenough = 0;
2465 			if (bigenough) {
2466 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2467 				dp->nfs_ino = fileno;
2468 				dp->nfs_namlen = len;
2469 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2470 				dp->nfs_type = DT_UNKNOWN;
2471 				blksiz += dp->nfs_reclen;
2472 				if (blksiz == DIRBLKSIZ)
2473 					blksiz = 0;
2474 				uiop->uio_offset += sizeof(struct nfs_dirent);
2475 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2476 				uiop->uio_iov->iov_base += sizeof(struct nfs_dirent);
2477 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2478 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2479 				nlc.nlc_namelen = len;
2480 				nfsm_mtouio(uiop, len);
2481 				cp = uiop->uio_iov->iov_base;
2482 				tlen -= len;
2483 				*cp = '\0';
2484 				uiop->uio_iov->iov_base += tlen;
2485 				uiop->uio_iov->iov_len -= tlen;
2486 				uiop->uio_offset += tlen;
2487 				uiop->uio_resid -= tlen;
2488 			} else
2489 				nfsm_adv(nfsm_rndup(len));
2490 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2491 			if (bigenough) {
2492 				cookie.nfsuquad[0] = *tl++;
2493 				cookie.nfsuquad[1] = *tl++;
2494 			} else
2495 				tl += 2;
2496 
2497 			/*
2498 			 * Since the attributes are before the file handle
2499 			 * (sigh), we must skip over the attributes and then
2500 			 * come back and get them.
2501 			 */
2502 			attrflag = fxdr_unsigned(int, *tl);
2503 			if (attrflag) {
2504 			    dpossav1 = dpos;
2505 			    mdsav1 = md;
2506 			    nfsm_adv(NFSX_V3FATTR);
2507 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2508 			    doit = fxdr_unsigned(int, *tl);
2509 			    if (doit) {
2510 				nfsm_getfh(fhp, fhsize, 1);
2511 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2512 				    vref(vp);
2513 				    newvp = vp;
2514 				    np = dnp;
2515 				} else {
2516 				    error = nfs_nget(vp->v_mount, fhp,
2517 					fhsize, &np);
2518 				    if (error)
2519 					doit = 0;
2520 				    else
2521 					newvp = NFSTOV(np);
2522 				}
2523 			    }
2524 			    if (doit && bigenough) {
2525 				dpossav2 = dpos;
2526 				dpos = dpossav1;
2527 				mdsav2 = md;
2528 				md = mdsav1;
2529 				nfsm_loadattr(newvp, (struct vattr *)0);
2530 				dpos = dpossav2;
2531 				md = mdsav2;
2532 				dp->nfs_type =
2533 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2534 				if (dnch.ncp) {
2535 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2536 					nlc.nlc_namelen, nlc.nlc_namelen,
2537 					nlc.nlc_nameptr);
2538 				    nch = cache_nlookup(&dnch, &nlc);
2539 				    cache_setunresolved(&nch);
2540 				    nfs_cache_setvp(&nch, newvp,
2541 						    nfspos_cache_timeout);
2542 				    cache_put(&nch);
2543 				} else {
2544 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2545 					" %*.*s\n",
2546 					nlc.nlc_namelen, nlc.nlc_namelen,
2547 					nlc.nlc_nameptr);
2548 				}
2549 			    }
2550 			} else {
2551 			    /* Just skip over the file handle */
2552 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2553 			    i = fxdr_unsigned(int, *tl);
2554 			    nfsm_adv(nfsm_rndup(i));
2555 			}
2556 			if (newvp != NULLVP) {
2557 			    if (newvp == vp)
2558 				vrele(newvp);
2559 			    else
2560 				vput(newvp);
2561 			    newvp = NULLVP;
2562 			}
2563 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2564 			more_dirs = fxdr_unsigned(int, *tl);
2565 		}
2566 		/*
2567 		 * If at end of rpc data, get the eof boolean
2568 		 */
2569 		if (!more_dirs) {
2570 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2571 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2572 		}
2573 		m_freem(mrep);
2574 	}
2575 	/*
2576 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2577 	 * by increasing d_reclen for the last record.
2578 	 */
2579 	if (blksiz > 0) {
2580 		left = DIRBLKSIZ - blksiz;
2581 		dp->nfs_reclen += left;
2582 		uiop->uio_iov->iov_base += left;
2583 		uiop->uio_iov->iov_len -= left;
2584 		uiop->uio_offset += left;
2585 		uiop->uio_resid -= left;
2586 	}
2587 
2588 	/*
2589 	 * We are now either at the end of the directory or have filled the
2590 	 * block.
2591 	 */
2592 	if (bigenough)
2593 		dnp->n_direofoffset = uiop->uio_offset;
2594 	else {
2595 		if (uiop->uio_resid > 0)
2596 			kprintf("EEK! readdirplusrpc resid > 0\n");
2597 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2598 		*cookiep = cookie;
2599 	}
2600 nfsmout:
2601 	if (newvp != NULLVP) {
2602 	        if (newvp == vp)
2603 			vrele(newvp);
2604 		else
2605 			vput(newvp);
2606 		newvp = NULLVP;
2607 	}
2608 	if (dnch.ncp)
2609 		cache_drop(&dnch);
2610 	return (error);
2611 }
2612 
2613 /*
2614  * Silly rename. To make the NFS filesystem that is stateless look a little
2615  * more like the "ufs" a remove of an active vnode is translated to a rename
2616  * to a funny looking filename that is removed by nfs_inactive on the
2617  * nfsnode. There is the potential for another process on a different client
2618  * to create the same funny name between the nfs_lookitup() fails and the
2619  * nfs_rename() completes, but...
2620  */
2621 static int
2622 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2623 {
2624 	struct sillyrename *sp;
2625 	struct nfsnode *np;
2626 	int error;
2627 
2628 	/*
2629 	 * We previously purged dvp instead of vp.  I don't know why, it
2630 	 * completely destroys performance.  We can't do it anyway with the
2631 	 * new VFS API since we would be breaking the namecache topology.
2632 	 */
2633 	cache_purge(vp);	/* XXX */
2634 	np = VTONFS(vp);
2635 #ifndef DIAGNOSTIC
2636 	if (vp->v_type == VDIR)
2637 		panic("nfs: sillyrename dir");
2638 #endif
2639 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2640 		M_NFSREQ, M_WAITOK);
2641 	sp->s_cred = crdup(cnp->cn_cred);
2642 	sp->s_dvp = dvp;
2643 	vref(dvp);
2644 
2645 	/* Fudge together a funny name */
2646 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2647 
2648 	/* Try lookitups until we get one that isn't there */
2649 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2650 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2651 		sp->s_name[4]++;
2652 		if (sp->s_name[4] > 'z') {
2653 			error = EINVAL;
2654 			goto bad;
2655 		}
2656 	}
2657 	error = nfs_renameit(dvp, cnp, sp);
2658 	if (error)
2659 		goto bad;
2660 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2661 		cnp->cn_td, &np);
2662 	np->n_sillyrename = sp;
2663 	return (0);
2664 bad:
2665 	vrele(sp->s_dvp);
2666 	crfree(sp->s_cred);
2667 	kfree((caddr_t)sp, M_NFSREQ);
2668 	return (error);
2669 }
2670 
2671 /*
2672  * Look up a file name and optionally either update the file handle or
2673  * allocate an nfsnode, depending on the value of npp.
2674  * npp == NULL	--> just do the lookup
2675  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2676  *			handled too
2677  * *npp != NULL --> update the file handle in the vnode
2678  */
2679 static int
2680 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2681 	     struct thread *td, struct nfsnode **npp)
2682 {
2683 	u_int32_t *tl;
2684 	caddr_t cp;
2685 	int32_t t1, t2;
2686 	struct vnode *newvp = (struct vnode *)0;
2687 	struct nfsnode *np, *dnp = VTONFS(dvp);
2688 	caddr_t bpos, dpos, cp2;
2689 	int error = 0, fhlen, attrflag;
2690 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2691 	nfsfh_t *nfhp;
2692 	int v3 = NFS_ISV3(dvp);
2693 
2694 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2695 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2696 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2697 	nfsm_fhtom(dvp, v3);
2698 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2699 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2700 	if (npp && !error) {
2701 		nfsm_getfh(nfhp, fhlen, v3);
2702 		if (*npp) {
2703 		    np = *npp;
2704 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2705 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2706 			np->n_fhp = &np->n_fh;
2707 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2708 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2709 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2710 		    np->n_fhsize = fhlen;
2711 		    newvp = NFSTOV(np);
2712 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2713 		    vref(dvp);
2714 		    newvp = dvp;
2715 		} else {
2716 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2717 		    if (error) {
2718 			m_freem(mrep);
2719 			return (error);
2720 		    }
2721 		    newvp = NFSTOV(np);
2722 		}
2723 		if (v3) {
2724 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2725 			if (!attrflag && *npp == NULL) {
2726 				m_freem(mrep);
2727 				if (newvp == dvp)
2728 					vrele(newvp);
2729 				else
2730 					vput(newvp);
2731 				return (ENOENT);
2732 			}
2733 		} else
2734 			nfsm_loadattr(newvp, (struct vattr *)0);
2735 	}
2736 	m_freem(mrep);
2737 nfsmout:
2738 	if (npp && *npp == NULL) {
2739 		if (error) {
2740 			if (newvp) {
2741 				if (newvp == dvp)
2742 					vrele(newvp);
2743 				else
2744 					vput(newvp);
2745 			}
2746 		} else
2747 			*npp = np;
2748 	}
2749 	return (error);
2750 }
2751 
2752 /*
2753  * Nfs Version 3 commit rpc
2754  */
2755 int
2756 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2757 {
2758 	caddr_t cp;
2759 	u_int32_t *tl;
2760 	int32_t t1, t2;
2761 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2762 	caddr_t bpos, dpos, cp2;
2763 	int error = 0, wccflag = NFSV3_WCCRATTR;
2764 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2765 
2766 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2767 		return (0);
2768 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2769 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2770 	nfsm_fhtom(vp, 1);
2771 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2772 	txdr_hyper(offset, tl);
2773 	tl += 2;
2774 	*tl = txdr_unsigned(cnt);
2775 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2776 	nfsm_wcc_data(vp, wccflag);
2777 	if (!error) {
2778 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2779 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2780 			NFSX_V3WRITEVERF)) {
2781 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2782 				NFSX_V3WRITEVERF);
2783 			error = NFSERR_STALEWRITEVERF;
2784 		}
2785 	}
2786 	m_freem(mrep);
2787 nfsmout:
2788 	return (error);
2789 }
2790 
2791 /*
2792  * Kludge City..
2793  * - make nfs_bmap() essentially a no-op that does no translation
2794  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2795  *   (Maybe I could use the process's page mapping, but I was concerned that
2796  *    Kernel Write might not be enabled and also figured copyout() would do
2797  *    a lot more work than bcopy() and also it currently happens in the
2798  *    context of the swapper process (2).
2799  *
2800  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2801  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2802  */
2803 static int
2804 nfs_bmap(struct vop_bmap_args *ap)
2805 {
2806 	if (ap->a_doffsetp != NULL)
2807 		*ap->a_doffsetp = ap->a_loffset;
2808 	if (ap->a_runp != NULL)
2809 		*ap->a_runp = 0;
2810 	if (ap->a_runb != NULL)
2811 		*ap->a_runb = 0;
2812 	return (0);
2813 }
2814 
2815 /*
2816  * Strategy routine.
2817  *
2818  * For async requests when nfsiod(s) are running, queue the request by
2819  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2820  * request.
2821  */
2822 static int
2823 nfs_strategy(struct vop_strategy_args *ap)
2824 {
2825 	struct bio *bio = ap->a_bio;
2826 	struct bio *nbio;
2827 	struct buf *bp = bio->bio_buf;
2828 	struct thread *td;
2829 	int error = 0;
2830 
2831 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2832 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2833 	KASSERT(BUF_REFCNT(bp) > 0,
2834 		("nfs_strategy: buffer %p not locked", bp));
2835 
2836 	if (bp->b_flags & B_ASYNC)
2837 		td = NULL;
2838 	else
2839 		td = curthread;	/* XXX */
2840 
2841         /*
2842 	 * We probably don't need to push an nbio any more since no
2843 	 * block conversion is required due to the use of 64 bit byte
2844 	 * offsets, but do it anyway.
2845          */
2846 	nbio = push_bio(bio);
2847 	nbio->bio_offset = bio->bio_offset;
2848 
2849 	/*
2850 	 * If the op is asynchronous and an i/o daemon is waiting
2851 	 * queue the request, wake it up and wait for completion
2852 	 * otherwise just do it ourselves.
2853 	 */
2854 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2855 		error = nfs_doio(ap->a_vp, nbio, td);
2856 	return (error);
2857 }
2858 
2859 /*
2860  * Mmap a file
2861  *
2862  * NB Currently unsupported.
2863  *
2864  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2865  */
2866 /* ARGSUSED */
2867 static int
2868 nfs_mmap(struct vop_mmap_args *ap)
2869 {
2870 	return (EINVAL);
2871 }
2872 
2873 /*
2874  * fsync vnode op. Just call nfs_flush() with commit == 1.
2875  *
2876  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2877  */
2878 /* ARGSUSED */
2879 static int
2880 nfs_fsync(struct vop_fsync_args *ap)
2881 {
2882 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2883 }
2884 
2885 /*
2886  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2887  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2888  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2889  * set the buffer contains data that has already been written to the server
2890  * and which now needs a commit RPC.
2891  *
2892  * If commit is 0 we only take one pass and only flush buffers containing new
2893  * dirty data.
2894  *
2895  * If commit is 1 we take two passes, issuing a commit RPC in the second
2896  * pass.
2897  *
2898  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2899  * to completely flush all pending data.
2900  *
2901  * Note that the RB_SCAN code properly handles the case where the
2902  * callback might block and directly or indirectly (another thread) cause
2903  * the RB tree to change.
2904  */
2905 
2906 #ifndef NFS_COMMITBVECSIZ
2907 #define NFS_COMMITBVECSIZ	16
2908 #endif
2909 
2910 struct nfs_flush_info {
2911 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2912 	struct thread *td;
2913 	struct vnode *vp;
2914 	int waitfor;
2915 	int slpflag;
2916 	int slptimeo;
2917 	int loops;
2918 	struct buf *bvary[NFS_COMMITBVECSIZ];
2919 	int bvsize;
2920 	off_t beg_off;
2921 	off_t end_off;
2922 };
2923 
2924 static int nfs_flush_bp(struct buf *bp, void *data);
2925 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2926 
2927 int
2928 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2929 {
2930 	struct nfsnode *np = VTONFS(vp);
2931 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2932 	struct nfs_flush_info info;
2933 	int error;
2934 
2935 	bzero(&info, sizeof(info));
2936 	info.td = td;
2937 	info.vp = vp;
2938 	info.waitfor = waitfor;
2939 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2940 	info.loops = 0;
2941 
2942 	do {
2943 		/*
2944 		 * Flush mode
2945 		 */
2946 		info.mode = NFI_FLUSHNEW;
2947 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2948 				nfs_flush_bp, &info);
2949 
2950 		/*
2951 		 * Take a second pass if committing and no error occured.
2952 		 * Clean up any left over collection (whether an error
2953 		 * occurs or not).
2954 		 */
2955 		if (commit && error == 0) {
2956 			info.mode = NFI_COMMIT;
2957 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2958 					nfs_flush_bp, &info);
2959 			if (info.bvsize)
2960 				error = nfs_flush_docommit(&info, error);
2961 		}
2962 
2963 		/*
2964 		 * Wait for pending I/O to complete before checking whether
2965 		 * any further dirty buffers exist.
2966 		 */
2967 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
2968 			vp->v_track_write.bk_waitflag = 1;
2969 			error = tsleep(&vp->v_track_write,
2970 				info.slpflag, "nfsfsync", info.slptimeo);
2971 			if (error) {
2972 				/*
2973 				 * We have to be able to break out if this
2974 				 * is an 'intr' mount.
2975 				 */
2976 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2977 					error = -EINTR;
2978 					break;
2979 				}
2980 
2981 				/*
2982 				 * Since we do not process pending signals,
2983 				 * once we get a PCATCH our tsleep() will no
2984 				 * longer sleep, switch to a fixed timeout
2985 				 * instead.
2986 				 */
2987 				if (info.slpflag == PCATCH) {
2988 					info.slpflag = 0;
2989 					info.slptimeo = 2 * hz;
2990 				}
2991 				error = 0;
2992 			}
2993 		}
2994 		++info.loops;
2995 		/*
2996 		 * Loop if we are flushing synchronous as well as committing,
2997 		 * and dirty buffers are still present.  Otherwise we might livelock.
2998 		 */
2999 	} while (waitfor == MNT_WAIT && commit &&
3000 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3001 
3002 	/*
3003 	 * The callbacks have to return a negative error to terminate the
3004 	 * RB scan.
3005 	 */
3006 	if (error < 0)
3007 		error = -error;
3008 
3009 	/*
3010 	 * Deal with any error collection
3011 	 */
3012 	if (np->n_flag & NWRITEERR) {
3013 		error = np->n_error;
3014 		np->n_flag &= ~NWRITEERR;
3015 	}
3016 	return (error);
3017 }
3018 
3019 
3020 static
3021 int
3022 nfs_flush_bp(struct buf *bp, void *data)
3023 {
3024 	struct nfs_flush_info *info = data;
3025 	off_t toff;
3026 	int error;
3027 
3028 	error = 0;
3029 	switch(info->mode) {
3030 	case NFI_FLUSHNEW:
3031 		crit_enter();
3032 		if (info->loops && info->waitfor == MNT_WAIT) {
3033 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3034 			if (error) {
3035 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3036 				if (info->slpflag & PCATCH)
3037 					lkflags |= LK_PCATCH;
3038 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3039 						     info->slptimeo);
3040 			}
3041 		} else {
3042 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3043 		}
3044 		if (error == 0) {
3045 			KKASSERT(bp->b_vp == info->vp);
3046 
3047 			if ((bp->b_flags & B_DELWRI) == 0)
3048 				panic("nfs_fsync: not dirty");
3049 			if (bp->b_flags & B_NEEDCOMMIT) {
3050 				BUF_UNLOCK(bp);
3051 				crit_exit();
3052 				break;
3053 			}
3054 			bremfree(bp);
3055 
3056 			bp->b_flags |= B_ASYNC;
3057 			crit_exit();
3058 			bwrite(bp);
3059 		} else {
3060 			crit_exit();
3061 			error = 0;
3062 		}
3063 		break;
3064 	case NFI_COMMIT:
3065 		/*
3066 		 * Only process buffers in need of a commit which we can
3067 		 * immediately lock.  This may prevent a buffer from being
3068 		 * committed, but the normal flush loop will block on the
3069 		 * same buffer so we shouldn't get into an endless loop.
3070 		 */
3071 		crit_enter();
3072 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3073 		    (B_DELWRI | B_NEEDCOMMIT) ||
3074 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3075 			crit_exit();
3076 			break;
3077 		}
3078 
3079 		KKASSERT(bp->b_vp == info->vp);
3080 		bremfree(bp);
3081 
3082 		/*
3083 		 * NOTE: storing the bp in the bvary[] basically sets
3084 		 * it up for a commit operation.
3085 		 *
3086 		 * We must call vfs_busy_pages() now so the commit operation
3087 		 * is interlocked with user modifications to memory mapped
3088 		 * pages.
3089 		 *
3090 		 * Note: to avoid loopback deadlocks, we do not
3091 		 * assign b_runningbufspace.
3092 		 */
3093 		bp->b_cmd = BUF_CMD_WRITE;
3094 		vfs_busy_pages(bp->b_vp, bp);
3095 		info->bvary[info->bvsize] = bp;
3096 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3097 		if (info->bvsize == 0 || toff < info->beg_off)
3098 			info->beg_off = toff;
3099 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3100 		if (info->bvsize == 0 || toff > info->end_off)
3101 			info->end_off = toff;
3102 		++info->bvsize;
3103 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3104 			error = nfs_flush_docommit(info, 0);
3105 			KKASSERT(info->bvsize == 0);
3106 		}
3107 		crit_exit();
3108 	}
3109 	return (error);
3110 }
3111 
3112 static
3113 int
3114 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3115 {
3116 	struct vnode *vp;
3117 	struct buf *bp;
3118 	off_t bytes;
3119 	int retv;
3120 	int i;
3121 
3122 	vp = info->vp;
3123 
3124 	if (info->bvsize > 0) {
3125 		/*
3126 		 * Commit data on the server, as required.  Note that
3127 		 * nfs_commit will use the vnode's cred for the commit.
3128 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3129 		 */
3130 		bytes = info->end_off - info->beg_off;
3131 		if (bytes > 0x40000000)
3132 			bytes = 0x40000000;
3133 		if (error) {
3134 			retv = -error;
3135 		} else {
3136 			retv = nfs_commit(vp, info->beg_off,
3137 					    (int)bytes, info->td);
3138 			if (retv == NFSERR_STALEWRITEVERF)
3139 				nfs_clearcommit(vp->v_mount);
3140 		}
3141 
3142 		/*
3143 		 * Now, either mark the blocks I/O done or mark the
3144 		 * blocks dirty, depending on whether the commit
3145 		 * succeeded.
3146 		 */
3147 		for (i = 0; i < info->bvsize; ++i) {
3148 			bp = info->bvary[i];
3149 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3150 			if (retv) {
3151 				/*
3152 				 * Error, leave B_DELWRI intact
3153 				 */
3154 				vfs_unbusy_pages(bp);
3155 				bp->b_cmd = BUF_CMD_DONE;
3156 				brelse(bp);
3157 			} else {
3158 				/*
3159 				 * Success, remove B_DELWRI ( bundirty() ).
3160 				 *
3161 				 * b_dirtyoff/b_dirtyend seem to be NFS
3162 				 * specific.  We should probably move that
3163 				 * into bundirty(). XXX
3164 				 *
3165 				 * We are faking an I/O write, we have to
3166 				 * start the transaction in order to
3167 				 * immediately biodone() it.
3168 				 */
3169 				crit_enter();
3170 				bp->b_flags |= B_ASYNC;
3171 				bundirty(bp);
3172 				bp->b_flags &= ~B_ERROR;
3173 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3174 				crit_exit();
3175 				biodone(&bp->b_bio1);
3176 			}
3177 		}
3178 		info->bvsize = 0;
3179 	}
3180 	return (error);
3181 }
3182 
3183 /*
3184  * NFS advisory byte-level locks.
3185  * Currently unsupported.
3186  *
3187  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3188  *		int a_flags)
3189  */
3190 static int
3191 nfs_advlock(struct vop_advlock_args *ap)
3192 {
3193 	struct nfsnode *np = VTONFS(ap->a_vp);
3194 
3195 	/*
3196 	 * The following kludge is to allow diskless support to work
3197 	 * until a real NFS lockd is implemented. Basically, just pretend
3198 	 * that this is a local lock.
3199 	 */
3200 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3201 }
3202 
3203 /*
3204  * Print out the contents of an nfsnode.
3205  *
3206  * nfs_print(struct vnode *a_vp)
3207  */
3208 static int
3209 nfs_print(struct vop_print_args *ap)
3210 {
3211 	struct vnode *vp = ap->a_vp;
3212 	struct nfsnode *np = VTONFS(vp);
3213 
3214 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3215 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3216 	if (vp->v_type == VFIFO)
3217 		fifo_printinfo(vp);
3218 	kprintf("\n");
3219 	return (0);
3220 }
3221 
3222 /*
3223  * nfs special file access vnode op.
3224  * Essentially just get vattr and then imitate iaccess() since the device is
3225  * local to the client.
3226  *
3227  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3228  */
3229 static int
3230 nfsspec_access(struct vop_access_args *ap)
3231 {
3232 	struct vattr *vap;
3233 	gid_t *gp;
3234 	struct ucred *cred = ap->a_cred;
3235 	struct vnode *vp = ap->a_vp;
3236 	mode_t mode = ap->a_mode;
3237 	struct vattr vattr;
3238 	int i;
3239 	int error;
3240 
3241 	/*
3242 	 * Disallow write attempts on filesystems mounted read-only;
3243 	 * unless the file is a socket, fifo, or a block or character
3244 	 * device resident on the filesystem.
3245 	 */
3246 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3247 		switch (vp->v_type) {
3248 		case VREG:
3249 		case VDIR:
3250 		case VLNK:
3251 			return (EROFS);
3252 		default:
3253 			break;
3254 		}
3255 	}
3256 	/*
3257 	 * If you're the super-user,
3258 	 * you always get access.
3259 	 */
3260 	if (cred->cr_uid == 0)
3261 		return (0);
3262 	vap = &vattr;
3263 	error = VOP_GETATTR(vp, vap);
3264 	if (error)
3265 		return (error);
3266 	/*
3267 	 * Access check is based on only one of owner, group, public.
3268 	 * If not owner, then check group. If not a member of the
3269 	 * group, then check public access.
3270 	 */
3271 	if (cred->cr_uid != vap->va_uid) {
3272 		mode >>= 3;
3273 		gp = cred->cr_groups;
3274 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3275 			if (vap->va_gid == *gp)
3276 				goto found;
3277 		mode >>= 3;
3278 found:
3279 		;
3280 	}
3281 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3282 	return (error);
3283 }
3284 
3285 /*
3286  * Read wrapper for special devices.
3287  *
3288  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3289  *		struct ucred *a_cred)
3290  */
3291 static int
3292 nfsspec_read(struct vop_read_args *ap)
3293 {
3294 	struct nfsnode *np = VTONFS(ap->a_vp);
3295 
3296 	/*
3297 	 * Set access flag.
3298 	 */
3299 	np->n_flag |= NACC;
3300 	getnanotime(&np->n_atim);
3301 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3302 }
3303 
3304 /*
3305  * Write wrapper for special devices.
3306  *
3307  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3308  *		 struct ucred *a_cred)
3309  */
3310 static int
3311 nfsspec_write(struct vop_write_args *ap)
3312 {
3313 	struct nfsnode *np = VTONFS(ap->a_vp);
3314 
3315 	/*
3316 	 * Set update flag.
3317 	 */
3318 	np->n_flag |= NUPD;
3319 	getnanotime(&np->n_mtim);
3320 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3321 }
3322 
3323 /*
3324  * Close wrapper for special devices.
3325  *
3326  * Update the times on the nfsnode then do device close.
3327  *
3328  * nfsspec_close(struct vnode *a_vp, int a_fflag)
3329  */
3330 static int
3331 nfsspec_close(struct vop_close_args *ap)
3332 {
3333 	struct vnode *vp = ap->a_vp;
3334 	struct nfsnode *np = VTONFS(vp);
3335 	struct vattr vattr;
3336 
3337 	if (np->n_flag & (NACC | NUPD)) {
3338 		np->n_flag |= NCHG;
3339 		if (vp->v_sysref.refcnt == 1 &&
3340 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3341 			VATTR_NULL(&vattr);
3342 			if (np->n_flag & NACC)
3343 				vattr.va_atime = np->n_atim;
3344 			if (np->n_flag & NUPD)
3345 				vattr.va_mtime = np->n_mtim;
3346 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3347 		}
3348 	}
3349 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3350 }
3351 
3352 /*
3353  * Read wrapper for fifos.
3354  *
3355  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3356  *		struct ucred *a_cred)
3357  */
3358 static int
3359 nfsfifo_read(struct vop_read_args *ap)
3360 {
3361 	struct nfsnode *np = VTONFS(ap->a_vp);
3362 
3363 	/*
3364 	 * Set access flag.
3365 	 */
3366 	np->n_flag |= NACC;
3367 	getnanotime(&np->n_atim);
3368 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3369 }
3370 
3371 /*
3372  * Write wrapper for fifos.
3373  *
3374  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3375  *		 struct ucred *a_cred)
3376  */
3377 static int
3378 nfsfifo_write(struct vop_write_args *ap)
3379 {
3380 	struct nfsnode *np = VTONFS(ap->a_vp);
3381 
3382 	/*
3383 	 * Set update flag.
3384 	 */
3385 	np->n_flag |= NUPD;
3386 	getnanotime(&np->n_mtim);
3387 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3388 }
3389 
3390 /*
3391  * Close wrapper for fifos.
3392  *
3393  * Update the times on the nfsnode then do fifo close.
3394  *
3395  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3396  */
3397 static int
3398 nfsfifo_close(struct vop_close_args *ap)
3399 {
3400 	struct vnode *vp = ap->a_vp;
3401 	struct nfsnode *np = VTONFS(vp);
3402 	struct vattr vattr;
3403 	struct timespec ts;
3404 
3405 	if (np->n_flag & (NACC | NUPD)) {
3406 		getnanotime(&ts);
3407 		if (np->n_flag & NACC)
3408 			np->n_atim = ts;
3409 		if (np->n_flag & NUPD)
3410 			np->n_mtim = ts;
3411 		np->n_flag |= NCHG;
3412 		if (vp->v_sysref.refcnt == 1 &&
3413 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3414 			VATTR_NULL(&vattr);
3415 			if (np->n_flag & NACC)
3416 				vattr.va_atime = np->n_atim;
3417 			if (np->n_flag & NUPD)
3418 				vattr.va_mtime = np->n_mtim;
3419 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3420 		}
3421 	}
3422 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3423 }
3424 
3425