xref: /dragonfly/sys/vfs/ufs/ffs_inode.c (revision 86fe9e07)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)ffs_inode.c	8.13 (Berkeley) 4/21/95
34  * $FreeBSD: src/sys/ufs/ffs/ffs_inode.c,v 1.56.2.5 2002/02/05 18:35:03 dillon Exp $
35  * $DragonFly: src/sys/vfs/ufs/ffs_inode.c,v 1.11 2004/07/18 19:43:48 drhodus Exp $
36  */
37 
38 #include "opt_quota.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/mount.h>
43 #include <sys/proc.h>
44 #include <sys/buf.h>
45 #include <sys/vnode.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/resourcevar.h>
49 #include <sys/vmmeter.h>
50 
51 #include <vm/vm.h>
52 #include <vm/vm_extern.h>
53 
54 #include "quota.h"
55 #include "ufsmount.h"
56 #include "inode.h"
57 #include "ufs_extern.h"
58 
59 #include "fs.h"
60 #include "ffs_extern.h"
61 
62 #include <vm/vm_page2.h>
63 
64 static int ffs_indirtrunc (struct inode *, ufs_daddr_t, ufs_daddr_t,
65 	    ufs_daddr_t, int, long *);
66 
67 /*
68  * Update the access, modified, and inode change times as specified by the
69  * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.  Write the inode
70  * to disk if the IN_MODIFIED flag is set (it may be set initially, or by
71  * the timestamp update).  The IN_LAZYMOD flag is set to force a write
72  * later if not now.  If we write now, then clear both IN_MODIFIED and
73  * IN_LAZYMOD to reflect the presumably successful write, and if waitfor is
74  * set, then wait for the write to complete.
75  */
76 int
77 ffs_update(struct vnode *vp, int waitfor)
78 {
79 	struct fs *fs;
80 	struct buf *bp;
81 	struct inode *ip;
82 	int error;
83 
84 	ufs_itimes(vp);
85 	ip = VTOI(vp);
86 	if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0)
87 		return (0);
88 	ip->i_flag &= ~(IN_LAZYMOD | IN_MODIFIED);
89 	fs = ip->i_fs;
90 	if (fs->fs_ronly)
91 		return (0);
92 	/*
93 	 * Ensure that uid and gid are correct. This is a temporary
94 	 * fix until fsck has been changed to do the update.
95 	 */
96 	if (fs->fs_inodefmt < FS_44INODEFMT) {		/* XXX */
97 		ip->i_din.di_ouid = ip->i_uid;		/* XXX */
98 		ip->i_din.di_ogid = ip->i_gid;		/* XXX */
99 	}						/* XXX */
100 	error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
101 		(int)fs->fs_bsize, &bp);
102 	if (error) {
103 		brelse(bp);
104 		return (error);
105 	}
106 	if (DOINGSOFTDEP(vp))
107 		softdep_update_inodeblock(ip, bp, waitfor);
108 	else if (ip->i_effnlink != ip->i_nlink)
109 		panic("ffs_update: bad link cnt");
110 	*((struct dinode *)bp->b_data +
111 	    ino_to_fsbo(fs, ip->i_number)) = ip->i_din;
112 	if (waitfor && !DOINGASYNC(vp)) {
113 		return (bwrite(bp));
114 	} else if (vm_page_count_severe() || buf_dirty_count_severe()) {
115 		return (bwrite(bp));
116 	} else {
117 		if (bp->b_bufsize == fs->fs_bsize)
118 			bp->b_flags |= B_CLUSTEROK;
119 		bdwrite(bp);
120 		return (0);
121 	}
122 }
123 
124 #define	SINGLE	0	/* index of single indirect block */
125 #define	DOUBLE	1	/* index of double indirect block */
126 #define	TRIPLE	2	/* index of triple indirect block */
127 /*
128  * Truncate the inode oip to at most length size, freeing the
129  * disk blocks.
130  */
131 int
132 ffs_truncate(struct vnode *vp, off_t length, int flags, struct ucred *cred,
133 	     struct thread *td)
134 {
135 	struct vnode *ovp = vp;
136 	ufs_daddr_t lastblock;
137 	struct inode *oip;
138 	ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
139 	ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
140 	struct fs *fs;
141 	struct buf *bp;
142 	int offset, size, level;
143 	long count, nblocks, blocksreleased = 0;
144 	int i;
145 	int aflags, error, allerror;
146 	off_t osize;
147 
148 	oip = VTOI(ovp);
149 	fs = oip->i_fs;
150 	if (length < 0)
151 		return (EINVAL);
152 	if (length > fs->fs_maxfilesize)
153 		return (EFBIG);
154 	if (ovp->v_type == VLNK &&
155 	    (oip->i_size < ovp->v_mount->mnt_maxsymlinklen || oip->i_din.di_blocks == 0)) {
156 #ifdef DIAGNOSTIC
157 		if (length != 0)
158 			panic("ffs_truncate: partial truncate of symlink");
159 #endif /* DIAGNOSTIC */
160 		bzero((char *)&oip->i_shortlink, (uint)oip->i_size);
161 		oip->i_size = 0;
162 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
163 		return (UFS_UPDATE(ovp, 1));
164 	}
165 	if (oip->i_size == length) {
166 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
167 		return (UFS_UPDATE(ovp, 0));
168 	}
169 	if (fs->fs_ronly)
170 		panic("ffs_truncate: read-only filesystem");
171 #ifdef QUOTA
172 	error = getinoquota(oip);
173 	if (error)
174 		return (error);
175 #endif
176 	ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0;
177 	if (DOINGSOFTDEP(ovp)) {
178 		if (length > 0 || softdep_slowdown(ovp)) {
179 			/*
180 			 * If a file is only partially truncated, then
181 			 * we have to clean up the data structures
182 			 * describing the allocation past the truncation
183 			 * point. Finding and deallocating those structures
184 			 * is a lot of work. Since partial truncation occurs
185 			 * rarely, we solve the problem by syncing the file
186 			 * so that it will have no data structures left.
187 			 */
188 			if ((error = VOP_FSYNC(ovp, MNT_WAIT, td)) != 0)
189 				return (error);
190 		} else {
191 #ifdef QUOTA
192 			(void) chkdq(oip, -oip->i_blocks, NOCRED, 0);
193 #endif
194 			softdep_setup_freeblocks(oip, length);
195 			vinvalbuf(ovp, 0, td, 0, 0);
196 			oip->i_flag |= IN_CHANGE | IN_UPDATE;
197 			return (ffs_update(ovp, 0));
198 		}
199 	}
200 	osize = oip->i_size;
201 	/*
202 	 * Lengthen the size of the file. We must ensure that the
203 	 * last byte of the file is allocated. Since the smallest
204 	 * value of osize is 0, length will be at least 1.
205 	 */
206 	if (osize < length) {
207 		vnode_pager_setsize(ovp, length);
208 		aflags = B_CLRBUF;
209 		if (flags & IO_SYNC)
210 			aflags |= B_SYNC;
211 		error = VOP_BALLOC(ovp, length - 1, 1,
212 		    cred, aflags, &bp);
213 		if (error)
214 			return (error);
215 		oip->i_size = length;
216 		if (bp->b_bufsize == fs->fs_bsize)
217 			bp->b_flags |= B_CLUSTEROK;
218 		if (aflags & B_SYNC)
219 			bwrite(bp);
220 		else
221 			bawrite(bp);
222 		oip->i_flag |= IN_CHANGE | IN_UPDATE;
223 		return (UFS_UPDATE(ovp, 1));
224 	}
225 	/*
226 	 * Shorten the size of the file. If the file is not being
227 	 * truncated to a block boundary, the contents of the
228 	 * partial block following the end of the file must be
229 	 * zero'ed in case it ever becomes accessible again because
230 	 * of subsequent file growth. Directories however are not
231 	 * zero'ed as they should grow back initialized to empty.
232 	 */
233 	offset = blkoff(fs, length);
234 	if (offset == 0) {
235 		oip->i_size = length;
236 	} else {
237 		lbn = lblkno(fs, length);
238 		aflags = B_CLRBUF;
239 		if (flags & IO_SYNC)
240 			aflags |= B_SYNC;
241 		error = VOP_BALLOC(ovp, length - 1, 1, cred, aflags, &bp);
242 		if (error) {
243 			return (error);
244 		}
245 		/*
246 		 * When we are doing soft updates and the UFS_BALLOC
247 		 * above fills in a direct block hole with a full sized
248 		 * block that will be truncated down to a fragment below,
249 		 * we must flush out the block dependency with an FSYNC
250 		 * so that we do not get a soft updates inconsistency
251 		 * when we create the fragment below.
252 		 */
253 		if (DOINGSOFTDEP(ovp) && lbn < NDADDR &&
254 		    fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize &&
255 		    (error = VOP_FSYNC(ovp, MNT_WAIT, td)) != 0) {
256 				return (error);
257 		}
258 		oip->i_size = length;
259 		size = blksize(fs, oip, lbn);
260 		if (ovp->v_type != VDIR)
261 			bzero((char *)bp->b_data + offset,
262 			    (uint)(size - offset));
263 		/* Kirk's code has reallocbuf(bp, size, 1) here */
264 		allocbuf(bp, size);
265 		if (bp->b_bufsize == fs->fs_bsize)
266 			bp->b_flags |= B_CLUSTEROK;
267 		if (aflags & B_SYNC)
268 			bwrite(bp);
269 		else
270 			bawrite(bp);
271 	}
272 	/*
273 	 * Calculate index into inode's block list of
274 	 * last direct and indirect blocks (if any)
275 	 * which we want to keep.  Lastblock is -1 when
276 	 * the file is truncated to 0.
277 	 */
278 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
279 	lastiblock[SINGLE] = lastblock - NDADDR;
280 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
281 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
282 	nblocks = btodb(fs->fs_bsize);
283 	/*
284 	 * Update file and block pointers on disk before we start freeing
285 	 * blocks.  If we crash before free'ing blocks below, the blocks
286 	 * will be returned to the free list.  lastiblock values are also
287 	 * normalized to -1 for calls to ffs_indirtrunc below.
288 	 */
289 	bcopy((caddr_t)&oip->i_db[0], (caddr_t)oldblks, sizeof oldblks);
290 	for (level = TRIPLE; level >= SINGLE; level--)
291 		if (lastiblock[level] < 0) {
292 			oip->i_ib[level] = 0;
293 			lastiblock[level] = -1;
294 		}
295 	for (i = NDADDR - 1; i > lastblock; i--)
296 		oip->i_db[i] = 0;
297 	oip->i_flag |= IN_CHANGE | IN_UPDATE;
298 	allerror = UFS_UPDATE(ovp, 1);
299 
300 	/*
301 	 * Having written the new inode to disk, save its new configuration
302 	 * and put back the old block pointers long enough to process them.
303 	 * Note that we save the new block configuration so we can check it
304 	 * when we are done.
305 	 */
306 	bcopy((caddr_t)&oip->i_db[0], (caddr_t)newblks, sizeof newblks);
307 	bcopy((caddr_t)oldblks, (caddr_t)&oip->i_db[0], sizeof oldblks);
308 	oip->i_size = osize;
309 
310 	error = vtruncbuf(ovp, td, length, fs->fs_bsize);
311 	if (error && (allerror == 0))
312 		allerror = error;
313 
314 	/*
315 	 * Indirect blocks first.
316 	 */
317 	indir_lbn[SINGLE] = -NDADDR;
318 	indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
319 	indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
320 	for (level = TRIPLE; level >= SINGLE; level--) {
321 		bn = oip->i_ib[level];
322 		if (bn != 0) {
323 			error = ffs_indirtrunc(oip, indir_lbn[level],
324 			    fsbtodb(fs, bn), lastiblock[level], level, &count);
325 			if (error)
326 				allerror = error;
327 			blocksreleased += count;
328 			if (lastiblock[level] < 0) {
329 				oip->i_ib[level] = 0;
330 				ffs_blkfree(oip, bn, fs->fs_bsize);
331 				blocksreleased += nblocks;
332 			}
333 		}
334 		if (lastiblock[level] >= 0)
335 			goto done;
336 	}
337 
338 	/*
339 	 * All whole direct blocks or frags.
340 	 */
341 	for (i = NDADDR - 1; i > lastblock; i--) {
342 		long bsize;
343 
344 		bn = oip->i_db[i];
345 		if (bn == 0)
346 			continue;
347 		oip->i_db[i] = 0;
348 		bsize = blksize(fs, oip, i);
349 		ffs_blkfree(oip, bn, bsize);
350 		blocksreleased += btodb(bsize);
351 	}
352 	if (lastblock < 0)
353 		goto done;
354 
355 	/*
356 	 * Finally, look for a change in size of the
357 	 * last direct block; release any frags.
358 	 */
359 	bn = oip->i_db[lastblock];
360 	if (bn != 0) {
361 		long oldspace, newspace;
362 
363 		/*
364 		 * Calculate amount of space we're giving
365 		 * back as old block size minus new block size.
366 		 */
367 		oldspace = blksize(fs, oip, lastblock);
368 		oip->i_size = length;
369 		newspace = blksize(fs, oip, lastblock);
370 		if (newspace == 0)
371 			panic("ffs_truncate: newspace");
372 		if (oldspace - newspace > 0) {
373 			/*
374 			 * Block number of space to be free'd is
375 			 * the old block # plus the number of frags
376 			 * required for the storage we're keeping.
377 			 */
378 			bn += numfrags(fs, newspace);
379 			ffs_blkfree(oip, bn, oldspace - newspace);
380 			blocksreleased += btodb(oldspace - newspace);
381 		}
382 	}
383 done:
384 #ifdef DIAGNOSTIC
385 	for (level = SINGLE; level <= TRIPLE; level++)
386 		if (newblks[NDADDR + level] != oip->i_ib[level])
387 			panic("ffs_truncate1");
388 	for (i = 0; i < NDADDR; i++)
389 		if (newblks[i] != oip->i_db[i])
390 			panic("ffs_truncate2");
391 	if (length == 0 &&
392 	    (!TAILQ_EMPTY(&ovp->v_dirtyblkhd) ||
393 	     !TAILQ_EMPTY(&ovp->v_cleanblkhd)))
394 		panic("ffs_truncate3");
395 #endif /* DIAGNOSTIC */
396 	/*
397 	 * Put back the real size.
398 	 */
399 	oip->i_size = length;
400 	oip->i_blocks -= blocksreleased;
401 
402 	if (oip->i_blocks < 0)			/* sanity */
403 		oip->i_blocks = 0;
404 	oip->i_flag |= IN_CHANGE;
405 #ifdef QUOTA
406 	(void) chkdq(oip, -blocksreleased, NOCRED, 0);
407 #endif
408 	return (allerror);
409 }
410 
411 /*
412  * Release blocks associated with the inode ip and stored in the indirect
413  * block bn.  Blocks are free'd in LIFO order up to (but not including)
414  * lastbn.  If level is greater than SINGLE, the block is an indirect block
415  * and recursive calls to indirtrunc must be used to cleanse other indirect
416  * blocks.
417  *
418  * NB: triple indirect blocks are untested.
419  */
420 static int
421 ffs_indirtrunc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t dbn,
422 	       ufs_daddr_t lastbn, int level, long *countp)
423 {
424 	int i;
425 	struct buf *bp;
426 	struct fs *fs = ip->i_fs;
427 	ufs_daddr_t *bap;
428 	struct vnode *vp;
429 	ufs_daddr_t *copy = NULL, nb, nlbn, last;
430 	long blkcount, factor;
431 	int nblocks, blocksreleased = 0;
432 	int error = 0, allerror = 0;
433 
434 	/*
435 	 * Calculate index in current block of last
436 	 * block to be kept.  -1 indicates the entire
437 	 * block so we need not calculate the index.
438 	 */
439 	factor = 1;
440 	for (i = SINGLE; i < level; i++)
441 		factor *= NINDIR(fs);
442 	last = lastbn;
443 	if (lastbn > 0)
444 		last /= factor;
445 	nblocks = btodb(fs->fs_bsize);
446 	/*
447 	 * Get buffer of block pointers, zero those entries corresponding
448 	 * to blocks to be free'd, and update on disk copy first.  Since
449 	 * double(triple) indirect before single(double) indirect, calls
450 	 * to bmap on these blocks will fail.  However, we already have
451 	 * the on disk address, so we have to set the b_blkno field
452 	 * explicitly instead of letting bread do everything for us.
453 	 */
454 	vp = ITOV(ip);
455 	bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
456 	if ((bp->b_flags & B_CACHE) == 0) {
457 		bp->b_flags |= B_READ;
458 		bp->b_flags &= ~(B_ERROR|B_INVAL);
459 		if (bp->b_bcount > bp->b_bufsize)
460 			panic("ffs_indirtrunc: bad buffer size");
461 		bp->b_blkno = dbn;
462 		vfs_busy_pages(bp, 0);
463 		VOP_STRATEGY(bp->b_vp, bp);
464 		error = biowait(bp);
465 	}
466 	if (error) {
467 		brelse(bp);
468 		*countp = 0;
469 		return (error);
470 	}
471 
472 	bap = (ufs_daddr_t *)bp->b_data;
473 	if (lastbn != -1) {
474 		MALLOC(copy, ufs_daddr_t *, fs->fs_bsize, M_TEMP, M_WAITOK);
475 		bcopy((caddr_t)bap, (caddr_t)copy, (uint)fs->fs_bsize);
476 		bzero((caddr_t)&bap[last + 1],
477 		    (uint)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
478 		if (DOINGASYNC(vp)) {
479 			bawrite(bp);
480 		} else {
481 			error = bwrite(bp);
482 			if (error)
483 				allerror = error;
484 		}
485 		bap = copy;
486 	}
487 
488 	/*
489 	 * Recursively free totally unused blocks.
490 	 */
491 	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
492 	    i--, nlbn += factor) {
493 		nb = bap[i];
494 		if (nb == 0)
495 			continue;
496 		if (level > SINGLE) {
497 			if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
498 			    (ufs_daddr_t)-1, level - 1, &blkcount)) != 0)
499 				allerror = error;
500 			blocksreleased += blkcount;
501 		}
502 		ffs_blkfree(ip, nb, fs->fs_bsize);
503 		blocksreleased += nblocks;
504 	}
505 
506 	/*
507 	 * Recursively free last partial block.
508 	 */
509 	if (level > SINGLE && lastbn >= 0) {
510 		last = lastbn % factor;
511 		nb = bap[i];
512 		if (nb != 0) {
513 			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
514 			    last, level - 1, &blkcount);
515 			if (error)
516 				allerror = error;
517 			blocksreleased += blkcount;
518 		}
519 	}
520 	if (copy != NULL) {
521 		FREE(copy, M_TEMP);
522 	} else {
523 		bp->b_flags |= B_INVAL | B_NOCACHE;
524 		brelse(bp);
525 	}
526 
527 	*countp = blocksreleased;
528 	return (allerror);
529 }
530