xref: /dragonfly/sys/vfs/nfs/nfs_vnops.c (revision a68e0df0)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsfifo_read (struct vop_read_args *);
98 static int	nfsfifo_write (struct vop_write_args *);
99 static int	nfsfifo_close (struct vop_close_args *);
100 #define nfs_poll vop_nopoll
101 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
102 static	int	nfs_lookup (struct vop_old_lookup_args *);
103 static	int	nfs_create (struct vop_old_create_args *);
104 static	int	nfs_mknod (struct vop_old_mknod_args *);
105 static	int	nfs_open (struct vop_open_args *);
106 static	int	nfs_close (struct vop_close_args *);
107 static	int	nfs_access (struct vop_access_args *);
108 static	int	nfs_getattr (struct vop_getattr_args *);
109 static	int	nfs_setattr (struct vop_setattr_args *);
110 static	int	nfs_read (struct vop_read_args *);
111 static	int	nfs_mmap (struct vop_mmap_args *);
112 static	int	nfs_fsync (struct vop_fsync_args *);
113 static	int	nfs_remove (struct vop_old_remove_args *);
114 static	int	nfs_link (struct vop_old_link_args *);
115 static	int	nfs_rename (struct vop_old_rename_args *);
116 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
117 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
118 static	int	nfs_symlink (struct vop_old_symlink_args *);
119 static	int	nfs_readdir (struct vop_readdir_args *);
120 static	int	nfs_bmap (struct vop_bmap_args *);
121 static	int	nfs_strategy (struct vop_strategy_args *);
122 static	int	nfs_lookitup (struct vnode *, const char *, int,
123 			struct ucred *, struct thread *, struct nfsnode **);
124 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
125 static int	nfs_laccess (struct vop_access_args *);
126 static int	nfs_readlink (struct vop_readlink_args *);
127 static int	nfs_print (struct vop_print_args *);
128 static int	nfs_advlock (struct vop_advlock_args *);
129 
130 static	int	nfs_nresolve (struct vop_nresolve_args *);
131 /*
132  * Global vfs data structures for nfs
133  */
134 struct vop_ops nfsv2_vnode_vops = {
135 	.vop_default =		vop_defaultop,
136 	.vop_access =		nfs_access,
137 	.vop_advlock =		nfs_advlock,
138 	.vop_bmap =		nfs_bmap,
139 	.vop_close =		nfs_close,
140 	.vop_old_create =	nfs_create,
141 	.vop_fsync =		nfs_fsync,
142 	.vop_getattr =		nfs_getattr,
143 	.vop_getpages =		vop_stdgetpages,
144 	.vop_putpages =		vop_stdputpages,
145 	.vop_inactive =		nfs_inactive,
146 	.vop_old_link =		nfs_link,
147 	.vop_old_lookup =	nfs_lookup,
148 	.vop_old_mkdir =	nfs_mkdir,
149 	.vop_old_mknod =	nfs_mknod,
150 	.vop_mmap =		nfs_mmap,
151 	.vop_open =		nfs_open,
152 	.vop_poll =		nfs_poll,
153 	.vop_print =		nfs_print,
154 	.vop_read =		nfs_read,
155 	.vop_readdir =		nfs_readdir,
156 	.vop_readlink =		nfs_readlink,
157 	.vop_reclaim =		nfs_reclaim,
158 	.vop_old_remove =	nfs_remove,
159 	.vop_old_rename =	nfs_rename,
160 	.vop_old_rmdir =	nfs_rmdir,
161 	.vop_setattr =		nfs_setattr,
162 	.vop_strategy =		nfs_strategy,
163 	.vop_old_symlink =	nfs_symlink,
164 	.vop_write =		nfs_write,
165 	.vop_nresolve =		nfs_nresolve
166 };
167 
168 /*
169  * Special device vnode ops
170  */
171 struct vop_ops nfsv2_spec_vops = {
172 	.vop_default =		vop_defaultop,
173 	.vop_access =		nfs_laccess,
174 	.vop_close =		nfs_close,
175 	.vop_fsync =		nfs_fsync,
176 	.vop_getattr =		nfs_getattr,
177 	.vop_inactive =		nfs_inactive,
178 	.vop_print =		nfs_print,
179 	.vop_read =		vop_stdnoread,
180 	.vop_reclaim =		nfs_reclaim,
181 	.vop_setattr =		nfs_setattr,
182 	.vop_write =		vop_stdnowrite
183 };
184 
185 struct vop_ops nfsv2_fifo_vops = {
186 	.vop_default =		fifo_vnoperate,
187 	.vop_access =		nfs_laccess,
188 	.vop_close =		nfsfifo_close,
189 	.vop_fsync =		nfs_fsync,
190 	.vop_getattr =		nfs_getattr,
191 	.vop_inactive =		nfs_inactive,
192 	.vop_print =		nfs_print,
193 	.vop_read =		nfsfifo_read,
194 	.vop_reclaim =		nfs_reclaim,
195 	.vop_setattr =		nfs_setattr,
196 	.vop_write =		nfsfifo_write
197 };
198 
199 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
200 				  struct componentname *cnp,
201 				  struct vattr *vap);
202 static int	nfs_removerpc (struct vnode *dvp, const char *name,
203 				   int namelen,
204 				   struct ucred *cred, struct thread *td);
205 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
206 				   int fnamelen, struct vnode *tdvp,
207 				   const char *tnameptr, int tnamelen,
208 				   struct ucred *cred, struct thread *td);
209 static int	nfs_renameit (struct vnode *sdvp,
210 				  struct componentname *scnp,
211 				  struct sillyrename *sp);
212 
213 SYSCTL_DECL(_vfs_nfs);
214 
215 static int nfs_flush_on_rename = 1;
216 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
217 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
218 static int nfs_flush_on_hlink = 0;
219 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
220 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
221 
222 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
223 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
224 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
225 
226 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
227 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
228 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
229 
230 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
231 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
232 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
233 
234 static int	nfsv3_commit_on_close = 0;
235 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
236 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
237 #if 0
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
239 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
240 
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
242 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
243 #endif
244 
245 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
246 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
247 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
248 
249 /*
250  * Returns whether a name component is a degenerate '.' or '..'.
251  */
252 static __inline
253 int
254 nlcdegenerate(struct nlcomponent *nlc)
255 {
256 	if (nlc->nlc_namelen == 1 && nlc->nlc_nameptr[0] == '.')
257 		return(1);
258 	if (nlc->nlc_namelen == 2 &&
259 	    nlc->nlc_nameptr[0] == '.' && nlc->nlc_nameptr[1] == '.')
260 		return(1);
261 	return(0);
262 }
263 
264 static int
265 nfs3_access_otw(struct vnode *vp, int wmode,
266 		struct thread *td, struct ucred *cred)
267 {
268 	struct nfsnode *np = VTONFS(vp);
269 	int attrflag;
270 	int error = 0;
271 	u_int32_t *tl;
272 	u_int32_t rmode;
273 	struct nfsm_info info;
274 
275 	info.mrep = NULL;
276 	info.v3 = 1;
277 
278 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
279 	nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
280 		     NFSX_FH(info.v3) + NFSX_UNSIGNED);
281 	ERROROUT(nfsm_fhtom(&info, vp));
282 	tl = nfsm_build(&info, NFSX_UNSIGNED);
283 	*tl = txdr_unsigned(wmode);
284 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
285 	ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
286 	if (error == 0) {
287 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
288 		rmode = fxdr_unsigned(u_int32_t, *tl);
289 		np->n_mode = rmode;
290 		np->n_modeuid = cred->cr_uid;
291 		np->n_modestamp = mycpu->gd_time_seconds;
292 	}
293 	m_freem(info.mrep);
294 	info.mrep = NULL;
295 nfsmout:
296 	return error;
297 }
298 
299 /*
300  * nfs access vnode op.
301  * For nfs version 2, just return ok. File accesses may fail later.
302  * For nfs version 3, use the access rpc to check accessibility. If file modes
303  * are changed on the server, accesses might still fail later.
304  *
305  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
306  */
307 static int
308 nfs_access(struct vop_access_args *ap)
309 {
310 	struct ucred *cred;
311 	struct vnode *vp = ap->a_vp;
312 	thread_t td = curthread;
313 	int error = 0;
314 	u_int32_t mode, wmode;
315 	struct nfsnode *np = VTONFS(vp);
316 	int v3 = NFS_ISV3(vp);
317 
318 	/*
319 	 * Disallow write attempts on filesystems mounted read-only;
320 	 * unless the file is a socket, fifo, or a block or character
321 	 * device resident on the filesystem.
322 	 */
323 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
324 		switch (vp->v_type) {
325 		case VREG:
326 		case VDIR:
327 		case VLNK:
328 			return (EROFS);
329 		default:
330 			break;
331 		}
332 	}
333 
334 	/*
335 	 * The NFS protocol passes only the effective uid/gid over the wire but
336 	 * we need to check access against real ids if AT_EACCESS not set.
337 	 * Handle this case by cloning the credentials and setting the
338 	 * effective ids to the real ones.
339 	 */
340 	if (ap->a_flags & AT_EACCESS) {
341 		cred = crhold(ap->a_cred);
342 	} else {
343 		cred = crdup(ap->a_cred);
344 		cred->cr_uid = cred->cr_ruid;
345 		cred->cr_gid = cred->cr_rgid;
346 	}
347 
348 	/*
349 	 * For nfs v3, check to see if we have done this recently, and if
350 	 * so return our cached result instead of making an ACCESS call.
351 	 * If not, do an access rpc, otherwise you are stuck emulating
352 	 * ufs_access() locally using the vattr. This may not be correct,
353 	 * since the server may apply other access criteria such as
354 	 * client uid-->server uid mapping that we do not know about.
355 	 */
356 	if (v3) {
357 		if (ap->a_mode & VREAD)
358 			mode = NFSV3ACCESS_READ;
359 		else
360 			mode = 0;
361 		if (vp->v_type != VDIR) {
362 			if (ap->a_mode & VWRITE)
363 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
364 			if (ap->a_mode & VEXEC)
365 				mode |= NFSV3ACCESS_EXECUTE;
366 		} else {
367 			if (ap->a_mode & VWRITE)
368 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
369 					 NFSV3ACCESS_DELETE);
370 			if (ap->a_mode & VEXEC)
371 				mode |= NFSV3ACCESS_LOOKUP;
372 		}
373 		/* XXX safety belt, only make blanket request if caching */
374 		if (nfsaccess_cache_timeout > 0) {
375 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
376 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
377 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
378 		} else {
379 			wmode = mode;
380 		}
381 
382 		/*
383 		 * Does our cached result allow us to give a definite yes to
384 		 * this request?
385 		 */
386 		if (np->n_modestamp &&
387 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
388 		   (cred->cr_uid == np->n_modeuid) &&
389 		   ((np->n_mode & mode) == mode)) {
390 			nfsstats.accesscache_hits++;
391 		} else {
392 			/*
393 			 * Either a no, or a don't know.  Go to the wire.
394 			 */
395 			nfsstats.accesscache_misses++;
396 		        error = nfs3_access_otw(vp, wmode, td, cred);
397 			if (!error) {
398 				if ((np->n_mode & mode) != mode) {
399 					error = EACCES;
400 				}
401 			}
402 		}
403 	} else {
404 		if ((error = nfs_laccess(ap)) != 0) {
405 			crfree(cred);
406 			return (error);
407 		}
408 
409 		/*
410 		 * Attempt to prevent a mapped root from accessing a file
411 		 * which it shouldn't.  We try to read a byte from the file
412 		 * if the user is root and the file is not zero length.
413 		 * After calling nfs_laccess, we should have the correct
414 		 * file size cached.
415 		 */
416 		if (cred->cr_uid == 0 && (ap->a_mode & VREAD)
417 		    && VTONFS(vp)->n_size > 0) {
418 			struct iovec aiov;
419 			struct uio auio;
420 			char buf[1];
421 
422 			aiov.iov_base = buf;
423 			aiov.iov_len = 1;
424 			auio.uio_iov = &aiov;
425 			auio.uio_iovcnt = 1;
426 			auio.uio_offset = 0;
427 			auio.uio_resid = 1;
428 			auio.uio_segflg = UIO_SYSSPACE;
429 			auio.uio_rw = UIO_READ;
430 			auio.uio_td = td;
431 
432 			if (vp->v_type == VREG) {
433 				error = nfs_readrpc_uio(vp, &auio);
434 			} else if (vp->v_type == VDIR) {
435 				char* bp;
436 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
437 				aiov.iov_base = bp;
438 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
439 				error = nfs_readdirrpc_uio(vp, &auio);
440 				kfree(bp, M_TEMP);
441 			} else if (vp->v_type == VLNK) {
442 				error = nfs_readlinkrpc_uio(vp, &auio);
443 			} else {
444 				error = EACCES;
445 			}
446 		}
447 	}
448 	/*
449 	 * [re]record creds for reading and/or writing if access
450 	 * was granted.  Assume the NFS server will grant read access
451 	 * for execute requests.
452 	 */
453 	if (error == 0) {
454 		if ((ap->a_mode & (VREAD|VEXEC)) && cred != np->n_rucred) {
455 			crhold(cred);
456 			if (np->n_rucred)
457 				crfree(np->n_rucred);
458 			np->n_rucred = cred;
459 		}
460 		if ((ap->a_mode & VWRITE) && cred != np->n_wucred) {
461 			crhold(cred);
462 			if (np->n_wucred)
463 				crfree(np->n_wucred);
464 			np->n_wucred = cred;
465 		}
466 	}
467 	crfree(cred);
468 	return(error);
469 }
470 
471 /*
472  * nfs open vnode op
473  * Check to see if the type is ok
474  * and that deletion is not in progress.
475  * For paged in text files, you will need to flush the page cache
476  * if consistency is lost.
477  *
478  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
479  *	    struct file *a_fp)
480  */
481 /* ARGSUSED */
482 static int
483 nfs_open(struct vop_open_args *ap)
484 {
485 	struct vnode *vp = ap->a_vp;
486 	struct nfsnode *np = VTONFS(vp);
487 	struct vattr vattr;
488 	int error;
489 
490 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
491 #ifdef DIAGNOSTIC
492 		kprintf("open eacces vtyp=%d\n",vp->v_type);
493 #endif
494 		return (EOPNOTSUPP);
495 	}
496 
497 	/*
498 	 * Save valid creds for reading and writing for later RPCs.
499 	 */
500 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
501 		crhold(ap->a_cred);
502 		if (np->n_rucred)
503 			crfree(np->n_rucred);
504 		np->n_rucred = ap->a_cred;
505 	}
506 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
507 		crhold(ap->a_cred);
508 		if (np->n_wucred)
509 			crfree(np->n_wucred);
510 		np->n_wucred = ap->a_cred;
511 	}
512 
513 	/*
514 	 * Clear the attribute cache only if opening with write access.  It
515 	 * is unclear if we should do this at all here, but we certainly
516 	 * should not clear the cache unconditionally simply because a file
517 	 * is being opened.
518 	 */
519 	if (ap->a_mode & FWRITE)
520 		np->n_attrstamp = 0;
521 
522 	/*
523 	 * For normal NFS, reconcile changes made locally verses
524 	 * changes made remotely.  Note that VOP_GETATTR only goes
525 	 * to the wire if the cached attribute has timed out or been
526 	 * cleared.
527 	 *
528 	 * If local modifications have been made clear the attribute
529 	 * cache to force an attribute and modified time check.  If
530 	 * GETATTR detects that the file has been changed by someone
531 	 * other then us it will set NRMODIFIED.
532 	 *
533 	 * If we are opening a directory and local changes have been
534 	 * made we have to invalidate the cache in order to ensure
535 	 * that we get the most up-to-date information from the
536 	 * server.  XXX
537 	 */
538 	if (np->n_flag & NLMODIFIED) {
539 		np->n_attrstamp = 0;
540 		if (vp->v_type == VDIR) {
541 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
542 			if (error == EINTR)
543 				return (error);
544 			nfs_invaldir(vp);
545 		}
546 	}
547 	error = VOP_GETATTR(vp, &vattr);
548 	if (error)
549 		return (error);
550 	if (np->n_flag & NRMODIFIED) {
551 		if (vp->v_type == VDIR)
552 			nfs_invaldir(vp);
553 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
554 		if (error == EINTR)
555 			return (error);
556 		np->n_flag &= ~NRMODIFIED;
557 	}
558 
559 	return (vop_stdopen(ap));
560 }
561 
562 /*
563  * nfs close vnode op
564  * What an NFS client should do upon close after writing is a debatable issue.
565  * Most NFS clients push delayed writes to the server upon close, basically for
566  * two reasons:
567  * 1 - So that any write errors may be reported back to the client process
568  *     doing the close system call. By far the two most likely errors are
569  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
570  * 2 - To put a worst case upper bound on cache inconsistency between
571  *     multiple clients for the file.
572  * There is also a consistency problem for Version 2 of the protocol w.r.t.
573  * not being able to tell if other clients are writing a file concurrently,
574  * since there is no way of knowing if the changed modify time in the reply
575  * is only due to the write for this client.
576  * (NFS Version 3 provides weak cache consistency data in the reply that
577  *  should be sufficient to detect and handle this case.)
578  *
579  * The current code does the following:
580  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
581  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
582  *                     or commit them (this satisfies 1 and 2 except for the
583  *                     case where the server crashes after this close but
584  *                     before the commit RPC, which is felt to be "good
585  *                     enough". Changing the last argument to nfs_flush() to
586  *                     a 1 would force a commit operation, if it is felt a
587  *                     commit is necessary now.
588  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
589  *                     1 should be dealt with via an fsync() system call for
590  *                     cases where write errors are important.
591  *
592  * nfs_close(struct vnode *a_vp, int a_fflag)
593  */
594 /* ARGSUSED */
595 static int
596 nfs_close(struct vop_close_args *ap)
597 {
598 	struct vnode *vp = ap->a_vp;
599 	struct nfsnode *np = VTONFS(vp);
600 	int error = 0;
601 	thread_t td = curthread;
602 
603 	if (vp->v_type == VREG) {
604 	    if (np->n_flag & NLMODIFIED) {
605 		if (NFS_ISV3(vp)) {
606 		    /*
607 		     * Under NFSv3 we have dirty buffers to dispose of.  We
608 		     * must flush them to the NFS server.  We have the option
609 		     * of waiting all the way through the commit rpc or just
610 		     * waiting for the initial write.  The default is to only
611 		     * wait through the initial write so the data is in the
612 		     * server's cache, which is roughly similar to the state
613 		     * a standard disk subsystem leaves the file in on close().
614 		     *
615 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
616 		     * potential races with other processes, and certainly
617 		     * cannot clear it if we don't commit.
618 		     */
619 		    int cm = nfsv3_commit_on_close ? 1 : 0;
620 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
621 		    /* np->n_flag &= ~NLMODIFIED; */
622 		} else {
623 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
624 		}
625 		np->n_attrstamp = 0;
626 	    }
627 	    if (np->n_flag & NWRITEERR) {
628 		np->n_flag &= ~NWRITEERR;
629 		error = np->n_error;
630 	    }
631 	}
632 	vop_stdclose(ap);
633 	return (error);
634 }
635 
636 /*
637  * nfs getattr call from vfs.
638  *
639  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
640  */
641 static int
642 nfs_getattr(struct vop_getattr_args *ap)
643 {
644 	struct vnode *vp = ap->a_vp;
645 	struct nfsnode *np = VTONFS(vp);
646 	struct nfsmount *nmp;
647 	int error = 0;
648 	thread_t td = curthread;
649 	struct nfsm_info info;
650 
651 	info.mrep = NULL;
652 	info.v3 = NFS_ISV3(vp);
653 	nmp = VFSTONFS(vp->v_mount);
654 
655 	/*
656 	 * Update local times for special files.
657 	 */
658 	if (np->n_flag & (NACC | NUPD))
659 		np->n_flag |= NCHG;
660 	/*
661 	 * First look in the cache.
662 	 */
663 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
664 		goto done;
665 
666 	if (info.v3 && nfsaccess_cache_timeout > 0) {
667 		nfsstats.accesscache_misses++;
668 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
669 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
670 			goto done;
671 	}
672 
673 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
674 	nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
675 	ERROROUT(nfsm_fhtom(&info, vp));
676 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
677 				nfs_vpcred(vp, ND_CHECK), &error));
678 	if (error == 0) {
679 		ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
680 	}
681 	m_freem(info.mrep);
682 	info.mrep = NULL;
683 done:
684 	/*
685 	 * NFS doesn't support chflags flags.  If the nfs mount was
686 	 * made -o cache set the UF_CACHE bit for swapcache.
687 	 */
688 	if ((nmp->nm_flag & NFSMNT_CACHE) && (vp->v_flag & VROOT))
689 		ap->a_vap->va_flags |= UF_CACHE;
690 nfsmout:
691 	return (error);
692 }
693 
694 /*
695  * nfs setattr call.
696  *
697  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
698  */
699 static int
700 nfs_setattr(struct vop_setattr_args *ap)
701 {
702 	struct vnode *vp = ap->a_vp;
703 	struct nfsnode *np = VTONFS(vp);
704 	struct vattr *vap = ap->a_vap;
705 	int biosize = vp->v_mount->mnt_stat.f_iosize;
706 	int error = 0;
707 	int boff;
708 	off_t tsize;
709 	thread_t td = curthread;
710 
711 #ifndef nolint
712 	tsize = (off_t)0;
713 #endif
714 
715 	/*
716 	 * Setting of flags is not supported.
717 	 */
718 	if (vap->va_flags != VNOVAL)
719 		return (EOPNOTSUPP);
720 
721 	/*
722 	 * Disallow write attempts if the filesystem is mounted read-only.
723 	 */
724   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
725 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
726 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
727 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
728 		return (EROFS);
729 
730 	if (vap->va_size != VNOVAL) {
731 		/*
732 		 * truncation requested
733 		 */
734  		switch (vp->v_type) {
735  		case VDIR:
736  			return (EISDIR);
737  		case VCHR:
738  		case VBLK:
739  		case VSOCK:
740  		case VFIFO:
741 			if (vap->va_mtime.tv_sec == VNOVAL &&
742 			    vap->va_atime.tv_sec == VNOVAL &&
743 			    vap->va_mode == (mode_t)VNOVAL &&
744 			    vap->va_uid == (uid_t)VNOVAL &&
745 			    vap->va_gid == (gid_t)VNOVAL)
746 				return (0);
747  			vap->va_size = VNOVAL;
748  			break;
749  		default:
750 			/*
751 			 * Disallow write attempts if the filesystem is
752 			 * mounted read-only.
753 			 */
754 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
755 				return (EROFS);
756 
757 			tsize = np->n_size;
758 again:
759 			boff = (int)vap->va_size & (biosize - 1);
760 			error = nfs_meta_setsize(vp, td, vap->va_size, 0);
761 
762 #if 0
763  			if (np->n_flag & NLMODIFIED) {
764  			    if (vap->va_size == 0)
765  				error = nfs_vinvalbuf(vp, 0, 1);
766  			    else
767  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
768  			}
769 #endif
770 			/*
771 			 * note: this loop case almost always happens at
772 			 * least once per truncation.
773 			 */
774 			if (error == 0 && np->n_size != vap->va_size)
775 				goto again;
776 			np->n_vattr.va_size = vap->va_size;
777 			break;
778 		}
779 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
780 		/*
781 		 * What to do.  If we are modifying the mtime we lose
782 		 * mtime detection of changes made by the server or other
783 		 * clients.  But programs like rsync/rdist/cpdup are going
784 		 * to call utimes a lot.  We don't want to piecemeal sync.
785 		 *
786 		 * For now sync if any prior remote changes were detected,
787 		 * but allow us to lose track of remote changes made during
788 		 * the utimes operation.
789 		 */
790 		if (np->n_flag & NRMODIFIED)
791 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
792 		if (error == EINTR)
793 			return (error);
794 		if (error == 0) {
795 			if (vap->va_mtime.tv_sec != VNOVAL) {
796 				np->n_mtime = vap->va_mtime.tv_sec;
797 			}
798 		}
799 	}
800 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
801 
802 	/*
803 	 * Sanity check if a truncation was issued.  This should only occur
804 	 * if multiple processes are racing on the same file.
805 	 */
806 	if (error == 0 && vap->va_size != VNOVAL &&
807 	    np->n_size != vap->va_size) {
808 		kprintf("NFS ftruncate: server disagrees on the file size: "
809 			"%jd/%jd/%jd\n",
810 			(intmax_t)tsize,
811 			(intmax_t)vap->va_size,
812 			(intmax_t)np->n_size);
813 		goto again;
814 	}
815 	if (error && vap->va_size != VNOVAL) {
816 		np->n_size = np->n_vattr.va_size = tsize;
817 		nfs_meta_setsize(vp, td, np->n_size, 0);
818 	}
819 	return (error);
820 }
821 
822 /*
823  * Do an nfs setattr rpc.
824  */
825 static int
826 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
827 	       struct ucred *cred, struct thread *td)
828 {
829 	struct nfsv2_sattr *sp;
830 	struct nfsnode *np = VTONFS(vp);
831 	u_int32_t *tl;
832 	int error = 0, wccflag = NFSV3_WCCRATTR;
833 	struct nfsm_info info;
834 
835 	info.mrep = NULL;
836 	info.v3 = NFS_ISV3(vp);
837 
838 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
839 	nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
840 		     NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
841 	ERROROUT(nfsm_fhtom(&info, vp));
842 	if (info.v3) {
843 		nfsm_v3attrbuild(&info, vap, TRUE);
844 		tl = nfsm_build(&info, NFSX_UNSIGNED);
845 		*tl = nfs_false;
846 	} else {
847 		sp = nfsm_build(&info, NFSX_V2SATTR);
848 		if (vap->va_mode == (mode_t)VNOVAL)
849 			sp->sa_mode = nfs_xdrneg1;
850 		else
851 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
852 		if (vap->va_uid == (uid_t)VNOVAL)
853 			sp->sa_uid = nfs_xdrneg1;
854 		else
855 			sp->sa_uid = txdr_unsigned(vap->va_uid);
856 		if (vap->va_gid == (gid_t)VNOVAL)
857 			sp->sa_gid = nfs_xdrneg1;
858 		else
859 			sp->sa_gid = txdr_unsigned(vap->va_gid);
860 		sp->sa_size = txdr_unsigned(vap->va_size);
861 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
862 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
863 	}
864 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
865 	if (info.v3) {
866 		np->n_modestamp = 0;
867 		ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
868 	} else {
869 		ERROROUT(nfsm_loadattr(&info, vp, NULL));
870 	}
871 	m_freem(info.mrep);
872 	info.mrep = NULL;
873 nfsmout:
874 	return (error);
875 }
876 
877 static
878 void
879 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
880 {
881 	if (nctimeout == 0)
882 		nctimeout = 1;
883 	else
884 		nctimeout *= hz;
885 	cache_setvp(nch, vp);
886 	cache_settimeout(nch, nctimeout);
887 }
888 
889 /*
890  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
891  * nfs_lookup() until all remaining new api calls are implemented.
892  *
893  * Resolve a namecache entry.  This function is passed a locked ncp and
894  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
895  */
896 static int
897 nfs_nresolve(struct vop_nresolve_args *ap)
898 {
899 	struct thread *td = curthread;
900 	struct namecache *ncp;
901 	struct ucred *cred;
902 	struct nfsnode *np;
903 	struct vnode *dvp;
904 	struct vnode *nvp;
905 	nfsfh_t *fhp;
906 	int attrflag;
907 	int fhsize;
908 	int error;
909 	int tmp_error;
910 	int len;
911 	struct nfsm_info info;
912 
913 	cred = ap->a_cred;
914 	dvp = ap->a_dvp;
915 
916 	if ((error = vget(dvp, LK_SHARED)) != 0)
917 		return (error);
918 
919 	info.mrep = NULL;
920 	info.v3 = NFS_ISV3(dvp);
921 
922 	nvp = NULL;
923 	nfsstats.lookupcache_misses++;
924 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
925 	ncp = ap->a_nch->ncp;
926 	len = ncp->nc_nlen;
927 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
928 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
929 	ERROROUT(nfsm_fhtom(&info, dvp));
930 	ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
931 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
932 				ap->a_cred, &error));
933 	if (error) {
934 		/*
935 		 * Cache negatve lookups to reduce NFS traffic, but use
936 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
937 		 * XXX we should add a namecache flag for no-caching
938 		 * to uncache the negative hit as soon as possible, but
939 		 * we cannot simply destroy the entry because it is used
940 		 * as a placeholder by the caller.
941 		 *
942 		 * The refactored nfs code will overwrite a non-zero error
943 		 * with 0 when we use ERROROUT(), so don't here.
944 		 */
945 		if (error == ENOENT)
946 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
947 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
948 					     NFS_LATTR_NOSHRINK);
949 		if (tmp_error) {
950 			error = tmp_error;
951 			goto nfsmout;
952 		}
953 		m_freem(info.mrep);
954 		info.mrep = NULL;
955 		goto nfsmout;
956 	}
957 
958 	/*
959 	 * Success, get the file handle, do various checks, and load
960 	 * post-operation data from the reply packet.  Theoretically
961 	 * we should never be looking up "." so, theoretically, we
962 	 * should never get the same file handle as our directory.  But
963 	 * we check anyway. XXX
964 	 *
965 	 * Note that no timeout is set for the positive cache hit.  We
966 	 * assume, theoretically, that ESTALE returns will be dealt with
967 	 * properly to handle NFS races and in anycase we cannot depend
968 	 * on a timeout to deal with NFS open/create/excl issues so instead
969 	 * of a bad hack here the rest of the NFS client code needs to do
970 	 * the right thing.
971 	 */
972 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
973 
974 	np = VTONFS(dvp);
975 	if (NFS_CMPFH(np, fhp, fhsize)) {
976 		vref(dvp);
977 		nvp = dvp;
978 	} else {
979 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
980 		if (error) {
981 			m_freem(info.mrep);
982 			info.mrep = NULL;
983 			vput(dvp);
984 			return (error);
985 		}
986 		nvp = NFSTOV(np);
987 	}
988 	if (info.v3) {
989 		ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
990 					  NFS_LATTR_NOSHRINK));
991 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
992 					  NFS_LATTR_NOSHRINK));
993 	} else {
994 		ERROROUT(nfsm_loadattr(&info, nvp, NULL));
995 	}
996 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
997 	m_freem(info.mrep);
998 	info.mrep = NULL;
999 nfsmout:
1000 	vput(dvp);
1001 	if (nvp) {
1002 		if (nvp == dvp)
1003 			vrele(nvp);
1004 		else
1005 			vput(nvp);
1006 	}
1007 	return (error);
1008 }
1009 
1010 /*
1011  * 'cached' nfs directory lookup
1012  *
1013  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
1014  *
1015  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
1016  *	      struct componentname *a_cnp)
1017  */
1018 static int
1019 nfs_lookup(struct vop_old_lookup_args *ap)
1020 {
1021 	struct componentname *cnp = ap->a_cnp;
1022 	struct vnode *dvp = ap->a_dvp;
1023 	struct vnode **vpp = ap->a_vpp;
1024 	int flags = cnp->cn_flags;
1025 	struct vnode *newvp;
1026 	struct nfsmount *nmp;
1027 	long len;
1028 	nfsfh_t *fhp;
1029 	struct nfsnode *np;
1030 	int lockparent, wantparent, attrflag, fhsize;
1031 	int error;
1032 	int tmp_error;
1033 	struct nfsm_info info;
1034 
1035 	info.mrep = NULL;
1036 	info.v3 = NFS_ISV3(dvp);
1037 	error = 0;
1038 
1039 	/*
1040 	 * Read-only mount check and directory check.
1041 	 */
1042 	*vpp = NULLVP;
1043 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1044 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1045 		return (EROFS);
1046 
1047 	if (dvp->v_type != VDIR)
1048 		return (ENOTDIR);
1049 
1050 	/*
1051 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1052 	 * previously entered a negative hit (see later on).  The additional
1053 	 * nfsneg_cache_timeout check causes previously cached results to
1054 	 * be instantly ignored if the negative caching is turned off.
1055 	 */
1056 	lockparent = flags & CNP_LOCKPARENT;
1057 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1058 	nmp = VFSTONFS(dvp->v_mount);
1059 	np = VTONFS(dvp);
1060 
1061 	/*
1062 	 * Go to the wire.
1063 	 */
1064 	error = 0;
1065 	newvp = NULLVP;
1066 	nfsstats.lookupcache_misses++;
1067 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1068 	len = cnp->cn_namelen;
1069 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1070 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1071 	ERROROUT(nfsm_fhtom(&info, dvp));
1072 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1073 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1074 				cnp->cn_cred, &error));
1075 	if (error) {
1076 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1077 					     NFS_LATTR_NOSHRINK);
1078 		if (tmp_error) {
1079 			error = tmp_error;
1080 			goto nfsmout;
1081 		}
1082 
1083 		m_freem(info.mrep);
1084 		info.mrep = NULL;
1085 		goto nfsmout;
1086 	}
1087 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1088 
1089 	/*
1090 	 * Handle RENAME case...
1091 	 */
1092 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1093 		if (NFS_CMPFH(np, fhp, fhsize)) {
1094 			m_freem(info.mrep);
1095 			info.mrep = NULL;
1096 			return (EISDIR);
1097 		}
1098 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1099 		if (error) {
1100 			m_freem(info.mrep);
1101 			info.mrep = NULL;
1102 			return (error);
1103 		}
1104 		newvp = NFSTOV(np);
1105 		if (info.v3) {
1106 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1107 						  NFS_LATTR_NOSHRINK));
1108 			ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1109 						  NFS_LATTR_NOSHRINK));
1110 		} else {
1111 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1112 		}
1113 		*vpp = newvp;
1114 		m_freem(info.mrep);
1115 		info.mrep = NULL;
1116 		if (!lockparent) {
1117 			vn_unlock(dvp);
1118 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1119 		}
1120 		return (0);
1121 	}
1122 
1123 	if (flags & CNP_ISDOTDOT) {
1124 		vn_unlock(dvp);
1125 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1126 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1127 		if (error) {
1128 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1129 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1130 			return (error); /* NOTE: return error from nget */
1131 		}
1132 		newvp = NFSTOV(np);
1133 		if (lockparent) {
1134 			error = vn_lock(dvp, LK_EXCLUSIVE);
1135 			if (error) {
1136 				vput(newvp);
1137 				return (error);
1138 			}
1139 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1140 		}
1141 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1142 		vref(dvp);
1143 		newvp = dvp;
1144 	} else {
1145 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1146 		if (error) {
1147 			m_freem(info.mrep);
1148 			info.mrep = NULL;
1149 			return (error);
1150 		}
1151 		if (!lockparent) {
1152 			vn_unlock(dvp);
1153 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1154 		}
1155 		newvp = NFSTOV(np);
1156 	}
1157 	if (info.v3) {
1158 		ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1159 					  NFS_LATTR_NOSHRINK));
1160 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1161 					  NFS_LATTR_NOSHRINK));
1162 	} else {
1163 		ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1164 	}
1165 #if 0
1166 	/* XXX MOVE TO nfs_nremove() */
1167 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1168 	    cnp->cn_nameiop != NAMEI_DELETE) {
1169 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1170 	}
1171 #endif
1172 	*vpp = newvp;
1173 	m_freem(info.mrep);
1174 	info.mrep = NULL;
1175 nfsmout:
1176 	if (error) {
1177 		if (newvp != NULLVP) {
1178 			vrele(newvp);
1179 			*vpp = NULLVP;
1180 		}
1181 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1182 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1183 		    error == ENOENT) {
1184 			if (!lockparent) {
1185 				vn_unlock(dvp);
1186 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1187 			}
1188 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1189 				error = EROFS;
1190 			else
1191 				error = EJUSTRETURN;
1192 		}
1193 	}
1194 	return (error);
1195 }
1196 
1197 /*
1198  * nfs read call.
1199  * Just call nfs_bioread() to do the work.
1200  *
1201  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1202  *	    struct ucred *a_cred)
1203  */
1204 static int
1205 nfs_read(struct vop_read_args *ap)
1206 {
1207 	struct vnode *vp = ap->a_vp;
1208 
1209 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1210 }
1211 
1212 /*
1213  * nfs readlink call
1214  *
1215  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1216  */
1217 static int
1218 nfs_readlink(struct vop_readlink_args *ap)
1219 {
1220 	struct vnode *vp = ap->a_vp;
1221 
1222 	if (vp->v_type != VLNK)
1223 		return (EINVAL);
1224 	return (nfs_bioread(vp, ap->a_uio, 0));
1225 }
1226 
1227 /*
1228  * Do a readlink rpc.
1229  * Called by nfs_doio() from below the buffer cache.
1230  */
1231 int
1232 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1233 {
1234 	int error = 0, len, attrflag;
1235 	struct nfsm_info info;
1236 
1237 	info.mrep = NULL;
1238 	info.v3 = NFS_ISV3(vp);
1239 
1240 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1241 	nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1242 	ERROROUT(nfsm_fhtom(&info, vp));
1243 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1244 				nfs_vpcred(vp, ND_CHECK), &error));
1245 	if (info.v3) {
1246 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1247 					  NFS_LATTR_NOSHRINK));
1248 	}
1249 	if (!error) {
1250 		NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1251 		if (len == NFS_MAXPATHLEN) {
1252 			struct nfsnode *np = VTONFS(vp);
1253 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1254 				len = np->n_size;
1255 		}
1256 		ERROROUT(nfsm_mtouio(&info, uiop, len));
1257 	}
1258 	m_freem(info.mrep);
1259 	info.mrep = NULL;
1260 nfsmout:
1261 	return (error);
1262 }
1263 
1264 /*
1265  * nfs synchronous read rpc using UIO
1266  */
1267 int
1268 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1269 {
1270 	u_int32_t *tl;
1271 	struct nfsmount *nmp;
1272 	int error = 0, len, retlen, tsiz, eof, attrflag;
1273 	struct nfsm_info info;
1274 	off_t tmp_off;
1275 
1276 	info.mrep = NULL;
1277 	info.v3 = NFS_ISV3(vp);
1278 
1279 #ifndef nolint
1280 	eof = 0;
1281 #endif
1282 	nmp = VFSTONFS(vp->v_mount);
1283 	tsiz = uiop->uio_resid;
1284 	tmp_off = uiop->uio_offset + tsiz;
1285 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1286 		return (EFBIG);
1287 	tmp_off = uiop->uio_offset;
1288 	while (tsiz > 0) {
1289 		nfsstats.rpccnt[NFSPROC_READ]++;
1290 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1291 		nfsm_reqhead(&info, vp, NFSPROC_READ,
1292 			     NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1293 		ERROROUT(nfsm_fhtom(&info, vp));
1294 		tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1295 		if (info.v3) {
1296 			txdr_hyper(uiop->uio_offset, tl);
1297 			*(tl + 2) = txdr_unsigned(len);
1298 		} else {
1299 			*tl++ = txdr_unsigned(uiop->uio_offset);
1300 			*tl++ = txdr_unsigned(len);
1301 			*tl = 0;
1302 		}
1303 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1304 					nfs_vpcred(vp, ND_READ), &error));
1305 		if (info.v3) {
1306 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1307 						 NFS_LATTR_NOSHRINK));
1308 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1309 			eof = fxdr_unsigned(int, *(tl + 1));
1310 		} else {
1311 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1312 		}
1313 		NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1314 		ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1315 		m_freem(info.mrep);
1316 		info.mrep = NULL;
1317 
1318 		/*
1319 		 * Handle short-read from server (NFSv3).  If EOF is not
1320 		 * flagged (and no error occurred), but retlen is less
1321 		 * then the request size, we must zero-fill the remainder.
1322 		 */
1323 		if (retlen < len && info.v3 && eof == 0) {
1324 			ERROROUT(uiomovez(len - retlen, uiop));
1325 			retlen = len;
1326 		}
1327 		tsiz -= retlen;
1328 
1329 		/*
1330 		 * Terminate loop on EOF or zero-length read.
1331 		 *
1332 		 * For NFSv2 a short-read indicates EOF, not zero-fill,
1333 		 * and also terminates the loop.
1334 		 */
1335 		if (info.v3) {
1336 			if (eof || retlen == 0)
1337 				tsiz = 0;
1338 		} else if (retlen < len) {
1339 			tsiz = 0;
1340 		}
1341 	}
1342 nfsmout:
1343 	return (error);
1344 }
1345 
1346 /*
1347  * nfs write call
1348  */
1349 int
1350 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1351 		 int *iomode, int *must_commit)
1352 {
1353 	u_int32_t *tl;
1354 	int32_t backup;
1355 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1356 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1357 	int  committed = NFSV3WRITE_FILESYNC;
1358 	struct nfsm_info info;
1359 
1360 	info.mrep = NULL;
1361 	info.v3 = NFS_ISV3(vp);
1362 
1363 #ifndef DIAGNOSTIC
1364 	if (uiop->uio_iovcnt != 1)
1365 		panic("nfs: writerpc iovcnt > 1");
1366 #endif
1367 	*must_commit = 0;
1368 	tsiz = uiop->uio_resid;
1369 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1370 		return (EFBIG);
1371 	while (tsiz > 0) {
1372 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1373 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1374 		nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1375 			     NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1376 		ERROROUT(nfsm_fhtom(&info, vp));
1377 		if (info.v3) {
1378 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1379 			txdr_hyper(uiop->uio_offset, tl);
1380 			tl += 2;
1381 			*tl++ = txdr_unsigned(len);
1382 			*tl++ = txdr_unsigned(*iomode);
1383 			*tl = txdr_unsigned(len);
1384 		} else {
1385 			u_int32_t x;
1386 
1387 			tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1388 			/* Set both "begin" and "current" to non-garbage. */
1389 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1390 			*tl++ = x;	/* "begin offset" */
1391 			*tl++ = x;	/* "current offset" */
1392 			x = txdr_unsigned(len);
1393 			*tl++ = x;	/* total to this offset */
1394 			*tl = x;	/* size of this write */
1395 		}
1396 		ERROROUT(nfsm_uiotom(&info, uiop, len));
1397 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1398 					nfs_vpcred(vp, ND_WRITE), &error));
1399 		if (info.v3) {
1400 			/*
1401 			 * The write RPC returns a before and after mtime.  The
1402 			 * nfsm_wcc_data() macro checks the before n_mtime
1403 			 * against the before time and stores the after time
1404 			 * in the nfsnode's cached vattr and n_mtime field.
1405 			 * The NRMODIFIED bit will be set if the before
1406 			 * time did not match the original mtime.
1407 			 */
1408 			wccflag = NFSV3_WCCCHK;
1409 			ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1410 			if (error == 0) {
1411 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1412 				rlen = fxdr_unsigned(int, *tl++);
1413 				if (rlen == 0) {
1414 					error = NFSERR_IO;
1415 					m_freem(info.mrep);
1416 					info.mrep = NULL;
1417 					break;
1418 				} else if (rlen < len) {
1419 					backup = len - rlen;
1420 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1421 					uiop->uio_iov->iov_len += backup;
1422 					uiop->uio_offset -= backup;
1423 					uiop->uio_resid += backup;
1424 					len = rlen;
1425 				}
1426 				commit = fxdr_unsigned(int, *tl++);
1427 
1428 				/*
1429 				 * Return the lowest committment level
1430 				 * obtained by any of the RPCs.
1431 				 */
1432 				if (committed == NFSV3WRITE_FILESYNC)
1433 					committed = commit;
1434 				else if (committed == NFSV3WRITE_DATASYNC &&
1435 					commit == NFSV3WRITE_UNSTABLE)
1436 					committed = commit;
1437 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1438 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1439 					NFSX_V3WRITEVERF);
1440 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1441 				} else if (bcmp((caddr_t)tl,
1442 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1443 				    *must_commit = 1;
1444 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1445 					NFSX_V3WRITEVERF);
1446 				}
1447 			}
1448 		} else {
1449 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1450 		}
1451 		m_freem(info.mrep);
1452 		info.mrep = NULL;
1453 		if (error)
1454 			break;
1455 		tsiz -= len;
1456 	}
1457 nfsmout:
1458 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1459 		committed = NFSV3WRITE_FILESYNC;
1460 	*iomode = committed;
1461 	if (error)
1462 		uiop->uio_resid = tsiz;
1463 	return (error);
1464 }
1465 
1466 /*
1467  * nfs mknod rpc
1468  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1469  * mode set to specify the file type and the size field for rdev.
1470  */
1471 static int
1472 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1473 	     struct vattr *vap)
1474 {
1475 	struct nfsv2_sattr *sp;
1476 	u_int32_t *tl;
1477 	struct vnode *newvp = NULL;
1478 	struct nfsnode *np = NULL;
1479 	struct vattr vattr;
1480 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1481 	int rmajor, rminor;
1482 	struct nfsm_info info;
1483 
1484 	info.mrep = NULL;
1485 	info.v3 = NFS_ISV3(dvp);
1486 
1487 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1488 		rmajor = txdr_unsigned(vap->va_rmajor);
1489 		rminor = txdr_unsigned(vap->va_rminor);
1490 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1491 		rmajor = nfs_xdrneg1;
1492 		rminor = nfs_xdrneg1;
1493 	} else {
1494 		return (EOPNOTSUPP);
1495 	}
1496 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1497 		return (error);
1498 	}
1499 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1500 	nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1501 		     NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1502 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1503 	ERROROUT(nfsm_fhtom(&info, dvp));
1504 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1505 			     NFS_MAXNAMLEN));
1506 	if (info.v3) {
1507 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1508 		*tl++ = vtonfsv3_type(vap->va_type);
1509 		nfsm_v3attrbuild(&info, vap, FALSE);
1510 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1511 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1512 			*tl++ = txdr_unsigned(vap->va_rmajor);
1513 			*tl = txdr_unsigned(vap->va_rminor);
1514 		}
1515 	} else {
1516 		sp = nfsm_build(&info, NFSX_V2SATTR);
1517 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1518 		sp->sa_uid = nfs_xdrneg1;
1519 		sp->sa_gid = nfs_xdrneg1;
1520 		sp->sa_size = makeudev(rmajor, rminor);
1521 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1522 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1523 	}
1524 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1525 				cnp->cn_cred, &error));
1526 	if (!error) {
1527 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1528 		if (!gotvp) {
1529 			if (newvp) {
1530 				vput(newvp);
1531 				newvp = NULL;
1532 			}
1533 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1534 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1535 			if (!error)
1536 				newvp = NFSTOV(np);
1537 		}
1538 	}
1539 	if (info.v3) {
1540 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1541 	}
1542 	m_freem(info.mrep);
1543 	info.mrep = NULL;
1544 nfsmout:
1545 	if (error) {
1546 		if (newvp)
1547 			vput(newvp);
1548 	} else {
1549 		*vpp = newvp;
1550 	}
1551 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1552 	if (!wccflag)
1553 		VTONFS(dvp)->n_attrstamp = 0;
1554 	return (error);
1555 }
1556 
1557 /*
1558  * nfs mknod vop
1559  * just call nfs_mknodrpc() to do the work.
1560  *
1561  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1562  *	     struct componentname *a_cnp, struct vattr *a_vap)
1563  */
1564 /* ARGSUSED */
1565 static int
1566 nfs_mknod(struct vop_old_mknod_args *ap)
1567 {
1568 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1569 }
1570 
1571 static u_long create_verf;
1572 /*
1573  * nfs file create call
1574  *
1575  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1576  *	      struct componentname *a_cnp, struct vattr *a_vap)
1577  */
1578 static int
1579 nfs_create(struct vop_old_create_args *ap)
1580 {
1581 	struct vnode *dvp = ap->a_dvp;
1582 	struct vattr *vap = ap->a_vap;
1583 	struct componentname *cnp = ap->a_cnp;
1584 	struct nfsv2_sattr *sp;
1585 	u_int32_t *tl;
1586 	struct nfsnode *np = NULL;
1587 	struct vnode *newvp = NULL;
1588 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1589 	struct vattr vattr;
1590 	struct nfsm_info info;
1591 
1592 	info.mrep = NULL;
1593 	info.v3 = NFS_ISV3(dvp);
1594 
1595 	/*
1596 	 * Oops, not for me..
1597 	 */
1598 	if (vap->va_type == VSOCK)
1599 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1600 
1601 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1602 		return (error);
1603 	}
1604 	if (vap->va_vaflags & VA_EXCLUSIVE)
1605 		fmode |= O_EXCL;
1606 again:
1607 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1608 	nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1609 		     NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1610 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1611 	ERROROUT(nfsm_fhtom(&info, dvp));
1612 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1613 			     NFS_MAXNAMLEN));
1614 	if (info.v3) {
1615 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1616 		if (fmode & O_EXCL) {
1617 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1618 			tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1619 #ifdef INET
1620 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1621 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1622 			else
1623 #endif
1624 				*tl++ = create_verf;
1625 			*tl = ++create_verf;
1626 		} else {
1627 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1628 			nfsm_v3attrbuild(&info, vap, FALSE);
1629 		}
1630 	} else {
1631 		sp = nfsm_build(&info, NFSX_V2SATTR);
1632 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1633 		sp->sa_uid = nfs_xdrneg1;
1634 		sp->sa_gid = nfs_xdrneg1;
1635 		sp->sa_size = 0;
1636 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1637 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1638 	}
1639 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1640 				cnp->cn_cred, &error));
1641 	if (error == 0) {
1642 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1643 		if (!gotvp) {
1644 			if (newvp) {
1645 				vput(newvp);
1646 				newvp = NULL;
1647 			}
1648 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1649 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1650 			if (!error)
1651 				newvp = NFSTOV(np);
1652 		}
1653 	}
1654 	if (info.v3) {
1655 		if (error == 0)
1656 			error = nfsm_wcc_data(&info, dvp, &wccflag);
1657 		else
1658 			(void)nfsm_wcc_data(&info, dvp, &wccflag);
1659 	}
1660 	m_freem(info.mrep);
1661 	info.mrep = NULL;
1662 nfsmout:
1663 	if (error) {
1664 		if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1665 			KKASSERT(newvp == NULL);
1666 			fmode &= ~O_EXCL;
1667 			goto again;
1668 		}
1669 	} else if (info.v3 && (fmode & O_EXCL)) {
1670 		/*
1671 		 * We are normally called with only a partially initialized
1672 		 * VAP.  Since the NFSv3 spec says that server may use the
1673 		 * file attributes to store the verifier, the spec requires
1674 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1675 		 * in atime, but we can't really assume that all servers will
1676 		 * so we ensure that our SETATTR sets both atime and mtime.
1677 		 */
1678 		if (vap->va_mtime.tv_sec == VNOVAL)
1679 			vfs_timestamp(&vap->va_mtime);
1680 		if (vap->va_atime.tv_sec == VNOVAL)
1681 			vap->va_atime = vap->va_mtime;
1682 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1683 	}
1684 	if (error == 0) {
1685 		/*
1686 		 * The new np may have enough info for access
1687 		 * checks, make sure rucred and wucred are
1688 		 * initialized for read and write rpc's.
1689 		 */
1690 		np = VTONFS(newvp);
1691 		if (np->n_rucred == NULL)
1692 			np->n_rucred = crhold(cnp->cn_cred);
1693 		if (np->n_wucred == NULL)
1694 			np->n_wucred = crhold(cnp->cn_cred);
1695 		*ap->a_vpp = newvp;
1696 	} else if (newvp) {
1697 		vput(newvp);
1698 	}
1699 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1700 	if (!wccflag)
1701 		VTONFS(dvp)->n_attrstamp = 0;
1702 	return (error);
1703 }
1704 
1705 /*
1706  * nfs file remove call
1707  * To try and make nfs semantics closer to ufs semantics, a file that has
1708  * other processes using the vnode is renamed instead of removed and then
1709  * removed later on the last close.
1710  * - If v_sysref.refcnt > 1
1711  *	  If a rename is not already in the works
1712  *	     call nfs_sillyrename() to set it up
1713  *     else
1714  *	  do the remove rpc
1715  *
1716  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1717  *	      struct componentname *a_cnp)
1718  */
1719 static int
1720 nfs_remove(struct vop_old_remove_args *ap)
1721 {
1722 	struct vnode *vp = ap->a_vp;
1723 	struct vnode *dvp = ap->a_dvp;
1724 	struct componentname *cnp = ap->a_cnp;
1725 	struct nfsnode *np = VTONFS(vp);
1726 	int error = 0;
1727 	struct vattr vattr;
1728 
1729 #ifndef DIAGNOSTIC
1730 	if (vp->v_sysref.refcnt < 1)
1731 		panic("nfs_remove: bad v_sysref.refcnt");
1732 #endif
1733 	if (vp->v_type == VDIR)
1734 		error = EPERM;
1735 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1736 	    VOP_GETATTR(vp, &vattr) == 0 &&
1737 	    vattr.va_nlink > 1)) {
1738 		/*
1739 		 * throw away biocache buffers, mainly to avoid
1740 		 * unnecessary delayed writes later.
1741 		 */
1742 		error = nfs_vinvalbuf(vp, 0, 1);
1743 		/* Do the rpc */
1744 		if (error != EINTR)
1745 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1746 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1747 		/*
1748 		 * Kludge City: If the first reply to the remove rpc is lost..
1749 		 *   the reply to the retransmitted request will be ENOENT
1750 		 *   since the file was in fact removed
1751 		 *   Therefore, we cheat and return success.
1752 		 */
1753 		if (error == ENOENT)
1754 			error = 0;
1755 	} else if (!np->n_sillyrename) {
1756 		error = nfs_sillyrename(dvp, vp, cnp);
1757 	}
1758 	np->n_attrstamp = 0;
1759 	return (error);
1760 }
1761 
1762 /*
1763  * nfs file remove rpc called from nfs_inactive
1764  */
1765 int
1766 nfs_removeit(struct sillyrename *sp)
1767 {
1768 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1769 		sp->s_cred, NULL));
1770 }
1771 
1772 /*
1773  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1774  */
1775 static int
1776 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1777 	      struct ucred *cred, struct thread *td)
1778 {
1779 	int error = 0, wccflag = NFSV3_WCCRATTR;
1780 	struct nfsm_info info;
1781 
1782 	info.mrep = NULL;
1783 	info.v3 = NFS_ISV3(dvp);
1784 
1785 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1786 	nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1787 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1788 	ERROROUT(nfsm_fhtom(&info, dvp));
1789 	ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1790 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1791 	if (info.v3) {
1792 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1793 	}
1794 	m_freem(info.mrep);
1795 	info.mrep = NULL;
1796 nfsmout:
1797 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1798 	if (!wccflag)
1799 		VTONFS(dvp)->n_attrstamp = 0;
1800 	return (error);
1801 }
1802 
1803 /*
1804  * nfs file rename call
1805  *
1806  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1807  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1808  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1809  */
1810 static int
1811 nfs_rename(struct vop_old_rename_args *ap)
1812 {
1813 	struct vnode *fvp = ap->a_fvp;
1814 	struct vnode *tvp = ap->a_tvp;
1815 	struct vnode *fdvp = ap->a_fdvp;
1816 	struct vnode *tdvp = ap->a_tdvp;
1817 	struct componentname *tcnp = ap->a_tcnp;
1818 	struct componentname *fcnp = ap->a_fcnp;
1819 	int error;
1820 
1821 	/* Check for cross-device rename */
1822 	if ((fvp->v_mount != tdvp->v_mount) ||
1823 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1824 		error = EXDEV;
1825 		goto out;
1826 	}
1827 
1828 	/*
1829 	 * We shouldn't have to flush fvp on rename for most server-side
1830 	 * filesystems as the file handle should not change.  Unfortunately
1831 	 * the inode for some filesystems (msdosfs) might be tied to the
1832 	 * file name or directory position so to be completely safe
1833 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1834 	 * performance.
1835 	 *
1836 	 * We must flush tvp on rename because it might become stale on the
1837 	 * server after the rename.
1838 	 */
1839 	if (nfs_flush_on_rename)
1840 	    VOP_FSYNC(fvp, MNT_WAIT, 0);
1841 	if (tvp)
1842 	    VOP_FSYNC(tvp, MNT_WAIT, 0);
1843 
1844 	/*
1845 	 * If the tvp exists and is in use, sillyrename it before doing the
1846 	 * rename of the new file over it.
1847 	 *
1848 	 * XXX Can't sillyrename a directory.
1849 	 *
1850 	 * We do not attempt to do any namecache purges in this old API
1851 	 * routine.  The new API compat functions have access to the actual
1852 	 * namecache structures and will do it for us.
1853 	 */
1854 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1855 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1856 		vput(tvp);
1857 		tvp = NULL;
1858 	} else if (tvp) {
1859 		;
1860 	}
1861 
1862 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1863 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1864 		tcnp->cn_td);
1865 
1866 out:
1867 	if (tdvp == tvp)
1868 		vrele(tdvp);
1869 	else
1870 		vput(tdvp);
1871 	if (tvp)
1872 		vput(tvp);
1873 	vrele(fdvp);
1874 	vrele(fvp);
1875 	/*
1876 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1877 	 */
1878 	if (error == ENOENT)
1879 		error = 0;
1880 	return (error);
1881 }
1882 
1883 /*
1884  * nfs file rename rpc called from nfs_remove() above
1885  */
1886 static int
1887 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1888 	     struct sillyrename *sp)
1889 {
1890 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1891 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1892 }
1893 
1894 /*
1895  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1896  */
1897 static int
1898 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1899 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1900 	      struct ucred *cred, struct thread *td)
1901 {
1902 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1903 	struct nfsm_info info;
1904 
1905 	info.mrep = NULL;
1906 	info.v3 = NFS_ISV3(fdvp);
1907 
1908 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1909 	nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
1910 		    (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
1911 		    nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
1912 	ERROROUT(nfsm_fhtom(&info, fdvp));
1913 	ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
1914 	ERROROUT(nfsm_fhtom(&info, tdvp));
1915 	ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
1916 	NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
1917 	if (info.v3) {
1918 		ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
1919 		ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
1920 	}
1921 	m_freem(info.mrep);
1922 	info.mrep = NULL;
1923 nfsmout:
1924 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1925 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1926 	if (!fwccflag)
1927 		VTONFS(fdvp)->n_attrstamp = 0;
1928 	if (!twccflag)
1929 		VTONFS(tdvp)->n_attrstamp = 0;
1930 	return (error);
1931 }
1932 
1933 /*
1934  * nfs hard link create call
1935  *
1936  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1937  *	    struct componentname *a_cnp)
1938  */
1939 static int
1940 nfs_link(struct vop_old_link_args *ap)
1941 {
1942 	struct vnode *vp = ap->a_vp;
1943 	struct vnode *tdvp = ap->a_tdvp;
1944 	struct componentname *cnp = ap->a_cnp;
1945 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1946 	struct nfsm_info info;
1947 
1948 	if (vp->v_mount != tdvp->v_mount) {
1949 		return (EXDEV);
1950 	}
1951 
1952 	/*
1953 	 * The attribute cache may get out of sync with the server on link.
1954 	 * Pushing writes to the server before handle was inherited from
1955 	 * long long ago and it is unclear if we still need to do this.
1956 	 * Defaults to off.
1957 	 */
1958 	if (nfs_flush_on_hlink)
1959 		VOP_FSYNC(vp, MNT_WAIT, 0);
1960 
1961 	info.mrep = NULL;
1962 	info.v3 = NFS_ISV3(vp);
1963 
1964 	nfsstats.rpccnt[NFSPROC_LINK]++;
1965 	nfsm_reqhead(&info, vp, NFSPROC_LINK,
1966 		     NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
1967 		     nfsm_rndup(cnp->cn_namelen));
1968 	ERROROUT(nfsm_fhtom(&info, vp));
1969 	ERROROUT(nfsm_fhtom(&info, tdvp));
1970 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1971 			     NFS_MAXNAMLEN));
1972 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
1973 				cnp->cn_cred, &error));
1974 	if (info.v3) {
1975 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1976 					 NFS_LATTR_NOSHRINK));
1977 		ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
1978 	}
1979 	m_freem(info.mrep);
1980 	info.mrep = NULL;
1981 nfsmout:
1982 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1983 	if (!attrflag)
1984 		VTONFS(vp)->n_attrstamp = 0;
1985 	if (!wccflag)
1986 		VTONFS(tdvp)->n_attrstamp = 0;
1987 	/*
1988 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1989 	 */
1990 	if (error == EEXIST)
1991 		error = 0;
1992 	return (error);
1993 }
1994 
1995 /*
1996  * nfs symbolic link create call
1997  *
1998  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1999  *		struct componentname *a_cnp, struct vattr *a_vap,
2000  *		char *a_target)
2001  */
2002 static int
2003 nfs_symlink(struct vop_old_symlink_args *ap)
2004 {
2005 	struct vnode *dvp = ap->a_dvp;
2006 	struct vattr *vap = ap->a_vap;
2007 	struct componentname *cnp = ap->a_cnp;
2008 	struct nfsv2_sattr *sp;
2009 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
2010 	struct vnode *newvp = NULL;
2011 	struct nfsm_info info;
2012 
2013 	info.mrep = NULL;
2014 	info.v3 = NFS_ISV3(dvp);
2015 
2016 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
2017 	slen = strlen(ap->a_target);
2018 	nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
2019 		     NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
2020 		     nfsm_rndup(cnp->cn_namelen) +
2021 		     nfsm_rndup(slen) + NFSX_SATTR(info.v3));
2022 	ERROROUT(nfsm_fhtom(&info, dvp));
2023 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2024 			     NFS_MAXNAMLEN));
2025 	if (info.v3) {
2026 		nfsm_v3attrbuild(&info, vap, FALSE);
2027 	}
2028 	ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
2029 	if (info.v3 == 0) {
2030 		sp = nfsm_build(&info, NFSX_V2SATTR);
2031 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2032 		sp->sa_uid = nfs_xdrneg1;
2033 		sp->sa_gid = nfs_xdrneg1;
2034 		sp->sa_size = nfs_xdrneg1;
2035 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2036 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2037 	}
2038 
2039 	/*
2040 	 * Issue the NFS request and get the rpc response.
2041 	 *
2042 	 * Only NFSv3 responses returning an error of 0 actually return
2043 	 * a file handle that can be converted into newvp without having
2044 	 * to do an extra lookup rpc.
2045 	 */
2046 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2047 				cnp->cn_cred, &error));
2048 	if (info.v3) {
2049 		if (error == 0) {
2050 		       ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2051 		}
2052 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2053 	}
2054 
2055 	/*
2056 	 * out code jumps -> here, mrep is also freed.
2057 	 */
2058 
2059 	m_freem(info.mrep);
2060 	info.mrep = NULL;
2061 nfsmout:
2062 
2063 	/*
2064 	 * If we get an EEXIST error, silently convert it to no-error
2065 	 * in case of an NFS retry.
2066 	 */
2067 	if (error == EEXIST)
2068 		error = 0;
2069 
2070 	/*
2071 	 * If we do not have (or no longer have) an error, and we could
2072 	 * not extract the newvp from the response due to the request being
2073 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
2074 	 * to obtain a newvp to return.
2075 	 */
2076 	if (error == 0 && newvp == NULL) {
2077 		struct nfsnode *np = NULL;
2078 
2079 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2080 		    cnp->cn_cred, cnp->cn_td, &np);
2081 		if (!error)
2082 			newvp = NFSTOV(np);
2083 	}
2084 	if (error) {
2085 		if (newvp)
2086 			vput(newvp);
2087 	} else {
2088 		*ap->a_vpp = newvp;
2089 	}
2090 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2091 	if (!wccflag)
2092 		VTONFS(dvp)->n_attrstamp = 0;
2093 	return (error);
2094 }
2095 
2096 /*
2097  * nfs make dir call
2098  *
2099  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2100  *	     struct componentname *a_cnp, struct vattr *a_vap)
2101  */
2102 static int
2103 nfs_mkdir(struct vop_old_mkdir_args *ap)
2104 {
2105 	struct vnode *dvp = ap->a_dvp;
2106 	struct vattr *vap = ap->a_vap;
2107 	struct componentname *cnp = ap->a_cnp;
2108 	struct nfsv2_sattr *sp;
2109 	struct nfsnode *np = NULL;
2110 	struct vnode *newvp = NULL;
2111 	struct vattr vattr;
2112 	int error = 0, wccflag = NFSV3_WCCRATTR;
2113 	int gotvp = 0;
2114 	int len;
2115 	struct nfsm_info info;
2116 
2117 	info.mrep = NULL;
2118 	info.v3 = NFS_ISV3(dvp);
2119 
2120 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2121 		return (error);
2122 	}
2123 	len = cnp->cn_namelen;
2124 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2125 	nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2126 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2127 		     nfsm_rndup(len) + NFSX_SATTR(info.v3));
2128 	ERROROUT(nfsm_fhtom(&info, dvp));
2129 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2130 	if (info.v3) {
2131 		nfsm_v3attrbuild(&info, vap, FALSE);
2132 	} else {
2133 		sp = nfsm_build(&info, NFSX_V2SATTR);
2134 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2135 		sp->sa_uid = nfs_xdrneg1;
2136 		sp->sa_gid = nfs_xdrneg1;
2137 		sp->sa_size = nfs_xdrneg1;
2138 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2139 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2140 	}
2141 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2142 		    cnp->cn_cred, &error));
2143 	if (error == 0) {
2144 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2145 	}
2146 	if (info.v3) {
2147 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2148 	}
2149 	m_freem(info.mrep);
2150 	info.mrep = NULL;
2151 nfsmout:
2152 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2153 	if (!wccflag)
2154 		VTONFS(dvp)->n_attrstamp = 0;
2155 	/*
2156 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2157 	 * if we can succeed in looking up the directory.
2158 	 */
2159 	if (error == EEXIST || (!error && !gotvp)) {
2160 		if (newvp) {
2161 			vrele(newvp);
2162 			newvp = NULL;
2163 		}
2164 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2165 			cnp->cn_td, &np);
2166 		if (!error) {
2167 			newvp = NFSTOV(np);
2168 			if (newvp->v_type != VDIR)
2169 				error = EEXIST;
2170 		}
2171 	}
2172 	if (error) {
2173 		if (newvp)
2174 			vrele(newvp);
2175 	} else
2176 		*ap->a_vpp = newvp;
2177 	return (error);
2178 }
2179 
2180 /*
2181  * nfs remove directory call
2182  *
2183  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2184  *	     struct componentname *a_cnp)
2185  */
2186 static int
2187 nfs_rmdir(struct vop_old_rmdir_args *ap)
2188 {
2189 	struct vnode *vp = ap->a_vp;
2190 	struct vnode *dvp = ap->a_dvp;
2191 	struct componentname *cnp = ap->a_cnp;
2192 	int error = 0, wccflag = NFSV3_WCCRATTR;
2193 	struct nfsm_info info;
2194 
2195 	info.mrep = NULL;
2196 	info.v3 = NFS_ISV3(dvp);
2197 
2198 	if (dvp == vp)
2199 		return (EINVAL);
2200 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2201 	nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2202 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2203 		     nfsm_rndup(cnp->cn_namelen));
2204 	ERROROUT(nfsm_fhtom(&info, dvp));
2205 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2206 		 NFS_MAXNAMLEN));
2207 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2208 				cnp->cn_cred, &error));
2209 	if (info.v3) {
2210 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2211 	}
2212 	m_freem(info.mrep);
2213 	info.mrep = NULL;
2214 nfsmout:
2215 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2216 	if (!wccflag)
2217 		VTONFS(dvp)->n_attrstamp = 0;
2218 	/*
2219 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2220 	 */
2221 	if (error == ENOENT)
2222 		error = 0;
2223 	return (error);
2224 }
2225 
2226 /*
2227  * nfs readdir call
2228  *
2229  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2230  */
2231 static int
2232 nfs_readdir(struct vop_readdir_args *ap)
2233 {
2234 	struct vnode *vp = ap->a_vp;
2235 	struct nfsnode *np = VTONFS(vp);
2236 	struct uio *uio = ap->a_uio;
2237 	int tresid, error;
2238 	struct vattr vattr;
2239 
2240 	if (vp->v_type != VDIR)
2241 		return (EPERM);
2242 
2243 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2244 		return (error);
2245 
2246 	/*
2247 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2248 	 * and then check that is still valid, or if this is an NQNFS mount
2249 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2250 	 * VOP_GETATTR() does not necessarily go to the wire.
2251 	 */
2252 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2253 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2254 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2255 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2256 		) {
2257 			nfsstats.direofcache_hits++;
2258 			goto done;
2259 		}
2260 	}
2261 
2262 	/*
2263 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2264 	 * own cache coherency checks so we do not have to.
2265 	 */
2266 	tresid = uio->uio_resid;
2267 	error = nfs_bioread(vp, uio, 0);
2268 
2269 	if (!error && uio->uio_resid == tresid)
2270 		nfsstats.direofcache_misses++;
2271 done:
2272 	vn_unlock(vp);
2273 	return (error);
2274 }
2275 
2276 /*
2277  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2278  *
2279  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2280  * offset/block and converts the nfs formatted directory entries for userland
2281  * consumption as well as deals with offsets into the middle of blocks.
2282  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2283  * be block-bounded.  It must convert to cookies for the actual RPC.
2284  */
2285 int
2286 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2287 {
2288 	int len, left;
2289 	struct nfs_dirent *dp = NULL;
2290 	u_int32_t *tl;
2291 	nfsuint64 *cookiep;
2292 	caddr_t cp;
2293 	nfsuint64 cookie;
2294 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2295 	struct nfsnode *dnp = VTONFS(vp);
2296 	u_quad_t fileno;
2297 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2298 	int attrflag;
2299 	struct nfsm_info info;
2300 
2301 	info.mrep = NULL;
2302 	info.v3 = NFS_ISV3(vp);
2303 
2304 #ifndef DIAGNOSTIC
2305 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2306 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2307 		panic("nfs readdirrpc bad uio");
2308 #endif
2309 
2310 	/*
2311 	 * If there is no cookie, assume directory was stale.
2312 	 */
2313 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2314 	if (cookiep)
2315 		cookie = *cookiep;
2316 	else
2317 		return (NFSERR_BAD_COOKIE);
2318 	/*
2319 	 * Loop around doing readdir rpc's of size nm_readdirsize
2320 	 * truncated to a multiple of DIRBLKSIZ.
2321 	 * The stopping criteria is EOF or buffer full.
2322 	 */
2323 	while (more_dirs && bigenough) {
2324 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2325 		nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2326 			     NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2327 		ERROROUT(nfsm_fhtom(&info, vp));
2328 		if (info.v3) {
2329 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2330 			*tl++ = cookie.nfsuquad[0];
2331 			*tl++ = cookie.nfsuquad[1];
2332 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2333 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2334 		} else {
2335 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2336 			*tl++ = cookie.nfsuquad[0];
2337 		}
2338 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2339 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2340 					uiop->uio_td,
2341 					nfs_vpcred(vp, ND_READ), &error));
2342 		if (info.v3) {
2343 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2344 						  NFS_LATTR_NOSHRINK));
2345 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2346 			dnp->n_cookieverf.nfsuquad[0] = *tl++;
2347 			dnp->n_cookieverf.nfsuquad[1] = *tl;
2348 		}
2349 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2350 		more_dirs = fxdr_unsigned(int, *tl);
2351 
2352 		/* loop thru the dir entries, converting them to std form */
2353 		while (more_dirs && bigenough) {
2354 			if (info.v3) {
2355 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2356 				fileno = fxdr_hyper(tl);
2357 				len = fxdr_unsigned(int, *(tl + 2));
2358 			} else {
2359 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2360 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2361 				len = fxdr_unsigned(int, *tl);
2362 			}
2363 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2364 				error = EBADRPC;
2365 				m_freem(info.mrep);
2366 				info.mrep = NULL;
2367 				goto nfsmout;
2368 			}
2369 
2370 			/*
2371 			 * len is the number of bytes in the path element
2372 			 * name, not including the \0 termination.
2373 			 *
2374 			 * tlen is the number of bytes w have to reserve for
2375 			 * the path element name.
2376 			 */
2377 			tlen = nfsm_rndup(len);
2378 			if (tlen == len)
2379 				tlen += 4;	/* To ensure null termination */
2380 
2381 			/*
2382 			 * If the entry would cross a DIRBLKSIZ boundary,
2383 			 * extend the previous nfs_dirent to cover the
2384 			 * remaining space.
2385 			 */
2386 			left = DIRBLKSIZ - blksiz;
2387 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2388 				dp->nfs_reclen += left;
2389 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2390 				uiop->uio_iov->iov_len -= left;
2391 				uiop->uio_offset += left;
2392 				uiop->uio_resid -= left;
2393 				blksiz = 0;
2394 			}
2395 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2396 				bigenough = 0;
2397 			if (bigenough) {
2398 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2399 				dp->nfs_ino = fileno;
2400 				dp->nfs_namlen = len;
2401 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2402 				dp->nfs_type = DT_UNKNOWN;
2403 				blksiz += dp->nfs_reclen;
2404 				if (blksiz == DIRBLKSIZ)
2405 					blksiz = 0;
2406 				uiop->uio_offset += sizeof(struct nfs_dirent);
2407 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2408 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2409 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2410 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2411 
2412 				/*
2413 				 * The uiop has advanced by nfs_dirent + len
2414 				 * but really needs to advance by
2415 				 * nfs_dirent + tlen
2416 				 */
2417 				cp = uiop->uio_iov->iov_base;
2418 				tlen -= len;
2419 				*cp = '\0';	/* null terminate */
2420 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2421 				uiop->uio_iov->iov_len -= tlen;
2422 				uiop->uio_offset += tlen;
2423 				uiop->uio_resid -= tlen;
2424 			} else {
2425 				/*
2426 				 * NFS strings must be rounded up (nfsm_myouio
2427 				 * handled that in the bigenough case).
2428 				 */
2429 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2430 			}
2431 			if (info.v3) {
2432 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2433 			} else {
2434 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2435 			}
2436 
2437 			/*
2438 			 * If we were able to accomodate the last entry,
2439 			 * get the cookie for the next one.  Otherwise
2440 			 * hold-over the cookie for the one we were not
2441 			 * able to accomodate.
2442 			 */
2443 			if (bigenough) {
2444 				cookie.nfsuquad[0] = *tl++;
2445 				if (info.v3)
2446 					cookie.nfsuquad[1] = *tl++;
2447 			} else if (info.v3) {
2448 				tl += 2;
2449 			} else {
2450 				tl++;
2451 			}
2452 			more_dirs = fxdr_unsigned(int, *tl);
2453 		}
2454 		/*
2455 		 * If at end of rpc data, get the eof boolean
2456 		 */
2457 		if (!more_dirs) {
2458 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2459 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2460 		}
2461 		m_freem(info.mrep);
2462 		info.mrep = NULL;
2463 	}
2464 	/*
2465 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2466 	 * by increasing d_reclen for the last record.
2467 	 */
2468 	if (blksiz > 0) {
2469 		left = DIRBLKSIZ - blksiz;
2470 		dp->nfs_reclen += left;
2471 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2472 		uiop->uio_iov->iov_len -= left;
2473 		uiop->uio_offset += left;
2474 		uiop->uio_resid -= left;
2475 	}
2476 
2477 	if (bigenough) {
2478 		/*
2479 		 * We hit the end of the directory, update direofoffset.
2480 		 */
2481 		dnp->n_direofoffset = uiop->uio_offset;
2482 	} else {
2483 		/*
2484 		 * There is more to go, insert the link cookie so the
2485 		 * next block can be read.
2486 		 */
2487 		if (uiop->uio_resid > 0)
2488 			kprintf("EEK! readdirrpc resid > 0\n");
2489 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2490 		*cookiep = cookie;
2491 	}
2492 nfsmout:
2493 	return (error);
2494 }
2495 
2496 /*
2497  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2498  */
2499 int
2500 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2501 {
2502 	int len, left;
2503 	struct nfs_dirent *dp;
2504 	u_int32_t *tl;
2505 	struct vnode *newvp;
2506 	nfsuint64 *cookiep;
2507 	caddr_t dpossav1, dpossav2;
2508 	caddr_t cp;
2509 	struct mbuf *mdsav1, *mdsav2;
2510 	nfsuint64 cookie;
2511 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2512 	struct nfsnode *dnp = VTONFS(vp), *np;
2513 	nfsfh_t *fhp;
2514 	u_quad_t fileno;
2515 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2516 	int attrflag, fhsize;
2517 	struct nchandle nch;
2518 	struct nchandle dnch;
2519 	struct nlcomponent nlc;
2520 	struct nfsm_info info;
2521 
2522 	info.mrep = NULL;
2523 	info.v3 = 1;
2524 
2525 #ifndef nolint
2526 	dp = NULL;
2527 #endif
2528 #ifndef DIAGNOSTIC
2529 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2530 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2531 		panic("nfs readdirplusrpc bad uio");
2532 #endif
2533 	/*
2534 	 * Obtain the namecache record for the directory so we have something
2535 	 * to use as a basis for creating the entries.  This function will
2536 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2537 	 * from the tree and cannot be used for upward traversals, and the
2538 	 * ncp may be unnamed.  Note that other unrelated operations may
2539 	 * cause the ncp to be named at any time.
2540 	 *
2541 	 * We have to lock the ncp to prevent a lock order reversal when
2542 	 * rdirplus does nlookups of the children, because the vnode is
2543 	 * locked and has to stay that way.
2544 	 */
2545 	cache_fromdvp(vp, NULL, 0, &dnch);
2546 	bzero(&nlc, sizeof(nlc));
2547 	newvp = NULLVP;
2548 
2549 	/*
2550 	 * If there is no cookie, assume directory was stale.
2551 	 */
2552 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2553 	if (cookiep) {
2554 		cookie = *cookiep;
2555 	} else {
2556 		if (dnch.ncp)
2557 			cache_drop(&dnch);
2558 		return (NFSERR_BAD_COOKIE);
2559 	}
2560 
2561 	/*
2562 	 * Loop around doing readdir rpc's of size nm_readdirsize
2563 	 * truncated to a multiple of DIRBLKSIZ.
2564 	 * The stopping criteria is EOF or buffer full.
2565 	 */
2566 	while (more_dirs && bigenough) {
2567 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2568 		nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2569 			     NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2570 		ERROROUT(nfsm_fhtom(&info, vp));
2571 		tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2572 		*tl++ = cookie.nfsuquad[0];
2573 		*tl++ = cookie.nfsuquad[1];
2574 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2575 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2576 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2577 		*tl = txdr_unsigned(nmp->nm_rsize);
2578 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2579 					uiop->uio_td,
2580 					nfs_vpcred(vp, ND_READ), &error));
2581 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2582 					  NFS_LATTR_NOSHRINK));
2583 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2584 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2585 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2586 		more_dirs = fxdr_unsigned(int, *tl);
2587 
2588 		/* loop thru the dir entries, doctoring them to 4bsd form */
2589 		while (more_dirs && bigenough) {
2590 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2591 			fileno = fxdr_hyper(tl);
2592 			len = fxdr_unsigned(int, *(tl + 2));
2593 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2594 				error = EBADRPC;
2595 				m_freem(info.mrep);
2596 				info.mrep = NULL;
2597 				goto nfsmout;
2598 			}
2599 			tlen = nfsm_rndup(len);
2600 			if (tlen == len)
2601 				tlen += 4;	/* To ensure null termination*/
2602 			left = DIRBLKSIZ - blksiz;
2603 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2604 				dp->nfs_reclen += left;
2605 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2606 				uiop->uio_iov->iov_len -= left;
2607 				uiop->uio_offset += left;
2608 				uiop->uio_resid -= left;
2609 				blksiz = 0;
2610 			}
2611 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2612 				bigenough = 0;
2613 			if (bigenough) {
2614 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2615 				dp->nfs_ino = fileno;
2616 				dp->nfs_namlen = len;
2617 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2618 				dp->nfs_type = DT_UNKNOWN;
2619 				blksiz += dp->nfs_reclen;
2620 				if (blksiz == DIRBLKSIZ)
2621 					blksiz = 0;
2622 				uiop->uio_offset += sizeof(struct nfs_dirent);
2623 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2624 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2625 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2626 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2627 				nlc.nlc_namelen = len;
2628 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2629 				cp = uiop->uio_iov->iov_base;
2630 				tlen -= len;
2631 				*cp = '\0';
2632 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2633 				uiop->uio_iov->iov_len -= tlen;
2634 				uiop->uio_offset += tlen;
2635 				uiop->uio_resid -= tlen;
2636 			} else {
2637 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2638 			}
2639 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2640 			if (bigenough) {
2641 				cookie.nfsuquad[0] = *tl++;
2642 				cookie.nfsuquad[1] = *tl++;
2643 			} else {
2644 				tl += 2;
2645 			}
2646 
2647 			/*
2648 			 * Since the attributes are before the file handle
2649 			 * (sigh), we must skip over the attributes and then
2650 			 * come back and get them.
2651 			 */
2652 			attrflag = fxdr_unsigned(int, *tl);
2653 			if (attrflag) {
2654 			    dpossav1 = info.dpos;
2655 			    mdsav1 = info.md;
2656 			    ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2657 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2658 			    doit = fxdr_unsigned(int, *tl);
2659 			    if (doit) {
2660 				NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2661 			    }
2662 			    if (doit && bigenough && !nlcdegenerate(&nlc) &&
2663 				!NFS_CMPFH(dnp, fhp, fhsize)
2664 			    ) {
2665 				if (dnch.ncp) {
2666 #if 0
2667 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2668 					nlc.nlc_namelen, nlc.nlc_namelen,
2669 					nlc.nlc_nameptr);
2670 #endif
2671 				    /*
2672 				     * This is a bit hokey but there isn't
2673 				     * much we can do about it.  We can't
2674 				     * hold the directory vp locked while
2675 				     * doing lookups and gets.
2676 				     */
2677 				    nch = cache_nlookup_nonblock(&dnch, &nlc);
2678 				    if (nch.ncp == NULL)
2679 					goto rdfail;
2680 				    cache_setunresolved(&nch);
2681 				    error = nfs_nget_nonblock(vp->v_mount, fhp,
2682 							      fhsize, &np);
2683 				    if (error) {
2684 					cache_put(&nch);
2685 					goto rdfail;
2686 				    }
2687 				    newvp = NFSTOV(np);
2688 				    dpossav2 = info.dpos;
2689 				    info.dpos = dpossav1;
2690 				    mdsav2 = info.md;
2691 				    info.md = mdsav1;
2692 				    ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2693 				    info.dpos = dpossav2;
2694 				    info.md = mdsav2;
2695 				    dp->nfs_type =
2696 					    IFTODT(VTTOIF(np->n_vattr.va_type));
2697 				    nfs_cache_setvp(&nch, newvp,
2698 						    nfspos_cache_timeout);
2699 				    vput(newvp);
2700 				    newvp = NULLVP;
2701 				    cache_put(&nch);
2702 				} else {
2703 rdfail:
2704 				    ;
2705 #if 0
2706 				    kprintf("Warning: NFS/rddirplus, "
2707 					    "UNABLE TO ENTER %*.*s\n",
2708 					nlc.nlc_namelen, nlc.nlc_namelen,
2709 					nlc.nlc_nameptr);
2710 #endif
2711 				}
2712 			    }
2713 			} else {
2714 			    /* Just skip over the file handle */
2715 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2716 			    i = fxdr_unsigned(int, *tl);
2717 			    ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2718 			}
2719 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2720 			more_dirs = fxdr_unsigned(int, *tl);
2721 		}
2722 		/*
2723 		 * If at end of rpc data, get the eof boolean
2724 		 */
2725 		if (!more_dirs) {
2726 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2727 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2728 		}
2729 		m_freem(info.mrep);
2730 		info.mrep = NULL;
2731 	}
2732 	/*
2733 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2734 	 * by increasing d_reclen for the last record.
2735 	 */
2736 	if (blksiz > 0) {
2737 		left = DIRBLKSIZ - blksiz;
2738 		dp->nfs_reclen += left;
2739 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2740 		uiop->uio_iov->iov_len -= left;
2741 		uiop->uio_offset += left;
2742 		uiop->uio_resid -= left;
2743 	}
2744 
2745 	/*
2746 	 * We are now either at the end of the directory or have filled the
2747 	 * block.
2748 	 */
2749 	if (bigenough) {
2750 		dnp->n_direofoffset = uiop->uio_offset;
2751 	} else {
2752 		if (uiop->uio_resid > 0)
2753 			kprintf("EEK! readdirplusrpc resid > 0\n");
2754 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2755 		*cookiep = cookie;
2756 	}
2757 nfsmout:
2758 	if (newvp != NULLVP) {
2759 	        if (newvp == vp)
2760 			vrele(newvp);
2761 		else
2762 			vput(newvp);
2763 		newvp = NULLVP;
2764 	}
2765 	if (dnch.ncp)
2766 		cache_drop(&dnch);
2767 	return (error);
2768 }
2769 
2770 /*
2771  * Silly rename. To make the NFS filesystem that is stateless look a little
2772  * more like the "ufs" a remove of an active vnode is translated to a rename
2773  * to a funny looking filename that is removed by nfs_inactive on the
2774  * nfsnode. There is the potential for another process on a different client
2775  * to create the same funny name between the nfs_lookitup() fails and the
2776  * nfs_rename() completes, but...
2777  */
2778 static int
2779 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2780 {
2781 	struct sillyrename *sp;
2782 	struct nfsnode *np;
2783 	int error;
2784 
2785 	/*
2786 	 * We previously purged dvp instead of vp.  I don't know why, it
2787 	 * completely destroys performance.  We can't do it anyway with the
2788 	 * new VFS API since we would be breaking the namecache topology.
2789 	 */
2790 	cache_purge(vp);	/* XXX */
2791 	np = VTONFS(vp);
2792 #ifndef DIAGNOSTIC
2793 	if (vp->v_type == VDIR)
2794 		panic("nfs: sillyrename dir");
2795 #endif
2796 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2797 		M_NFSREQ, M_WAITOK);
2798 	sp->s_cred = crdup(cnp->cn_cred);
2799 	sp->s_dvp = dvp;
2800 	vref(dvp);
2801 
2802 	/* Fudge together a funny name */
2803 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2804 				(int)(intptr_t)cnp->cn_td);
2805 
2806 	/* Try lookitups until we get one that isn't there */
2807 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2808 		cnp->cn_td, NULL) == 0) {
2809 		sp->s_name[4]++;
2810 		if (sp->s_name[4] > 'z') {
2811 			error = EINVAL;
2812 			goto bad;
2813 		}
2814 	}
2815 	error = nfs_renameit(dvp, cnp, sp);
2816 	if (error)
2817 		goto bad;
2818 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2819 		cnp->cn_td, &np);
2820 	np->n_sillyrename = sp;
2821 	return (0);
2822 bad:
2823 	vrele(sp->s_dvp);
2824 	crfree(sp->s_cred);
2825 	kfree((caddr_t)sp, M_NFSREQ);
2826 	return (error);
2827 }
2828 
2829 /*
2830  * Look up a file name and optionally either update the file handle or
2831  * allocate an nfsnode, depending on the value of npp.
2832  * npp == NULL	--> just do the lookup
2833  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2834  *			handled too
2835  * *npp != NULL --> update the file handle in the vnode
2836  */
2837 static int
2838 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2839 	     struct thread *td, struct nfsnode **npp)
2840 {
2841 	struct vnode *newvp = NULL;
2842 	struct nfsnode *np, *dnp = VTONFS(dvp);
2843 	int error = 0, fhlen, attrflag;
2844 	nfsfh_t *nfhp;
2845 	struct nfsm_info info;
2846 
2847 	info.mrep = NULL;
2848 	info.v3 = NFS_ISV3(dvp);
2849 
2850 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2851 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
2852 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2853 	ERROROUT(nfsm_fhtom(&info, dvp));
2854 	ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
2855 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
2856 	if (npp && !error) {
2857 		NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
2858 		if (*npp) {
2859 		    np = *npp;
2860 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2861 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2862 			np->n_fhp = &np->n_fh;
2863 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2864 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2865 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2866 		    np->n_fhsize = fhlen;
2867 		    newvp = NFSTOV(np);
2868 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2869 		    vref(dvp);
2870 		    newvp = dvp;
2871 		} else {
2872 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2873 		    if (error) {
2874 			m_freem(info.mrep);
2875 			info.mrep = NULL;
2876 			return (error);
2877 		    }
2878 		    newvp = NFSTOV(np);
2879 		}
2880 		if (info.v3) {
2881 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
2882 						  NFS_LATTR_NOSHRINK));
2883 			if (!attrflag && *npp == NULL) {
2884 				m_freem(info.mrep);
2885 				info.mrep = NULL;
2886 				if (newvp == dvp)
2887 					vrele(newvp);
2888 				else
2889 					vput(newvp);
2890 				return (ENOENT);
2891 			}
2892 		} else {
2893 			ERROROUT(error = nfsm_loadattr(&info, newvp, NULL));
2894 		}
2895 	}
2896 	m_freem(info.mrep);
2897 	info.mrep = NULL;
2898 nfsmout:
2899 	if (npp && *npp == NULL) {
2900 		if (error) {
2901 			if (newvp) {
2902 				if (newvp == dvp)
2903 					vrele(newvp);
2904 				else
2905 					vput(newvp);
2906 			}
2907 		} else
2908 			*npp = np;
2909 	}
2910 	return (error);
2911 }
2912 
2913 /*
2914  * Nfs Version 3 commit rpc
2915  *
2916  * We call it 'uio' to distinguish it from 'bio' but there is no real uio
2917  * involved.
2918  */
2919 int
2920 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2921 {
2922 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2923 	int error = 0, wccflag = NFSV3_WCCRATTR;
2924 	struct nfsm_info info;
2925 	u_int32_t *tl;
2926 
2927 	info.mrep = NULL;
2928 	info.v3 = 1;
2929 
2930 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2931 		return (0);
2932 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2933 	nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
2934 	ERROROUT(nfsm_fhtom(&info, vp));
2935 	tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
2936 	txdr_hyper(offset, tl);
2937 	tl += 2;
2938 	*tl = txdr_unsigned(cnt);
2939 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
2940 				nfs_vpcred(vp, ND_WRITE), &error));
2941 	ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
2942 	if (!error) {
2943 		NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
2944 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2945 			NFSX_V3WRITEVERF)) {
2946 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2947 				NFSX_V3WRITEVERF);
2948 			error = NFSERR_STALEWRITEVERF;
2949 		}
2950 	}
2951 	m_freem(info.mrep);
2952 	info.mrep = NULL;
2953 nfsmout:
2954 	return (error);
2955 }
2956 
2957 /*
2958  * Kludge City..
2959  * - make nfs_bmap() essentially a no-op that does no translation
2960  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2961  *   (Maybe I could use the process's page mapping, but I was concerned that
2962  *    Kernel Write might not be enabled and also figured copyout() would do
2963  *    a lot more work than bcopy() and also it currently happens in the
2964  *    context of the swapper process (2).
2965  *
2966  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2967  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2968  */
2969 static int
2970 nfs_bmap(struct vop_bmap_args *ap)
2971 {
2972 	if (ap->a_doffsetp != NULL)
2973 		*ap->a_doffsetp = ap->a_loffset;
2974 	if (ap->a_runp != NULL)
2975 		*ap->a_runp = 0;
2976 	if (ap->a_runb != NULL)
2977 		*ap->a_runb = 0;
2978 	return (0);
2979 }
2980 
2981 /*
2982  * Strategy routine.
2983  */
2984 static int
2985 nfs_strategy(struct vop_strategy_args *ap)
2986 {
2987 	struct bio *bio = ap->a_bio;
2988 	struct bio *nbio;
2989 	struct buf *bp __debugvar = bio->bio_buf;
2990 	struct thread *td;
2991 	int error;
2992 
2993 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2994 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2995 	KASSERT(BUF_REFCNT(bp) > 0,
2996 		("nfs_strategy: buffer %p not locked", bp));
2997 
2998 	if (bio->bio_flags & BIO_SYNC)
2999 		td = curthread;	/* XXX */
3000 	else
3001 		td = NULL;
3002 
3003         /*
3004 	 * We probably don't need to push an nbio any more since no
3005 	 * block conversion is required due to the use of 64 bit byte
3006 	 * offsets, but do it anyway.
3007 	 *
3008 	 * NOTE: When NFS callers itself via this strategy routines and
3009 	 *	 sets up a synchronous I/O, it expects the I/O to run
3010 	 *	 synchronously (its bio_done routine just assumes it),
3011 	 *	 so for now we have to honor the bit.
3012          */
3013 	nbio = push_bio(bio);
3014 	nbio->bio_offset = bio->bio_offset;
3015 	nbio->bio_flags = bio->bio_flags & BIO_SYNC;
3016 
3017 	/*
3018 	 * If the op is asynchronous and an i/o daemon is waiting
3019 	 * queue the request, wake it up and wait for completion
3020 	 * otherwise just do it ourselves.
3021 	 */
3022 	if (bio->bio_flags & BIO_SYNC) {
3023 		error = nfs_doio(ap->a_vp, nbio, td);
3024 	} else {
3025 		nfs_asyncio(ap->a_vp, nbio);
3026 		error = 0;
3027 	}
3028 	return (error);
3029 }
3030 
3031 /*
3032  * Mmap a file
3033  *
3034  * NB Currently unsupported.
3035  *
3036  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
3037  */
3038 /* ARGSUSED */
3039 static int
3040 nfs_mmap(struct vop_mmap_args *ap)
3041 {
3042 	return (EINVAL);
3043 }
3044 
3045 /*
3046  * fsync vnode op. Just call nfs_flush() with commit == 1.
3047  *
3048  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3049  */
3050 /* ARGSUSED */
3051 static int
3052 nfs_fsync(struct vop_fsync_args *ap)
3053 {
3054 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
3055 }
3056 
3057 /*
3058  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
3059  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
3060  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
3061  * set the buffer contains data that has already been written to the server
3062  * and which now needs a commit RPC.
3063  *
3064  * If commit is 0 we only take one pass and only flush buffers containing new
3065  * dirty data.
3066  *
3067  * If commit is 1 we take two passes, issuing a commit RPC in the second
3068  * pass.
3069  *
3070  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3071  * to completely flush all pending data.
3072  *
3073  * Note that the RB_SCAN code properly handles the case where the
3074  * callback might block and directly or indirectly (another thread) cause
3075  * the RB tree to change.
3076  */
3077 
3078 #ifndef NFS_COMMITBVECSIZ
3079 #define NFS_COMMITBVECSIZ	16
3080 #endif
3081 
3082 struct nfs_flush_info {
3083 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3084 	struct thread *td;
3085 	struct vnode *vp;
3086 	int waitfor;
3087 	int slpflag;
3088 	int slptimeo;
3089 	int loops;
3090 	struct buf *bvary[NFS_COMMITBVECSIZ];
3091 	int bvsize;
3092 	off_t beg_off;
3093 	off_t end_off;
3094 };
3095 
3096 static int nfs_flush_bp(struct buf *bp, void *data);
3097 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3098 
3099 int
3100 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3101 {
3102 	struct nfsnode *np = VTONFS(vp);
3103 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3104 	struct nfs_flush_info info;
3105 	lwkt_tokref vlock;
3106 	int error;
3107 
3108 	bzero(&info, sizeof(info));
3109 	info.td = td;
3110 	info.vp = vp;
3111 	info.waitfor = waitfor;
3112 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3113 	info.loops = 0;
3114 	lwkt_gettoken(&vlock, &vp->v_token);
3115 
3116 	do {
3117 		/*
3118 		 * Flush mode
3119 		 */
3120 		info.mode = NFI_FLUSHNEW;
3121 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3122 				nfs_flush_bp, &info);
3123 
3124 		/*
3125 		 * Take a second pass if committing and no error occured.
3126 		 * Clean up any left over collection (whether an error
3127 		 * occurs or not).
3128 		 */
3129 		if (commit && error == 0) {
3130 			info.mode = NFI_COMMIT;
3131 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3132 					nfs_flush_bp, &info);
3133 			if (info.bvsize)
3134 				error = nfs_flush_docommit(&info, error);
3135 		}
3136 
3137 		/*
3138 		 * Wait for pending I/O to complete before checking whether
3139 		 * any further dirty buffers exist.
3140 		 */
3141 		while (waitfor == MNT_WAIT &&
3142 		       bio_track_active(&vp->v_track_write)) {
3143 			error = bio_track_wait(&vp->v_track_write,
3144 					       info.slpflag, info.slptimeo);
3145 			if (error) {
3146 				/*
3147 				 * We have to be able to break out if this
3148 				 * is an 'intr' mount.
3149 				 */
3150 				if (nfs_sigintr(nmp, NULL, td)) {
3151 					error = -EINTR;
3152 					break;
3153 				}
3154 
3155 				/*
3156 				 * Since we do not process pending signals,
3157 				 * once we get a PCATCH our tsleep() will no
3158 				 * longer sleep, switch to a fixed timeout
3159 				 * instead.
3160 				 */
3161 				if (info.slpflag == PCATCH) {
3162 					info.slpflag = 0;
3163 					info.slptimeo = 2 * hz;
3164 				}
3165 				error = 0;
3166 			}
3167 		}
3168 		++info.loops;
3169 		/*
3170 		 * Loop if we are flushing synchronous as well as committing,
3171 		 * and dirty buffers are still present.  Otherwise we might livelock.
3172 		 */
3173 	} while (waitfor == MNT_WAIT && commit &&
3174 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3175 
3176 	/*
3177 	 * The callbacks have to return a negative error to terminate the
3178 	 * RB scan.
3179 	 */
3180 	if (error < 0)
3181 		error = -error;
3182 
3183 	/*
3184 	 * Deal with any error collection
3185 	 */
3186 	if (np->n_flag & NWRITEERR) {
3187 		error = np->n_error;
3188 		np->n_flag &= ~NWRITEERR;
3189 	}
3190 	lwkt_reltoken(&vlock);
3191 	return (error);
3192 }
3193 
3194 static
3195 int
3196 nfs_flush_bp(struct buf *bp, void *data)
3197 {
3198 	struct nfs_flush_info *info = data;
3199 	int lkflags;
3200 	int error;
3201 	off_t toff;
3202 
3203 	error = 0;
3204 	switch(info->mode) {
3205 	case NFI_FLUSHNEW:
3206 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3207 		if (error && info->loops && info->waitfor == MNT_WAIT) {
3208 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3209 			if (error) {
3210 				lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3211 				if (info->slpflag & PCATCH)
3212 					lkflags |= LK_PCATCH;
3213 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3214 						     info->slptimeo);
3215 			}
3216 		}
3217 
3218 		/*
3219 		 * Ignore locking errors
3220 		 */
3221 		if (error) {
3222 			error = 0;
3223 			break;
3224 		}
3225 
3226 		/*
3227 		 * The buffer may have changed out from under us, even if
3228 		 * we did not block (MPSAFE).  Check again now that it is
3229 		 * locked.
3230 		 */
3231 		if (bp->b_vp == info->vp &&
3232 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3233 			bremfree(bp);
3234 			bawrite(bp);
3235 		} else {
3236 			BUF_UNLOCK(bp);
3237 		}
3238 		break;
3239 	case NFI_COMMIT:
3240 		/*
3241 		 * Only process buffers in need of a commit which we can
3242 		 * immediately lock.  This may prevent a buffer from being
3243 		 * committed, but the normal flush loop will block on the
3244 		 * same buffer so we shouldn't get into an endless loop.
3245 		 */
3246 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3247 		    (B_DELWRI | B_NEEDCOMMIT)) {
3248 			break;
3249 		}
3250 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3251 			break;
3252 
3253 		/*
3254 		 * We must recheck after successfully locking the buffer.
3255 		 */
3256 		if (bp->b_vp != info->vp ||
3257 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3258 		    (B_DELWRI | B_NEEDCOMMIT)) {
3259 			BUF_UNLOCK(bp);
3260 			break;
3261 		}
3262 
3263 		/*
3264 		 * NOTE: storing the bp in the bvary[] basically sets
3265 		 * it up for a commit operation.
3266 		 *
3267 		 * We must call vfs_busy_pages() now so the commit operation
3268 		 * is interlocked with user modifications to memory mapped
3269 		 * pages.  The b_dirtyoff/b_dirtyend range is not correct
3270 		 * until after the pages have been busied.
3271 		 *
3272 		 * Note: to avoid loopback deadlocks, we do not
3273 		 * assign b_runningbufspace.
3274 		 */
3275 		bremfree(bp);
3276 		bp->b_cmd = BUF_CMD_WRITE;
3277 		vfs_busy_pages(bp->b_vp, bp);
3278 		info->bvary[info->bvsize] = bp;
3279 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3280 		if (info->bvsize == 0 || toff < info->beg_off)
3281 			info->beg_off = toff;
3282 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3283 		if (info->bvsize == 0 || toff > info->end_off)
3284 			info->end_off = toff;
3285 		++info->bvsize;
3286 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3287 			error = nfs_flush_docommit(info, 0);
3288 			KKASSERT(info->bvsize == 0);
3289 		}
3290 	}
3291 	return (error);
3292 }
3293 
3294 static
3295 int
3296 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3297 {
3298 	struct vnode *vp;
3299 	struct buf *bp;
3300 	off_t bytes;
3301 	int retv;
3302 	int i;
3303 
3304 	vp = info->vp;
3305 
3306 	if (info->bvsize > 0) {
3307 		/*
3308 		 * Commit data on the server, as required.  Note that
3309 		 * nfs_commit will use the vnode's cred for the commit.
3310 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3311 		 */
3312 		bytes = info->end_off - info->beg_off;
3313 		if (bytes > 0x40000000)
3314 			bytes = 0x40000000;
3315 		if (error) {
3316 			retv = -error;
3317 		} else {
3318 			retv = nfs_commitrpc_uio(vp, info->beg_off,
3319 						 (int)bytes, info->td);
3320 			if (retv == NFSERR_STALEWRITEVERF)
3321 				nfs_clearcommit(vp->v_mount);
3322 		}
3323 
3324 		/*
3325 		 * Now, either mark the blocks I/O done or mark the
3326 		 * blocks dirty, depending on whether the commit
3327 		 * succeeded.
3328 		 */
3329 		for (i = 0; i < info->bvsize; ++i) {
3330 			bp = info->bvary[i];
3331 			if (retv || (bp->b_flags & B_NEEDCOMMIT) == 0) {
3332 				/*
3333 				 * Either an error or the original
3334 				 * vfs_busy_pages() cleared B_NEEDCOMMIT
3335 				 * due to finding new dirty VM pages in
3336 				 * the buffer.
3337 				 *
3338 				 * Leave B_DELWRI intact.
3339 				 */
3340 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3341 				vfs_unbusy_pages(bp);
3342 				bp->b_cmd = BUF_CMD_DONE;
3343 				bqrelse(bp);
3344 			} else {
3345 				/*
3346 				 * Success, remove B_DELWRI ( bundirty() ).
3347 				 *
3348 				 * b_dirtyoff/b_dirtyend seem to be NFS
3349 				 * specific.  We should probably move that
3350 				 * into bundirty(). XXX
3351 				 *
3352 				 * We are faking an I/O write, we have to
3353 				 * start the transaction in order to
3354 				 * immediately biodone() it.
3355 				 */
3356 				bundirty(bp);
3357 				bp->b_flags &= ~B_ERROR;
3358 				bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3359 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3360 				biodone(&bp->b_bio1);
3361 			}
3362 		}
3363 		info->bvsize = 0;
3364 	}
3365 	return (error);
3366 }
3367 
3368 /*
3369  * NFS advisory byte-level locks.
3370  * Currently unsupported.
3371  *
3372  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3373  *		int a_flags)
3374  */
3375 static int
3376 nfs_advlock(struct vop_advlock_args *ap)
3377 {
3378 	struct nfsnode *np = VTONFS(ap->a_vp);
3379 
3380 	/*
3381 	 * The following kludge is to allow diskless support to work
3382 	 * until a real NFS lockd is implemented. Basically, just pretend
3383 	 * that this is a local lock.
3384 	 */
3385 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3386 }
3387 
3388 /*
3389  * Print out the contents of an nfsnode.
3390  *
3391  * nfs_print(struct vnode *a_vp)
3392  */
3393 static int
3394 nfs_print(struct vop_print_args *ap)
3395 {
3396 	struct vnode *vp = ap->a_vp;
3397 	struct nfsnode *np = VTONFS(vp);
3398 
3399 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3400 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3401 	if (vp->v_type == VFIFO)
3402 		fifo_printinfo(vp);
3403 	kprintf("\n");
3404 	return (0);
3405 }
3406 
3407 /*
3408  * nfs special file access vnode op.
3409  *
3410  * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3411  */
3412 static int
3413 nfs_laccess(struct vop_access_args *ap)
3414 {
3415 	struct vattr vattr;
3416 	int error;
3417 
3418 	error = VOP_GETATTR(ap->a_vp, &vattr);
3419 	if (!error)
3420 		error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3421 				vattr.va_mode, 0);
3422 	return (error);
3423 }
3424 
3425 /*
3426  * Read wrapper for fifos.
3427  *
3428  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3429  *		struct ucred *a_cred)
3430  */
3431 static int
3432 nfsfifo_read(struct vop_read_args *ap)
3433 {
3434 	struct nfsnode *np = VTONFS(ap->a_vp);
3435 
3436 	/*
3437 	 * Set access flag.
3438 	 */
3439 	np->n_flag |= NACC;
3440 	getnanotime(&np->n_atim);
3441 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3442 }
3443 
3444 /*
3445  * Write wrapper for fifos.
3446  *
3447  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3448  *		 struct ucred *a_cred)
3449  */
3450 static int
3451 nfsfifo_write(struct vop_write_args *ap)
3452 {
3453 	struct nfsnode *np = VTONFS(ap->a_vp);
3454 
3455 	/*
3456 	 * Set update flag.
3457 	 */
3458 	np->n_flag |= NUPD;
3459 	getnanotime(&np->n_mtim);
3460 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3461 }
3462 
3463 /*
3464  * Close wrapper for fifos.
3465  *
3466  * Update the times on the nfsnode then do fifo close.
3467  *
3468  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3469  */
3470 static int
3471 nfsfifo_close(struct vop_close_args *ap)
3472 {
3473 	struct vnode *vp = ap->a_vp;
3474 	struct nfsnode *np = VTONFS(vp);
3475 	struct vattr vattr;
3476 	struct timespec ts;
3477 
3478 	if (np->n_flag & (NACC | NUPD)) {
3479 		getnanotime(&ts);
3480 		if (np->n_flag & NACC)
3481 			np->n_atim = ts;
3482 		if (np->n_flag & NUPD)
3483 			np->n_mtim = ts;
3484 		np->n_flag |= NCHG;
3485 		if (vp->v_sysref.refcnt == 1 &&
3486 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3487 			VATTR_NULL(&vattr);
3488 			if (np->n_flag & NACC)
3489 				vattr.va_atime = np->n_atim;
3490 			if (np->n_flag & NUPD)
3491 				vattr.va_mtime = np->n_mtim;
3492 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3493 		}
3494 	}
3495 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3496 }
3497 
3498