xref: /dragonfly/sys/vfs/procfs/procfs_mem.c (revision a78dfe84)
1 /*
2  * Copyright (c) 1993 Jan-Simon Pendry
3  * Copyright (c) 1993 Sean Eric Fagan
4  * Copyright (c) 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Jan-Simon Pendry and Sean Eric Fagan.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)procfs_mem.c	8.5 (Berkeley) 6/15/94
35  *
36  * $FreeBSD: src/sys/miscfs/procfs/procfs_mem.c,v 1.46.2.3 2002/01/22 17:22:59 nectar Exp $
37  * $DragonFly: src/sys/vfs/procfs/procfs_mem.c,v 1.16 2007/04/29 18:25:40 dillon Exp $
38  */
39 
40 /*
41  * This is a lightly hacked and merged version
42  * of sef's pread/pwrite functions
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/priv.h>
49 #include <sys/vnode.h>
50 #include <vfs/procfs/procfs.h>
51 #include <vm/vm.h>
52 #include <vm/vm_param.h>
53 #include <sys/lock.h>
54 #include <vm/pmap.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_map.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <sys/user.h>
61 #include <sys/ptrace.h>
62 
63 #include <machine/vmm.h>
64 
65 #include <sys/thread2.h>
66 #include <sys/sysref2.h>
67 
68 static int	procfs_rwmem (struct proc *curp,
69 				  struct proc *p, struct uio *uio);
70 
71 /*
72  * p->p_token is held on entry.
73  */
74 static int
75 procfs_rwmem(struct proc *curp, struct proc *p, struct uio *uio)
76 {
77 	int error;
78 	int writing;
79 	struct vmspace *vm;
80 	vm_map_t map;
81 	vm_offset_t pageno = 0;		/* page number */
82 	vm_prot_t reqprot;
83 	vm_offset_t kva;
84 
85 	/*
86 	 * if the vmspace is in the midst of being allocated or deallocated,
87 	 * or the process is exiting, don't try to grab anything.  The
88 	 * page table usage in that process may be messed up.
89 	 */
90 	vm = p->p_vmspace;
91 	if (p->p_stat == SIDL || p->p_stat == SZOMB)
92 		return EFAULT;
93 	if ((p->p_flags & (P_WEXIT | P_INEXEC)) || vmspace_getrefs(vm) < 0)
94 		return EFAULT;
95 
96 	/*
97 	 * The map we want...
98 	 */
99 	vmspace_hold(vm);
100 	map = &vm->vm_map;
101 
102 	writing = (uio->uio_rw == UIO_WRITE);
103 	reqprot = VM_PROT_READ;
104 	if (writing)
105 		reqprot |= VM_PROT_WRITE | VM_PROT_OVERRIDE_WRITE;
106 
107 	kva = kmem_alloc_pageable(&kernel_map, PAGE_SIZE, VM_SUBSYS_PROC);
108 
109 	/*
110 	 * Only map in one page at a time.  We don't have to, but it
111 	 * makes things easier.  This way is trivial - right?
112 	 */
113 	do {
114 		vm_offset_t uva;
115 		vm_offset_t page_offset;	/* offset into page */
116 		size_t len;
117 		vm_page_t m;
118 		int busy;
119 
120 		uva = (vm_offset_t) uio->uio_offset;
121 
122 		/*
123 		 * Get the page number of this segment.
124 		 */
125 		pageno = trunc_page(uva);
126 		page_offset = uva - pageno;
127 
128 		/*
129 		 * If the target process is running in VMM mode
130 		 * translate the address into a GPA (Guest Physical
131 		 * Address) via the EPT before doing the lookup.
132 		 */
133 		if (p->p_vmm) {
134 			register_t gpa;
135 			vmm_vm_get_gpa(p, &gpa, (register_t) pageno);
136 			pageno = (vm_offset_t)gpa;
137 		}
138 
139 		/*
140 		 * How many bytes to copy
141 		 */
142 		len = szmin(PAGE_SIZE - page_offset, uio->uio_resid);
143 
144 		/*
145 		 * Fault the page on behalf of the process
146 		 *
147 		 * XXX busied page on write fault can deadlock against our
148 		 *     uiomove.
149 		 */
150 		m = vm_fault_page(map, pageno, reqprot,
151 				  VM_FAULT_NORMAL,
152 				  &error, &busy);
153 		if (error) {
154 			KKASSERT(m == NULL);
155 			error = EFAULT;
156 			break;
157 		}
158 
159 		/*
160 		 * Cleanup tmap then create a temporary KVA mapping and
161 		 * do the I/O.  We can switch between cpus so don't bother
162 		 * synchronizing across all cores.
163 		 */
164 		pmap_kenter_quick(kva, VM_PAGE_TO_PHYS(m));
165 		error = uiomove((caddr_t)(kva + page_offset), len, uio);
166 		pmap_kremove_quick(kva);
167 
168 		/*
169 		 * Release the page and we are done
170 		 */
171 		if (busy)
172 			vm_page_wakeup(m);
173 		else
174 			vm_page_unhold(m);
175 	} while (error == 0 && uio->uio_resid > 0);
176 
177 	vmspace_drop(vm);
178 	kmem_free(&kernel_map, kva, PAGE_SIZE);
179 
180 	return (error);
181 }
182 
183 /*
184  * Copy data in and out of the target process.
185  * We do this by mapping the process's page into
186  * the kernel and then doing a uiomove direct
187  * from the kernel address space.
188  *
189  * lp->lwp_proc->p_token is held on entry.
190  */
191 int
192 procfs_domem(struct proc *curp, struct lwp *lp, struct pfsnode *pfs,
193 	     struct uio *uio)
194 {
195 	struct proc *p = lp->lwp_proc;
196 	int error;
197 
198 	if (uio->uio_resid == 0)
199 		return (0);
200 
201 	if ((p->p_flags & P_INEXEC) != 0) {
202 		/*
203 		 * Can't trace a process that's currently exec'ing.
204 		 */
205 		error = EAGAIN;
206 	} else if (!CHECKIO(curp, p) || p_trespass(curp->p_ucred, p->p_ucred)) {
207 		/*
208 		 * Can't trace processes outside our jail
209 		 */
210 		error = EPERM;
211 	} else {
212 		error = procfs_rwmem(curp, p, uio);
213 	}
214 	return(error);
215 }
216 
217 /*
218  * Given process (p), find the vnode from which
219  * its text segment is being executed.
220  *
221  * It would be nice to grab this information from
222  * the VM system, however, there is no sure-fire
223  * way of doing that.  Instead, fork(), exec() and
224  * wait() all maintain the p_textvp field in the
225  * process proc structure which contains a held
226  * reference to the exec'ed vnode.
227  *
228  * XXX - Currently, this is not not used, as the
229  * /proc/pid/file object exposes an information leak
230  * that shouldn't happen.  Using a mount option would
231  * make it configurable on a per-system (or, at least,
232  * per-mount) basis; however, that's not really best.
233  * The best way to do it, I think, would be as an
234  * ioctl; this would restrict it to the uid running
235  * program, or root, which seems a reasonable compromise.
236  * However, the number of applications for this is
237  * minimal, if it can't be seen in the filesytem space,
238  * and doint it as an ioctl makes it somewhat less
239  * useful due to the, well, inelegance.
240  *
241  */
242 struct vnode *
243 procfs_findtextvp(struct proc *p)
244 {
245 	return (p->p_textvp);
246 }
247