xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision 8eff4093)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  */
41 
42 /*
43  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
44  */
45 #ifndef DIAGNOSTIC
46 #define DIAGNOSTIC
47 #endif
48 #ifndef DEBUG
49 #define DEBUG
50 #endif
51 
52 #include <sys/param.h>
53 #include <sys/kernel.h>
54 #include <sys/systm.h>
55 #include <sys/buf.h>
56 #include <sys/malloc.h>
57 #include <sys/mount.h>
58 #include <sys/proc.h>
59 #include <sys/syslog.h>
60 #include <sys/vnode.h>
61 #include <sys/conf.h>
62 #include <machine/inttypes.h>
63 #include "dir.h"
64 #include "quota.h"
65 #include "inode.h"
66 #include "ufsmount.h"
67 #include "fs.h"
68 #include "softdep.h"
69 #include "ffs_extern.h"
70 #include "ufs_extern.h"
71 
72 #include <sys/buf2.h>
73 #include <sys/thread2.h>
74 #include <sys/lock.h>
75 
76 /*
77  * These definitions need to be adapted to the system to which
78  * this file is being ported.
79  */
80 /*
81  * malloc types defined for the softdep system.
82  */
83 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
84 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
85 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
86 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
87 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
88 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
89 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
90 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
91 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
92 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
93 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
94 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
95 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
96 
97 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
98 
99 #define	D_PAGEDEP	0
100 #define	D_INODEDEP	1
101 #define	D_NEWBLK	2
102 #define	D_BMSAFEMAP	3
103 #define	D_ALLOCDIRECT	4
104 #define	D_INDIRDEP	5
105 #define	D_ALLOCINDIR	6
106 #define	D_FREEFRAG	7
107 #define	D_FREEBLKS	8
108 #define	D_FREEFILE	9
109 #define	D_DIRADD	10
110 #define	D_MKDIR		11
111 #define	D_DIRREM	12
112 #define D_LAST		D_DIRREM
113 
114 /*
115  * translate from workitem type to memory type
116  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
117  */
118 static struct malloc_type *memtype[] = {
119 	M_PAGEDEP,
120 	M_INODEDEP,
121 	M_NEWBLK,
122 	M_BMSAFEMAP,
123 	M_ALLOCDIRECT,
124 	M_INDIRDEP,
125 	M_ALLOCINDIR,
126 	M_FREEFRAG,
127 	M_FREEBLKS,
128 	M_FREEFILE,
129 	M_DIRADD,
130 	M_MKDIR,
131 	M_DIRREM
132 };
133 
134 #define DtoM(type) (memtype[type])
135 
136 /*
137  * Names of malloc types.
138  */
139 #define TYPENAME(type)  \
140 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
141 /*
142  * End system adaptaion definitions.
143  */
144 
145 /*
146  * Internal function prototypes.
147  */
148 static	void softdep_error(char *, int);
149 static	void drain_output(struct vnode *, int);
150 static	int getdirtybuf(struct buf **, int);
151 static	void clear_remove(struct thread *);
152 static	void clear_inodedeps(struct thread *);
153 static	int flush_pagedep_deps(struct vnode *, struct mount *,
154 	    struct diraddhd *);
155 static	int flush_inodedep_deps(struct fs *, ino_t);
156 static	int handle_written_filepage(struct pagedep *, struct buf *);
157 static  void diradd_inode_written(struct diradd *, struct inodedep *);
158 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
159 static	void handle_allocdirect_partdone(struct allocdirect *);
160 static	void handle_allocindir_partdone(struct allocindir *);
161 static	void initiate_write_filepage(struct pagedep *, struct buf *);
162 static	void handle_written_mkdir(struct mkdir *, int);
163 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
164 static	void handle_workitem_freefile(struct freefile *);
165 static	void handle_workitem_remove(struct dirrem *);
166 static	struct dirrem *newdirrem(struct buf *, struct inode *,
167 	    struct inode *, int, struct dirrem **);
168 static	void free_diradd(struct diradd *);
169 static	void free_allocindir(struct allocindir *, struct inodedep *);
170 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
171 static	void deallocate_dependencies(struct buf *, struct inodedep *);
172 static	void free_allocdirect(struct allocdirectlst *,
173 	    struct allocdirect *, int);
174 static	int check_inode_unwritten(struct inodedep *);
175 static	int free_inodedep(struct inodedep *);
176 static	void handle_workitem_freeblocks(struct freeblks *);
177 static	void merge_inode_lists(struct inodedep *);
178 static	void setup_allocindir_phase2(struct buf *, struct inode *,
179 	    struct allocindir *);
180 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
181 	    ufs_daddr_t);
182 static	void handle_workitem_freefrag(struct freefrag *);
183 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
184 static	void allocdirect_merge(struct allocdirectlst *,
185 	    struct allocdirect *, struct allocdirect *);
186 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
187 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
188 	    struct newblk **);
189 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
190 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
191 	    struct pagedep **);
192 static	int request_cleanup(int);
193 static	int process_worklist_item(struct mount *, int);
194 static	void add_to_worklist(struct worklist *);
195 
196 /*
197  * Exported softdep operations.
198  */
199 static	void softdep_disk_io_initiation(struct buf *);
200 static	void softdep_disk_write_complete(struct buf *);
201 static	void softdep_deallocate_dependencies(struct buf *);
202 static	int softdep_fsync(struct vnode *);
203 static	int softdep_process_worklist(struct mount *);
204 static	void softdep_move_dependencies(struct buf *, struct buf *);
205 static	int softdep_count_dependencies(struct buf *bp, int);
206 static  int softdep_checkread(struct buf *bp);
207 static  int softdep_checkwrite(struct buf *bp);
208 
209 static struct bio_ops softdep_bioops = {
210 	.io_start = softdep_disk_io_initiation,
211 	.io_complete = softdep_disk_write_complete,
212 	.io_deallocate = softdep_deallocate_dependencies,
213 	.io_fsync = softdep_fsync,
214 	.io_sync = softdep_process_worklist,
215 	.io_movedeps = softdep_move_dependencies,
216 	.io_countdeps = softdep_count_dependencies,
217 	.io_checkread = softdep_checkread,
218 	.io_checkwrite = softdep_checkwrite
219 };
220 
221 /*
222  * Locking primitives.
223  */
224 static	void acquire_lock(struct lock *);
225 static	void free_lock(struct lock *);
226 #ifdef INVARIANTS
227 static	int lock_held(struct lock *);
228 #endif
229 
230 static struct lock lk;
231 
232 #define ACQUIRE_LOCK(lkp)		acquire_lock(lkp)
233 #define FREE_LOCK(lkp)			free_lock(lkp)
234 
235 static void
236 acquire_lock(struct lock *lkp)
237 {
238 	lockmgr(lkp, LK_EXCLUSIVE);
239 }
240 
241 static void
242 free_lock(struct lock *lkp)
243 {
244 	lockmgr(lkp, LK_RELEASE);
245 }
246 
247 #ifdef INVARIANTS
248 static int
249 lock_held(struct lock *lkp)
250 {
251 	return lockinuse(lkp);
252 }
253 #endif
254 
255 /*
256  * Place holder for real semaphores.
257  */
258 struct sema {
259 	int	value;
260 	thread_t holder;
261 	char	*name;
262 	int	timo;
263 	struct spinlock spin;
264 };
265 static	void sema_init(struct sema *, char *, int);
266 static	int sema_get(struct sema *, struct lock *);
267 static	void sema_release(struct sema *, struct lock *);
268 
269 #define NOHOLDER	((struct thread *) -1)
270 
271 static void
272 sema_init(struct sema *semap, char *name, int timo)
273 {
274 	semap->holder = NOHOLDER;
275 	semap->value = 0;
276 	semap->name = name;
277 	semap->timo = timo;
278 	spin_init(&semap->spin, "ufssema");
279 }
280 
281 /*
282  * Obtain exclusive access, semaphore is protected by the interlock.
283  * If interlock is NULL we must protect the semaphore ourselves.
284  */
285 static int
286 sema_get(struct sema *semap, struct lock *interlock)
287 {
288 	int rv;
289 
290 	if (interlock) {
291 		if (semap->value > 0) {
292 			++semap->value;		/* serves as wakeup flag */
293 			lksleep(semap, interlock, 0,
294 				semap->name, semap->timo);
295 			rv = 0;
296 		} else {
297 			semap->value = 1;	/* serves as owned flag */
298 			semap->holder = curthread;
299 			rv = 1;
300 		}
301 	} else {
302 		spin_lock(&semap->spin);
303 		if (semap->value > 0) {
304 			++semap->value;		/* serves as wakeup flag */
305 			ssleep(semap, &semap->spin, 0,
306 				semap->name, semap->timo);
307 			spin_unlock(&semap->spin);
308 			rv = 0;
309 		} else {
310 			semap->value = 1;	/* serves as owned flag */
311 			semap->holder = curthread;
312 			spin_unlock(&semap->spin);
313 			rv = 1;
314 		}
315 	}
316 	return (rv);
317 }
318 
319 static void
320 sema_release(struct sema *semap, struct lock *lk)
321 {
322 	if (semap->value <= 0 || semap->holder != curthread)
323 		panic("sema_release: not held");
324 	if (lk) {
325 		semap->holder = NOHOLDER;
326 		if (--semap->value > 0) {
327 			semap->value = 0;
328 			wakeup(semap);
329 		}
330 	} else {
331 		spin_lock(&semap->spin);
332 		semap->holder = NOHOLDER;
333 		if (--semap->value > 0) {
334 			semap->value = 0;
335 			spin_unlock(&semap->spin);
336 			wakeup(semap);
337 		} else {
338 			spin_unlock(&semap->spin);
339 		}
340 	}
341 }
342 
343 /*
344  * Worklist queue management.
345  * These routines require that the lock be held.
346  */
347 static	void worklist_insert(struct workhead *, struct worklist *);
348 static	void worklist_remove(struct worklist *);
349 static	void workitem_free(struct worklist *, int);
350 
351 #define WORKLIST_INSERT_BP(bp, item) do {	\
352 	(bp)->b_ops = &softdep_bioops;		\
353 	worklist_insert(&(bp)->b_dep, item);	\
354 } while (0)
355 
356 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
357 #define WORKLIST_REMOVE(item) worklist_remove(item)
358 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
359 
360 static void
361 worklist_insert(struct workhead *head, struct worklist *item)
362 {
363 	KKASSERT(lock_held(&lk));
364 
365 	if (item->wk_state & ONWORKLIST) {
366 		panic("worklist_insert: already on list");
367 	}
368 	item->wk_state |= ONWORKLIST;
369 	LIST_INSERT_HEAD(head, item, wk_list);
370 }
371 
372 static void
373 worklist_remove(struct worklist *item)
374 {
375 
376 	KKASSERT(lock_held(&lk));
377 	if ((item->wk_state & ONWORKLIST) == 0)
378 		panic("worklist_remove: not on list");
379 
380 	item->wk_state &= ~ONWORKLIST;
381 	LIST_REMOVE(item, wk_list);
382 }
383 
384 static void
385 workitem_free(struct worklist *item, int type)
386 {
387 
388 	if (item->wk_state & ONWORKLIST)
389 		panic("workitem_free: still on list");
390 	if (item->wk_type != type)
391 		panic("workitem_free: type mismatch");
392 
393 	kfree(item, DtoM(type));
394 }
395 
396 /*
397  * Workitem queue management
398  */
399 static struct workhead softdep_workitem_pending;
400 static int num_on_worklist;	/* number of worklist items to be processed */
401 static int softdep_worklist_busy; /* 1 => trying to do unmount */
402 static int softdep_worklist_req; /* serialized waiters */
403 static int max_softdeps;	/* maximum number of structs before slowdown */
404 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
405 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
406 static int proc_waiting;	/* tracks whether we have a timeout posted */
407 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
408 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
409 #define FLUSH_INODES	1
410 static int req_clear_remove;	/* syncer process flush some freeblks */
411 #define FLUSH_REMOVE	2
412 /*
413  * runtime statistics
414  */
415 static int stat_worklist_push;	/* number of worklist cleanups */
416 static int stat_blk_limit_push;	/* number of times block limit neared */
417 static int stat_ino_limit_push;	/* number of times inode limit neared */
418 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
419 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
420 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
421 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
422 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
423 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
424 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
425 #ifdef DEBUG
426 #include <vm/vm.h>
427 #include <sys/sysctl.h>
428 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0,
429     "Maximum soft dependencies before slowdown occurs");
430 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0,
431     "Ticks to delay before allocating during slowdown");
432 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,
433     "Number of worklist cleanups");
434 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,
435     "Number of times block limit neared");
436 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,
437     "Number of times inode limit neared");
438 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0,
439     "Number of times block slowdown imposed");
440 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0,
441     "Number of times inode slowdown imposed ");
442 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0,
443     "Number of synchronous slowdowns imposed");
444 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0,
445     "Bufs redirtied as indir ptrs not written");
446 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0,
447     "Bufs redirtied as inode bitmap not written");
448 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0,
449     "Bufs redirtied as direct ptrs not written");
450 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0,
451     "Bufs redirtied as dir entry cannot write");
452 #endif /* DEBUG */
453 
454 /*
455  * Add an item to the end of the work queue.
456  * This routine requires that the lock be held.
457  * This is the only routine that adds items to the list.
458  * The following routine is the only one that removes items
459  * and does so in order from first to last.
460  */
461 static void
462 add_to_worklist(struct worklist *wk)
463 {
464 	static struct worklist *worklist_tail;
465 
466 	if (wk->wk_state & ONWORKLIST) {
467 		panic("add_to_worklist: already on list");
468 	}
469 	wk->wk_state |= ONWORKLIST;
470 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
471 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
472 	else
473 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
474 	worklist_tail = wk;
475 	num_on_worklist += 1;
476 }
477 
478 /*
479  * Process that runs once per second to handle items in the background queue.
480  *
481  * Note that we ensure that everything is done in the order in which they
482  * appear in the queue. The code below depends on this property to ensure
483  * that blocks of a file are freed before the inode itself is freed. This
484  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
485  * until all the old ones have been purged from the dependency lists.
486  *
487  * bioops callback - hold io_token
488  */
489 static int
490 softdep_process_worklist(struct mount *matchmnt)
491 {
492 	thread_t td = curthread;
493 	int matchcnt, loopcount;
494 	int starttime;
495 
496 	ACQUIRE_LOCK(&lk);
497 
498 	/*
499 	 * Record the process identifier of our caller so that we can give
500 	 * this process preferential treatment in request_cleanup below.
501 	 */
502 	filesys_syncer = td;
503 	matchcnt = 0;
504 
505 	/*
506 	 * There is no danger of having multiple processes run this
507 	 * code, but we have to single-thread it when softdep_flushfiles()
508 	 * is in operation to get an accurate count of the number of items
509 	 * related to its mount point that are in the list.
510 	 */
511 	if (matchmnt == NULL) {
512 		if (softdep_worklist_busy < 0) {
513 			matchcnt = -1;
514 			goto done;
515 		}
516 		softdep_worklist_busy += 1;
517 	}
518 
519 	/*
520 	 * If requested, try removing inode or removal dependencies.
521 	 */
522 	if (req_clear_inodedeps) {
523 		clear_inodedeps(td);
524 		req_clear_inodedeps -= 1;
525 		wakeup_one(&proc_waiting);
526 	}
527 	if (req_clear_remove) {
528 		clear_remove(td);
529 		req_clear_remove -= 1;
530 		wakeup_one(&proc_waiting);
531 	}
532 	loopcount = 1;
533 	starttime = ticks;
534 	while (num_on_worklist > 0) {
535 		matchcnt += process_worklist_item(matchmnt, 0);
536 
537 		/*
538 		 * If a umount operation wants to run the worklist
539 		 * accurately, abort.
540 		 */
541 		if (softdep_worklist_req && matchmnt == NULL) {
542 			matchcnt = -1;
543 			break;
544 		}
545 
546 		/*
547 		 * If requested, try removing inode or removal dependencies.
548 		 */
549 		if (req_clear_inodedeps) {
550 			clear_inodedeps(td);
551 			req_clear_inodedeps -= 1;
552 			wakeup_one(&proc_waiting);
553 		}
554 		if (req_clear_remove) {
555 			clear_remove(td);
556 			req_clear_remove -= 1;
557 			wakeup_one(&proc_waiting);
558 		}
559 		/*
560 		 * We do not generally want to stop for buffer space, but if
561 		 * we are really being a buffer hog, we will stop and wait.
562 		 */
563 		if (loopcount++ % 128 == 0) {
564 			FREE_LOCK(&lk);
565 			bwillinode(1);
566 			ACQUIRE_LOCK(&lk);
567 		}
568 
569 		/*
570 		 * Never allow processing to run for more than one
571 		 * second. Otherwise the other syncer tasks may get
572 		 * excessively backlogged.
573 		 *
574 		 * Use ticks to avoid boundary condition w/time_second or
575 		 * time_uptime.
576 		 */
577 		if ((ticks - starttime) > hz && matchmnt == NULL) {
578 			matchcnt = -1;
579 			break;
580 		}
581 	}
582 	if (matchmnt == NULL) {
583 		--softdep_worklist_busy;
584 		if (softdep_worklist_req && softdep_worklist_busy == 0)
585 			wakeup(&softdep_worklist_req);
586 	}
587 done:
588 	FREE_LOCK(&lk);
589 	return (matchcnt);
590 }
591 
592 /*
593  * Process one item on the worklist.
594  */
595 static int
596 process_worklist_item(struct mount *matchmnt, int flags)
597 {
598 	struct ufsmount *ump;
599 	struct worklist *wk;
600 	struct dirrem *dirrem;
601 	struct fs *matchfs;
602 	struct vnode *vp;
603 	int matchcnt = 0;
604 
605 	KKASSERT(lock_held(&lk));
606 
607 	matchfs = NULL;
608 	if (matchmnt != NULL)
609 		matchfs = VFSTOUFS(matchmnt)->um_fs;
610 
611 	/*
612 	 * Normally we just process each item on the worklist in order.
613 	 * However, if we are in a situation where we cannot lock any
614 	 * inodes, we have to skip over any dirrem requests whose
615 	 * vnodes are resident and locked.
616 	 */
617 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
618 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
619 			break;
620 		dirrem = WK_DIRREM(wk);
621 		ump = VFSTOUFS(dirrem->dm_mnt);
622 		lwkt_gettoken(&ump->um_mountp->mnt_token);
623 		vp = ufs_ihashlookup(ump, ump->um_dev, dirrem->dm_oldinum);
624 		lwkt_reltoken(&ump->um_mountp->mnt_token);
625 		if (vp == NULL || !vn_islocked(vp))
626 			break;
627 	}
628 	if (wk == NULL) {
629 		return (0);
630 	}
631 	WORKLIST_REMOVE(wk);
632 	num_on_worklist -= 1;
633 	FREE_LOCK(&lk);
634 	switch (wk->wk_type) {
635 	case D_DIRREM:
636 		/* removal of a directory entry */
637 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
638 			matchcnt += 1;
639 		handle_workitem_remove(WK_DIRREM(wk));
640 		break;
641 
642 	case D_FREEBLKS:
643 		/* releasing blocks and/or fragments from a file */
644 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
645 			matchcnt += 1;
646 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
647 		break;
648 
649 	case D_FREEFRAG:
650 		/* releasing a fragment when replaced as a file grows */
651 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
652 			matchcnt += 1;
653 		handle_workitem_freefrag(WK_FREEFRAG(wk));
654 		break;
655 
656 	case D_FREEFILE:
657 		/* releasing an inode when its link count drops to 0 */
658 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
659 			matchcnt += 1;
660 		handle_workitem_freefile(WK_FREEFILE(wk));
661 		break;
662 
663 	default:
664 		panic("%s_process_worklist: Unknown type %s",
665 		    "softdep", TYPENAME(wk->wk_type));
666 		/* NOTREACHED */
667 	}
668 	ACQUIRE_LOCK(&lk);
669 	return (matchcnt);
670 }
671 
672 /*
673  * Move dependencies from one buffer to another.
674  *
675  * bioops callback - hold io_token
676  */
677 static void
678 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
679 {
680 	struct worklist *wk, *wktail;
681 
682 	if (LIST_FIRST(&newbp->b_dep) != NULL)
683 		panic("softdep_move_dependencies: need merge code");
684 	wktail = NULL;
685 	ACQUIRE_LOCK(&lk);
686 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
687 		LIST_REMOVE(wk, wk_list);
688 		if (wktail == NULL)
689 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
690 		else
691 			LIST_INSERT_AFTER(wktail, wk, wk_list);
692 		wktail = wk;
693 		newbp->b_ops = &softdep_bioops;
694 	}
695 	FREE_LOCK(&lk);
696 }
697 
698 /*
699  * Purge the work list of all items associated with a particular mount point.
700  */
701 int
702 softdep_flushfiles(struct mount *oldmnt, int flags)
703 {
704 	struct vnode *devvp;
705 	int error, loopcnt;
706 
707 	/*
708 	 * Await our turn to clear out the queue, then serialize access.
709 	 */
710 	ACQUIRE_LOCK(&lk);
711 	while (softdep_worklist_busy != 0) {
712 		softdep_worklist_req += 1;
713 		lksleep(&softdep_worklist_req, &lk, 0, "softflush", 0);
714 		softdep_worklist_req -= 1;
715 	}
716 	softdep_worklist_busy = -1;
717 	FREE_LOCK(&lk);
718 
719 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
720 		softdep_worklist_busy = 0;
721 		if (softdep_worklist_req)
722 			wakeup(&softdep_worklist_req);
723 		return (error);
724 	}
725 	/*
726 	 * Alternately flush the block device associated with the mount
727 	 * point and process any dependencies that the flushing
728 	 * creates. In theory, this loop can happen at most twice,
729 	 * but we give it a few extra just to be sure.
730 	 */
731 	devvp = VFSTOUFS(oldmnt)->um_devvp;
732 	for (loopcnt = 10; loopcnt > 0; ) {
733 		if (softdep_process_worklist(oldmnt) == 0) {
734 			loopcnt--;
735 			/*
736 			 * Do another flush in case any vnodes were brought in
737 			 * as part of the cleanup operations.
738 			 */
739 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
740 				break;
741 			/*
742 			 * If we still found nothing to do, we are really done.
743 			 */
744 			if (softdep_process_worklist(oldmnt) == 0)
745 				break;
746 		}
747 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
748 		error = VOP_FSYNC(devvp, MNT_WAIT, 0);
749 		vn_unlock(devvp);
750 		if (error)
751 			break;
752 	}
753 	ACQUIRE_LOCK(&lk);
754 	softdep_worklist_busy = 0;
755 	if (softdep_worklist_req)
756 		wakeup(&softdep_worklist_req);
757 	FREE_LOCK(&lk);
758 
759 	/*
760 	 * If we are unmounting then it is an error to fail. If we
761 	 * are simply trying to downgrade to read-only, then filesystem
762 	 * activity can keep us busy forever, so we just fail with EBUSY.
763 	 */
764 	if (loopcnt == 0) {
765 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
766 			panic("softdep_flushfiles: looping");
767 		error = EBUSY;
768 	}
769 	return (error);
770 }
771 
772 /*
773  * Structure hashing.
774  *
775  * There are three types of structures that can be looked up:
776  *	1) pagedep structures identified by mount point, inode number,
777  *	   and logical block.
778  *	2) inodedep structures identified by mount point and inode number.
779  *	3) newblk structures identified by mount point and
780  *	   physical block number.
781  *
782  * The "pagedep" and "inodedep" dependency structures are hashed
783  * separately from the file blocks and inodes to which they correspond.
784  * This separation helps when the in-memory copy of an inode or
785  * file block must be replaced. It also obviates the need to access
786  * an inode or file page when simply updating (or de-allocating)
787  * dependency structures. Lookup of newblk structures is needed to
788  * find newly allocated blocks when trying to associate them with
789  * their allocdirect or allocindir structure.
790  *
791  * The lookup routines optionally create and hash a new instance when
792  * an existing entry is not found.
793  */
794 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
795 #define NODELAY		0x0002	/* cannot do background work */
796 
797 /*
798  * Structures and routines associated with pagedep caching.
799  */
800 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
801 u_long	pagedep_hash;		/* size of hash table - 1 */
802 #define	PAGEDEP_HASH(mp, inum, lbn) \
803 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
804 	    pagedep_hash])
805 static struct sema pagedep_in_progress;
806 
807 /*
808  * Helper routine for pagedep_lookup()
809  */
810 static __inline
811 struct pagedep *
812 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
813 	     struct mount *mp)
814 {
815 	struct pagedep *pagedep;
816 
817 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
818 		if (ino == pagedep->pd_ino &&
819 		    lbn == pagedep->pd_lbn &&
820 		    mp == pagedep->pd_mnt) {
821 			return (pagedep);
822 		}
823 	}
824 	return(NULL);
825 }
826 
827 /*
828  * Look up a pagedep. Return 1 if found, 0 if not found.
829  * If not found, allocate if DEPALLOC flag is passed.
830  * Found or allocated entry is returned in pagedeppp.
831  * This routine must be called with splbio interrupts blocked.
832  */
833 static int
834 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
835 	       struct pagedep **pagedeppp)
836 {
837 	struct pagedep *pagedep;
838 	struct pagedep_hashhead *pagedephd;
839 	struct mount *mp;
840 	int i;
841 
842 	KKASSERT(lock_held(&lk));
843 
844 	mp = ITOV(ip)->v_mount;
845 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
846 top:
847 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
848 	if (*pagedeppp)
849 		return(1);
850 	if ((flags & DEPALLOC) == 0)
851 		return (0);
852 	if (sema_get(&pagedep_in_progress, &lk) == 0)
853 		goto top;
854 
855 	FREE_LOCK(&lk);
856 	pagedep = kmalloc(sizeof(struct pagedep), M_PAGEDEP,
857 			  M_SOFTDEP_FLAGS | M_ZERO);
858 	ACQUIRE_LOCK(&lk);
859 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
860 		kprintf("pagedep_lookup: blocking race avoided\n");
861 		sema_release(&pagedep_in_progress, &lk);
862 		kfree(pagedep, M_PAGEDEP);
863 		goto top;
864 	}
865 
866 	pagedep->pd_list.wk_type = D_PAGEDEP;
867 	pagedep->pd_mnt = mp;
868 	pagedep->pd_ino = ip->i_number;
869 	pagedep->pd_lbn = lbn;
870 	LIST_INIT(&pagedep->pd_dirremhd);
871 	LIST_INIT(&pagedep->pd_pendinghd);
872 	for (i = 0; i < DAHASHSZ; i++)
873 		LIST_INIT(&pagedep->pd_diraddhd[i]);
874 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
875 	sema_release(&pagedep_in_progress, &lk);
876 	*pagedeppp = pagedep;
877 	return (0);
878 }
879 
880 /*
881  * Structures and routines associated with inodedep caching.
882  */
883 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
884 static u_long	inodedep_hash;	/* size of hash table - 1 */
885 static long	num_inodedep;	/* number of inodedep allocated */
886 #define	INODEDEP_HASH(fs, inum) \
887       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
888 static struct sema inodedep_in_progress;
889 
890 /*
891  * Helper routine for inodedep_lookup()
892  */
893 static __inline
894 struct inodedep *
895 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
896 {
897 	struct inodedep *inodedep;
898 
899 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
900 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
901 			return(inodedep);
902 	}
903 	return (NULL);
904 }
905 
906 /*
907  * Look up a inodedep. Return 1 if found, 0 if not found.
908  * If not found, allocate if DEPALLOC flag is passed.
909  * Found or allocated entry is returned in inodedeppp.
910  * This routine must be called with splbio interrupts blocked.
911  */
912 static int
913 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
914 	        struct inodedep **inodedeppp)
915 {
916 	struct inodedep *inodedep;
917 	struct inodedep_hashhead *inodedephd;
918 
919 	KKASSERT(lock_held(&lk));
920 
921 	inodedephd = INODEDEP_HASH(fs, inum);
922 top:
923 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
924 	if (*inodedeppp)
925 		return (1);
926 	if ((flags & DEPALLOC) == 0)
927 		return (0);
928 
929 	/*
930 	 * If we are over our limit, try to improve the situation.
931 	 */
932 	if (num_inodedep > max_softdeps / 2)
933 		speedup_syncer(NULL);
934 	if (num_inodedep > max_softdeps &&
935 	    (flags & NODELAY) == 0 &&
936 	    request_cleanup(FLUSH_INODES)) {
937 		goto top;
938 	}
939 	if (sema_get(&inodedep_in_progress, &lk) == 0)
940 		goto top;
941 
942 	FREE_LOCK(&lk);
943 	inodedep = kmalloc(sizeof(struct inodedep), M_INODEDEP,
944 			   M_SOFTDEP_FLAGS | M_ZERO);
945 	ACQUIRE_LOCK(&lk);
946 	if (inodedep_find(inodedephd, fs, inum)) {
947 		kprintf("inodedep_lookup: blocking race avoided\n");
948 		sema_release(&inodedep_in_progress, &lk);
949 		kfree(inodedep, M_INODEDEP);
950 		goto top;
951 	}
952 	inodedep->id_list.wk_type = D_INODEDEP;
953 	inodedep->id_fs = fs;
954 	inodedep->id_ino = inum;
955 	inodedep->id_state = ALLCOMPLETE;
956 	inodedep->id_nlinkdelta = 0;
957 	inodedep->id_savedino = NULL;
958 	inodedep->id_savedsize = -1;
959 	inodedep->id_buf = NULL;
960 	LIST_INIT(&inodedep->id_pendinghd);
961 	LIST_INIT(&inodedep->id_inowait);
962 	LIST_INIT(&inodedep->id_bufwait);
963 	TAILQ_INIT(&inodedep->id_inoupdt);
964 	TAILQ_INIT(&inodedep->id_newinoupdt);
965 	num_inodedep += 1;
966 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
967 	sema_release(&inodedep_in_progress, &lk);
968 	*inodedeppp = inodedep;
969 	return (0);
970 }
971 
972 /*
973  * Structures and routines associated with newblk caching.
974  */
975 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
976 u_long	newblk_hash;		/* size of hash table - 1 */
977 #define	NEWBLK_HASH(fs, inum) \
978 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
979 static struct sema newblk_in_progress;
980 
981 /*
982  * Helper routine for newblk_lookup()
983  */
984 static __inline
985 struct newblk *
986 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
987 	    ufs_daddr_t newblkno)
988 {
989 	struct newblk *newblk;
990 
991 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
992 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
993 			return (newblk);
994 	}
995 	return(NULL);
996 }
997 
998 /*
999  * Look up a newblk. Return 1 if found, 0 if not found.
1000  * If not found, allocate if DEPALLOC flag is passed.
1001  * Found or allocated entry is returned in newblkpp.
1002  */
1003 static int
1004 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1005 	      struct newblk **newblkpp)
1006 {
1007 	struct newblk *newblk;
1008 	struct newblk_hashhead *newblkhd;
1009 
1010 	newblkhd = NEWBLK_HASH(fs, newblkno);
1011 top:
1012 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1013 	if (*newblkpp)
1014 		return(1);
1015 	if ((flags & DEPALLOC) == 0)
1016 		return (0);
1017 	if (sema_get(&newblk_in_progress, NULL) == 0)
1018 		goto top;
1019 
1020 	newblk = kmalloc(sizeof(struct newblk), M_NEWBLK,
1021 			 M_SOFTDEP_FLAGS | M_ZERO);
1022 
1023 	if (newblk_find(newblkhd, fs, newblkno)) {
1024 		kprintf("newblk_lookup: blocking race avoided\n");
1025 		sema_release(&pagedep_in_progress, NULL);
1026 		kfree(newblk, M_NEWBLK);
1027 		goto top;
1028 	}
1029 	newblk->nb_state = 0;
1030 	newblk->nb_fs = fs;
1031 	newblk->nb_newblkno = newblkno;
1032 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1033 	sema_release(&newblk_in_progress, NULL);
1034 	*newblkpp = newblk;
1035 	return (0);
1036 }
1037 
1038 /*
1039  * Executed during filesystem system initialization before
1040  * mounting any filesystems.
1041  */
1042 void
1043 softdep_initialize(void)
1044 {
1045 	size_t idsize = sizeof(struct inodedep);
1046 	int hsize = vfs_inodehashsize();
1047 
1048 	LIST_INIT(&mkdirlisthd);
1049 	LIST_INIT(&softdep_workitem_pending);
1050 	max_softdeps = min(maxvnodes * 8, M_INODEDEP->ks_limit / (2 * idsize));
1051 
1052 	/*
1053 	 * Cap it at 100,000, having more just gets kinda silly.
1054 	 */
1055 	max_softdeps = min(max_softdeps, 100000);
1056 
1057 	pagedep_hashtbl = hashinit(hsize / 4, M_PAGEDEP, &pagedep_hash);
1058 	lockinit(&lk, "ffs_softdep", 0, LK_CANRECURSE);
1059 	sema_init(&pagedep_in_progress, "pagedep", 0);
1060 	inodedep_hashtbl = hashinit(hsize, M_INODEDEP, &inodedep_hash);
1061 	sema_init(&inodedep_in_progress, "inodedep", 0);
1062 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1063 	sema_init(&newblk_in_progress, "newblk", 0);
1064 	add_bio_ops(&softdep_bioops);
1065 }
1066 
1067 /*
1068  * Called at mount time to notify the dependency code that a
1069  * filesystem wishes to use it.
1070  */
1071 int
1072 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1073 {
1074 	struct csum cstotal;
1075 	struct cg *cgp;
1076 	struct buf *bp;
1077 	int error, cyl;
1078 
1079 	mp->mnt_flag &= ~MNT_ASYNC;
1080 	mp->mnt_flag |= MNT_SOFTDEP;
1081 	mp->mnt_bioops = &softdep_bioops;
1082 	/*
1083 	 * When doing soft updates, the counters in the
1084 	 * superblock may have gotten out of sync, so we have
1085 	 * to scan the cylinder groups and recalculate them.
1086 	 */
1087 	if (fs->fs_clean != 0)
1088 		return (0);
1089 	bzero(&cstotal, sizeof cstotal);
1090 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1091 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1092 				   fs->fs_cgsize, &bp)) != 0) {
1093 			brelse(bp);
1094 			return (error);
1095 		}
1096 		cgp = (struct cg *)bp->b_data;
1097 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1098 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1099 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1100 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1101 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1102 		brelse(bp);
1103 	}
1104 #ifdef DEBUG
1105 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1106 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1107 #endif
1108 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Protecting the freemaps (or bitmaps).
1114  *
1115  * To eliminate the need to execute fsck before mounting a filesystem
1116  * after a power failure, one must (conservatively) guarantee that the
1117  * on-disk copy of the bitmaps never indicate that a live inode or block is
1118  * free.  So, when a block or inode is allocated, the bitmap should be
1119  * updated (on disk) before any new pointers.  When a block or inode is
1120  * freed, the bitmap should not be updated until all pointers have been
1121  * reset.  The latter dependency is handled by the delayed de-allocation
1122  * approach described below for block and inode de-allocation.  The former
1123  * dependency is handled by calling the following procedure when a block or
1124  * inode is allocated. When an inode is allocated an "inodedep" is created
1125  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1126  * Each "inodedep" is also inserted into the hash indexing structure so
1127  * that any additional link additions can be made dependent on the inode
1128  * allocation.
1129  *
1130  * The ufs filesystem maintains a number of free block counts (e.g., per
1131  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1132  * in addition to the bitmaps.  These counts are used to improve efficiency
1133  * during allocation and therefore must be consistent with the bitmaps.
1134  * There is no convenient way to guarantee post-crash consistency of these
1135  * counts with simple update ordering, for two main reasons: (1) The counts
1136  * and bitmaps for a single cylinder group block are not in the same disk
1137  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1138  * be written and the other not.  (2) Some of the counts are located in the
1139  * superblock rather than the cylinder group block. So, we focus our soft
1140  * updates implementation on protecting the bitmaps. When mounting a
1141  * filesystem, we recompute the auxiliary counts from the bitmaps.
1142  */
1143 
1144 /*
1145  * Called just after updating the cylinder group block to allocate an inode.
1146  *
1147  * Parameters:
1148  *	bp:		buffer for cylgroup block with inode map
1149  *	ip:		inode related to allocation
1150  *	newinum:	new inode number being allocated
1151  */
1152 void
1153 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1154 {
1155 	struct inodedep *inodedep;
1156 	struct bmsafemap *bmsafemap;
1157 
1158 	/*
1159 	 * Create a dependency for the newly allocated inode.
1160 	 * Panic if it already exists as something is seriously wrong.
1161 	 * Otherwise add it to the dependency list for the buffer holding
1162 	 * the cylinder group map from which it was allocated.
1163 	 */
1164 	ACQUIRE_LOCK(&lk);
1165 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1166 		panic("softdep_setup_inomapdep: found inode");
1167 	}
1168 	inodedep->id_buf = bp;
1169 	inodedep->id_state &= ~DEPCOMPLETE;
1170 	bmsafemap = bmsafemap_lookup(bp);
1171 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1172 	FREE_LOCK(&lk);
1173 }
1174 
1175 /*
1176  * Called just after updating the cylinder group block to
1177  * allocate block or fragment.
1178  *
1179  * Parameters:
1180  *	bp:		buffer for cylgroup block with block map
1181  *	fs:		filesystem doing allocation
1182  *	newblkno:	number of newly allocated block
1183  */
1184 void
1185 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1186 			ufs_daddr_t newblkno)
1187 {
1188 	struct newblk *newblk;
1189 	struct bmsafemap *bmsafemap;
1190 
1191 	/*
1192 	 * Create a dependency for the newly allocated block.
1193 	 * Add it to the dependency list for the buffer holding
1194 	 * the cylinder group map from which it was allocated.
1195 	 */
1196 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1197 		panic("softdep_setup_blkmapdep: found block");
1198 	ACQUIRE_LOCK(&lk);
1199 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1200 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1201 	FREE_LOCK(&lk);
1202 }
1203 
1204 /*
1205  * Find the bmsafemap associated with a cylinder group buffer.
1206  * If none exists, create one. The buffer must be locked when
1207  * this routine is called and this routine must be called with
1208  * splbio interrupts blocked.
1209  */
1210 static struct bmsafemap *
1211 bmsafemap_lookup(struct buf *bp)
1212 {
1213 	struct bmsafemap *bmsafemap;
1214 	struct worklist *wk;
1215 
1216 	KKASSERT(lock_held(&lk));
1217 
1218 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1219 		if (wk->wk_type == D_BMSAFEMAP)
1220 			return (WK_BMSAFEMAP(wk));
1221 	}
1222 	FREE_LOCK(&lk);
1223 	bmsafemap = kmalloc(sizeof(struct bmsafemap), M_BMSAFEMAP,
1224 			    M_SOFTDEP_FLAGS);
1225 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1226 	bmsafemap->sm_list.wk_state = 0;
1227 	bmsafemap->sm_buf = bp;
1228 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1229 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1230 	LIST_INIT(&bmsafemap->sm_inodedephd);
1231 	LIST_INIT(&bmsafemap->sm_newblkhd);
1232 	ACQUIRE_LOCK(&lk);
1233 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1234 	return (bmsafemap);
1235 }
1236 
1237 /*
1238  * Direct block allocation dependencies.
1239  *
1240  * When a new block is allocated, the corresponding disk locations must be
1241  * initialized (with zeros or new data) before the on-disk inode points to
1242  * them.  Also, the freemap from which the block was allocated must be
1243  * updated (on disk) before the inode's pointer. These two dependencies are
1244  * independent of each other and are needed for all file blocks and indirect
1245  * blocks that are pointed to directly by the inode.  Just before the
1246  * "in-core" version of the inode is updated with a newly allocated block
1247  * number, a procedure (below) is called to setup allocation dependency
1248  * structures.  These structures are removed when the corresponding
1249  * dependencies are satisfied or when the block allocation becomes obsolete
1250  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1251  * fragment that gets upgraded).  All of these cases are handled in
1252  * procedures described later.
1253  *
1254  * When a file extension causes a fragment to be upgraded, either to a larger
1255  * fragment or to a full block, the on-disk location may change (if the
1256  * previous fragment could not simply be extended). In this case, the old
1257  * fragment must be de-allocated, but not until after the inode's pointer has
1258  * been updated. In most cases, this is handled by later procedures, which
1259  * will construct a "freefrag" structure to be added to the workitem queue
1260  * when the inode update is complete (or obsolete).  The main exception to
1261  * this is when an allocation occurs while a pending allocation dependency
1262  * (for the same block pointer) remains.  This case is handled in the main
1263  * allocation dependency setup procedure by immediately freeing the
1264  * unreferenced fragments.
1265  *
1266  * Parameters:
1267  *	ip:		inode to which block is being added
1268  *	lbn:		block pointer within inode
1269  *	newblkno:	disk block number being added
1270  *	oldblkno:	previous block number, 0 unless frag
1271  *	newsize:	size of new block
1272  *	oldsize:	size of new block
1273  *	bp:		bp for allocated block
1274  */
1275 void
1276 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1277 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1278 			  struct buf *bp)
1279 {
1280 	struct allocdirect *adp, *oldadp;
1281 	struct allocdirectlst *adphead;
1282 	struct bmsafemap *bmsafemap;
1283 	struct inodedep *inodedep;
1284 	struct pagedep *pagedep;
1285 	struct newblk *newblk;
1286 
1287 	adp = kmalloc(sizeof(struct allocdirect), M_ALLOCDIRECT,
1288 		      M_SOFTDEP_FLAGS | M_ZERO);
1289 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1290 	adp->ad_lbn = lbn;
1291 	adp->ad_newblkno = newblkno;
1292 	adp->ad_oldblkno = oldblkno;
1293 	adp->ad_newsize = newsize;
1294 	adp->ad_oldsize = oldsize;
1295 	adp->ad_state = ATTACHED;
1296 	if (newblkno == oldblkno)
1297 		adp->ad_freefrag = NULL;
1298 	else
1299 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1300 
1301 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1302 		panic("softdep_setup_allocdirect: lost block");
1303 
1304 	ACQUIRE_LOCK(&lk);
1305 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1306 	adp->ad_inodedep = inodedep;
1307 
1308 	if (newblk->nb_state == DEPCOMPLETE) {
1309 		adp->ad_state |= DEPCOMPLETE;
1310 		adp->ad_buf = NULL;
1311 	} else {
1312 		bmsafemap = newblk->nb_bmsafemap;
1313 		adp->ad_buf = bmsafemap->sm_buf;
1314 		LIST_REMOVE(newblk, nb_deps);
1315 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1316 	}
1317 	LIST_REMOVE(newblk, nb_hash);
1318 	kfree(newblk, M_NEWBLK);
1319 
1320 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1321 	if (lbn >= NDADDR) {
1322 		/* allocating an indirect block */
1323 		if (oldblkno != 0) {
1324 			panic("softdep_setup_allocdirect: non-zero indir");
1325 		}
1326 	} else {
1327 		/*
1328 		 * Allocating a direct block.
1329 		 *
1330 		 * If we are allocating a directory block, then we must
1331 		 * allocate an associated pagedep to track additions and
1332 		 * deletions.
1333 		 */
1334 		if ((ip->i_mode & IFMT) == IFDIR &&
1335 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1336 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1337 		}
1338 	}
1339 	/*
1340 	 * The list of allocdirects must be kept in sorted and ascending
1341 	 * order so that the rollback routines can quickly determine the
1342 	 * first uncommitted block (the size of the file stored on disk
1343 	 * ends at the end of the lowest committed fragment, or if there
1344 	 * are no fragments, at the end of the highest committed block).
1345 	 * Since files generally grow, the typical case is that the new
1346 	 * block is to be added at the end of the list. We speed this
1347 	 * special case by checking against the last allocdirect in the
1348 	 * list before laboriously traversing the list looking for the
1349 	 * insertion point.
1350 	 */
1351 	adphead = &inodedep->id_newinoupdt;
1352 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1353 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1354 		/* insert at end of list */
1355 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1356 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1357 			allocdirect_merge(adphead, adp, oldadp);
1358 		FREE_LOCK(&lk);
1359 		return;
1360 	}
1361 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1362 		if (oldadp->ad_lbn >= lbn)
1363 			break;
1364 	}
1365 	if (oldadp == NULL) {
1366 		panic("softdep_setup_allocdirect: lost entry");
1367 	}
1368 	/* insert in middle of list */
1369 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1370 	if (oldadp->ad_lbn == lbn)
1371 		allocdirect_merge(adphead, adp, oldadp);
1372 	FREE_LOCK(&lk);
1373 }
1374 
1375 /*
1376  * Replace an old allocdirect dependency with a newer one.
1377  * This routine must be called with splbio interrupts blocked.
1378  *
1379  * Parameters:
1380  *	adphead:	head of list holding allocdirects
1381  *	newadp:		allocdirect being added
1382  *	oldadp:		existing allocdirect being checked
1383  */
1384 static void
1385 allocdirect_merge(struct allocdirectlst *adphead,
1386 		  struct allocdirect *newadp,
1387 		  struct allocdirect *oldadp)
1388 {
1389 	struct freefrag *freefrag;
1390 
1391 	KKASSERT(lock_held(&lk));
1392 
1393 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1394 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1395 	    newadp->ad_lbn >= NDADDR) {
1396 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1397 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1398 		    NDADDR);
1399 	}
1400 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1401 	newadp->ad_oldsize = oldadp->ad_oldsize;
1402 	/*
1403 	 * If the old dependency had a fragment to free or had never
1404 	 * previously had a block allocated, then the new dependency
1405 	 * can immediately post its freefrag and adopt the old freefrag.
1406 	 * This action is done by swapping the freefrag dependencies.
1407 	 * The new dependency gains the old one's freefrag, and the
1408 	 * old one gets the new one and then immediately puts it on
1409 	 * the worklist when it is freed by free_allocdirect. It is
1410 	 * not possible to do this swap when the old dependency had a
1411 	 * non-zero size but no previous fragment to free. This condition
1412 	 * arises when the new block is an extension of the old block.
1413 	 * Here, the first part of the fragment allocated to the new
1414 	 * dependency is part of the block currently claimed on disk by
1415 	 * the old dependency, so cannot legitimately be freed until the
1416 	 * conditions for the new dependency are fulfilled.
1417 	 */
1418 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1419 		freefrag = newadp->ad_freefrag;
1420 		newadp->ad_freefrag = oldadp->ad_freefrag;
1421 		oldadp->ad_freefrag = freefrag;
1422 	}
1423 	free_allocdirect(adphead, oldadp, 0);
1424 }
1425 
1426 /*
1427  * Allocate a new freefrag structure if needed.
1428  */
1429 static struct freefrag *
1430 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1431 {
1432 	struct freefrag *freefrag;
1433 	struct fs *fs;
1434 
1435 	if (blkno == 0)
1436 		return (NULL);
1437 	fs = ip->i_fs;
1438 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1439 		panic("newfreefrag: frag size");
1440 	freefrag = kmalloc(sizeof(struct freefrag), M_FREEFRAG,
1441 			   M_SOFTDEP_FLAGS);
1442 	freefrag->ff_list.wk_type = D_FREEFRAG;
1443 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1444 	freefrag->ff_inum = ip->i_number;
1445 	freefrag->ff_fs = fs;
1446 	freefrag->ff_devvp = ip->i_devvp;
1447 	freefrag->ff_blkno = blkno;
1448 	freefrag->ff_fragsize = size;
1449 	return (freefrag);
1450 }
1451 
1452 /*
1453  * This workitem de-allocates fragments that were replaced during
1454  * file block allocation.
1455  */
1456 static void
1457 handle_workitem_freefrag(struct freefrag *freefrag)
1458 {
1459 	struct inode tip;
1460 
1461 	tip.i_fs = freefrag->ff_fs;
1462 	tip.i_devvp = freefrag->ff_devvp;
1463 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1464 	tip.i_number = freefrag->ff_inum;
1465 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1466 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1467 	kfree(freefrag, M_FREEFRAG);
1468 }
1469 
1470 /*
1471  * Indirect block allocation dependencies.
1472  *
1473  * The same dependencies that exist for a direct block also exist when
1474  * a new block is allocated and pointed to by an entry in a block of
1475  * indirect pointers. The undo/redo states described above are also
1476  * used here. Because an indirect block contains many pointers that
1477  * may have dependencies, a second copy of the entire in-memory indirect
1478  * block is kept. The buffer cache copy is always completely up-to-date.
1479  * The second copy, which is used only as a source for disk writes,
1480  * contains only the safe pointers (i.e., those that have no remaining
1481  * update dependencies). The second copy is freed when all pointers
1482  * are safe. The cache is not allowed to replace indirect blocks with
1483  * pending update dependencies. If a buffer containing an indirect
1484  * block with dependencies is written, these routines will mark it
1485  * dirty again. It can only be successfully written once all the
1486  * dependencies are removed. The ffs_fsync routine in conjunction with
1487  * softdep_sync_metadata work together to get all the dependencies
1488  * removed so that a file can be successfully written to disk. Three
1489  * procedures are used when setting up indirect block pointer
1490  * dependencies. The division is necessary because of the organization
1491  * of the "balloc" routine and because of the distinction between file
1492  * pages and file metadata blocks.
1493  */
1494 
1495 /*
1496  * Allocate a new allocindir structure.
1497  *
1498  * Parameters:
1499  *	ip:		inode for file being extended
1500  *	ptrno:		offset of pointer in indirect block
1501  *	newblkno:	disk block number being added
1502  *	oldblkno:	previous block number, 0 if none
1503  */
1504 static struct allocindir *
1505 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1506 	      ufs_daddr_t oldblkno)
1507 {
1508 	struct allocindir *aip;
1509 
1510 	aip = kmalloc(sizeof(struct allocindir), M_ALLOCINDIR,
1511 		      M_SOFTDEP_FLAGS | M_ZERO);
1512 	aip->ai_list.wk_type = D_ALLOCINDIR;
1513 	aip->ai_state = ATTACHED;
1514 	aip->ai_offset = ptrno;
1515 	aip->ai_newblkno = newblkno;
1516 	aip->ai_oldblkno = oldblkno;
1517 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1518 	return (aip);
1519 }
1520 
1521 /*
1522  * Called just before setting an indirect block pointer
1523  * to a newly allocated file page.
1524  *
1525  * Parameters:
1526  *	ip:		inode for file being extended
1527  *	lbn:		allocated block number within file
1528  *	bp:		buffer with indirect blk referencing page
1529  *	ptrno:		offset of pointer in indirect block
1530  *	newblkno:	disk block number being added
1531  *	oldblkno:	previous block number, 0 if none
1532  *	nbp:		buffer holding allocated page
1533  */
1534 void
1535 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1536 			      struct buf *bp, int ptrno,
1537 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1538 			      struct buf *nbp)
1539 {
1540 	struct allocindir *aip;
1541 	struct pagedep *pagedep;
1542 
1543 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1544 	ACQUIRE_LOCK(&lk);
1545 	/*
1546 	 * If we are allocating a directory page, then we must
1547 	 * allocate an associated pagedep to track additions and
1548 	 * deletions.
1549 	 */
1550 	if ((ip->i_mode & IFMT) == IFDIR &&
1551 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1552 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1553 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1554 	FREE_LOCK(&lk);
1555 	setup_allocindir_phase2(bp, ip, aip);
1556 }
1557 
1558 /*
1559  * Called just before setting an indirect block pointer to a
1560  * newly allocated indirect block.
1561  * Parameters:
1562  *	nbp:		newly allocated indirect block
1563  *	ip:		inode for file being extended
1564  *	bp:		indirect block referencing allocated block
1565  *	ptrno:		offset of pointer in indirect block
1566  *	newblkno:	disk block number being added
1567  */
1568 void
1569 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1570 			      struct buf *bp, int ptrno,
1571 			      ufs_daddr_t newblkno)
1572 {
1573 	struct allocindir *aip;
1574 
1575 	aip = newallocindir(ip, ptrno, newblkno, 0);
1576 	ACQUIRE_LOCK(&lk);
1577 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1578 	FREE_LOCK(&lk);
1579 	setup_allocindir_phase2(bp, ip, aip);
1580 }
1581 
1582 /*
1583  * Called to finish the allocation of the "aip" allocated
1584  * by one of the two routines above.
1585  *
1586  * Parameters:
1587  *	bp:	in-memory copy of the indirect block
1588  *	ip:	inode for file being extended
1589  *	aip:	allocindir allocated by the above routines
1590  */
1591 static void
1592 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1593 			struct allocindir *aip)
1594 {
1595 	struct worklist *wk;
1596 	struct indirdep *indirdep, *newindirdep;
1597 	struct bmsafemap *bmsafemap;
1598 	struct allocindir *oldaip;
1599 	struct freefrag *freefrag;
1600 	struct newblk *newblk;
1601 
1602 	if (bp->b_loffset >= 0)
1603 		panic("setup_allocindir_phase2: not indir blk");
1604 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1605 		ACQUIRE_LOCK(&lk);
1606 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1607 			if (wk->wk_type != D_INDIRDEP)
1608 				continue;
1609 			indirdep = WK_INDIRDEP(wk);
1610 			break;
1611 		}
1612 		if (indirdep == NULL && newindirdep) {
1613 			indirdep = newindirdep;
1614 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1615 			newindirdep = NULL;
1616 		}
1617 		FREE_LOCK(&lk);
1618 		if (indirdep) {
1619 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1620 			    &newblk) == 0)
1621 				panic("setup_allocindir: lost block");
1622 			ACQUIRE_LOCK(&lk);
1623 			if (newblk->nb_state == DEPCOMPLETE) {
1624 				aip->ai_state |= DEPCOMPLETE;
1625 				aip->ai_buf = NULL;
1626 			} else {
1627 				bmsafemap = newblk->nb_bmsafemap;
1628 				aip->ai_buf = bmsafemap->sm_buf;
1629 				LIST_REMOVE(newblk, nb_deps);
1630 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1631 				    aip, ai_deps);
1632 			}
1633 			LIST_REMOVE(newblk, nb_hash);
1634 			kfree(newblk, M_NEWBLK);
1635 			aip->ai_indirdep = indirdep;
1636 			/*
1637 			 * Check to see if there is an existing dependency
1638 			 * for this block. If there is, merge the old
1639 			 * dependency into the new one.
1640 			 */
1641 			if (aip->ai_oldblkno == 0)
1642 				oldaip = NULL;
1643 			else
1644 
1645 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1646 					if (oldaip->ai_offset == aip->ai_offset)
1647 						break;
1648 			if (oldaip != NULL) {
1649 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1650 					panic("setup_allocindir_phase2: blkno");
1651 				}
1652 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1653 				freefrag = oldaip->ai_freefrag;
1654 				oldaip->ai_freefrag = aip->ai_freefrag;
1655 				aip->ai_freefrag = freefrag;
1656 				free_allocindir(oldaip, NULL);
1657 			}
1658 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1659 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1660 			    [aip->ai_offset] = aip->ai_oldblkno;
1661 			FREE_LOCK(&lk);
1662 		}
1663 		if (newindirdep) {
1664 			/*
1665 			 * Avoid any possibility of data corruption by
1666 			 * ensuring that our old version is thrown away.
1667 			 */
1668 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1669 			brelse(newindirdep->ir_savebp);
1670 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1671 		}
1672 		if (indirdep)
1673 			break;
1674 		newindirdep = kmalloc(sizeof(struct indirdep), M_INDIRDEP,
1675 				      M_SOFTDEP_FLAGS);
1676 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1677 		newindirdep->ir_state = ATTACHED;
1678 		LIST_INIT(&newindirdep->ir_deplisthd);
1679 		LIST_INIT(&newindirdep->ir_donehd);
1680 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1681 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1682 				 &bp->b_bio2.bio_offset, NULL, NULL,
1683 				 BUF_CMD_WRITE);
1684 		}
1685 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1686 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1687 						bp->b_bio2.bio_offset,
1688 					        bp->b_bcount, 0, 0);
1689 		BUF_KERNPROC(newindirdep->ir_savebp);
1690 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1691 	}
1692 }
1693 
1694 /*
1695  * Block de-allocation dependencies.
1696  *
1697  * When blocks are de-allocated, the on-disk pointers must be nullified before
1698  * the blocks are made available for use by other files.  (The true
1699  * requirement is that old pointers must be nullified before new on-disk
1700  * pointers are set.  We chose this slightly more stringent requirement to
1701  * reduce complexity.) Our implementation handles this dependency by updating
1702  * the inode (or indirect block) appropriately but delaying the actual block
1703  * de-allocation (i.e., freemap and free space count manipulation) until
1704  * after the updated versions reach stable storage.  After the disk is
1705  * updated, the blocks can be safely de-allocated whenever it is convenient.
1706  * This implementation handles only the common case of reducing a file's
1707  * length to zero. Other cases are handled by the conventional synchronous
1708  * write approach.
1709  *
1710  * The ffs implementation with which we worked double-checks
1711  * the state of the block pointers and file size as it reduces
1712  * a file's length.  Some of this code is replicated here in our
1713  * soft updates implementation.  The freeblks->fb_chkcnt field is
1714  * used to transfer a part of this information to the procedure
1715  * that eventually de-allocates the blocks.
1716  *
1717  * This routine should be called from the routine that shortens
1718  * a file's length, before the inode's size or block pointers
1719  * are modified. It will save the block pointer information for
1720  * later release and zero the inode so that the calling routine
1721  * can release it.
1722  */
1723 struct softdep_setup_freeblocks_info {
1724 	struct fs *fs;
1725 	struct inode *ip;
1726 };
1727 
1728 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1729 
1730 /*
1731  * Parameters:
1732  *	ip:	The inode whose length is to be reduced
1733  *	length:	The new length for the file
1734  */
1735 void
1736 softdep_setup_freeblocks(struct inode *ip, off_t length)
1737 {
1738 	struct softdep_setup_freeblocks_info info;
1739 	struct freeblks *freeblks;
1740 	struct inodedep *inodedep;
1741 	struct allocdirect *adp;
1742 	struct vnode *vp;
1743 	struct buf *bp;
1744 	struct fs *fs;
1745 	int i, error, delay;
1746 	int count;
1747 
1748 	fs = ip->i_fs;
1749 	if (length != 0)
1750 		panic("softde_setup_freeblocks: non-zero length");
1751 	freeblks = kmalloc(sizeof(struct freeblks), M_FREEBLKS,
1752 			   M_SOFTDEP_FLAGS | M_ZERO);
1753 	freeblks->fb_list.wk_type = D_FREEBLKS;
1754 	freeblks->fb_state = ATTACHED;
1755 	freeblks->fb_uid = ip->i_uid;
1756 	freeblks->fb_previousinum = ip->i_number;
1757 	freeblks->fb_devvp = ip->i_devvp;
1758 	freeblks->fb_fs = fs;
1759 	freeblks->fb_oldsize = ip->i_size;
1760 	freeblks->fb_newsize = length;
1761 	freeblks->fb_chkcnt = ip->i_blocks;
1762 	for (i = 0; i < NDADDR; i++) {
1763 		freeblks->fb_dblks[i] = ip->i_db[i];
1764 		ip->i_db[i] = 0;
1765 	}
1766 	for (i = 0; i < NIADDR; i++) {
1767 		freeblks->fb_iblks[i] = ip->i_ib[i];
1768 		ip->i_ib[i] = 0;
1769 	}
1770 	ip->i_blocks = 0;
1771 	ip->i_size = 0;
1772 	/*
1773 	 * Push the zero'ed inode to to its disk buffer so that we are free
1774 	 * to delete its dependencies below. Once the dependencies are gone
1775 	 * the buffer can be safely released.
1776 	 */
1777 	if ((error = bread(ip->i_devvp,
1778 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1779 	    (int)fs->fs_bsize, &bp)) != 0)
1780 		softdep_error("softdep_setup_freeblocks", error);
1781 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1782 	    ip->i_din;
1783 	/*
1784 	 * Find and eliminate any inode dependencies.
1785 	 */
1786 	ACQUIRE_LOCK(&lk);
1787 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1788 	if ((inodedep->id_state & IOSTARTED) != 0) {
1789 		panic("softdep_setup_freeblocks: inode busy");
1790 	}
1791 	/*
1792 	 * Add the freeblks structure to the list of operations that
1793 	 * must await the zero'ed inode being written to disk. If we
1794 	 * still have a bitmap dependency (delay == 0), then the inode
1795 	 * has never been written to disk, so we can process the
1796 	 * freeblks below once we have deleted the dependencies.
1797 	 */
1798 	delay = (inodedep->id_state & DEPCOMPLETE);
1799 	if (delay)
1800 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1801 	/*
1802 	 * Because the file length has been truncated to zero, any
1803 	 * pending block allocation dependency structures associated
1804 	 * with this inode are obsolete and can simply be de-allocated.
1805 	 * We must first merge the two dependency lists to get rid of
1806 	 * any duplicate freefrag structures, then purge the merged list.
1807 	 */
1808 	merge_inode_lists(inodedep);
1809 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
1810 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1811 	FREE_LOCK(&lk);
1812 	bdwrite(bp);
1813 	/*
1814 	 * We must wait for any I/O in progress to finish so that
1815 	 * all potential buffers on the dirty list will be visible.
1816 	 * Once they are all there, walk the list and get rid of
1817 	 * any dependencies.
1818 	 */
1819 	vp = ITOV(ip);
1820 	ACQUIRE_LOCK(&lk);
1821 	drain_output(vp, 1);
1822 
1823 	info.fs = fs;
1824 	info.ip = ip;
1825 	lwkt_gettoken(&vp->v_token);
1826 	do {
1827 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1828 				softdep_setup_freeblocks_bp, &info);
1829 	} while (count != 0);
1830 	lwkt_reltoken(&vp->v_token);
1831 
1832 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1833 		(void)free_inodedep(inodedep);
1834 
1835 	if (delay) {
1836 		freeblks->fb_state |= DEPCOMPLETE;
1837 		/*
1838 		 * If the inode with zeroed block pointers is now on disk
1839 		 * we can start freeing blocks. Add freeblks to the worklist
1840 		 * instead of calling  handle_workitem_freeblocks directly as
1841 		 * it is more likely that additional IO is needed to complete
1842 		 * the request here than in the !delay case.
1843 		 */
1844 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1845 			add_to_worklist(&freeblks->fb_list);
1846 	}
1847 
1848 	FREE_LOCK(&lk);
1849 	/*
1850 	 * If the inode has never been written to disk (delay == 0),
1851 	 * then we can process the freeblks now that we have deleted
1852 	 * the dependencies.
1853 	 */
1854 	if (!delay)
1855 		handle_workitem_freeblocks(freeblks);
1856 }
1857 
1858 static int
1859 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1860 {
1861 	struct softdep_setup_freeblocks_info *info = data;
1862 	struct inodedep *inodedep;
1863 
1864 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1865 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1866 		return(-1);
1867 	}
1868 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1869 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1870 		BUF_UNLOCK(bp);
1871 		return(-1);
1872 	}
1873 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1874 	deallocate_dependencies(bp, inodedep);
1875 	bp->b_flags |= B_INVAL | B_NOCACHE;
1876 	FREE_LOCK(&lk);
1877 	brelse(bp);
1878 	ACQUIRE_LOCK(&lk);
1879 	return(1);
1880 }
1881 
1882 /*
1883  * Reclaim any dependency structures from a buffer that is about to
1884  * be reallocated to a new vnode. The buffer must be locked, thus,
1885  * no I/O completion operations can occur while we are manipulating
1886  * its associated dependencies. The mutex is held so that other I/O's
1887  * associated with related dependencies do not occur.
1888  */
1889 static void
1890 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1891 {
1892 	struct worklist *wk;
1893 	struct indirdep *indirdep;
1894 	struct allocindir *aip;
1895 	struct pagedep *pagedep;
1896 	struct dirrem *dirrem;
1897 	struct diradd *dap;
1898 	int i;
1899 
1900 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1901 		switch (wk->wk_type) {
1902 
1903 		case D_INDIRDEP:
1904 			indirdep = WK_INDIRDEP(wk);
1905 			/*
1906 			 * None of the indirect pointers will ever be visible,
1907 			 * so they can simply be tossed. GOINGAWAY ensures
1908 			 * that allocated pointers will be saved in the buffer
1909 			 * cache until they are freed. Note that they will
1910 			 * only be able to be found by their physical address
1911 			 * since the inode mapping the logical address will
1912 			 * be gone. The save buffer used for the safe copy
1913 			 * was allocated in setup_allocindir_phase2 using
1914 			 * the physical address so it could be used for this
1915 			 * purpose. Hence we swap the safe copy with the real
1916 			 * copy, allowing the safe copy to be freed and holding
1917 			 * on to the real copy for later use in indir_trunc.
1918 			 *
1919 			 * NOTE: ir_savebp is relative to the block device
1920 			 * so b_bio1 contains the device block number.
1921 			 */
1922 			if (indirdep->ir_state & GOINGAWAY) {
1923 				panic("deallocate_dependencies: already gone");
1924 			}
1925 			indirdep->ir_state |= GOINGAWAY;
1926 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL)
1927 				free_allocindir(aip, inodedep);
1928 			if (bp->b_bio1.bio_offset >= 0 ||
1929 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
1930 				panic("deallocate_dependencies: not indir");
1931 			}
1932 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
1933 			    bp->b_bcount);
1934 			WORKLIST_REMOVE(wk);
1935 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
1936 			continue;
1937 
1938 		case D_PAGEDEP:
1939 			pagedep = WK_PAGEDEP(wk);
1940 			/*
1941 			 * None of the directory additions will ever be
1942 			 * visible, so they can simply be tossed.
1943 			 */
1944 			for (i = 0; i < DAHASHSZ; i++)
1945 				while ((dap =
1946 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
1947 					free_diradd(dap);
1948 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
1949 				free_diradd(dap);
1950 			/*
1951 			 * Copy any directory remove dependencies to the list
1952 			 * to be processed after the zero'ed inode is written.
1953 			 * If the inode has already been written, then they
1954 			 * can be dumped directly onto the work list.
1955 			 */
1956 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
1957 				LIST_REMOVE(dirrem, dm_next);
1958 				dirrem->dm_dirinum = pagedep->pd_ino;
1959 				if (inodedep == NULL ||
1960 				    (inodedep->id_state & ALLCOMPLETE) ==
1961 				     ALLCOMPLETE)
1962 					add_to_worklist(&dirrem->dm_list);
1963 				else
1964 					WORKLIST_INSERT(&inodedep->id_bufwait,
1965 					    &dirrem->dm_list);
1966 			}
1967 			WORKLIST_REMOVE(&pagedep->pd_list);
1968 			LIST_REMOVE(pagedep, pd_hash);
1969 			WORKITEM_FREE(pagedep, D_PAGEDEP);
1970 			continue;
1971 
1972 		case D_ALLOCINDIR:
1973 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
1974 			continue;
1975 
1976 		case D_ALLOCDIRECT:
1977 		case D_INODEDEP:
1978 			panic("deallocate_dependencies: Unexpected type %s",
1979 			    TYPENAME(wk->wk_type));
1980 			/* NOTREACHED */
1981 
1982 		default:
1983 			panic("deallocate_dependencies: Unknown type %s",
1984 			    TYPENAME(wk->wk_type));
1985 			/* NOTREACHED */
1986 		}
1987 	}
1988 }
1989 
1990 /*
1991  * Free an allocdirect. Generate a new freefrag work request if appropriate.
1992  * This routine must be called with splbio interrupts blocked.
1993  */
1994 static void
1995 free_allocdirect(struct allocdirectlst *adphead,
1996 		 struct allocdirect *adp, int delay)
1997 {
1998 	KKASSERT(lock_held(&lk));
1999 
2000 	if ((adp->ad_state & DEPCOMPLETE) == 0)
2001 		LIST_REMOVE(adp, ad_deps);
2002 	TAILQ_REMOVE(adphead, adp, ad_next);
2003 	if ((adp->ad_state & COMPLETE) == 0)
2004 		WORKLIST_REMOVE(&adp->ad_list);
2005 	if (adp->ad_freefrag != NULL) {
2006 		if (delay)
2007 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2008 			    &adp->ad_freefrag->ff_list);
2009 		else
2010 			add_to_worklist(&adp->ad_freefrag->ff_list);
2011 	}
2012 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2013 }
2014 
2015 /*
2016  * Prepare an inode to be freed. The actual free operation is not
2017  * done until the zero'ed inode has been written to disk.
2018  */
2019 void
2020 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2021 {
2022 	struct inode *ip = VTOI(pvp);
2023 	struct inodedep *inodedep;
2024 	struct freefile *freefile;
2025 
2026 	/*
2027 	 * This sets up the inode de-allocation dependency.
2028 	 */
2029 	freefile = kmalloc(sizeof(struct freefile), M_FREEFILE,
2030 			   M_SOFTDEP_FLAGS);
2031 	freefile->fx_list.wk_type = D_FREEFILE;
2032 	freefile->fx_list.wk_state = 0;
2033 	freefile->fx_mode = mode;
2034 	freefile->fx_oldinum = ino;
2035 	freefile->fx_devvp = ip->i_devvp;
2036 	freefile->fx_fs = ip->i_fs;
2037 
2038 	/*
2039 	 * If the inodedep does not exist, then the zero'ed inode has
2040 	 * been written to disk. If the allocated inode has never been
2041 	 * written to disk, then the on-disk inode is zero'ed. In either
2042 	 * case we can free the file immediately.
2043 	 */
2044 	ACQUIRE_LOCK(&lk);
2045 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2046 	    check_inode_unwritten(inodedep)) {
2047 		FREE_LOCK(&lk);
2048 		handle_workitem_freefile(freefile);
2049 		return;
2050 	}
2051 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2052 	FREE_LOCK(&lk);
2053 }
2054 
2055 /*
2056  * Check to see if an inode has never been written to disk. If
2057  * so free the inodedep and return success, otherwise return failure.
2058  * This routine must be called with splbio interrupts blocked.
2059  *
2060  * If we still have a bitmap dependency, then the inode has never
2061  * been written to disk. Drop the dependency as it is no longer
2062  * necessary since the inode is being deallocated. We set the
2063  * ALLCOMPLETE flags since the bitmap now properly shows that the
2064  * inode is not allocated. Even if the inode is actively being
2065  * written, it has been rolled back to its zero'ed state, so we
2066  * are ensured that a zero inode is what is on the disk. For short
2067  * lived files, this change will usually result in removing all the
2068  * dependencies from the inode so that it can be freed immediately.
2069  */
2070 static int
2071 check_inode_unwritten(struct inodedep *inodedep)
2072 {
2073 
2074 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2075 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2076 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2077 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2078 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2079 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2080 	    inodedep->id_nlinkdelta != 0)
2081 		return (0);
2082 
2083 	/*
2084 	 * Another process might be in initiate_write_inodeblock
2085 	 * trying to allocate memory without holding "Softdep Lock".
2086 	 */
2087 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2088 	    inodedep->id_savedino == NULL)
2089 		return(0);
2090 
2091 	inodedep->id_state |= ALLCOMPLETE;
2092 	LIST_REMOVE(inodedep, id_deps);
2093 	inodedep->id_buf = NULL;
2094 	if (inodedep->id_state & ONWORKLIST)
2095 		WORKLIST_REMOVE(&inodedep->id_list);
2096 	if (inodedep->id_savedino != NULL) {
2097 		kfree(inodedep->id_savedino, M_INODEDEP);
2098 		inodedep->id_savedino = NULL;
2099 	}
2100 	if (free_inodedep(inodedep) == 0) {
2101 		panic("check_inode_unwritten: busy inode");
2102 	}
2103 	return (1);
2104 }
2105 
2106 /*
2107  * Try to free an inodedep structure. Return 1 if it could be freed.
2108  */
2109 static int
2110 free_inodedep(struct inodedep *inodedep)
2111 {
2112 
2113 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2114 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2115 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2116 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2117 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2118 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2119 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2120 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2121 		return (0);
2122 	LIST_REMOVE(inodedep, id_hash);
2123 	WORKITEM_FREE(inodedep, D_INODEDEP);
2124 	num_inodedep -= 1;
2125 	return (1);
2126 }
2127 
2128 /*
2129  * This workitem routine performs the block de-allocation.
2130  * The workitem is added to the pending list after the updated
2131  * inode block has been written to disk.  As mentioned above,
2132  * checks regarding the number of blocks de-allocated (compared
2133  * to the number of blocks allocated for the file) are also
2134  * performed in this function.
2135  */
2136 static void
2137 handle_workitem_freeblocks(struct freeblks *freeblks)
2138 {
2139 	struct inode tip;
2140 	ufs_daddr_t bn;
2141 	struct fs *fs;
2142 	int i, level, bsize;
2143 	long nblocks, blocksreleased = 0;
2144 	int error, allerror = 0;
2145 	ufs_lbn_t baselbns[NIADDR], tmpval;
2146 
2147 	tip.i_number = freeblks->fb_previousinum;
2148 	tip.i_devvp = freeblks->fb_devvp;
2149 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2150 	tip.i_fs = freeblks->fb_fs;
2151 	tip.i_size = freeblks->fb_oldsize;
2152 	tip.i_uid = freeblks->fb_uid;
2153 	fs = freeblks->fb_fs;
2154 	tmpval = 1;
2155 	baselbns[0] = NDADDR;
2156 	for (i = 1; i < NIADDR; i++) {
2157 		tmpval *= NINDIR(fs);
2158 		baselbns[i] = baselbns[i - 1] + tmpval;
2159 	}
2160 	nblocks = btodb(fs->fs_bsize);
2161 	blocksreleased = 0;
2162 	/*
2163 	 * Indirect blocks first.
2164 	 */
2165 	for (level = (NIADDR - 1); level >= 0; level--) {
2166 		if ((bn = freeblks->fb_iblks[level]) == 0)
2167 			continue;
2168 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2169 		    baselbns[level], &blocksreleased)) == 0)
2170 			allerror = error;
2171 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2172 		blocksreleased += nblocks;
2173 	}
2174 	/*
2175 	 * All direct blocks or frags.
2176 	 */
2177 	for (i = (NDADDR - 1); i >= 0; i--) {
2178 		if ((bn = freeblks->fb_dblks[i]) == 0)
2179 			continue;
2180 		bsize = blksize(fs, &tip, i);
2181 		ffs_blkfree(&tip, bn, bsize);
2182 		blocksreleased += btodb(bsize);
2183 	}
2184 
2185 #ifdef DIAGNOSTIC
2186 	if (freeblks->fb_chkcnt != blocksreleased)
2187 		kprintf("handle_workitem_freeblocks: block count\n");
2188 	if (allerror)
2189 		softdep_error("handle_workitem_freeblks", allerror);
2190 #endif /* DIAGNOSTIC */
2191 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2192 }
2193 
2194 /*
2195  * Release blocks associated with the inode ip and stored in the indirect
2196  * block at doffset. If level is greater than SINGLE, the block is an
2197  * indirect block and recursive calls to indirtrunc must be used to
2198  * cleanse other indirect blocks.
2199  */
2200 static int
2201 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2202 	    long *countp)
2203 {
2204 	struct buf *bp;
2205 	ufs_daddr_t *bap;
2206 	ufs_daddr_t nb;
2207 	struct fs *fs;
2208 	struct worklist *wk;
2209 	struct indirdep *indirdep;
2210 	int i, lbnadd, nblocks;
2211 	int error, allerror = 0;
2212 
2213 	fs = ip->i_fs;
2214 	lbnadd = 1;
2215 	for (i = level; i > 0; i--)
2216 		lbnadd *= NINDIR(fs);
2217 	/*
2218 	 * Get buffer of block pointers to be freed. This routine is not
2219 	 * called until the zero'ed inode has been written, so it is safe
2220 	 * to free blocks as they are encountered. Because the inode has
2221 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2222 	 * have to use the on-disk address and the block device for the
2223 	 * filesystem to look them up. If the file was deleted before its
2224 	 * indirect blocks were all written to disk, the routine that set
2225 	 * us up (deallocate_dependencies) will have arranged to leave
2226 	 * a complete copy of the indirect block in memory for our use.
2227 	 * Otherwise we have to read the blocks in from the disk.
2228 	 */
2229 	ACQUIRE_LOCK(&lk);
2230 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2231 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2232 		/*
2233 		 * bp must be ir_savebp, which is held locked for our use.
2234 		 */
2235 		if (wk->wk_type != D_INDIRDEP ||
2236 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2237 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2238 			panic("indir_trunc: lost indirdep");
2239 		}
2240 		WORKLIST_REMOVE(wk);
2241 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2242 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2243 			panic("indir_trunc: dangling dep");
2244 		}
2245 		FREE_LOCK(&lk);
2246 	} else {
2247 		FREE_LOCK(&lk);
2248 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2249 		if (error)
2250 			return (error);
2251 	}
2252 	/*
2253 	 * Recursively free indirect blocks.
2254 	 */
2255 	bap = (ufs_daddr_t *)bp->b_data;
2256 	nblocks = btodb(fs->fs_bsize);
2257 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2258 		if ((nb = bap[i]) == 0)
2259 			continue;
2260 		if (level != 0) {
2261 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2262 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2263 				allerror = error;
2264 		}
2265 		ffs_blkfree(ip, nb, fs->fs_bsize);
2266 		*countp += nblocks;
2267 	}
2268 	bp->b_flags |= B_INVAL | B_NOCACHE;
2269 	brelse(bp);
2270 	return (allerror);
2271 }
2272 
2273 /*
2274  * Free an allocindir.
2275  * This routine must be called with splbio interrupts blocked.
2276  */
2277 static void
2278 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2279 {
2280 	struct freefrag *freefrag;
2281 
2282 	KKASSERT(lock_held(&lk));
2283 
2284 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2285 		LIST_REMOVE(aip, ai_deps);
2286 	if (aip->ai_state & ONWORKLIST)
2287 		WORKLIST_REMOVE(&aip->ai_list);
2288 	LIST_REMOVE(aip, ai_next);
2289 	if ((freefrag = aip->ai_freefrag) != NULL) {
2290 		if (inodedep == NULL)
2291 			add_to_worklist(&freefrag->ff_list);
2292 		else
2293 			WORKLIST_INSERT(&inodedep->id_bufwait,
2294 			    &freefrag->ff_list);
2295 	}
2296 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2297 }
2298 
2299 /*
2300  * Directory entry addition dependencies.
2301  *
2302  * When adding a new directory entry, the inode (with its incremented link
2303  * count) must be written to disk before the directory entry's pointer to it.
2304  * Also, if the inode is newly allocated, the corresponding freemap must be
2305  * updated (on disk) before the directory entry's pointer. These requirements
2306  * are met via undo/redo on the directory entry's pointer, which consists
2307  * simply of the inode number.
2308  *
2309  * As directory entries are added and deleted, the free space within a
2310  * directory block can become fragmented.  The ufs filesystem will compact
2311  * a fragmented directory block to make space for a new entry. When this
2312  * occurs, the offsets of previously added entries change. Any "diradd"
2313  * dependency structures corresponding to these entries must be updated with
2314  * the new offsets.
2315  */
2316 
2317 /*
2318  * This routine is called after the in-memory inode's link
2319  * count has been incremented, but before the directory entry's
2320  * pointer to the inode has been set.
2321  *
2322  * Parameters:
2323  *	bp:		buffer containing directory block
2324  *	dp:		inode for directory
2325  *	diroffset:	offset of new entry in directory
2326  *	newinum:	inode referenced by new directory entry
2327  *	newdirbp:	non-NULL => contents of new mkdir
2328  */
2329 void
2330 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2331 			    ino_t newinum, struct buf *newdirbp)
2332 {
2333 	int offset;		/* offset of new entry within directory block */
2334 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2335 	struct fs *fs;
2336 	struct diradd *dap;
2337 	struct pagedep *pagedep;
2338 	struct inodedep *inodedep;
2339 	struct mkdir *mkdir1, *mkdir2;
2340 
2341 	/*
2342 	 * Whiteouts have no dependencies.
2343 	 */
2344 	if (newinum == WINO) {
2345 		if (newdirbp != NULL)
2346 			bdwrite(newdirbp);
2347 		return;
2348 	}
2349 
2350 	fs = dp->i_fs;
2351 	lbn = lblkno(fs, diroffset);
2352 	offset = blkoff(fs, diroffset);
2353 	dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2354 		      M_SOFTDEP_FLAGS | M_ZERO);
2355 	dap->da_list.wk_type = D_DIRADD;
2356 	dap->da_offset = offset;
2357 	dap->da_newinum = newinum;
2358 	dap->da_state = ATTACHED;
2359 	if (newdirbp == NULL) {
2360 		dap->da_state |= DEPCOMPLETE;
2361 		ACQUIRE_LOCK(&lk);
2362 	} else {
2363 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2364 		mkdir1 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2365 				 M_SOFTDEP_FLAGS);
2366 		mkdir1->md_list.wk_type = D_MKDIR;
2367 		mkdir1->md_state = MKDIR_BODY;
2368 		mkdir1->md_diradd = dap;
2369 		mkdir2 = kmalloc(sizeof(struct mkdir), M_MKDIR,
2370 				 M_SOFTDEP_FLAGS);
2371 		mkdir2->md_list.wk_type = D_MKDIR;
2372 		mkdir2->md_state = MKDIR_PARENT;
2373 		mkdir2->md_diradd = dap;
2374 		/*
2375 		 * Dependency on "." and ".." being written to disk.
2376 		 */
2377 		mkdir1->md_buf = newdirbp;
2378 		ACQUIRE_LOCK(&lk);
2379 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2380 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2381 		FREE_LOCK(&lk);
2382 		bdwrite(newdirbp);
2383 		/*
2384 		 * Dependency on link count increase for parent directory
2385 		 */
2386 		ACQUIRE_LOCK(&lk);
2387 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2388 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2389 			dap->da_state &= ~MKDIR_PARENT;
2390 			WORKITEM_FREE(mkdir2, D_MKDIR);
2391 		} else {
2392 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2393 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2394 		}
2395 	}
2396 	/*
2397 	 * Link into parent directory pagedep to await its being written.
2398 	 */
2399 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2400 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2401 	dap->da_pagedep = pagedep;
2402 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2403 	    da_pdlist);
2404 	/*
2405 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2406 	 * is not yet written. If it is written, do the post-inode write
2407 	 * processing to put it on the id_pendinghd list.
2408 	 */
2409 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2410 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2411 		diradd_inode_written(dap, inodedep);
2412 	else
2413 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2414 	FREE_LOCK(&lk);
2415 }
2416 
2417 /*
2418  * This procedure is called to change the offset of a directory
2419  * entry when compacting a directory block which must be owned
2420  * exclusively by the caller. Note that the actual entry movement
2421  * must be done in this procedure to ensure that no I/O completions
2422  * occur while the move is in progress.
2423  *
2424  * Parameters:
2425  *	dp:	inode for directory
2426  *	base:		address of dp->i_offset
2427  *	oldloc:		address of old directory location
2428  *	newloc:		address of new directory location
2429  *	entrysize:	size of directory entry
2430  */
2431 void
2432 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2433 				     caddr_t oldloc, caddr_t newloc,
2434 				     int entrysize)
2435 {
2436 	int offset, oldoffset, newoffset;
2437 	struct pagedep *pagedep;
2438 	struct diradd *dap;
2439 	ufs_lbn_t lbn;
2440 
2441 	ACQUIRE_LOCK(&lk);
2442 	lbn = lblkno(dp->i_fs, dp->i_offset);
2443 	offset = blkoff(dp->i_fs, dp->i_offset);
2444 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2445 		goto done;
2446 	oldoffset = offset + (oldloc - base);
2447 	newoffset = offset + (newloc - base);
2448 
2449 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2450 		if (dap->da_offset != oldoffset)
2451 			continue;
2452 		dap->da_offset = newoffset;
2453 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2454 			break;
2455 		LIST_REMOVE(dap, da_pdlist);
2456 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2457 		    dap, da_pdlist);
2458 		break;
2459 	}
2460 	if (dap == NULL) {
2461 
2462 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2463 			if (dap->da_offset == oldoffset) {
2464 				dap->da_offset = newoffset;
2465 				break;
2466 			}
2467 		}
2468 	}
2469 done:
2470 	bcopy(oldloc, newloc, entrysize);
2471 	FREE_LOCK(&lk);
2472 }
2473 
2474 /*
2475  * Free a diradd dependency structure. This routine must be called
2476  * with splbio interrupts blocked.
2477  */
2478 static void
2479 free_diradd(struct diradd *dap)
2480 {
2481 	struct dirrem *dirrem;
2482 	struct pagedep *pagedep;
2483 	struct inodedep *inodedep;
2484 	struct mkdir *mkdir, *nextmd;
2485 
2486 	KKASSERT(lock_held(&lk));
2487 
2488 	WORKLIST_REMOVE(&dap->da_list);
2489 	LIST_REMOVE(dap, da_pdlist);
2490 	if ((dap->da_state & DIRCHG) == 0) {
2491 		pagedep = dap->da_pagedep;
2492 	} else {
2493 		dirrem = dap->da_previous;
2494 		pagedep = dirrem->dm_pagedep;
2495 		dirrem->dm_dirinum = pagedep->pd_ino;
2496 		add_to_worklist(&dirrem->dm_list);
2497 	}
2498 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2499 	    0, &inodedep) != 0)
2500 		(void) free_inodedep(inodedep);
2501 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2502 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2503 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2504 			if (mkdir->md_diradd != dap)
2505 				continue;
2506 			dap->da_state &= ~mkdir->md_state;
2507 			WORKLIST_REMOVE(&mkdir->md_list);
2508 			LIST_REMOVE(mkdir, md_mkdirs);
2509 			WORKITEM_FREE(mkdir, D_MKDIR);
2510 		}
2511 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2512 			panic("free_diradd: unfound ref");
2513 		}
2514 	}
2515 	WORKITEM_FREE(dap, D_DIRADD);
2516 }
2517 
2518 /*
2519  * Directory entry removal dependencies.
2520  *
2521  * When removing a directory entry, the entry's inode pointer must be
2522  * zero'ed on disk before the corresponding inode's link count is decremented
2523  * (possibly freeing the inode for re-use). This dependency is handled by
2524  * updating the directory entry but delaying the inode count reduction until
2525  * after the directory block has been written to disk. After this point, the
2526  * inode count can be decremented whenever it is convenient.
2527  */
2528 
2529 /*
2530  * This routine should be called immediately after removing
2531  * a directory entry.  The inode's link count should not be
2532  * decremented by the calling procedure -- the soft updates
2533  * code will do this task when it is safe.
2534  *
2535  * Parameters:
2536  *	bp:		buffer containing directory block
2537  *	dp:		inode for the directory being modified
2538  *	ip:		inode for directory entry being removed
2539  *	isrmdir:	indicates if doing RMDIR
2540  */
2541 void
2542 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2543 		     int isrmdir)
2544 {
2545 	struct dirrem *dirrem, *prevdirrem;
2546 
2547 	/*
2548 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2549 	 */
2550 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2551 
2552 	/*
2553 	 * If the COMPLETE flag is clear, then there were no active
2554 	 * entries and we want to roll back to a zeroed entry until
2555 	 * the new inode is committed to disk. If the COMPLETE flag is
2556 	 * set then we have deleted an entry that never made it to
2557 	 * disk. If the entry we deleted resulted from a name change,
2558 	 * then the old name still resides on disk. We cannot delete
2559 	 * its inode (returned to us in prevdirrem) until the zeroed
2560 	 * directory entry gets to disk. The new inode has never been
2561 	 * referenced on the disk, so can be deleted immediately.
2562 	 */
2563 	if ((dirrem->dm_state & COMPLETE) == 0) {
2564 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2565 		    dm_next);
2566 		FREE_LOCK(&lk);
2567 	} else {
2568 		if (prevdirrem != NULL)
2569 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2570 			    prevdirrem, dm_next);
2571 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2572 		FREE_LOCK(&lk);
2573 		handle_workitem_remove(dirrem);
2574 	}
2575 }
2576 
2577 /*
2578  * Allocate a new dirrem if appropriate and return it along with
2579  * its associated pagedep. Called without a lock, returns with lock.
2580  */
2581 static long num_dirrem;		/* number of dirrem allocated */
2582 
2583 /*
2584  * Parameters:
2585  *	bp:		buffer containing directory block
2586  *	dp:		inode for the directory being modified
2587  *	ip:		inode for directory entry being removed
2588  *	isrmdir:	indicates if doing RMDIR
2589  *	prevdirremp:	previously referenced inode, if any
2590  */
2591 static struct dirrem *
2592 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2593 	  int isrmdir, struct dirrem **prevdirremp)
2594 {
2595 	int offset;
2596 	ufs_lbn_t lbn;
2597 	struct diradd *dap;
2598 	struct dirrem *dirrem;
2599 	struct pagedep *pagedep;
2600 
2601 	/*
2602 	 * Whiteouts have no deletion dependencies.
2603 	 */
2604 	if (ip == NULL)
2605 		panic("newdirrem: whiteout");
2606 	/*
2607 	 * If we are over our limit, try to improve the situation.
2608 	 * Limiting the number of dirrem structures will also limit
2609 	 * the number of freefile and freeblks structures.
2610 	 */
2611 	if (num_dirrem > max_softdeps / 4)
2612 		speedup_syncer(NULL);
2613 	if (num_dirrem > max_softdeps / 2) {
2614 		ACQUIRE_LOCK(&lk);
2615 		request_cleanup(FLUSH_REMOVE);
2616 		FREE_LOCK(&lk);
2617 	}
2618 
2619 	num_dirrem += 1;
2620 	dirrem = kmalloc(sizeof(struct dirrem), M_DIRREM,
2621 			 M_SOFTDEP_FLAGS | M_ZERO);
2622 	dirrem->dm_list.wk_type = D_DIRREM;
2623 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2624 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2625 	dirrem->dm_oldinum = ip->i_number;
2626 	*prevdirremp = NULL;
2627 
2628 	ACQUIRE_LOCK(&lk);
2629 	lbn = lblkno(dp->i_fs, dp->i_offset);
2630 	offset = blkoff(dp->i_fs, dp->i_offset);
2631 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2632 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2633 	dirrem->dm_pagedep = pagedep;
2634 	/*
2635 	 * Check for a diradd dependency for the same directory entry.
2636 	 * If present, then both dependencies become obsolete and can
2637 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2638 	 * list and the pd_pendinghd list.
2639 	 */
2640 
2641 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2642 		if (dap->da_offset == offset)
2643 			break;
2644 	if (dap == NULL) {
2645 
2646 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2647 			if (dap->da_offset == offset)
2648 				break;
2649 		if (dap == NULL)
2650 			return (dirrem);
2651 	}
2652 	/*
2653 	 * Must be ATTACHED at this point.
2654 	 */
2655 	if ((dap->da_state & ATTACHED) == 0) {
2656 		panic("newdirrem: not ATTACHED");
2657 	}
2658 	if (dap->da_newinum != ip->i_number) {
2659 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2660 		    ip->i_number, dap->da_newinum);
2661 	}
2662 	/*
2663 	 * If we are deleting a changed name that never made it to disk,
2664 	 * then return the dirrem describing the previous inode (which
2665 	 * represents the inode currently referenced from this entry on disk).
2666 	 */
2667 	if ((dap->da_state & DIRCHG) != 0) {
2668 		*prevdirremp = dap->da_previous;
2669 		dap->da_state &= ~DIRCHG;
2670 		dap->da_pagedep = pagedep;
2671 	}
2672 	/*
2673 	 * We are deleting an entry that never made it to disk.
2674 	 * Mark it COMPLETE so we can delete its inode immediately.
2675 	 */
2676 	dirrem->dm_state |= COMPLETE;
2677 	free_diradd(dap);
2678 	return (dirrem);
2679 }
2680 
2681 /*
2682  * Directory entry change dependencies.
2683  *
2684  * Changing an existing directory entry requires that an add operation
2685  * be completed first followed by a deletion. The semantics for the addition
2686  * are identical to the description of adding a new entry above except
2687  * that the rollback is to the old inode number rather than zero. Once
2688  * the addition dependency is completed, the removal is done as described
2689  * in the removal routine above.
2690  */
2691 
2692 /*
2693  * This routine should be called immediately after changing
2694  * a directory entry.  The inode's link count should not be
2695  * decremented by the calling procedure -- the soft updates
2696  * code will perform this task when it is safe.
2697  *
2698  * Parameters:
2699  *	bp:		buffer containing directory block
2700  *	dp:		inode for the directory being modified
2701  *	ip:		inode for directory entry being removed
2702  *	newinum:	new inode number for changed entry
2703  *	isrmdir:	indicates if doing RMDIR
2704  */
2705 void
2706 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2707 			       struct inode *ip, ino_t newinum,
2708 			       int isrmdir)
2709 {
2710 	int offset;
2711 	struct diradd *dap = NULL;
2712 	struct dirrem *dirrem, *prevdirrem;
2713 	struct pagedep *pagedep;
2714 	struct inodedep *inodedep;
2715 
2716 	offset = blkoff(dp->i_fs, dp->i_offset);
2717 
2718 	/*
2719 	 * Whiteouts do not need diradd dependencies.
2720 	 */
2721 	if (newinum != WINO) {
2722 		dap = kmalloc(sizeof(struct diradd), M_DIRADD,
2723 			      M_SOFTDEP_FLAGS | M_ZERO);
2724 		dap->da_list.wk_type = D_DIRADD;
2725 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2726 		dap->da_offset = offset;
2727 		dap->da_newinum = newinum;
2728 	}
2729 
2730 	/*
2731 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2732 	 */
2733 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2734 	pagedep = dirrem->dm_pagedep;
2735 	/*
2736 	 * The possible values for isrmdir:
2737 	 *	0 - non-directory file rename
2738 	 *	1 - directory rename within same directory
2739 	 *   inum - directory rename to new directory of given inode number
2740 	 * When renaming to a new directory, we are both deleting and
2741 	 * creating a new directory entry, so the link count on the new
2742 	 * directory should not change. Thus we do not need the followup
2743 	 * dirrem which is usually done in handle_workitem_remove. We set
2744 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2745 	 * followup dirrem.
2746 	 */
2747 	if (isrmdir > 1)
2748 		dirrem->dm_state |= DIRCHG;
2749 
2750 	/*
2751 	 * Whiteouts have no additional dependencies,
2752 	 * so just put the dirrem on the correct list.
2753 	 */
2754 	if (newinum == WINO) {
2755 		if ((dirrem->dm_state & COMPLETE) == 0) {
2756 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2757 			    dm_next);
2758 		} else {
2759 			dirrem->dm_dirinum = pagedep->pd_ino;
2760 			add_to_worklist(&dirrem->dm_list);
2761 		}
2762 		FREE_LOCK(&lk);
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * If the COMPLETE flag is clear, then there were no active
2768 	 * entries and we want to roll back to the previous inode until
2769 	 * the new inode is committed to disk. If the COMPLETE flag is
2770 	 * set, then we have deleted an entry that never made it to disk.
2771 	 * If the entry we deleted resulted from a name change, then the old
2772 	 * inode reference still resides on disk. Any rollback that we do
2773 	 * needs to be to that old inode (returned to us in prevdirrem). If
2774 	 * the entry we deleted resulted from a create, then there is
2775 	 * no entry on the disk, so we want to roll back to zero rather
2776 	 * than the uncommitted inode. In either of the COMPLETE cases we
2777 	 * want to immediately free the unwritten and unreferenced inode.
2778 	 */
2779 	if ((dirrem->dm_state & COMPLETE) == 0) {
2780 		dap->da_previous = dirrem;
2781 	} else {
2782 		if (prevdirrem != NULL) {
2783 			dap->da_previous = prevdirrem;
2784 		} else {
2785 			dap->da_state &= ~DIRCHG;
2786 			dap->da_pagedep = pagedep;
2787 		}
2788 		dirrem->dm_dirinum = pagedep->pd_ino;
2789 		add_to_worklist(&dirrem->dm_list);
2790 	}
2791 	/*
2792 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2793 	 * is not yet written. If it is written, do the post-inode write
2794 	 * processing to put it on the id_pendinghd list.
2795 	 */
2796 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2797 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2798 		dap->da_state |= COMPLETE;
2799 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2800 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2801 	} else {
2802 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2803 		    dap, da_pdlist);
2804 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2805 	}
2806 	FREE_LOCK(&lk);
2807 }
2808 
2809 /*
2810  * Called whenever the link count on an inode is changed.
2811  * It creates an inode dependency so that the new reference(s)
2812  * to the inode cannot be committed to disk until the updated
2813  * inode has been written.
2814  *
2815  * Parameters:
2816  *	ip:	the inode with the increased link count
2817  */
2818 void
2819 softdep_change_linkcnt(struct inode *ip)
2820 {
2821 	struct inodedep *inodedep;
2822 
2823 	ACQUIRE_LOCK(&lk);
2824 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2825 	if (ip->i_nlink < ip->i_effnlink) {
2826 		panic("softdep_change_linkcnt: bad delta");
2827 	}
2828 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2829 	FREE_LOCK(&lk);
2830 }
2831 
2832 /*
2833  * This workitem decrements the inode's link count.
2834  * If the link count reaches zero, the file is removed.
2835  */
2836 static void
2837 handle_workitem_remove(struct dirrem *dirrem)
2838 {
2839 	struct inodedep *inodedep;
2840 	struct vnode *vp;
2841 	struct inode *ip;
2842 	ino_t oldinum;
2843 	int error;
2844 
2845 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2846 	if (error) {
2847 		softdep_error("handle_workitem_remove: vget", error);
2848 		return;
2849 	}
2850 	ip = VTOI(vp);
2851 	ACQUIRE_LOCK(&lk);
2852 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2853 		panic("handle_workitem_remove: lost inodedep");
2854 	}
2855 	/*
2856 	 * Normal file deletion.
2857 	 */
2858 	if ((dirrem->dm_state & RMDIR) == 0) {
2859 		ip->i_nlink--;
2860 		ip->i_flag |= IN_CHANGE;
2861 		if (ip->i_nlink < ip->i_effnlink) {
2862 			panic("handle_workitem_remove: bad file delta");
2863 		}
2864 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2865 		FREE_LOCK(&lk);
2866 		vput(vp);
2867 		num_dirrem -= 1;
2868 		WORKITEM_FREE(dirrem, D_DIRREM);
2869 		return;
2870 	}
2871 	/*
2872 	 * Directory deletion. Decrement reference count for both the
2873 	 * just deleted parent directory entry and the reference for ".".
2874 	 * Next truncate the directory to length zero. When the
2875 	 * truncation completes, arrange to have the reference count on
2876 	 * the parent decremented to account for the loss of "..".
2877 	 */
2878 	ip->i_nlink -= 2;
2879 	ip->i_flag |= IN_CHANGE;
2880 	if (ip->i_nlink < ip->i_effnlink) {
2881 		panic("handle_workitem_remove: bad dir delta");
2882 	}
2883 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2884 	FREE_LOCK(&lk);
2885 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2886 		softdep_error("handle_workitem_remove: truncate", error);
2887 	/*
2888 	 * Rename a directory to a new parent. Since, we are both deleting
2889 	 * and creating a new directory entry, the link count on the new
2890 	 * directory should not change. Thus we skip the followup dirrem.
2891 	 */
2892 	if (dirrem->dm_state & DIRCHG) {
2893 		vput(vp);
2894 		num_dirrem -= 1;
2895 		WORKITEM_FREE(dirrem, D_DIRREM);
2896 		return;
2897 	}
2898 	/*
2899 	 * If the inodedep does not exist, then the zero'ed inode has
2900 	 * been written to disk. If the allocated inode has never been
2901 	 * written to disk, then the on-disk inode is zero'ed. In either
2902 	 * case we can remove the file immediately.
2903 	 */
2904 	ACQUIRE_LOCK(&lk);
2905 	dirrem->dm_state = 0;
2906 	oldinum = dirrem->dm_oldinum;
2907 	dirrem->dm_oldinum = dirrem->dm_dirinum;
2908 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
2909 	    check_inode_unwritten(inodedep)) {
2910 		FREE_LOCK(&lk);
2911 		vput(vp);
2912 		handle_workitem_remove(dirrem);
2913 		return;
2914 	}
2915 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
2916 	FREE_LOCK(&lk);
2917 	ip->i_flag |= IN_CHANGE;
2918 	ffs_update(vp, 0);
2919 	vput(vp);
2920 }
2921 
2922 /*
2923  * Inode de-allocation dependencies.
2924  *
2925  * When an inode's link count is reduced to zero, it can be de-allocated. We
2926  * found it convenient to postpone de-allocation until after the inode is
2927  * written to disk with its new link count (zero).  At this point, all of the
2928  * on-disk inode's block pointers are nullified and, with careful dependency
2929  * list ordering, all dependencies related to the inode will be satisfied and
2930  * the corresponding dependency structures de-allocated.  So, if/when the
2931  * inode is reused, there will be no mixing of old dependencies with new
2932  * ones.  This artificial dependency is set up by the block de-allocation
2933  * procedure above (softdep_setup_freeblocks) and completed by the
2934  * following procedure.
2935  */
2936 static void
2937 handle_workitem_freefile(struct freefile *freefile)
2938 {
2939 	struct vnode vp;
2940 	struct inode tip;
2941 	struct inodedep *idp;
2942 	int error;
2943 
2944 #ifdef DEBUG
2945 	ACQUIRE_LOCK(&lk);
2946 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
2947 	FREE_LOCK(&lk);
2948 	if (error)
2949 		panic("handle_workitem_freefile: inodedep survived");
2950 #endif
2951 	tip.i_devvp = freefile->fx_devvp;
2952 	tip.i_dev = freefile->fx_devvp->v_rdev;
2953 	tip.i_fs = freefile->fx_fs;
2954 	vp.v_data = &tip;
2955 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
2956 		softdep_error("handle_workitem_freefile", error);
2957 	WORKITEM_FREE(freefile, D_FREEFILE);
2958 }
2959 
2960 /*
2961  * Helper function which unlinks marker element from work list and returns
2962  * the next element on the list.
2963  */
2964 static __inline struct worklist *
2965 markernext(struct worklist *marker)
2966 {
2967 	struct worklist *next;
2968 
2969 	next = LIST_NEXT(marker, wk_list);
2970 	LIST_REMOVE(marker, wk_list);
2971 	return next;
2972 }
2973 
2974 /*
2975  * checkread, checkwrite
2976  *
2977  * bioops callback - hold io_token
2978  */
2979 static  int
2980 softdep_checkread(struct buf *bp)
2981 {
2982 	/* nothing to do, mp lock not needed */
2983 	return(0);
2984 }
2985 
2986 /*
2987  * bioops callback - hold io_token
2988  */
2989 static  int
2990 softdep_checkwrite(struct buf *bp)
2991 {
2992 	/* nothing to do, mp lock not needed */
2993 	return(0);
2994 }
2995 
2996 /*
2997  * Disk writes.
2998  *
2999  * The dependency structures constructed above are most actively used when file
3000  * system blocks are written to disk.  No constraints are placed on when a
3001  * block can be written, but unsatisfied update dependencies are made safe by
3002  * modifying (or replacing) the source memory for the duration of the disk
3003  * write.  When the disk write completes, the memory block is again brought
3004  * up-to-date.
3005  *
3006  * In-core inode structure reclamation.
3007  *
3008  * Because there are a finite number of "in-core" inode structures, they are
3009  * reused regularly.  By transferring all inode-related dependencies to the
3010  * in-memory inode block and indexing them separately (via "inodedep"s), we
3011  * can allow "in-core" inode structures to be reused at any time and avoid
3012  * any increase in contention.
3013  *
3014  * Called just before entering the device driver to initiate a new disk I/O.
3015  * The buffer must be locked, thus, no I/O completion operations can occur
3016  * while we are manipulating its associated dependencies.
3017  *
3018  * bioops callback - hold io_token
3019  *
3020  * Parameters:
3021  *	bp:	structure describing disk write to occur
3022  */
3023 static void
3024 softdep_disk_io_initiation(struct buf *bp)
3025 {
3026 	struct worklist *wk;
3027 	struct worklist marker;
3028 	struct indirdep *indirdep;
3029 
3030 	/*
3031 	 * We only care about write operations. There should never
3032 	 * be dependencies for reads.
3033 	 */
3034 	if (bp->b_cmd == BUF_CMD_READ)
3035 		panic("softdep_disk_io_initiation: read");
3036 
3037 	ACQUIRE_LOCK(&lk);
3038 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3039 
3040 	/*
3041 	 * Do any necessary pre-I/O processing.
3042 	 */
3043 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3044 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3045 
3046 		switch (wk->wk_type) {
3047 		case D_PAGEDEP:
3048 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3049 			continue;
3050 
3051 		case D_INODEDEP:
3052 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3053 			continue;
3054 
3055 		case D_INDIRDEP:
3056 			indirdep = WK_INDIRDEP(wk);
3057 			if (indirdep->ir_state & GOINGAWAY)
3058 				panic("disk_io_initiation: indirdep gone");
3059 			/*
3060 			 * If there are no remaining dependencies, this
3061 			 * will be writing the real pointers, so the
3062 			 * dependency can be freed.
3063 			 */
3064 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3065 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3066 				brelse(indirdep->ir_savebp);
3067 				/* inline expand WORKLIST_REMOVE(wk); */
3068 				wk->wk_state &= ~ONWORKLIST;
3069 				LIST_REMOVE(wk, wk_list);
3070 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3071 				continue;
3072 			}
3073 			/*
3074 			 * Replace up-to-date version with safe version.
3075 			 */
3076 			indirdep->ir_saveddata = kmalloc(bp->b_bcount,
3077 							 M_INDIRDEP,
3078 							 M_SOFTDEP_FLAGS);
3079 			ACQUIRE_LOCK(&lk);
3080 			indirdep->ir_state &= ~ATTACHED;
3081 			indirdep->ir_state |= UNDONE;
3082 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3083 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3084 			    bp->b_bcount);
3085 			FREE_LOCK(&lk);
3086 			continue;
3087 
3088 		case D_MKDIR:
3089 		case D_BMSAFEMAP:
3090 		case D_ALLOCDIRECT:
3091 		case D_ALLOCINDIR:
3092 			continue;
3093 
3094 		default:
3095 			panic("handle_disk_io_initiation: Unexpected type %s",
3096 			    TYPENAME(wk->wk_type));
3097 			/* NOTREACHED */
3098 		}
3099 	}
3100 	FREE_LOCK(&lk);
3101 }
3102 
3103 /*
3104  * Called from within the procedure above to deal with unsatisfied
3105  * allocation dependencies in a directory. The buffer must be locked,
3106  * thus, no I/O completion operations can occur while we are
3107  * manipulating its associated dependencies.
3108  */
3109 static void
3110 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3111 {
3112 	struct diradd *dap;
3113 	struct direct *ep;
3114 	int i;
3115 
3116 	if (pagedep->pd_state & IOSTARTED) {
3117 		/*
3118 		 * This can only happen if there is a driver that does not
3119 		 * understand chaining. Here biodone will reissue the call
3120 		 * to strategy for the incomplete buffers.
3121 		 */
3122 		kprintf("initiate_write_filepage: already started\n");
3123 		return;
3124 	}
3125 	pagedep->pd_state |= IOSTARTED;
3126 	ACQUIRE_LOCK(&lk);
3127 	for (i = 0; i < DAHASHSZ; i++) {
3128 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3129 			ep = (struct direct *)
3130 			    ((char *)bp->b_data + dap->da_offset);
3131 			if (ep->d_ino != dap->da_newinum) {
3132 				panic("%s: dir inum %d != new %"PRId64,
3133 				    "initiate_write_filepage",
3134 				    ep->d_ino, dap->da_newinum);
3135 			}
3136 			if (dap->da_state & DIRCHG)
3137 				ep->d_ino = dap->da_previous->dm_oldinum;
3138 			else
3139 				ep->d_ino = 0;
3140 			dap->da_state &= ~ATTACHED;
3141 			dap->da_state |= UNDONE;
3142 		}
3143 	}
3144 	FREE_LOCK(&lk);
3145 }
3146 
3147 /*
3148  * Called from within the procedure above to deal with unsatisfied
3149  * allocation dependencies in an inodeblock. The buffer must be
3150  * locked, thus, no I/O completion operations can occur while we
3151  * are manipulating its associated dependencies.
3152  *
3153  * Parameters:
3154  *	bp:	The inode block
3155  */
3156 static void
3157 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3158 {
3159 	struct allocdirect *adp, *lastadp;
3160 	struct ufs1_dinode *dp;
3161 	struct ufs1_dinode *sip;
3162 	struct fs *fs;
3163 	ufs_lbn_t prevlbn = 0;
3164 	int i, deplist;
3165 
3166 	if (inodedep->id_state & IOSTARTED)
3167 		panic("initiate_write_inodeblock: already started");
3168 	inodedep->id_state |= IOSTARTED;
3169 	fs = inodedep->id_fs;
3170 	dp = (struct ufs1_dinode *)bp->b_data +
3171 	    ino_to_fsbo(fs, inodedep->id_ino);
3172 	/*
3173 	 * If the bitmap is not yet written, then the allocated
3174 	 * inode cannot be written to disk.
3175 	 */
3176 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3177 		if (inodedep->id_savedino != NULL)
3178 			panic("initiate_write_inodeblock: already doing I/O");
3179 		sip = kmalloc(sizeof(struct ufs1_dinode), M_INODEDEP,
3180 			      M_SOFTDEP_FLAGS);
3181 		inodedep->id_savedino = sip;
3182 		*inodedep->id_savedino = *dp;
3183 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3184 		dp->di_gen = inodedep->id_savedino->di_gen;
3185 		return;
3186 	}
3187 	/*
3188 	 * If no dependencies, then there is nothing to roll back.
3189 	 */
3190 	inodedep->id_savedsize = dp->di_size;
3191 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3192 		return;
3193 	/*
3194 	 * Set the dependencies to busy.
3195 	 */
3196 	ACQUIRE_LOCK(&lk);
3197 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3198 	     adp = TAILQ_NEXT(adp, ad_next)) {
3199 #ifdef DIAGNOSTIC
3200 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3201 			panic("softdep_write_inodeblock: lbn order");
3202 		}
3203 		prevlbn = adp->ad_lbn;
3204 		if (adp->ad_lbn < NDADDR &&
3205 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3206 			panic("%s: direct pointer #%ld mismatch %d != %d",
3207 			    "softdep_write_inodeblock", adp->ad_lbn,
3208 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3209 		}
3210 		if (adp->ad_lbn >= NDADDR &&
3211 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3212 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3213 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3214 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3215 		}
3216 		deplist |= 1 << adp->ad_lbn;
3217 		if ((adp->ad_state & ATTACHED) == 0) {
3218 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3219 			    adp->ad_state);
3220 		}
3221 #endif /* DIAGNOSTIC */
3222 		adp->ad_state &= ~ATTACHED;
3223 		adp->ad_state |= UNDONE;
3224 	}
3225 	/*
3226 	 * The on-disk inode cannot claim to be any larger than the last
3227 	 * fragment that has been written. Otherwise, the on-disk inode
3228 	 * might have fragments that were not the last block in the file
3229 	 * which would corrupt the filesystem.
3230 	 */
3231 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3232 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3233 		if (adp->ad_lbn >= NDADDR)
3234 			break;
3235 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3236 		/* keep going until hitting a rollback to a frag */
3237 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3238 			continue;
3239 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3240 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3241 #ifdef DIAGNOSTIC
3242 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3243 				panic("softdep_write_inodeblock: lost dep1");
3244 			}
3245 #endif /* DIAGNOSTIC */
3246 			dp->di_db[i] = 0;
3247 		}
3248 		for (i = 0; i < NIADDR; i++) {
3249 #ifdef DIAGNOSTIC
3250 			if (dp->di_ib[i] != 0 &&
3251 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3252 				panic("softdep_write_inodeblock: lost dep2");
3253 			}
3254 #endif /* DIAGNOSTIC */
3255 			dp->di_ib[i] = 0;
3256 		}
3257 		FREE_LOCK(&lk);
3258 		return;
3259 	}
3260 	/*
3261 	 * If we have zero'ed out the last allocated block of the file,
3262 	 * roll back the size to the last currently allocated block.
3263 	 * We know that this last allocated block is a full-sized as
3264 	 * we already checked for fragments in the loop above.
3265 	 */
3266 	if (lastadp != NULL &&
3267 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3268 		for (i = lastadp->ad_lbn; i >= 0; i--)
3269 			if (dp->di_db[i] != 0)
3270 				break;
3271 		dp->di_size = (i + 1) * fs->fs_bsize;
3272 	}
3273 	/*
3274 	 * The only dependencies are for indirect blocks.
3275 	 *
3276 	 * The file size for indirect block additions is not guaranteed.
3277 	 * Such a guarantee would be non-trivial to achieve. The conventional
3278 	 * synchronous write implementation also does not make this guarantee.
3279 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3280 	 * can be over-estimated without destroying integrity when the file
3281 	 * moves into the indirect blocks (i.e., is large). If we want to
3282 	 * postpone fsck, we are stuck with this argument.
3283 	 */
3284 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3285 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3286 	FREE_LOCK(&lk);
3287 }
3288 
3289 /*
3290  * This routine is called during the completion interrupt
3291  * service routine for a disk write (from the procedure called
3292  * by the device driver to inform the filesystem caches of
3293  * a request completion).  It should be called early in this
3294  * procedure, before the block is made available to other
3295  * processes or other routines are called.
3296  *
3297  * bioops callback - hold io_token
3298  *
3299  * Parameters:
3300  *	bp:	describes the completed disk write
3301  */
3302 static void
3303 softdep_disk_write_complete(struct buf *bp)
3304 {
3305 	struct worklist *wk;
3306 	struct workhead reattach;
3307 	struct newblk *newblk;
3308 	struct allocindir *aip;
3309 	struct allocdirect *adp;
3310 	struct indirdep *indirdep;
3311 	struct inodedep *inodedep;
3312 	struct bmsafemap *bmsafemap;
3313 
3314 	ACQUIRE_LOCK(&lk);
3315 
3316 	LIST_INIT(&reattach);
3317 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3318 		WORKLIST_REMOVE(wk);
3319 		switch (wk->wk_type) {
3320 
3321 		case D_PAGEDEP:
3322 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3323 				WORKLIST_INSERT(&reattach, wk);
3324 			continue;
3325 
3326 		case D_INODEDEP:
3327 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3328 				WORKLIST_INSERT(&reattach, wk);
3329 			continue;
3330 
3331 		case D_BMSAFEMAP:
3332 			bmsafemap = WK_BMSAFEMAP(wk);
3333 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3334 				newblk->nb_state |= DEPCOMPLETE;
3335 				newblk->nb_bmsafemap = NULL;
3336 				LIST_REMOVE(newblk, nb_deps);
3337 			}
3338 			while ((adp =
3339 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3340 				adp->ad_state |= DEPCOMPLETE;
3341 				adp->ad_buf = NULL;
3342 				LIST_REMOVE(adp, ad_deps);
3343 				handle_allocdirect_partdone(adp);
3344 			}
3345 			while ((aip =
3346 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3347 				aip->ai_state |= DEPCOMPLETE;
3348 				aip->ai_buf = NULL;
3349 				LIST_REMOVE(aip, ai_deps);
3350 				handle_allocindir_partdone(aip);
3351 			}
3352 			while ((inodedep =
3353 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3354 				inodedep->id_state |= DEPCOMPLETE;
3355 				LIST_REMOVE(inodedep, id_deps);
3356 				inodedep->id_buf = NULL;
3357 			}
3358 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3359 			continue;
3360 
3361 		case D_MKDIR:
3362 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3363 			continue;
3364 
3365 		case D_ALLOCDIRECT:
3366 			adp = WK_ALLOCDIRECT(wk);
3367 			adp->ad_state |= COMPLETE;
3368 			handle_allocdirect_partdone(adp);
3369 			continue;
3370 
3371 		case D_ALLOCINDIR:
3372 			aip = WK_ALLOCINDIR(wk);
3373 			aip->ai_state |= COMPLETE;
3374 			handle_allocindir_partdone(aip);
3375 			continue;
3376 
3377 		case D_INDIRDEP:
3378 			indirdep = WK_INDIRDEP(wk);
3379 			if (indirdep->ir_state & GOINGAWAY) {
3380 				panic("disk_write_complete: indirdep gone");
3381 			}
3382 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3383 			kfree(indirdep->ir_saveddata, M_INDIRDEP);
3384 			indirdep->ir_saveddata = NULL;
3385 			indirdep->ir_state &= ~UNDONE;
3386 			indirdep->ir_state |= ATTACHED;
3387 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) {
3388 				handle_allocindir_partdone(aip);
3389 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3390 					panic("disk_write_complete: not gone");
3391 				}
3392 			}
3393 			WORKLIST_INSERT(&reattach, wk);
3394 			if ((bp->b_flags & B_DELWRI) == 0)
3395 				stat_indir_blk_ptrs++;
3396 			bdirty(bp);
3397 			continue;
3398 
3399 		default:
3400 			panic("handle_disk_write_complete: Unknown type %s",
3401 			    TYPENAME(wk->wk_type));
3402 			/* NOTREACHED */
3403 		}
3404 	}
3405 	/*
3406 	 * Reattach any requests that must be redone.
3407 	 */
3408 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3409 		WORKLIST_REMOVE(wk);
3410 		WORKLIST_INSERT_BP(bp, wk);
3411 	}
3412 
3413 	FREE_LOCK(&lk);
3414 }
3415 
3416 /*
3417  * Called from within softdep_disk_write_complete above. Note that
3418  * this routine is always called from interrupt level with further
3419  * splbio interrupts blocked.
3420  *
3421  * Parameters:
3422  *	adp:	the completed allocdirect
3423  */
3424 static void
3425 handle_allocdirect_partdone(struct allocdirect *adp)
3426 {
3427 	struct allocdirect *listadp;
3428 	struct inodedep *inodedep;
3429 	long bsize;
3430 
3431 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3432 		return;
3433 	if (adp->ad_buf != NULL)
3434 		panic("handle_allocdirect_partdone: dangling dep");
3435 
3436 	/*
3437 	 * The on-disk inode cannot claim to be any larger than the last
3438 	 * fragment that has been written. Otherwise, the on-disk inode
3439 	 * might have fragments that were not the last block in the file
3440 	 * which would corrupt the filesystem. Thus, we cannot free any
3441 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3442 	 * these blocks must be rolled back to zero before writing the inode.
3443 	 * We check the currently active set of allocdirects in id_inoupdt.
3444 	 */
3445 	inodedep = adp->ad_inodedep;
3446 	bsize = inodedep->id_fs->fs_bsize;
3447 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3448 		/* found our block */
3449 		if (listadp == adp)
3450 			break;
3451 		/* continue if ad_oldlbn is not a fragment */
3452 		if (listadp->ad_oldsize == 0 ||
3453 		    listadp->ad_oldsize == bsize)
3454 			continue;
3455 		/* hit a fragment */
3456 		return;
3457 	}
3458 	/*
3459 	 * If we have reached the end of the current list without
3460 	 * finding the just finished dependency, then it must be
3461 	 * on the future dependency list. Future dependencies cannot
3462 	 * be freed until they are moved to the current list.
3463 	 */
3464 	if (listadp == NULL) {
3465 #ifdef DEBUG
3466 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3467 			/* found our block */
3468 			if (listadp == adp)
3469 				break;
3470 		if (listadp == NULL)
3471 			panic("handle_allocdirect_partdone: lost dep");
3472 #endif /* DEBUG */
3473 		return;
3474 	}
3475 	/*
3476 	 * If we have found the just finished dependency, then free
3477 	 * it along with anything that follows it that is complete.
3478 	 */
3479 	for (; adp; adp = listadp) {
3480 		listadp = TAILQ_NEXT(adp, ad_next);
3481 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3482 			return;
3483 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3484 	}
3485 }
3486 
3487 /*
3488  * Called from within softdep_disk_write_complete above. Note that
3489  * this routine is always called from interrupt level with further
3490  * splbio interrupts blocked.
3491  *
3492  * Parameters:
3493  *	aip:	the completed allocindir
3494  */
3495 static void
3496 handle_allocindir_partdone(struct allocindir *aip)
3497 {
3498 	struct indirdep *indirdep;
3499 
3500 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3501 		return;
3502 	if (aip->ai_buf != NULL)
3503 		panic("handle_allocindir_partdone: dangling dependency");
3504 
3505 	indirdep = aip->ai_indirdep;
3506 	if (indirdep->ir_state & UNDONE) {
3507 		LIST_REMOVE(aip, ai_next);
3508 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3509 		return;
3510 	}
3511 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3512 	    aip->ai_newblkno;
3513 	LIST_REMOVE(aip, ai_next);
3514 	if (aip->ai_freefrag != NULL)
3515 		add_to_worklist(&aip->ai_freefrag->ff_list);
3516 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3517 }
3518 
3519 /*
3520  * Called from within softdep_disk_write_complete above to restore
3521  * in-memory inode block contents to their most up-to-date state. Note
3522  * that this routine is always called from interrupt level with further
3523  * splbio interrupts blocked.
3524  *
3525  * Parameters:
3526  *	bp:	buffer containing the inode block
3527  */
3528 static int
3529 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3530 {
3531 	struct worklist *wk, *filefree;
3532 	struct allocdirect *adp, *nextadp;
3533 	struct ufs1_dinode *dp;
3534 	int hadchanges;
3535 
3536 	if ((inodedep->id_state & IOSTARTED) == 0)
3537 		panic("handle_written_inodeblock: not started");
3538 
3539 	inodedep->id_state &= ~IOSTARTED;
3540 	dp = (struct ufs1_dinode *)bp->b_data +
3541 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3542 	/*
3543 	 * If we had to rollback the inode allocation because of
3544 	 * bitmaps being incomplete, then simply restore it.
3545 	 * Keep the block dirty so that it will not be reclaimed until
3546 	 * all associated dependencies have been cleared and the
3547 	 * corresponding updates written to disk.
3548 	 */
3549 	if (inodedep->id_savedino != NULL) {
3550 		*dp = *inodedep->id_savedino;
3551 		kfree(inodedep->id_savedino, M_INODEDEP);
3552 		inodedep->id_savedino = NULL;
3553 		if ((bp->b_flags & B_DELWRI) == 0)
3554 			stat_inode_bitmap++;
3555 		bdirty(bp);
3556 		return (1);
3557 	}
3558 	inodedep->id_state |= COMPLETE;
3559 	/*
3560 	 * Roll forward anything that had to be rolled back before
3561 	 * the inode could be updated.
3562 	 */
3563 	hadchanges = 0;
3564 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3565 		nextadp = TAILQ_NEXT(adp, ad_next);
3566 		if (adp->ad_state & ATTACHED)
3567 			panic("handle_written_inodeblock: new entry");
3568 
3569 		if (adp->ad_lbn < NDADDR) {
3570 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3571 				panic("%s: %s #%ld mismatch %d != %d",
3572 				    "handle_written_inodeblock",
3573 				    "direct pointer", adp->ad_lbn,
3574 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3575 			}
3576 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3577 		} else {
3578 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3579 				panic("%s: %s #%ld allocated as %d",
3580 				    "handle_written_inodeblock",
3581 				    "indirect pointer", adp->ad_lbn - NDADDR,
3582 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3583 			}
3584 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3585 		}
3586 		adp->ad_state &= ~UNDONE;
3587 		adp->ad_state |= ATTACHED;
3588 		hadchanges = 1;
3589 	}
3590 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3591 		stat_direct_blk_ptrs++;
3592 	/*
3593 	 * Reset the file size to its most up-to-date value.
3594 	 */
3595 	if (inodedep->id_savedsize == -1) {
3596 		panic("handle_written_inodeblock: bad size");
3597 	}
3598 	if (dp->di_size != inodedep->id_savedsize) {
3599 		dp->di_size = inodedep->id_savedsize;
3600 		hadchanges = 1;
3601 	}
3602 	inodedep->id_savedsize = -1;
3603 	/*
3604 	 * If there were any rollbacks in the inode block, then it must be
3605 	 * marked dirty so that its will eventually get written back in
3606 	 * its correct form.
3607 	 */
3608 	if (hadchanges)
3609 		bdirty(bp);
3610 	/*
3611 	 * Process any allocdirects that completed during the update.
3612 	 */
3613 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3614 		handle_allocdirect_partdone(adp);
3615 	/*
3616 	 * Process deallocations that were held pending until the
3617 	 * inode had been written to disk. Freeing of the inode
3618 	 * is delayed until after all blocks have been freed to
3619 	 * avoid creation of new <vfsid, inum, lbn> triples
3620 	 * before the old ones have been deleted.
3621 	 */
3622 	filefree = NULL;
3623 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3624 		WORKLIST_REMOVE(wk);
3625 		switch (wk->wk_type) {
3626 
3627 		case D_FREEFILE:
3628 			/*
3629 			 * We defer adding filefree to the worklist until
3630 			 * all other additions have been made to ensure
3631 			 * that it will be done after all the old blocks
3632 			 * have been freed.
3633 			 */
3634 			if (filefree != NULL) {
3635 				panic("handle_written_inodeblock: filefree");
3636 			}
3637 			filefree = wk;
3638 			continue;
3639 
3640 		case D_MKDIR:
3641 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3642 			continue;
3643 
3644 		case D_DIRADD:
3645 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3646 			continue;
3647 
3648 		case D_FREEBLKS:
3649 			wk->wk_state |= COMPLETE;
3650 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3651 				continue;
3652 			/* -- fall through -- */
3653 		case D_FREEFRAG:
3654 		case D_DIRREM:
3655 			add_to_worklist(wk);
3656 			continue;
3657 
3658 		default:
3659 			panic("handle_written_inodeblock: Unknown type %s",
3660 			    TYPENAME(wk->wk_type));
3661 			/* NOTREACHED */
3662 		}
3663 	}
3664 	if (filefree != NULL) {
3665 		if (free_inodedep(inodedep) == 0) {
3666 			panic("handle_written_inodeblock: live inodedep");
3667 		}
3668 		add_to_worklist(filefree);
3669 		return (0);
3670 	}
3671 
3672 	/*
3673 	 * If no outstanding dependencies, free it.
3674 	 */
3675 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3676 		return (0);
3677 	return (hadchanges);
3678 }
3679 
3680 /*
3681  * Process a diradd entry after its dependent inode has been written.
3682  * This routine must be called with splbio interrupts blocked.
3683  */
3684 static void
3685 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3686 {
3687 	struct pagedep *pagedep;
3688 
3689 	dap->da_state |= COMPLETE;
3690 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3691 		if (dap->da_state & DIRCHG)
3692 			pagedep = dap->da_previous->dm_pagedep;
3693 		else
3694 			pagedep = dap->da_pagedep;
3695 		LIST_REMOVE(dap, da_pdlist);
3696 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3697 	}
3698 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3699 }
3700 
3701 /*
3702  * Handle the completion of a mkdir dependency.
3703  */
3704 static void
3705 handle_written_mkdir(struct mkdir *mkdir, int type)
3706 {
3707 	struct diradd *dap;
3708 	struct pagedep *pagedep;
3709 
3710 	if (mkdir->md_state != type) {
3711 		panic("handle_written_mkdir: bad type");
3712 	}
3713 	dap = mkdir->md_diradd;
3714 	dap->da_state &= ~type;
3715 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3716 		dap->da_state |= DEPCOMPLETE;
3717 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3718 		if (dap->da_state & DIRCHG)
3719 			pagedep = dap->da_previous->dm_pagedep;
3720 		else
3721 			pagedep = dap->da_pagedep;
3722 		LIST_REMOVE(dap, da_pdlist);
3723 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3724 	}
3725 	LIST_REMOVE(mkdir, md_mkdirs);
3726 	WORKITEM_FREE(mkdir, D_MKDIR);
3727 }
3728 
3729 /*
3730  * Called from within softdep_disk_write_complete above.
3731  * A write operation was just completed. Removed inodes can
3732  * now be freed and associated block pointers may be committed.
3733  * Note that this routine is always called from interrupt level
3734  * with further splbio interrupts blocked.
3735  *
3736  * Parameters:
3737  *	bp:	buffer containing the written page
3738  */
3739 static int
3740 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3741 {
3742 	struct dirrem *dirrem;
3743 	struct diradd *dap, *nextdap;
3744 	struct direct *ep;
3745 	int i, chgs;
3746 
3747 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3748 		panic("handle_written_filepage: not started");
3749 	}
3750 	pagedep->pd_state &= ~IOSTARTED;
3751 	/*
3752 	 * Process any directory removals that have been committed.
3753 	 */
3754 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3755 		LIST_REMOVE(dirrem, dm_next);
3756 		dirrem->dm_dirinum = pagedep->pd_ino;
3757 		add_to_worklist(&dirrem->dm_list);
3758 	}
3759 	/*
3760 	 * Free any directory additions that have been committed.
3761 	 */
3762 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3763 		free_diradd(dap);
3764 	/*
3765 	 * Uncommitted directory entries must be restored.
3766 	 */
3767 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3768 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3769 		     dap = nextdap) {
3770 			nextdap = LIST_NEXT(dap, da_pdlist);
3771 			if (dap->da_state & ATTACHED) {
3772 				panic("handle_written_filepage: attached");
3773 			}
3774 			ep = (struct direct *)
3775 			    ((char *)bp->b_data + dap->da_offset);
3776 			ep->d_ino = dap->da_newinum;
3777 			dap->da_state &= ~UNDONE;
3778 			dap->da_state |= ATTACHED;
3779 			chgs = 1;
3780 			/*
3781 			 * If the inode referenced by the directory has
3782 			 * been written out, then the dependency can be
3783 			 * moved to the pending list.
3784 			 */
3785 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3786 				LIST_REMOVE(dap, da_pdlist);
3787 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3788 				    da_pdlist);
3789 			}
3790 		}
3791 	}
3792 	/*
3793 	 * If there were any rollbacks in the directory, then it must be
3794 	 * marked dirty so that its will eventually get written back in
3795 	 * its correct form.
3796 	 */
3797 	if (chgs) {
3798 		if ((bp->b_flags & B_DELWRI) == 0)
3799 			stat_dir_entry++;
3800 		bdirty(bp);
3801 	}
3802 	/*
3803 	 * If no dependencies remain, the pagedep will be freed.
3804 	 * Otherwise it will remain to update the page before it
3805 	 * is written back to disk.
3806 	 */
3807 	if (LIST_FIRST(&pagedep->pd_pendinghd) == NULL) {
3808 		for (i = 0; i < DAHASHSZ; i++)
3809 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3810 				break;
3811 		if (i == DAHASHSZ) {
3812 			LIST_REMOVE(pagedep, pd_hash);
3813 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3814 			return (0);
3815 		}
3816 	}
3817 	return (1);
3818 }
3819 
3820 /*
3821  * Writing back in-core inode structures.
3822  *
3823  * The filesystem only accesses an inode's contents when it occupies an
3824  * "in-core" inode structure.  These "in-core" structures are separate from
3825  * the page frames used to cache inode blocks.  Only the latter are
3826  * transferred to/from the disk.  So, when the updated contents of the
3827  * "in-core" inode structure are copied to the corresponding in-memory inode
3828  * block, the dependencies are also transferred.  The following procedure is
3829  * called when copying a dirty "in-core" inode to a cached inode block.
3830  */
3831 
3832 /*
3833  * Called when an inode is loaded from disk. If the effective link count
3834  * differed from the actual link count when it was last flushed, then we
3835  * need to ensure that the correct effective link count is put back.
3836  *
3837  * Parameters:
3838  *	ip:	the "in_core" copy of the inode
3839  */
3840 void
3841 softdep_load_inodeblock(struct inode *ip)
3842 {
3843 	struct inodedep *inodedep;
3844 
3845 	/*
3846 	 * Check for alternate nlink count.
3847 	 */
3848 	ip->i_effnlink = ip->i_nlink;
3849 	ACQUIRE_LOCK(&lk);
3850 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3851 		FREE_LOCK(&lk);
3852 		return;
3853 	}
3854 	ip->i_effnlink -= inodedep->id_nlinkdelta;
3855 	FREE_LOCK(&lk);
3856 }
3857 
3858 /*
3859  * This routine is called just before the "in-core" inode
3860  * information is to be copied to the in-memory inode block.
3861  * Recall that an inode block contains several inodes. If
3862  * the force flag is set, then the dependencies will be
3863  * cleared so that the update can always be made. Note that
3864  * the buffer is locked when this routine is called, so we
3865  * will never be in the middle of writing the inode block
3866  * to disk.
3867  *
3868  * Parameters:
3869  *	ip:		the "in_core" copy of the inode
3870  *	bp:		the buffer containing the inode block
3871  *	waitfor:	nonzero => update must be allowed
3872  */
3873 void
3874 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
3875 			  int waitfor)
3876 {
3877 	struct inodedep *inodedep;
3878 	struct worklist *wk;
3879 	struct buf *ibp;
3880 	int error, gotit;
3881 
3882 	/*
3883 	 * If the effective link count is not equal to the actual link
3884 	 * count, then we must track the difference in an inodedep while
3885 	 * the inode is (potentially) tossed out of the cache. Otherwise,
3886 	 * if there is no existing inodedep, then there are no dependencies
3887 	 * to track.
3888 	 */
3889 	ACQUIRE_LOCK(&lk);
3890 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3891 		FREE_LOCK(&lk);
3892 		if (ip->i_effnlink != ip->i_nlink)
3893 			panic("softdep_update_inodeblock: bad link count");
3894 		return;
3895 	}
3896 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
3897 		panic("softdep_update_inodeblock: bad delta");
3898 	}
3899 	/*
3900 	 * Changes have been initiated. Anything depending on these
3901 	 * changes cannot occur until this inode has been written.
3902 	 */
3903 	inodedep->id_state &= ~COMPLETE;
3904 	if ((inodedep->id_state & ONWORKLIST) == 0)
3905 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
3906 	/*
3907 	 * Any new dependencies associated with the incore inode must
3908 	 * now be moved to the list associated with the buffer holding
3909 	 * the in-memory copy of the inode. Once merged process any
3910 	 * allocdirects that are completed by the merger.
3911 	 */
3912 	merge_inode_lists(inodedep);
3913 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
3914 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
3915 	/*
3916 	 * Now that the inode has been pushed into the buffer, the
3917 	 * operations dependent on the inode being written to disk
3918 	 * can be moved to the id_bufwait so that they will be
3919 	 * processed when the buffer I/O completes.
3920 	 */
3921 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
3922 		WORKLIST_REMOVE(wk);
3923 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
3924 	}
3925 	/*
3926 	 * Newly allocated inodes cannot be written until the bitmap
3927 	 * that allocates them have been written (indicated by
3928 	 * DEPCOMPLETE being set in id_state). If we are doing a
3929 	 * forced sync (e.g., an fsync on a file), we force the bitmap
3930 	 * to be written so that the update can be done.
3931 	 */
3932 	if (waitfor == 0) {
3933 		FREE_LOCK(&lk);
3934 		return;
3935 	}
3936 retry:
3937 	if ((inodedep->id_state & DEPCOMPLETE) != 0) {
3938 		FREE_LOCK(&lk);
3939 		return;
3940 	}
3941 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
3942 	if (gotit == 0) {
3943 		if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) != 0)
3944 			goto retry;
3945 		FREE_LOCK(&lk);
3946 		return;
3947 	}
3948 	ibp = inodedep->id_buf;
3949 	FREE_LOCK(&lk);
3950 	if ((error = bwrite(ibp)) != 0)
3951 		softdep_error("softdep_update_inodeblock: bwrite", error);
3952 }
3953 
3954 /*
3955  * Merge the new inode dependency list (id_newinoupdt) into the old
3956  * inode dependency list (id_inoupdt). This routine must be called
3957  * with splbio interrupts blocked.
3958  */
3959 static void
3960 merge_inode_lists(struct inodedep *inodedep)
3961 {
3962 	struct allocdirect *listadp, *newadp;
3963 
3964 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3965 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
3966 		if (listadp->ad_lbn < newadp->ad_lbn) {
3967 			listadp = TAILQ_NEXT(listadp, ad_next);
3968 			continue;
3969 		}
3970 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3971 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
3972 		if (listadp->ad_lbn == newadp->ad_lbn) {
3973 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
3974 			    listadp);
3975 			listadp = newadp;
3976 		}
3977 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
3978 	}
3979 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
3980 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
3981 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
3982 	}
3983 }
3984 
3985 /*
3986  * If we are doing an fsync, then we must ensure that any directory
3987  * entries for the inode have been written after the inode gets to disk.
3988  *
3989  * bioops callback - hold io_token
3990  *
3991  * Parameters:
3992  *	vp:	the "in_core" copy of the inode
3993  */
3994 static int
3995 softdep_fsync(struct vnode *vp)
3996 {
3997 	struct inodedep *inodedep;
3998 	struct pagedep *pagedep;
3999 	struct worklist *wk;
4000 	struct diradd *dap;
4001 	struct mount *mnt;
4002 	struct vnode *pvp;
4003 	struct inode *ip;
4004 	struct buf *bp;
4005 	struct fs *fs;
4006 	int error, flushparent;
4007 	ino_t parentino;
4008 	ufs_lbn_t lbn;
4009 
4010 	/*
4011 	 * Move check from original kernel code, possibly not needed any
4012 	 * more with the per-mount bioops.
4013 	 */
4014 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4015 		return (0);
4016 
4017 	ip = VTOI(vp);
4018 	fs = ip->i_fs;
4019 	ACQUIRE_LOCK(&lk);
4020 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4021 		FREE_LOCK(&lk);
4022 		return (0);
4023 	}
4024 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4025 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4026 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4027 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4028 		panic("softdep_fsync: pending ops");
4029 	}
4030 	for (error = 0, flushparent = 0; ; ) {
4031 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4032 			break;
4033 		if (wk->wk_type != D_DIRADD) {
4034 			panic("softdep_fsync: Unexpected type %s",
4035 			    TYPENAME(wk->wk_type));
4036 		}
4037 		dap = WK_DIRADD(wk);
4038 		/*
4039 		 * Flush our parent if this directory entry
4040 		 * has a MKDIR_PARENT dependency.
4041 		 */
4042 		if (dap->da_state & DIRCHG)
4043 			pagedep = dap->da_previous->dm_pagedep;
4044 		else
4045 			pagedep = dap->da_pagedep;
4046 		mnt = pagedep->pd_mnt;
4047 		parentino = pagedep->pd_ino;
4048 		lbn = pagedep->pd_lbn;
4049 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4050 			panic("softdep_fsync: dirty");
4051 		}
4052 		flushparent = dap->da_state & MKDIR_PARENT;
4053 		/*
4054 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4055 		 * then we will not be able to release and recover the
4056 		 * vnode below, so we just have to give up on writing its
4057 		 * directory entry out. It will eventually be written, just
4058 		 * not now, but then the user was not asking to have it
4059 		 * written, so we are not breaking any promises.
4060 		 */
4061 		if (vp->v_flag & VRECLAIMED)
4062 			break;
4063 		/*
4064 		 * We prevent deadlock by always fetching inodes from the
4065 		 * root, moving down the directory tree. Thus, when fetching
4066 		 * our parent directory, we must unlock ourselves before
4067 		 * requesting the lock on our parent. See the comment in
4068 		 * ufs_lookup for details on possible races.
4069 		 */
4070 		FREE_LOCK(&lk);
4071 		vn_unlock(vp);
4072 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4073 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4074 		if (error != 0) {
4075 			return (error);
4076 		}
4077 		if (flushparent) {
4078 			if ((error = ffs_update(pvp, 1)) != 0) {
4079 				vput(pvp);
4080 				return (error);
4081 			}
4082 		}
4083 		/*
4084 		 * Flush directory page containing the inode's name.
4085 		 */
4086 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4087 		if (error == 0)
4088 			error = bwrite(bp);
4089 		vput(pvp);
4090 		if (error != 0) {
4091 			return (error);
4092 		}
4093 		ACQUIRE_LOCK(&lk);
4094 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4095 			break;
4096 	}
4097 	FREE_LOCK(&lk);
4098 	return (0);
4099 }
4100 
4101 /*
4102  * Flush all the dirty bitmaps associated with the block device
4103  * before flushing the rest of the dirty blocks so as to reduce
4104  * the number of dependencies that will have to be rolled back.
4105  */
4106 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4107 
4108 void
4109 softdep_fsync_mountdev(struct vnode *vp)
4110 {
4111 	if (!vn_isdisk(vp, NULL))
4112 		panic("softdep_fsync_mountdev: vnode not a disk");
4113 	ACQUIRE_LOCK(&lk);
4114 	lwkt_gettoken(&vp->v_token);
4115 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4116 		softdep_fsync_mountdev_bp, vp);
4117 	lwkt_reltoken(&vp->v_token);
4118 	drain_output(vp, 1);
4119 	FREE_LOCK(&lk);
4120 }
4121 
4122 static int
4123 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4124 {
4125 	struct worklist *wk;
4126 	struct vnode *vp = data;
4127 
4128 	/*
4129 	 * If it is already scheduled, skip to the next buffer.
4130 	 */
4131 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4132 		return(0);
4133 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4134 		BUF_UNLOCK(bp);
4135 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4136 		return(0);
4137 	}
4138 	/*
4139 	 * We are only interested in bitmaps with outstanding
4140 	 * dependencies.
4141 	 */
4142 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4143 	    wk->wk_type != D_BMSAFEMAP) {
4144 		BUF_UNLOCK(bp);
4145 		return(0);
4146 	}
4147 	bremfree(bp);
4148 	FREE_LOCK(&lk);
4149 	(void) bawrite(bp);
4150 	ACQUIRE_LOCK(&lk);
4151 	return(0);
4152 }
4153 
4154 /*
4155  * This routine is called when we are trying to synchronously flush a
4156  * file. This routine must eliminate any filesystem metadata dependencies
4157  * so that the syncing routine can succeed by pushing the dirty blocks
4158  * associated with the file. If any I/O errors occur, they are returned.
4159  */
4160 struct softdep_sync_metadata_info {
4161 	struct vnode *vp;
4162 	int waitfor;
4163 };
4164 
4165 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4166 
4167 int
4168 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4169 {
4170 	struct softdep_sync_metadata_info info;
4171 	int error, waitfor;
4172 
4173 	/*
4174 	 * Check whether this vnode is involved in a filesystem
4175 	 * that is doing soft dependency processing.
4176 	 */
4177 	if (!vn_isdisk(vp, NULL)) {
4178 		if (!DOINGSOFTDEP(vp))
4179 			return (0);
4180 	} else
4181 		if (vp->v_rdev->si_mountpoint == NULL ||
4182 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4183 			return (0);
4184 	/*
4185 	 * Ensure that any direct block dependencies have been cleared.
4186 	 */
4187 	ACQUIRE_LOCK(&lk);
4188 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4189 		FREE_LOCK(&lk);
4190 		return (error);
4191 	}
4192 	/*
4193 	 * For most files, the only metadata dependencies are the
4194 	 * cylinder group maps that allocate their inode or blocks.
4195 	 * The block allocation dependencies can be found by traversing
4196 	 * the dependency lists for any buffers that remain on their
4197 	 * dirty buffer list. The inode allocation dependency will
4198 	 * be resolved when the inode is updated with MNT_WAIT.
4199 	 * This work is done in two passes. The first pass grabs most
4200 	 * of the buffers and begins asynchronously writing them. The
4201 	 * only way to wait for these asynchronous writes is to sleep
4202 	 * on the filesystem vnode which may stay busy for a long time
4203 	 * if the filesystem is active. So, instead, we make a second
4204 	 * pass over the dependencies blocking on each write. In the
4205 	 * usual case we will be blocking against a write that we
4206 	 * initiated, so when it is done the dependency will have been
4207 	 * resolved. Thus the second pass is expected to end quickly.
4208 	 */
4209 	waitfor = MNT_NOWAIT;
4210 top:
4211 	/*
4212 	 * We must wait for any I/O in progress to finish so that
4213 	 * all potential buffers on the dirty list will be visible.
4214 	 */
4215 	drain_output(vp, 1);
4216 
4217 	info.vp = vp;
4218 	info.waitfor = waitfor;
4219 	lwkt_gettoken(&vp->v_token);
4220 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4221 			softdep_sync_metadata_bp, &info);
4222 	lwkt_reltoken(&vp->v_token);
4223 	if (error < 0) {
4224 		FREE_LOCK(&lk);
4225 		return(-error);	/* error code */
4226 	}
4227 
4228 	/*
4229 	 * The brief unlock is to allow any pent up dependency
4230 	 * processing to be done.  Then proceed with the second pass.
4231 	 */
4232 	if (waitfor & MNT_NOWAIT) {
4233 		waitfor = MNT_WAIT;
4234 		FREE_LOCK(&lk);
4235 		ACQUIRE_LOCK(&lk);
4236 		goto top;
4237 	}
4238 
4239 	/*
4240 	 * If we have managed to get rid of all the dirty buffers,
4241 	 * then we are done. For certain directories and block
4242 	 * devices, we may need to do further work.
4243 	 *
4244 	 * We must wait for any I/O in progress to finish so that
4245 	 * all potential buffers on the dirty list will be visible.
4246 	 */
4247 	drain_output(vp, 1);
4248 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4249 		FREE_LOCK(&lk);
4250 		return (0);
4251 	}
4252 
4253 	FREE_LOCK(&lk);
4254 	/*
4255 	 * If we are trying to sync a block device, some of its buffers may
4256 	 * contain metadata that cannot be written until the contents of some
4257 	 * partially written files have been written to disk. The only easy
4258 	 * way to accomplish this is to sync the entire filesystem (luckily
4259 	 * this happens rarely).
4260 	 */
4261 	if (vn_isdisk(vp, NULL) &&
4262 	    vp->v_rdev &&
4263 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4264 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4265 		return (error);
4266 	return (0);
4267 }
4268 
4269 static int
4270 softdep_sync_metadata_bp(struct buf *bp, void *data)
4271 {
4272 	struct softdep_sync_metadata_info *info = data;
4273 	struct pagedep *pagedep;
4274 	struct allocdirect *adp;
4275 	struct allocindir *aip;
4276 	struct worklist *wk;
4277 	struct buf *nbp;
4278 	int error;
4279 	int i;
4280 
4281 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4282 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4283 		return (1);
4284 	}
4285 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4286 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4287 		BUF_UNLOCK(bp);
4288 		return(1);
4289 	}
4290 
4291 	/*
4292 	 * As we hold the buffer locked, none of its dependencies
4293 	 * will disappear.
4294 	 */
4295 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4296 		switch (wk->wk_type) {
4297 
4298 		case D_ALLOCDIRECT:
4299 			adp = WK_ALLOCDIRECT(wk);
4300 			if (adp->ad_state & DEPCOMPLETE)
4301 				break;
4302 			nbp = adp->ad_buf;
4303 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4304 				break;
4305 			FREE_LOCK(&lk);
4306 			if (info->waitfor & MNT_NOWAIT) {
4307 				bawrite(nbp);
4308 			} else if ((error = bwrite(nbp)) != 0) {
4309 				bawrite(bp);
4310 				ACQUIRE_LOCK(&lk);
4311 				return (-error);
4312 			}
4313 			ACQUIRE_LOCK(&lk);
4314 			break;
4315 
4316 		case D_ALLOCINDIR:
4317 			aip = WK_ALLOCINDIR(wk);
4318 			if (aip->ai_state & DEPCOMPLETE)
4319 				break;
4320 			nbp = aip->ai_buf;
4321 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4322 				break;
4323 			FREE_LOCK(&lk);
4324 			if (info->waitfor & MNT_NOWAIT) {
4325 				bawrite(nbp);
4326 			} else if ((error = bwrite(nbp)) != 0) {
4327 				bawrite(bp);
4328 				ACQUIRE_LOCK(&lk);
4329 				return (-error);
4330 			}
4331 			ACQUIRE_LOCK(&lk);
4332 			break;
4333 
4334 		case D_INDIRDEP:
4335 		restart:
4336 
4337 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4338 				if (aip->ai_state & DEPCOMPLETE)
4339 					continue;
4340 				nbp = aip->ai_buf;
4341 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4342 					goto restart;
4343 				FREE_LOCK(&lk);
4344 				if ((error = bwrite(nbp)) != 0) {
4345 					bawrite(bp);
4346 					ACQUIRE_LOCK(&lk);
4347 					return (-error);
4348 				}
4349 				ACQUIRE_LOCK(&lk);
4350 				goto restart;
4351 			}
4352 			break;
4353 
4354 		case D_INODEDEP:
4355 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4356 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4357 				FREE_LOCK(&lk);
4358 				bawrite(bp);
4359 				ACQUIRE_LOCK(&lk);
4360 				return (-error);
4361 			}
4362 			break;
4363 
4364 		case D_PAGEDEP:
4365 			/*
4366 			 * We are trying to sync a directory that may
4367 			 * have dependencies on both its own metadata
4368 			 * and/or dependencies on the inodes of any
4369 			 * recently allocated files. We walk its diradd
4370 			 * lists pushing out the associated inode.
4371 			 */
4372 			pagedep = WK_PAGEDEP(wk);
4373 			for (i = 0; i < DAHASHSZ; i++) {
4374 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL)
4375 					continue;
4376 				if ((error =
4377 				    flush_pagedep_deps(info->vp,
4378 						pagedep->pd_mnt,
4379 						&pagedep->pd_diraddhd[i]))) {
4380 					FREE_LOCK(&lk);
4381 					bawrite(bp);
4382 					ACQUIRE_LOCK(&lk);
4383 					return (-error);
4384 				}
4385 			}
4386 			break;
4387 
4388 		case D_MKDIR:
4389 			/*
4390 			 * This case should never happen if the vnode has
4391 			 * been properly sync'ed. However, if this function
4392 			 * is used at a place where the vnode has not yet
4393 			 * been sync'ed, this dependency can show up. So,
4394 			 * rather than panic, just flush it.
4395 			 */
4396 			nbp = WK_MKDIR(wk)->md_buf;
4397 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4398 				break;
4399 			FREE_LOCK(&lk);
4400 			if (info->waitfor & MNT_NOWAIT) {
4401 				bawrite(nbp);
4402 			} else if ((error = bwrite(nbp)) != 0) {
4403 				bawrite(bp);
4404 				ACQUIRE_LOCK(&lk);
4405 				return (-error);
4406 			}
4407 			ACQUIRE_LOCK(&lk);
4408 			break;
4409 
4410 		case D_BMSAFEMAP:
4411 			/*
4412 			 * This case should never happen if the vnode has
4413 			 * been properly sync'ed. However, if this function
4414 			 * is used at a place where the vnode has not yet
4415 			 * been sync'ed, this dependency can show up. So,
4416 			 * rather than panic, just flush it.
4417 			 *
4418 			 * nbp can wind up == bp if a device node for the
4419 			 * same filesystem is being fsynced at the same time,
4420 			 * leading to a panic if we don't catch the case.
4421 			 */
4422 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4423 			if (nbp == bp)
4424 				break;
4425 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4426 				break;
4427 			FREE_LOCK(&lk);
4428 			if (info->waitfor & MNT_NOWAIT) {
4429 				bawrite(nbp);
4430 			} else if ((error = bwrite(nbp)) != 0) {
4431 				bawrite(bp);
4432 				ACQUIRE_LOCK(&lk);
4433 				return (-error);
4434 			}
4435 			ACQUIRE_LOCK(&lk);
4436 			break;
4437 
4438 		default:
4439 			panic("softdep_sync_metadata: Unknown type %s",
4440 			    TYPENAME(wk->wk_type));
4441 			/* NOTREACHED */
4442 		}
4443 	}
4444 	FREE_LOCK(&lk);
4445 	bawrite(bp);
4446 	ACQUIRE_LOCK(&lk);
4447 	return(0);
4448 }
4449 
4450 /*
4451  * Flush the dependencies associated with an inodedep.
4452  * Called with splbio blocked.
4453  */
4454 static int
4455 flush_inodedep_deps(struct fs *fs, ino_t ino)
4456 {
4457 	struct inodedep *inodedep;
4458 	struct allocdirect *adp;
4459 	int error, waitfor;
4460 	struct buf *bp;
4461 
4462 	/*
4463 	 * This work is done in two passes. The first pass grabs most
4464 	 * of the buffers and begins asynchronously writing them. The
4465 	 * only way to wait for these asynchronous writes is to sleep
4466 	 * on the filesystem vnode which may stay busy for a long time
4467 	 * if the filesystem is active. So, instead, we make a second
4468 	 * pass over the dependencies blocking on each write. In the
4469 	 * usual case we will be blocking against a write that we
4470 	 * initiated, so when it is done the dependency will have been
4471 	 * resolved. Thus the second pass is expected to end quickly.
4472 	 * We give a brief window at the top of the loop to allow
4473 	 * any pending I/O to complete.
4474 	 */
4475 	for (waitfor = MNT_NOWAIT; ; ) {
4476 		FREE_LOCK(&lk);
4477 		ACQUIRE_LOCK(&lk);
4478 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4479 			return (0);
4480 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4481 			if (adp->ad_state & DEPCOMPLETE)
4482 				continue;
4483 			bp = adp->ad_buf;
4484 			if (getdirtybuf(&bp, waitfor) == 0) {
4485 				if (waitfor & MNT_NOWAIT)
4486 					continue;
4487 				break;
4488 			}
4489 			FREE_LOCK(&lk);
4490 			if (waitfor & MNT_NOWAIT) {
4491 				bawrite(bp);
4492 			} else if ((error = bwrite(bp)) != 0) {
4493 				ACQUIRE_LOCK(&lk);
4494 				return (error);
4495 			}
4496 			ACQUIRE_LOCK(&lk);
4497 			break;
4498 		}
4499 		if (adp != NULL)
4500 			continue;
4501 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4502 			if (adp->ad_state & DEPCOMPLETE)
4503 				continue;
4504 			bp = adp->ad_buf;
4505 			if (getdirtybuf(&bp, waitfor) == 0) {
4506 				if (waitfor & MNT_NOWAIT)
4507 					continue;
4508 				break;
4509 			}
4510 			FREE_LOCK(&lk);
4511 			if (waitfor & MNT_NOWAIT) {
4512 				bawrite(bp);
4513 			} else if ((error = bwrite(bp)) != 0) {
4514 				ACQUIRE_LOCK(&lk);
4515 				return (error);
4516 			}
4517 			ACQUIRE_LOCK(&lk);
4518 			break;
4519 		}
4520 		if (adp != NULL)
4521 			continue;
4522 		/*
4523 		 * If pass2, we are done, otherwise do pass 2.
4524 		 */
4525 		if (waitfor == MNT_WAIT)
4526 			break;
4527 		waitfor = MNT_WAIT;
4528 	}
4529 	/*
4530 	 * Try freeing inodedep in case all dependencies have been removed.
4531 	 */
4532 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4533 		(void) free_inodedep(inodedep);
4534 	return (0);
4535 }
4536 
4537 /*
4538  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4539  * Called with splbio blocked.
4540  */
4541 static int
4542 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4543 		   struct diraddhd *diraddhdp)
4544 {
4545 	struct inodedep *inodedep;
4546 	struct ufsmount *ump;
4547 	struct diradd *dap;
4548 	struct worklist *wk;
4549 	struct vnode *vp;
4550 	int gotit, error = 0;
4551 	struct buf *bp;
4552 	ino_t inum;
4553 
4554 	ump = VFSTOUFS(mp);
4555 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4556 		/*
4557 		 * Flush ourselves if this directory entry
4558 		 * has a MKDIR_PARENT dependency.
4559 		 */
4560 		if (dap->da_state & MKDIR_PARENT) {
4561 			FREE_LOCK(&lk);
4562 			if ((error = ffs_update(pvp, 1)) != 0)
4563 				break;
4564 			ACQUIRE_LOCK(&lk);
4565 			/*
4566 			 * If that cleared dependencies, go on to next.
4567 			 */
4568 			if (dap != LIST_FIRST(diraddhdp))
4569 				continue;
4570 			if (dap->da_state & MKDIR_PARENT) {
4571 				panic("flush_pagedep_deps: MKDIR_PARENT");
4572 			}
4573 		}
4574 		/*
4575 		 * A newly allocated directory must have its "." and
4576 		 * ".." entries written out before its name can be
4577 		 * committed in its parent. We do not want or need
4578 		 * the full semantics of a synchronous VOP_FSYNC as
4579 		 * that may end up here again, once for each directory
4580 		 * level in the filesystem. Instead, we push the blocks
4581 		 * and wait for them to clear. We have to fsync twice
4582 		 * because the first call may choose to defer blocks
4583 		 * that still have dependencies, but deferral will
4584 		 * happen at most once.
4585 		 */
4586 		inum = dap->da_newinum;
4587 		if (dap->da_state & MKDIR_BODY) {
4588 			FREE_LOCK(&lk);
4589 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4590 				break;
4591 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4592 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4593 				vput(vp);
4594 				break;
4595 			}
4596 			drain_output(vp, 0);
4597 			/*
4598 			 * If first block is still dirty with a D_MKDIR
4599 			 * dependency then it needs to be written now.
4600 			 */
4601 			error = 0;
4602 			ACQUIRE_LOCK(&lk);
4603 			bp = findblk(vp, 0, FINDBLK_TEST);
4604 			if (bp == NULL) {
4605 				FREE_LOCK(&lk);
4606 				goto mkdir_body_continue;
4607 			}
4608 			LIST_FOREACH(wk, &bp->b_dep, wk_list)
4609 				if (wk->wk_type == D_MKDIR) {
4610 					gotit = getdirtybuf(&bp, MNT_WAIT);
4611 					FREE_LOCK(&lk);
4612 					if (gotit && (error = bwrite(bp)) != 0)
4613 						goto mkdir_body_continue;
4614 					break;
4615 				}
4616 			if (wk == NULL)
4617 				FREE_LOCK(&lk);
4618 		mkdir_body_continue:
4619 			vput(vp);
4620 			/* Flushing of first block failed. */
4621 			if (error)
4622 				break;
4623 			ACQUIRE_LOCK(&lk);
4624 			/*
4625 			 * If that cleared dependencies, go on to next.
4626 			 */
4627 			if (dap != LIST_FIRST(diraddhdp))
4628 				continue;
4629 			if (dap->da_state & MKDIR_BODY) {
4630 				panic("flush_pagedep_deps: %p MKDIR_BODY", dap);
4631 			}
4632 		}
4633 		/*
4634 		 * Flush the inode on which the directory entry depends.
4635 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4636 		 * the only remaining dependency is that the updated inode
4637 		 * count must get pushed to disk. The inode has already
4638 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4639 		 * the time of the reference count change. So we need only
4640 		 * locate that buffer, ensure that there will be no rollback
4641 		 * caused by a bitmap dependency, then write the inode buffer.
4642 		 */
4643 retry_lookup:
4644 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4645 			panic("flush_pagedep_deps: lost inode");
4646 		}
4647 		/*
4648 		 * If the inode still has bitmap dependencies,
4649 		 * push them to disk.
4650 		 */
4651 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4652 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4653 			if (gotit == 0)
4654 				goto retry_lookup;
4655 			FREE_LOCK(&lk);
4656 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4657 				break;
4658 			ACQUIRE_LOCK(&lk);
4659 			if (dap != LIST_FIRST(diraddhdp))
4660 				continue;
4661 		}
4662 		/*
4663 		 * If the inode is still sitting in a buffer waiting
4664 		 * to be written, push it to disk.
4665 		 */
4666 		FREE_LOCK(&lk);
4667 		if ((error = bread(ump->um_devvp,
4668 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4669 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4670 			break;
4671 		if ((error = bwrite(bp)) != 0)
4672 			break;
4673 		ACQUIRE_LOCK(&lk);
4674 		/*
4675 		 * If we have failed to get rid of all the dependencies
4676 		 * then something is seriously wrong.
4677 		 */
4678 		if (dap == LIST_FIRST(diraddhdp)) {
4679 			panic("flush_pagedep_deps: flush failed");
4680 		}
4681 	}
4682 	if (error)
4683 		ACQUIRE_LOCK(&lk);
4684 	return (error);
4685 }
4686 
4687 /*
4688  * A large burst of file addition or deletion activity can drive the
4689  * memory load excessively high. First attempt to slow things down
4690  * using the techniques below. If that fails, this routine requests
4691  * the offending operations to fall back to running synchronously
4692  * until the memory load returns to a reasonable level.
4693  */
4694 int
4695 softdep_slowdown(struct vnode *vp)
4696 {
4697 	int max_softdeps_hard;
4698 
4699 	max_softdeps_hard = max_softdeps * 11 / 10;
4700 	if (num_dirrem < max_softdeps_hard / 2 &&
4701 	    num_inodedep < max_softdeps_hard)
4702 		return (0);
4703 	stat_sync_limit_hit += 1;
4704 	return (1);
4705 }
4706 
4707 /*
4708  * If memory utilization has gotten too high, deliberately slow things
4709  * down and speed up the I/O processing.
4710  */
4711 static int
4712 request_cleanup(int resource)
4713 {
4714 	struct thread *td = curthread;		/* XXX */
4715 
4716 	KKASSERT(lock_held(&lk));
4717 
4718 	/*
4719 	 * We never hold up the filesystem syncer process.
4720 	 */
4721 	if (td == filesys_syncer)
4722 		return (0);
4723 	/*
4724 	 * First check to see if the work list has gotten backlogged.
4725 	 * If it has, co-opt this process to help clean up two entries.
4726 	 * Because this process may hold inodes locked, we cannot
4727 	 * handle any remove requests that might block on a locked
4728 	 * inode as that could lead to deadlock.
4729 	 */
4730 	if (num_on_worklist > max_softdeps / 10) {
4731 		process_worklist_item(NULL, LK_NOWAIT);
4732 		process_worklist_item(NULL, LK_NOWAIT);
4733 		stat_worklist_push += 2;
4734 		return(1);
4735 	}
4736 
4737 	/*
4738 	 * If we are resource constrained on inode dependencies, try
4739 	 * flushing some dirty inodes. Otherwise, we are constrained
4740 	 * by file deletions, so try accelerating flushes of directories
4741 	 * with removal dependencies. We would like to do the cleanup
4742 	 * here, but we probably hold an inode locked at this point and
4743 	 * that might deadlock against one that we try to clean. So,
4744 	 * the best that we can do is request the syncer daemon to do
4745 	 * the cleanup for us.
4746 	 */
4747 	switch (resource) {
4748 
4749 	case FLUSH_INODES:
4750 		stat_ino_limit_push += 1;
4751 		req_clear_inodedeps += 1;
4752 		stat_countp = &stat_ino_limit_hit;
4753 		break;
4754 
4755 	case FLUSH_REMOVE:
4756 		stat_blk_limit_push += 1;
4757 		req_clear_remove += 1;
4758 		stat_countp = &stat_blk_limit_hit;
4759 		break;
4760 
4761 	default:
4762 		panic("request_cleanup: unknown type");
4763 	}
4764 	/*
4765 	 * Hopefully the syncer daemon will catch up and awaken us.
4766 	 * We wait at most tickdelay before proceeding in any case.
4767 	 */
4768 	lksleep(&proc_waiting, &lk, 0, "softupdate",
4769 		tickdelay > 2 ? tickdelay : 2);
4770 	return (1);
4771 }
4772 
4773 /*
4774  * Flush out a directory with at least one removal dependency in an effort to
4775  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4776  */
4777 static void
4778 clear_remove(struct thread *td)
4779 {
4780 	struct pagedep_hashhead *pagedephd;
4781 	struct pagedep *pagedep;
4782 	static int next = 0;
4783 	struct mount *mp;
4784 	struct vnode *vp;
4785 	int error, cnt;
4786 	ino_t ino;
4787 
4788 	ACQUIRE_LOCK(&lk);
4789 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4790 		pagedephd = &pagedep_hashtbl[next++];
4791 		if (next >= pagedep_hash)
4792 			next = 0;
4793 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4794 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4795 				continue;
4796 			mp = pagedep->pd_mnt;
4797 			ino = pagedep->pd_ino;
4798 			FREE_LOCK(&lk);
4799 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4800 				softdep_error("clear_remove: vget", error);
4801 				return;
4802 			}
4803 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4804 				softdep_error("clear_remove: fsync", error);
4805 			drain_output(vp, 0);
4806 			vput(vp);
4807 			return;
4808 		}
4809 	}
4810 	FREE_LOCK(&lk);
4811 }
4812 
4813 /*
4814  * Clear out a block of dirty inodes in an effort to reduce
4815  * the number of inodedep dependency structures.
4816  */
4817 struct clear_inodedeps_info {
4818 	struct fs *fs;
4819 	struct mount *mp;
4820 };
4821 
4822 static int
4823 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4824 {
4825 	struct clear_inodedeps_info *info = data;
4826 
4827 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4828 		info->mp = mp;
4829 		return(-1);
4830 	}
4831 	return(0);
4832 }
4833 
4834 static void
4835 clear_inodedeps(struct thread *td)
4836 {
4837 	struct clear_inodedeps_info info;
4838 	struct inodedep_hashhead *inodedephd;
4839 	struct inodedep *inodedep;
4840 	static int next = 0;
4841 	struct vnode *vp;
4842 	struct fs *fs;
4843 	int error, cnt;
4844 	ino_t firstino, lastino, ino;
4845 
4846 	ACQUIRE_LOCK(&lk);
4847 	/*
4848 	 * Pick a random inode dependency to be cleared.
4849 	 * We will then gather up all the inodes in its block
4850 	 * that have dependencies and flush them out.
4851 	 */
4852 	inodedep = NULL;	/* avoid gcc warnings */
4853 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4854 		inodedephd = &inodedep_hashtbl[next++];
4855 		if (next >= inodedep_hash)
4856 			next = 0;
4857 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4858 			break;
4859 	}
4860 	if (inodedep == NULL) {
4861 		FREE_LOCK(&lk);
4862 		return;
4863 	}
4864 	/*
4865 	 * Ugly code to find mount point given pointer to superblock.
4866 	 */
4867 	fs = inodedep->id_fs;
4868 	info.mp = NULL;
4869 	info.fs = fs;
4870 	mountlist_scan(clear_inodedeps_mountlist_callback,
4871 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
4872 	/*
4873 	 * Find the last inode in the block with dependencies.
4874 	 */
4875 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
4876 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
4877 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
4878 			break;
4879 	/*
4880 	 * Asynchronously push all but the last inode with dependencies.
4881 	 * Synchronously push the last inode with dependencies to ensure
4882 	 * that the inode block gets written to free up the inodedeps.
4883 	 */
4884 	for (ino = firstino; ino <= lastino; ino++) {
4885 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4886 			continue;
4887 		FREE_LOCK(&lk);
4888 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
4889 			softdep_error("clear_inodedeps: vget", error);
4890 			return;
4891 		}
4892 		if (ino == lastino) {
4893 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
4894 				softdep_error("clear_inodedeps: fsync1", error);
4895 		} else {
4896 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4897 				softdep_error("clear_inodedeps: fsync2", error);
4898 			drain_output(vp, 0);
4899 		}
4900 		vput(vp);
4901 		ACQUIRE_LOCK(&lk);
4902 	}
4903 	FREE_LOCK(&lk);
4904 }
4905 
4906 /*
4907  * Function to determine if the buffer has outstanding dependencies
4908  * that will cause a roll-back if the buffer is written. If wantcount
4909  * is set, return number of dependencies, otherwise just yes or no.
4910  *
4911  * bioops callback - hold io_token
4912  */
4913 static int
4914 softdep_count_dependencies(struct buf *bp, int wantcount)
4915 {
4916 	struct worklist *wk;
4917 	struct inodedep *inodedep;
4918 	struct indirdep *indirdep;
4919 	struct allocindir *aip;
4920 	struct pagedep *pagedep;
4921 	struct diradd *dap;
4922 	int i, retval;
4923 
4924 	retval = 0;
4925 	ACQUIRE_LOCK(&lk);
4926 
4927 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4928 		switch (wk->wk_type) {
4929 
4930 		case D_INODEDEP:
4931 			inodedep = WK_INODEDEP(wk);
4932 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4933 				/* bitmap allocation dependency */
4934 				retval += 1;
4935 				if (!wantcount)
4936 					goto out;
4937 			}
4938 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
4939 				/* direct block pointer dependency */
4940 				retval += 1;
4941 				if (!wantcount)
4942 					goto out;
4943 			}
4944 			continue;
4945 
4946 		case D_INDIRDEP:
4947 			indirdep = WK_INDIRDEP(wk);
4948 
4949 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
4950 				/* indirect block pointer dependency */
4951 				retval += 1;
4952 				if (!wantcount)
4953 					goto out;
4954 			}
4955 			continue;
4956 
4957 		case D_PAGEDEP:
4958 			pagedep = WK_PAGEDEP(wk);
4959 			for (i = 0; i < DAHASHSZ; i++) {
4960 
4961 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
4962 					/* directory entry dependency */
4963 					retval += 1;
4964 					if (!wantcount)
4965 						goto out;
4966 				}
4967 			}
4968 			continue;
4969 
4970 		case D_BMSAFEMAP:
4971 		case D_ALLOCDIRECT:
4972 		case D_ALLOCINDIR:
4973 		case D_MKDIR:
4974 			/* never a dependency on these blocks */
4975 			continue;
4976 
4977 		default:
4978 			panic("softdep_check_for_rollback: Unexpected type %s",
4979 			    TYPENAME(wk->wk_type));
4980 			/* NOTREACHED */
4981 		}
4982 	}
4983 out:
4984 	FREE_LOCK(&lk);
4985 
4986 	return retval;
4987 }
4988 
4989 /*
4990  * Acquire exclusive access to a buffer. Requires softdep lock
4991  * to be held on entry. If waitfor is MNT_WAIT, may release/reacquire
4992  * softdep lock.
4993  *
4994  * Returns 1 if the buffer was locked, 0 if it was not locked or
4995  * if we had to block.
4996  *
4997  * NOTE!  In order to return 1 we must acquire the buffer lock prior
4998  *	  to any release of &lk.  Once we release &lk it's all over.
4999  *	  We may still have to block on the (type-stable) bp in that
5000  *	  case, but we must then unlock it and return 0.
5001  */
5002 static int
5003 getdirtybuf(struct buf **bpp, int waitfor)
5004 {
5005 	struct buf *bp;
5006 	int error;
5007 
5008 	/*
5009 	 * If the contents of *bpp is NULL the caller presumably lost a race.
5010 	 */
5011 	bp = *bpp;
5012 	if (bp == NULL)
5013 		return (0);
5014 
5015 	/*
5016 	 * Try to obtain the buffer lock without deadlocking on &lk.
5017 	 */
5018 	KKASSERT(lock_held(&lk));
5019 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
5020 	if (error == 0) {
5021 		/*
5022 		 * If the buffer is no longer dirty the OS already wrote it
5023 		 * out, return failure.
5024 		 */
5025 		if ((bp->b_flags & B_DELWRI) == 0) {
5026 			BUF_UNLOCK(bp);
5027 			return (0);
5028 		}
5029 
5030 		/*
5031 		 * Finish nominal buffer locking sequence return success.
5032 		 *
5033 		 * Since we are not using a normal getblk(), and UFS
5034 		 * isn't KVABIO aware, we must make sure that the bp
5035 		 * is synchronized before returning it.
5036 		 */
5037 		bremfree(bp);
5038 		bkvasync_all(bp);
5039 		return (1);
5040 	}
5041 
5042 	/*
5043 	 * Failure case.
5044 	 *
5045 	 * If we are not being asked to wait, return 0 immediately.
5046 	 */
5047 	if (waitfor != MNT_WAIT)
5048 		return (0);
5049 
5050 	/*
5051 	 * Once we release the softdep lock we can never return success,
5052 	 * but we still have to block on the type-stable buf for the caller
5053 	 * to be able to retry without livelocking the system.
5054 	 *
5055 	 * The caller will normally retry in this case.
5056 	 */
5057 	FREE_LOCK(&lk);
5058 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL);
5059 	ACQUIRE_LOCK(&lk);
5060 	if (error == 0)
5061 		BUF_UNLOCK(bp);
5062 	return (0);
5063 }
5064 
5065 /*
5066  * Wait for pending output on a vnode to complete.
5067  * Must be called with vnode locked.
5068  */
5069 static void
5070 drain_output(struct vnode *vp, int islocked)
5071 {
5072 
5073 	if (!islocked)
5074 		ACQUIRE_LOCK(&lk);
5075 	while (bio_track_active(&vp->v_track_write)) {
5076 		FREE_LOCK(&lk);
5077 		bio_track_wait(&vp->v_track_write, 0, 0);
5078 		ACQUIRE_LOCK(&lk);
5079 	}
5080 	if (!islocked)
5081 		FREE_LOCK(&lk);
5082 }
5083 
5084 /*
5085  * Called whenever a buffer that is being invalidated or reallocated
5086  * contains dependencies. This should only happen if an I/O error has
5087  * occurred. The routine is called with the buffer locked.
5088  *
5089  * bioops callback - hold io_token
5090  */
5091 static void
5092 softdep_deallocate_dependencies(struct buf *bp)
5093 {
5094 	/* nothing to do, mp lock not needed */
5095 	if ((bp->b_flags & B_ERROR) == 0)
5096 		panic("softdep_deallocate_dependencies: dangling deps");
5097 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5098 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5099 }
5100 
5101 /*
5102  * Function to handle asynchronous write errors in the filesystem.
5103  */
5104 void
5105 softdep_error(char *func, int error)
5106 {
5107 	/* XXX should do something better! */
5108 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5109 }
5110