xref: /dragonfly/sys/vfs/ufs/ffs_softdep.c (revision bcb3e04d)
1 /*
2  * Copyright 1998, 2000 Marshall Kirk McKusick. All Rights Reserved.
3  *
4  * The soft updates code is derived from the appendix of a University
5  * of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
6  * "Soft Updates: A Solution to the Metadata Update Problem in File
7  * Systems", CSE-TR-254-95, August 1995).
8  *
9  * Further information about soft updates can be obtained from:
10  *
11  *	Marshall Kirk McKusick		http://www.mckusick.com/softdep/
12  *	1614 Oxford Street		mckusick@mckusick.com
13  *	Berkeley, CA 94709-1608		+1-510-843-9542
14  *	USA
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  *
26  * THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
27  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
28  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
29  * DISCLAIMED.  IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
30  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)ffs_softdep.c	9.59 (McKusick) 6/21/00
39  * $FreeBSD: src/sys/ufs/ffs/ffs_softdep.c,v 1.57.2.11 2002/02/05 18:46:53 dillon Exp $
40  * $DragonFly: src/sys/vfs/ufs/ffs_softdep.c,v 1.57 2008/06/28 17:59:51 dillon Exp $
41  */
42 
43 /*
44  * For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
45  */
46 #ifndef DIAGNOSTIC
47 #define DIAGNOSTIC
48 #endif
49 #ifndef DEBUG
50 #define DEBUG
51 #endif
52 
53 #include <sys/param.h>
54 #include <sys/kernel.h>
55 #include <sys/systm.h>
56 #include <sys/buf.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/proc.h>
60 #include <sys/syslog.h>
61 #include <sys/vnode.h>
62 #include <sys/conf.h>
63 #include <machine/inttypes.h>
64 #include "dir.h"
65 #include "quota.h"
66 #include "inode.h"
67 #include "ufsmount.h"
68 #include "fs.h"
69 #include "softdep.h"
70 #include "ffs_extern.h"
71 #include "ufs_extern.h"
72 
73 #include <sys/buf2.h>
74 #include <sys/mplock2.h>
75 #include <sys/thread2.h>
76 
77 /*
78  * These definitions need to be adapted to the system to which
79  * this file is being ported.
80  */
81 /*
82  * malloc types defined for the softdep system.
83  */
84 MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
85 MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
86 MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
87 MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
88 MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
89 MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
90 MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
91 MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
92 MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
93 MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
94 MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
95 MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
96 MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
97 
98 #define M_SOFTDEP_FLAGS		(M_WAITOK | M_USE_RESERVE)
99 
100 #define	D_PAGEDEP	0
101 #define	D_INODEDEP	1
102 #define	D_NEWBLK	2
103 #define	D_BMSAFEMAP	3
104 #define	D_ALLOCDIRECT	4
105 #define	D_INDIRDEP	5
106 #define	D_ALLOCINDIR	6
107 #define	D_FREEFRAG	7
108 #define	D_FREEBLKS	8
109 #define	D_FREEFILE	9
110 #define	D_DIRADD	10
111 #define	D_MKDIR		11
112 #define	D_DIRREM	12
113 #define D_LAST		D_DIRREM
114 
115 /*
116  * translate from workitem type to memory type
117  * MUST match the defines above, such that memtype[D_XXX] == M_XXX
118  */
119 static struct malloc_type *memtype[] = {
120 	M_PAGEDEP,
121 	M_INODEDEP,
122 	M_NEWBLK,
123 	M_BMSAFEMAP,
124 	M_ALLOCDIRECT,
125 	M_INDIRDEP,
126 	M_ALLOCINDIR,
127 	M_FREEFRAG,
128 	M_FREEBLKS,
129 	M_FREEFILE,
130 	M_DIRADD,
131 	M_MKDIR,
132 	M_DIRREM
133 };
134 
135 #define DtoM(type) (memtype[type])
136 
137 /*
138  * Names of malloc types.
139  */
140 #define TYPENAME(type)  \
141 	((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
142 /*
143  * End system adaptaion definitions.
144  */
145 
146 /*
147  * Internal function prototypes.
148  */
149 static	void softdep_error(char *, int);
150 static	void drain_output(struct vnode *, int);
151 static	int getdirtybuf(struct buf **, int);
152 static	void clear_remove(struct thread *);
153 static	void clear_inodedeps(struct thread *);
154 static	int flush_pagedep_deps(struct vnode *, struct mount *,
155 	    struct diraddhd *);
156 static	int flush_inodedep_deps(struct fs *, ino_t);
157 static	int handle_written_filepage(struct pagedep *, struct buf *);
158 static  void diradd_inode_written(struct diradd *, struct inodedep *);
159 static	int handle_written_inodeblock(struct inodedep *, struct buf *);
160 static	void handle_allocdirect_partdone(struct allocdirect *);
161 static	void handle_allocindir_partdone(struct allocindir *);
162 static	void initiate_write_filepage(struct pagedep *, struct buf *);
163 static	void handle_written_mkdir(struct mkdir *, int);
164 static	void initiate_write_inodeblock(struct inodedep *, struct buf *);
165 static	void handle_workitem_freefile(struct freefile *);
166 static	void handle_workitem_remove(struct dirrem *);
167 static	struct dirrem *newdirrem(struct buf *, struct inode *,
168 	    struct inode *, int, struct dirrem **);
169 static	void free_diradd(struct diradd *);
170 static	void free_allocindir(struct allocindir *, struct inodedep *);
171 static	int indir_trunc (struct inode *, off_t, int, ufs_lbn_t, long *);
172 static	void deallocate_dependencies(struct buf *, struct inodedep *);
173 static	void free_allocdirect(struct allocdirectlst *,
174 	    struct allocdirect *, int);
175 static	int check_inode_unwritten(struct inodedep *);
176 static	int free_inodedep(struct inodedep *);
177 static	void handle_workitem_freeblocks(struct freeblks *);
178 static	void merge_inode_lists(struct inodedep *);
179 static	void setup_allocindir_phase2(struct buf *, struct inode *,
180 	    struct allocindir *);
181 static	struct allocindir *newallocindir(struct inode *, int, ufs_daddr_t,
182 	    ufs_daddr_t);
183 static	void handle_workitem_freefrag(struct freefrag *);
184 static	struct freefrag *newfreefrag(struct inode *, ufs_daddr_t, long);
185 static	void allocdirect_merge(struct allocdirectlst *,
186 	    struct allocdirect *, struct allocdirect *);
187 static	struct bmsafemap *bmsafemap_lookup(struct buf *);
188 static	int newblk_lookup(struct fs *, ufs_daddr_t, int,
189 	    struct newblk **);
190 static	int inodedep_lookup(struct fs *, ino_t, int, struct inodedep **);
191 static	int pagedep_lookup(struct inode *, ufs_lbn_t, int,
192 	    struct pagedep **);
193 static	void pause_timer(void *);
194 static	int request_cleanup(int, int);
195 static	int process_worklist_item(struct mount *, int);
196 static	void add_to_worklist(struct worklist *);
197 
198 /*
199  * Exported softdep operations.
200  */
201 static	void softdep_disk_io_initiation(struct buf *);
202 static	void softdep_disk_write_complete(struct buf *);
203 static	void softdep_deallocate_dependencies(struct buf *);
204 static	int softdep_fsync(struct vnode *);
205 static	int softdep_process_worklist(struct mount *);
206 static	void softdep_move_dependencies(struct buf *, struct buf *);
207 static	int softdep_count_dependencies(struct buf *bp, int);
208 static  int softdep_checkread(struct buf *bp);
209 static  int softdep_checkwrite(struct buf *bp);
210 
211 static struct bio_ops softdep_bioops = {
212 	.io_start = softdep_disk_io_initiation,
213 	.io_complete = softdep_disk_write_complete,
214 	.io_deallocate = softdep_deallocate_dependencies,
215 	.io_fsync = softdep_fsync,
216 	.io_sync = softdep_process_worklist,
217 	.io_movedeps = softdep_move_dependencies,
218 	.io_countdeps = softdep_count_dependencies,
219 	.io_checkread = softdep_checkread,
220 	.io_checkwrite = softdep_checkwrite
221 };
222 
223 /*
224  * Locking primitives.
225  *
226  * For a uniprocessor, all we need to do is protect against disk
227  * interrupts. For a multiprocessor, this lock would have to be
228  * a mutex. A single mutex is used throughout this file, though
229  * finer grain locking could be used if contention warranted it.
230  *
231  * For a multiprocessor, the sleep call would accept a lock and
232  * release it after the sleep processing was complete. In a uniprocessor
233  * implementation there is no such interlock, so we simple mark
234  * the places where it needs to be done with the `interlocked' form
235  * of the lock calls. Since the uniprocessor sleep already interlocks
236  * the spl, there is nothing that really needs to be done.
237  */
238 #ifndef /* NOT */ DEBUG
239 static struct lockit {
240 } lk = { 0 };
241 #define ACQUIRE_LOCK(lk)		crit_enter_id("softupdates");
242 #define FREE_LOCK(lk)			crit_exit_id("softupdates");
243 
244 #else /* DEBUG */
245 #define NOHOLDER	((struct thread *)-1)
246 #define SPECIAL_FLAG	((struct thread *)-2)
247 static struct lockit {
248 	int	lkt_spl;
249 	struct thread *lkt_held;
250 } lk = { 0, NOHOLDER };
251 static int lockcnt;
252 
253 static	void acquire_lock(struct lockit *);
254 static	void free_lock(struct lockit *);
255 void	softdep_panic(char *);
256 
257 #define ACQUIRE_LOCK(lk)		acquire_lock(lk)
258 #define FREE_LOCK(lk)			free_lock(lk)
259 
260 static void
261 acquire_lock(struct lockit *lk)
262 {
263 	thread_t holder;
264 
265 	if (lk->lkt_held != NOHOLDER) {
266 		holder = lk->lkt_held;
267 		FREE_LOCK(lk);
268 		if (holder == curthread)
269 			panic("softdep_lock: locking against myself");
270 		else
271 			panic("softdep_lock: lock held by %p", holder);
272 	}
273 	crit_enter_id("softupdates");
274 	lk->lkt_held = curthread;
275 	lockcnt++;
276 }
277 
278 static void
279 free_lock(struct lockit *lk)
280 {
281 
282 	if (lk->lkt_held == NOHOLDER)
283 		panic("softdep_unlock: lock not held");
284 	lk->lkt_held = NOHOLDER;
285 	crit_exit_id("softupdates");
286 }
287 
288 /*
289  * Function to release soft updates lock and panic.
290  */
291 void
292 softdep_panic(char *msg)
293 {
294 
295 	if (lk.lkt_held != NOHOLDER)
296 		FREE_LOCK(&lk);
297 	panic(msg);
298 }
299 #endif /* DEBUG */
300 
301 static	int interlocked_sleep(struct lockit *, int, void *, int,
302 	    const char *, int);
303 
304 /*
305  * When going to sleep, we must save our SPL so that it does
306  * not get lost if some other process uses the lock while we
307  * are sleeping. We restore it after we have slept. This routine
308  * wraps the interlocking with functions that sleep. The list
309  * below enumerates the available set of operations.
310  */
311 #define	UNKNOWN		0
312 #define	SLEEP		1
313 #define	LOCKBUF		2
314 
315 static int
316 interlocked_sleep(struct lockit *lk, int op, void *ident, int flags,
317 		  const char *wmesg, int timo)
318 {
319 	thread_t holder;
320 	int s, retval;
321 
322 	s = lk->lkt_spl;
323 #	ifdef DEBUG
324 	if (lk->lkt_held == NOHOLDER)
325 		panic("interlocked_sleep: lock not held");
326 	lk->lkt_held = NOHOLDER;
327 #	endif /* DEBUG */
328 	switch (op) {
329 	case SLEEP:
330 		retval = tsleep(ident, flags, wmesg, timo);
331 		break;
332 	case LOCKBUF:
333 		retval = BUF_LOCK((struct buf *)ident, flags);
334 		break;
335 	default:
336 		panic("interlocked_sleep: unknown operation");
337 	}
338 #	ifdef DEBUG
339 	if (lk->lkt_held != NOHOLDER) {
340 		holder = lk->lkt_held;
341 		FREE_LOCK(lk);
342 		if (holder == curthread)
343 			panic("interlocked_sleep: locking against self");
344 		else
345 			panic("interlocked_sleep: lock held by %p", holder);
346 	}
347 	lk->lkt_held = curthread;
348 	lockcnt++;
349 #	endif /* DEBUG */
350 	lk->lkt_spl = s;
351 	return (retval);
352 }
353 
354 /*
355  * Place holder for real semaphores.
356  */
357 struct sema {
358 	int	value;
359 	thread_t holder;
360 	char	*name;
361 	int	prio;
362 	int	timo;
363 };
364 static	void sema_init(struct sema *, char *, int, int);
365 static	int sema_get(struct sema *, struct lockit *);
366 static	void sema_release(struct sema *);
367 
368 static void
369 sema_init(struct sema *semap, char *name, int prio, int timo)
370 {
371 
372 	semap->holder = NOHOLDER;
373 	semap->value = 0;
374 	semap->name = name;
375 	semap->prio = prio;
376 	semap->timo = timo;
377 }
378 
379 static int
380 sema_get(struct sema *semap, struct lockit *interlock)
381 {
382 
383 	if (semap->value++ > 0) {
384 		if (interlock != NULL) {
385 			interlocked_sleep(interlock, SLEEP, (caddr_t)semap,
386 			    semap->prio, semap->name, semap->timo);
387 			FREE_LOCK(interlock);
388 		} else {
389 			tsleep((caddr_t)semap, semap->prio, semap->name,
390 			    semap->timo);
391 		}
392 		return (0);
393 	}
394 	semap->holder = curthread;
395 	if (interlock != NULL)
396 		FREE_LOCK(interlock);
397 	return (1);
398 }
399 
400 static void
401 sema_release(struct sema *semap)
402 {
403 
404 	if (semap->value <= 0 || semap->holder != curthread) {
405 		if (lk.lkt_held != NOHOLDER)
406 			FREE_LOCK(&lk);
407 		panic("sema_release: not held");
408 	}
409 	if (--semap->value > 0) {
410 		semap->value = 0;
411 		wakeup(semap);
412 	}
413 	semap->holder = NOHOLDER;
414 }
415 
416 /*
417  * Worklist queue management.
418  * These routines require that the lock be held.
419  */
420 #ifndef /* NOT */ DEBUG
421 #define WORKLIST_INSERT(head, item) do {	\
422 	(item)->wk_state |= ONWORKLIST;		\
423 	LIST_INSERT_HEAD(head, item, wk_list);	\
424 } while (0)
425 
426 #define WORKLIST_INSERT_BP(bp, item) do {	\
427 	(item)->wk_state |= ONWORKLIST;		\
428 	(bp)->b_ops = &softdep_bioops;		\
429 	LIST_INSERT_HEAD(&(bp)->b_dep, item, wk_list);	\
430 } while (0)
431 
432 #define WORKLIST_REMOVE(item) do {		\
433 	(item)->wk_state &= ~ONWORKLIST;	\
434 	LIST_REMOVE(item, wk_list);		\
435 } while (0)
436 
437 #define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
438 
439 #else /* DEBUG */
440 static	void worklist_insert(struct workhead *, struct worklist *);
441 static	void worklist_remove(struct worklist *);
442 static	void workitem_free(struct worklist *, int);
443 
444 #define WORKLIST_INSERT_BP(bp, item) do {	\
445 	(bp)->b_ops = &softdep_bioops;		\
446 	worklist_insert(&(bp)->b_dep, item);	\
447 } while (0)
448 
449 #define WORKLIST_INSERT(head, item) worklist_insert(head, item)
450 #define WORKLIST_REMOVE(item) worklist_remove(item)
451 #define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
452 
453 static void
454 worklist_insert(struct workhead *head, struct worklist *item)
455 {
456 
457 	if (lk.lkt_held == NOHOLDER)
458 		panic("worklist_insert: lock not held");
459 	if (item->wk_state & ONWORKLIST) {
460 		FREE_LOCK(&lk);
461 		panic("worklist_insert: already on list");
462 	}
463 	item->wk_state |= ONWORKLIST;
464 	LIST_INSERT_HEAD(head, item, wk_list);
465 }
466 
467 static void
468 worklist_remove(struct worklist *item)
469 {
470 
471 	if (lk.lkt_held == NOHOLDER)
472 		panic("worklist_remove: lock not held");
473 	if ((item->wk_state & ONWORKLIST) == 0) {
474 		FREE_LOCK(&lk);
475 		panic("worklist_remove: not on list");
476 	}
477 	item->wk_state &= ~ONWORKLIST;
478 	LIST_REMOVE(item, wk_list);
479 }
480 
481 static void
482 workitem_free(struct worklist *item, int type)
483 {
484 
485 	if (item->wk_state & ONWORKLIST) {
486 		if (lk.lkt_held != NOHOLDER)
487 			FREE_LOCK(&lk);
488 		panic("workitem_free: still on list");
489 	}
490 	if (item->wk_type != type) {
491 		if (lk.lkt_held != NOHOLDER)
492 			FREE_LOCK(&lk);
493 		panic("workitem_free: type mismatch");
494 	}
495 	FREE(item, DtoM(type));
496 }
497 #endif /* DEBUG */
498 
499 /*
500  * Workitem queue management
501  */
502 static struct workhead softdep_workitem_pending;
503 static int num_on_worklist;	/* number of worklist items to be processed */
504 static int softdep_worklist_busy; /* 1 => trying to do unmount */
505 static int softdep_worklist_req; /* serialized waiters */
506 static int max_softdeps;	/* maximum number of structs before slowdown */
507 static int tickdelay = 2;	/* number of ticks to pause during slowdown */
508 static int *stat_countp;	/* statistic to count in proc_waiting timeout */
509 static int proc_waiting;	/* tracks whether we have a timeout posted */
510 static struct callout handle; /* handle on posted proc_waiting timeout */
511 static struct thread *filesys_syncer; /* proc of filesystem syncer process */
512 static int req_clear_inodedeps;	/* syncer process flush some inodedeps */
513 #define FLUSH_INODES	1
514 static int req_clear_remove;	/* syncer process flush some freeblks */
515 #define FLUSH_REMOVE	2
516 /*
517  * runtime statistics
518  */
519 static int stat_worklist_push;	/* number of worklist cleanups */
520 static int stat_blk_limit_push;	/* number of times block limit neared */
521 static int stat_ino_limit_push;	/* number of times inode limit neared */
522 static int stat_blk_limit_hit;	/* number of times block slowdown imposed */
523 static int stat_ino_limit_hit;	/* number of times inode slowdown imposed */
524 static int stat_sync_limit_hit;	/* number of synchronous slowdowns imposed */
525 static int stat_indir_blk_ptrs;	/* bufs redirtied as indir ptrs not written */
526 static int stat_inode_bitmap;	/* bufs redirtied as inode bitmap not written */
527 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
528 static int stat_dir_entry;	/* bufs redirtied as dir entry cannot write */
529 #ifdef DEBUG
530 #include <vm/vm.h>
531 #include <sys/sysctl.h>
532 SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
533 SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
534 SYSCTL_INT(_debug, OID_AUTO, worklist_push, CTLFLAG_RW, &stat_worklist_push, 0,"");
535 SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
536 SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
537 SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
538 SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
539 SYSCTL_INT(_debug, OID_AUTO, sync_limit_hit, CTLFLAG_RW, &stat_sync_limit_hit, 0, "");
540 SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
541 SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
542 SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
543 SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
544 #endif /* DEBUG */
545 
546 /*
547  * Add an item to the end of the work queue.
548  * This routine requires that the lock be held.
549  * This is the only routine that adds items to the list.
550  * The following routine is the only one that removes items
551  * and does so in order from first to last.
552  */
553 static void
554 add_to_worklist(struct worklist *wk)
555 {
556 	static struct worklist *worklist_tail;
557 
558 	if (wk->wk_state & ONWORKLIST) {
559 		if (lk.lkt_held != NOHOLDER)
560 			FREE_LOCK(&lk);
561 		panic("add_to_worklist: already on list");
562 	}
563 	wk->wk_state |= ONWORKLIST;
564 	if (LIST_FIRST(&softdep_workitem_pending) == NULL)
565 		LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
566 	else
567 		LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
568 	worklist_tail = wk;
569 	num_on_worklist += 1;
570 }
571 
572 /*
573  * Process that runs once per second to handle items in the background queue.
574  *
575  * Note that we ensure that everything is done in the order in which they
576  * appear in the queue. The code below depends on this property to ensure
577  * that blocks of a file are freed before the inode itself is freed. This
578  * ordering ensures that no new <vfsid, inum, lbn> triples will be generated
579  * until all the old ones have been purged from the dependency lists.
580  *
581  * bioops callback - hold io_token
582  */
583 static int
584 softdep_process_worklist(struct mount *matchmnt)
585 {
586 	thread_t td = curthread;
587 	int matchcnt, loopcount;
588 	long starttime;
589 
590 	get_mplock();
591 
592 	/*
593 	 * Record the process identifier of our caller so that we can give
594 	 * this process preferential treatment in request_cleanup below.
595 	 */
596 	filesys_syncer = td;
597 	matchcnt = 0;
598 
599 	/*
600 	 * There is no danger of having multiple processes run this
601 	 * code, but we have to single-thread it when softdep_flushfiles()
602 	 * is in operation to get an accurate count of the number of items
603 	 * related to its mount point that are in the list.
604 	 */
605 	if (matchmnt == NULL) {
606 		if (softdep_worklist_busy < 0) {
607 			matchcnt = -1;
608 			goto done;
609 		}
610 		softdep_worklist_busy += 1;
611 	}
612 
613 	/*
614 	 * If requested, try removing inode or removal dependencies.
615 	 */
616 	if (req_clear_inodedeps) {
617 		clear_inodedeps(td);
618 		req_clear_inodedeps -= 1;
619 		wakeup_one(&proc_waiting);
620 	}
621 	if (req_clear_remove) {
622 		clear_remove(td);
623 		req_clear_remove -= 1;
624 		wakeup_one(&proc_waiting);
625 	}
626 	loopcount = 1;
627 	starttime = time_second;
628 	while (num_on_worklist > 0) {
629 		matchcnt += process_worklist_item(matchmnt, 0);
630 
631 		/*
632 		 * If a umount operation wants to run the worklist
633 		 * accurately, abort.
634 		 */
635 		if (softdep_worklist_req && matchmnt == NULL) {
636 			matchcnt = -1;
637 			break;
638 		}
639 
640 		/*
641 		 * If requested, try removing inode or removal dependencies.
642 		 */
643 		if (req_clear_inodedeps) {
644 			clear_inodedeps(td);
645 			req_clear_inodedeps -= 1;
646 			wakeup_one(&proc_waiting);
647 		}
648 		if (req_clear_remove) {
649 			clear_remove(td);
650 			req_clear_remove -= 1;
651 			wakeup_one(&proc_waiting);
652 		}
653 		/*
654 		 * We do not generally want to stop for buffer space, but if
655 		 * we are really being a buffer hog, we will stop and wait.
656 		 */
657 		if (loopcount++ % 128 == 0)
658 			bwillinode(1);
659 		/*
660 		 * Never allow processing to run for more than one
661 		 * second. Otherwise the other syncer tasks may get
662 		 * excessively backlogged.
663 		 */
664 		if (starttime != time_second && matchmnt == NULL) {
665 			matchcnt = -1;
666 			break;
667 		}
668 	}
669 	if (matchmnt == NULL) {
670 		--softdep_worklist_busy;
671 		if (softdep_worklist_req && softdep_worklist_busy == 0)
672 			wakeup(&softdep_worklist_req);
673 	}
674 done:
675 	rel_mplock();
676 	return (matchcnt);
677 }
678 
679 /*
680  * Process one item on the worklist.
681  */
682 static int
683 process_worklist_item(struct mount *matchmnt, int flags)
684 {
685 	struct worklist *wk;
686 	struct dirrem *dirrem;
687 	struct fs *matchfs;
688 	struct vnode *vp;
689 	int matchcnt = 0;
690 
691 	matchfs = NULL;
692 	if (matchmnt != NULL)
693 		matchfs = VFSTOUFS(matchmnt)->um_fs;
694 	ACQUIRE_LOCK(&lk);
695 	/*
696 	 * Normally we just process each item on the worklist in order.
697 	 * However, if we are in a situation where we cannot lock any
698 	 * inodes, we have to skip over any dirrem requests whose
699 	 * vnodes are resident and locked.
700 	 */
701 	LIST_FOREACH(wk, &softdep_workitem_pending, wk_list) {
702 		if ((flags & LK_NOWAIT) == 0 || wk->wk_type != D_DIRREM)
703 			break;
704 		dirrem = WK_DIRREM(wk);
705 		vp = ufs_ihashlookup(VFSTOUFS(dirrem->dm_mnt)->um_dev,
706 		    dirrem->dm_oldinum);
707 		if (vp == NULL || !vn_islocked(vp))
708 			break;
709 	}
710 	if (wk == 0) {
711 		FREE_LOCK(&lk);
712 		return (0);
713 	}
714 	WORKLIST_REMOVE(wk);
715 	num_on_worklist -= 1;
716 	FREE_LOCK(&lk);
717 	switch (wk->wk_type) {
718 
719 	case D_DIRREM:
720 		/* removal of a directory entry */
721 		if (WK_DIRREM(wk)->dm_mnt == matchmnt)
722 			matchcnt += 1;
723 		handle_workitem_remove(WK_DIRREM(wk));
724 		break;
725 
726 	case D_FREEBLKS:
727 		/* releasing blocks and/or fragments from a file */
728 		if (WK_FREEBLKS(wk)->fb_fs == matchfs)
729 			matchcnt += 1;
730 		handle_workitem_freeblocks(WK_FREEBLKS(wk));
731 		break;
732 
733 	case D_FREEFRAG:
734 		/* releasing a fragment when replaced as a file grows */
735 		if (WK_FREEFRAG(wk)->ff_fs == matchfs)
736 			matchcnt += 1;
737 		handle_workitem_freefrag(WK_FREEFRAG(wk));
738 		break;
739 
740 	case D_FREEFILE:
741 		/* releasing an inode when its link count drops to 0 */
742 		if (WK_FREEFILE(wk)->fx_fs == matchfs)
743 			matchcnt += 1;
744 		handle_workitem_freefile(WK_FREEFILE(wk));
745 		break;
746 
747 	default:
748 		panic("%s_process_worklist: Unknown type %s",
749 		    "softdep", TYPENAME(wk->wk_type));
750 		/* NOTREACHED */
751 	}
752 	return (matchcnt);
753 }
754 
755 /*
756  * Move dependencies from one buffer to another.
757  *
758  * bioops callback - hold io_token
759  */
760 static void
761 softdep_move_dependencies(struct buf *oldbp, struct buf *newbp)
762 {
763 	struct worklist *wk, *wktail;
764 
765 	get_mplock();
766 	if (LIST_FIRST(&newbp->b_dep) != NULL)
767 		panic("softdep_move_dependencies: need merge code");
768 	wktail = NULL;
769 	ACQUIRE_LOCK(&lk);
770 	while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) {
771 		LIST_REMOVE(wk, wk_list);
772 		if (wktail == NULL)
773 			LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list);
774 		else
775 			LIST_INSERT_AFTER(wktail, wk, wk_list);
776 		wktail = wk;
777 		newbp->b_ops = &softdep_bioops;
778 	}
779 	FREE_LOCK(&lk);
780 	rel_mplock();
781 }
782 
783 /*
784  * Purge the work list of all items associated with a particular mount point.
785  */
786 int
787 softdep_flushfiles(struct mount *oldmnt, int flags)
788 {
789 	struct vnode *devvp;
790 	int error, loopcnt;
791 
792 	/*
793 	 * Await our turn to clear out the queue, then serialize access.
794 	 */
795 	while (softdep_worklist_busy != 0) {
796 		softdep_worklist_req += 1;
797 		tsleep(&softdep_worklist_req, 0, "softflush", 0);
798 		softdep_worklist_req -= 1;
799 	}
800 	softdep_worklist_busy = -1;
801 
802 	if ((error = ffs_flushfiles(oldmnt, flags)) != 0) {
803 		softdep_worklist_busy = 0;
804 		if (softdep_worklist_req)
805 			wakeup(&softdep_worklist_req);
806 		return (error);
807 	}
808 	/*
809 	 * Alternately flush the block device associated with the mount
810 	 * point and process any dependencies that the flushing
811 	 * creates. In theory, this loop can happen at most twice,
812 	 * but we give it a few extra just to be sure.
813 	 */
814 	devvp = VFSTOUFS(oldmnt)->um_devvp;
815 	for (loopcnt = 10; loopcnt > 0; ) {
816 		if (softdep_process_worklist(oldmnt) == 0) {
817 			loopcnt--;
818 			/*
819 			 * Do another flush in case any vnodes were brought in
820 			 * as part of the cleanup operations.
821 			 */
822 			if ((error = ffs_flushfiles(oldmnt, flags)) != 0)
823 				break;
824 			/*
825 			 * If we still found nothing to do, we are really done.
826 			 */
827 			if (softdep_process_worklist(oldmnt) == 0)
828 				break;
829 		}
830 		vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
831 		error = VOP_FSYNC(devvp, MNT_WAIT, 0);
832 		vn_unlock(devvp);
833 		if (error)
834 			break;
835 	}
836 	softdep_worklist_busy = 0;
837 	if (softdep_worklist_req)
838 		wakeup(&softdep_worklist_req);
839 
840 	/*
841 	 * If we are unmounting then it is an error to fail. If we
842 	 * are simply trying to downgrade to read-only, then filesystem
843 	 * activity can keep us busy forever, so we just fail with EBUSY.
844 	 */
845 	if (loopcnt == 0) {
846 		if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
847 			panic("softdep_flushfiles: looping");
848 		error = EBUSY;
849 	}
850 	return (error);
851 }
852 
853 /*
854  * Structure hashing.
855  *
856  * There are three types of structures that can be looked up:
857  *	1) pagedep structures identified by mount point, inode number,
858  *	   and logical block.
859  *	2) inodedep structures identified by mount point and inode number.
860  *	3) newblk structures identified by mount point and
861  *	   physical block number.
862  *
863  * The "pagedep" and "inodedep" dependency structures are hashed
864  * separately from the file blocks and inodes to which they correspond.
865  * This separation helps when the in-memory copy of an inode or
866  * file block must be replaced. It also obviates the need to access
867  * an inode or file page when simply updating (or de-allocating)
868  * dependency structures. Lookup of newblk structures is needed to
869  * find newly allocated blocks when trying to associate them with
870  * their allocdirect or allocindir structure.
871  *
872  * The lookup routines optionally create and hash a new instance when
873  * an existing entry is not found.
874  */
875 #define DEPALLOC	0x0001	/* allocate structure if lookup fails */
876 #define NODELAY		0x0002	/* cannot do background work */
877 
878 /*
879  * Structures and routines associated with pagedep caching.
880  */
881 LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
882 u_long	pagedep_hash;		/* size of hash table - 1 */
883 #define	PAGEDEP_HASH(mp, inum, lbn) \
884 	(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
885 	    pagedep_hash])
886 static struct sema pagedep_in_progress;
887 
888 /*
889  * Helper routine for pagedep_lookup()
890  */
891 static __inline
892 struct pagedep *
893 pagedep_find(struct pagedep_hashhead *pagedephd, ino_t ino, ufs_lbn_t lbn,
894 	     struct mount *mp)
895 {
896 	struct pagedep *pagedep;
897 
898 	LIST_FOREACH(pagedep, pagedephd, pd_hash) {
899 		if (ino == pagedep->pd_ino &&
900 		    lbn == pagedep->pd_lbn &&
901 		    mp == pagedep->pd_mnt) {
902 			return (pagedep);
903 		}
904 	}
905 	return(NULL);
906 }
907 
908 /*
909  * Look up a pagedep. Return 1 if found, 0 if not found.
910  * If not found, allocate if DEPALLOC flag is passed.
911  * Found or allocated entry is returned in pagedeppp.
912  * This routine must be called with splbio interrupts blocked.
913  */
914 static int
915 pagedep_lookup(struct inode *ip, ufs_lbn_t lbn, int flags,
916 	       struct pagedep **pagedeppp)
917 {
918 	struct pagedep *pagedep;
919 	struct pagedep_hashhead *pagedephd;
920 	struct mount *mp;
921 	int i;
922 
923 #ifdef DEBUG
924 	if (lk.lkt_held == NOHOLDER)
925 		panic("pagedep_lookup: lock not held");
926 #endif
927 	mp = ITOV(ip)->v_mount;
928 	pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
929 top:
930 	*pagedeppp = pagedep_find(pagedephd, ip->i_number, lbn, mp);
931 	if (*pagedeppp)
932 		return(1);
933 	if ((flags & DEPALLOC) == 0)
934 		return (0);
935 	if (sema_get(&pagedep_in_progress, &lk) == 0) {
936 		ACQUIRE_LOCK(&lk);
937 		goto top;
938 	}
939 	MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
940 		M_SOFTDEP_FLAGS | M_ZERO);
941 
942 	if (pagedep_find(pagedephd, ip->i_number, lbn, mp)) {
943 		kprintf("pagedep_lookup: blocking race avoided\n");
944 		ACQUIRE_LOCK(&lk);
945 		sema_release(&pagedep_in_progress);
946 		kfree(pagedep, M_PAGEDEP);
947 		goto top;
948 	}
949 
950 	pagedep->pd_list.wk_type = D_PAGEDEP;
951 	pagedep->pd_mnt = mp;
952 	pagedep->pd_ino = ip->i_number;
953 	pagedep->pd_lbn = lbn;
954 	LIST_INIT(&pagedep->pd_dirremhd);
955 	LIST_INIT(&pagedep->pd_pendinghd);
956 	for (i = 0; i < DAHASHSZ; i++)
957 		LIST_INIT(&pagedep->pd_diraddhd[i]);
958 	ACQUIRE_LOCK(&lk);
959 	LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
960 	sema_release(&pagedep_in_progress);
961 	*pagedeppp = pagedep;
962 	return (0);
963 }
964 
965 /*
966  * Structures and routines associated with inodedep caching.
967  */
968 LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
969 static u_long	inodedep_hash;	/* size of hash table - 1 */
970 static long	num_inodedep;	/* number of inodedep allocated */
971 #define	INODEDEP_HASH(fs, inum) \
972       (&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
973 static struct sema inodedep_in_progress;
974 
975 /*
976  * Helper routine for inodedep_lookup()
977  */
978 static __inline
979 struct inodedep *
980 inodedep_find(struct inodedep_hashhead *inodedephd, struct fs *fs, ino_t inum)
981 {
982 	struct inodedep *inodedep;
983 
984 	LIST_FOREACH(inodedep, inodedephd, id_hash) {
985 		if (inum == inodedep->id_ino && fs == inodedep->id_fs)
986 			return(inodedep);
987 	}
988 	return (NULL);
989 }
990 
991 /*
992  * Look up a inodedep. Return 1 if found, 0 if not found.
993  * If not found, allocate if DEPALLOC flag is passed.
994  * Found or allocated entry is returned in inodedeppp.
995  * This routine must be called with splbio interrupts blocked.
996  */
997 static int
998 inodedep_lookup(struct fs *fs, ino_t inum, int flags,
999 	        struct inodedep **inodedeppp)
1000 {
1001 	struct inodedep *inodedep;
1002 	struct inodedep_hashhead *inodedephd;
1003 	int firsttry;
1004 
1005 #ifdef DEBUG
1006 	if (lk.lkt_held == NOHOLDER)
1007 		panic("inodedep_lookup: lock not held");
1008 #endif
1009 	firsttry = 1;
1010 	inodedephd = INODEDEP_HASH(fs, inum);
1011 top:
1012 	*inodedeppp = inodedep_find(inodedephd, fs, inum);
1013 	if (*inodedeppp)
1014 		return (1);
1015 	if ((flags & DEPALLOC) == 0)
1016 		return (0);
1017 	/*
1018 	 * If we are over our limit, try to improve the situation.
1019 	 */
1020 	if (num_inodedep > max_softdeps && firsttry &&
1021 	    speedup_syncer() == 0 && (flags & NODELAY) == 0 &&
1022 	    request_cleanup(FLUSH_INODES, 1)) {
1023 		firsttry = 0;
1024 		goto top;
1025 	}
1026 	if (sema_get(&inodedep_in_progress, &lk) == 0) {
1027 		ACQUIRE_LOCK(&lk);
1028 		goto top;
1029 	}
1030 	MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
1031 		M_INODEDEP, M_SOFTDEP_FLAGS | M_ZERO);
1032 	if (inodedep_find(inodedephd, fs, inum)) {
1033 		kprintf("inodedep_lookup: blocking race avoided\n");
1034 		ACQUIRE_LOCK(&lk);
1035 		sema_release(&inodedep_in_progress);
1036 		kfree(inodedep, M_INODEDEP);
1037 		goto top;
1038 	}
1039 	inodedep->id_list.wk_type = D_INODEDEP;
1040 	inodedep->id_fs = fs;
1041 	inodedep->id_ino = inum;
1042 	inodedep->id_state = ALLCOMPLETE;
1043 	inodedep->id_nlinkdelta = 0;
1044 	inodedep->id_savedino = NULL;
1045 	inodedep->id_savedsize = -1;
1046 	inodedep->id_buf = NULL;
1047 	LIST_INIT(&inodedep->id_pendinghd);
1048 	LIST_INIT(&inodedep->id_inowait);
1049 	LIST_INIT(&inodedep->id_bufwait);
1050 	TAILQ_INIT(&inodedep->id_inoupdt);
1051 	TAILQ_INIT(&inodedep->id_newinoupdt);
1052 	ACQUIRE_LOCK(&lk);
1053 	num_inodedep += 1;
1054 	LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
1055 	sema_release(&inodedep_in_progress);
1056 	*inodedeppp = inodedep;
1057 	return (0);
1058 }
1059 
1060 /*
1061  * Structures and routines associated with newblk caching.
1062  */
1063 LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
1064 u_long	newblk_hash;		/* size of hash table - 1 */
1065 #define	NEWBLK_HASH(fs, inum) \
1066 	(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
1067 static struct sema newblk_in_progress;
1068 
1069 /*
1070  * Helper routine for newblk_lookup()
1071  */
1072 static __inline
1073 struct newblk *
1074 newblk_find(struct newblk_hashhead *newblkhd, struct fs *fs,
1075 	    ufs_daddr_t newblkno)
1076 {
1077 	struct newblk *newblk;
1078 
1079 	LIST_FOREACH(newblk, newblkhd, nb_hash) {
1080 		if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
1081 			return (newblk);
1082 	}
1083 	return(NULL);
1084 }
1085 
1086 /*
1087  * Look up a newblk. Return 1 if found, 0 if not found.
1088  * If not found, allocate if DEPALLOC flag is passed.
1089  * Found or allocated entry is returned in newblkpp.
1090  */
1091 static int
1092 newblk_lookup(struct fs *fs, ufs_daddr_t newblkno, int flags,
1093 	      struct newblk **newblkpp)
1094 {
1095 	struct newblk *newblk;
1096 	struct newblk_hashhead *newblkhd;
1097 
1098 	newblkhd = NEWBLK_HASH(fs, newblkno);
1099 top:
1100 	*newblkpp = newblk_find(newblkhd, fs, newblkno);
1101 	if (*newblkpp)
1102 		return(1);
1103 	if ((flags & DEPALLOC) == 0)
1104 		return (0);
1105 	if (sema_get(&newblk_in_progress, 0) == 0)
1106 		goto top;
1107 	MALLOC(newblk, struct newblk *, sizeof(struct newblk),
1108 		M_NEWBLK, M_SOFTDEP_FLAGS | M_ZERO);
1109 
1110 	if (newblk_find(newblkhd, fs, newblkno)) {
1111 		kprintf("newblk_lookup: blocking race avoided\n");
1112 		sema_release(&pagedep_in_progress);
1113 		kfree(newblk, M_NEWBLK);
1114 		goto top;
1115 	}
1116 	newblk->nb_state = 0;
1117 	newblk->nb_fs = fs;
1118 	newblk->nb_newblkno = newblkno;
1119 	LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
1120 	sema_release(&newblk_in_progress);
1121 	*newblkpp = newblk;
1122 	return (0);
1123 }
1124 
1125 /*
1126  * Executed during filesystem system initialization before
1127  * mounting any filesystems.
1128  */
1129 void
1130 softdep_initialize(void)
1131 {
1132 	callout_init(&handle);
1133 
1134 	LIST_INIT(&mkdirlisthd);
1135 	LIST_INIT(&softdep_workitem_pending);
1136 	max_softdeps = min(desiredvnodes * 8,
1137 		M_INODEDEP->ks_limit / (2 * sizeof(struct inodedep)));
1138 	pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
1139 	    &pagedep_hash);
1140 	sema_init(&pagedep_in_progress, "pagedep", 0, 0);
1141 	inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
1142 	sema_init(&inodedep_in_progress, "inodedep", 0, 0);
1143 	newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
1144 	sema_init(&newblk_in_progress, "newblk", 0, 0);
1145 	add_bio_ops(&softdep_bioops);
1146 }
1147 
1148 /*
1149  * Called at mount time to notify the dependency code that a
1150  * filesystem wishes to use it.
1151  */
1152 int
1153 softdep_mount(struct vnode *devvp, struct mount *mp, struct fs *fs)
1154 {
1155 	struct csum cstotal;
1156 	struct cg *cgp;
1157 	struct buf *bp;
1158 	int error, cyl;
1159 
1160 	mp->mnt_flag &= ~MNT_ASYNC;
1161 	mp->mnt_flag |= MNT_SOFTDEP;
1162 	mp->mnt_bioops = &softdep_bioops;
1163 	/*
1164 	 * When doing soft updates, the counters in the
1165 	 * superblock may have gotten out of sync, so we have
1166 	 * to scan the cylinder groups and recalculate them.
1167 	 */
1168 	if (fs->fs_clean != 0)
1169 		return (0);
1170 	bzero(&cstotal, sizeof cstotal);
1171 	for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
1172 		if ((error = bread(devvp, fsbtodoff(fs, cgtod(fs, cyl)),
1173 				   fs->fs_cgsize, &bp)) != 0) {
1174 			brelse(bp);
1175 			return (error);
1176 		}
1177 		cgp = (struct cg *)bp->b_data;
1178 		cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
1179 		cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
1180 		cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
1181 		cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
1182 		fs->fs_cs(fs, cyl) = cgp->cg_cs;
1183 		brelse(bp);
1184 	}
1185 #ifdef DEBUG
1186 	if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
1187 		kprintf("ffs_mountfs: superblock updated for soft updates\n");
1188 #endif
1189 	bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
1190 	return (0);
1191 }
1192 
1193 /*
1194  * Protecting the freemaps (or bitmaps).
1195  *
1196  * To eliminate the need to execute fsck before mounting a filesystem
1197  * after a power failure, one must (conservatively) guarantee that the
1198  * on-disk copy of the bitmaps never indicate that a live inode or block is
1199  * free.  So, when a block or inode is allocated, the bitmap should be
1200  * updated (on disk) before any new pointers.  When a block or inode is
1201  * freed, the bitmap should not be updated until all pointers have been
1202  * reset.  The latter dependency is handled by the delayed de-allocation
1203  * approach described below for block and inode de-allocation.  The former
1204  * dependency is handled by calling the following procedure when a block or
1205  * inode is allocated. When an inode is allocated an "inodedep" is created
1206  * with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
1207  * Each "inodedep" is also inserted into the hash indexing structure so
1208  * that any additional link additions can be made dependent on the inode
1209  * allocation.
1210  *
1211  * The ufs filesystem maintains a number of free block counts (e.g., per
1212  * cylinder group, per cylinder and per <cylinder, rotational position> pair)
1213  * in addition to the bitmaps.  These counts are used to improve efficiency
1214  * during allocation and therefore must be consistent with the bitmaps.
1215  * There is no convenient way to guarantee post-crash consistency of these
1216  * counts with simple update ordering, for two main reasons: (1) The counts
1217  * and bitmaps for a single cylinder group block are not in the same disk
1218  * sector.  If a disk write is interrupted (e.g., by power failure), one may
1219  * be written and the other not.  (2) Some of the counts are located in the
1220  * superblock rather than the cylinder group block. So, we focus our soft
1221  * updates implementation on protecting the bitmaps. When mounting a
1222  * filesystem, we recompute the auxiliary counts from the bitmaps.
1223  */
1224 
1225 /*
1226  * Called just after updating the cylinder group block to allocate an inode.
1227  *
1228  * Parameters:
1229  *	bp:		buffer for cylgroup block with inode map
1230  *	ip:		inode related to allocation
1231  *	newinum:	new inode number being allocated
1232  */
1233 void
1234 softdep_setup_inomapdep(struct buf *bp, struct inode *ip, ino_t newinum)
1235 {
1236 	struct inodedep *inodedep;
1237 	struct bmsafemap *bmsafemap;
1238 
1239 	/*
1240 	 * Create a dependency for the newly allocated inode.
1241 	 * Panic if it already exists as something is seriously wrong.
1242 	 * Otherwise add it to the dependency list for the buffer holding
1243 	 * the cylinder group map from which it was allocated.
1244 	 */
1245 	ACQUIRE_LOCK(&lk);
1246 	if ((inodedep_lookup(ip->i_fs, newinum, DEPALLOC|NODELAY, &inodedep))) {
1247 		FREE_LOCK(&lk);
1248 		panic("softdep_setup_inomapdep: found inode");
1249 	}
1250 	inodedep->id_buf = bp;
1251 	inodedep->id_state &= ~DEPCOMPLETE;
1252 	bmsafemap = bmsafemap_lookup(bp);
1253 	LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
1254 	FREE_LOCK(&lk);
1255 }
1256 
1257 /*
1258  * Called just after updating the cylinder group block to
1259  * allocate block or fragment.
1260  *
1261  * Parameters:
1262  *	bp:		buffer for cylgroup block with block map
1263  *	fs:		filesystem doing allocation
1264  *	newblkno:	number of newly allocated block
1265  */
1266 void
1267 softdep_setup_blkmapdep(struct buf *bp, struct fs *fs,
1268 			ufs_daddr_t newblkno)
1269 {
1270 	struct newblk *newblk;
1271 	struct bmsafemap *bmsafemap;
1272 
1273 	/*
1274 	 * Create a dependency for the newly allocated block.
1275 	 * Add it to the dependency list for the buffer holding
1276 	 * the cylinder group map from which it was allocated.
1277 	 */
1278 	if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
1279 		panic("softdep_setup_blkmapdep: found block");
1280 	ACQUIRE_LOCK(&lk);
1281 	newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
1282 	LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
1283 	FREE_LOCK(&lk);
1284 }
1285 
1286 /*
1287  * Find the bmsafemap associated with a cylinder group buffer.
1288  * If none exists, create one. The buffer must be locked when
1289  * this routine is called and this routine must be called with
1290  * splbio interrupts blocked.
1291  */
1292 static struct bmsafemap *
1293 bmsafemap_lookup(struct buf *bp)
1294 {
1295 	struct bmsafemap *bmsafemap;
1296 	struct worklist *wk;
1297 
1298 #ifdef DEBUG
1299 	if (lk.lkt_held == NOHOLDER)
1300 		panic("bmsafemap_lookup: lock not held");
1301 #endif
1302 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1303 		if (wk->wk_type == D_BMSAFEMAP)
1304 			return (WK_BMSAFEMAP(wk));
1305 	}
1306 	FREE_LOCK(&lk);
1307 	MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
1308 		M_BMSAFEMAP, M_SOFTDEP_FLAGS);
1309 	bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
1310 	bmsafemap->sm_list.wk_state = 0;
1311 	bmsafemap->sm_buf = bp;
1312 	LIST_INIT(&bmsafemap->sm_allocdirecthd);
1313 	LIST_INIT(&bmsafemap->sm_allocindirhd);
1314 	LIST_INIT(&bmsafemap->sm_inodedephd);
1315 	LIST_INIT(&bmsafemap->sm_newblkhd);
1316 	ACQUIRE_LOCK(&lk);
1317 	WORKLIST_INSERT_BP(bp, &bmsafemap->sm_list);
1318 	return (bmsafemap);
1319 }
1320 
1321 /*
1322  * Direct block allocation dependencies.
1323  *
1324  * When a new block is allocated, the corresponding disk locations must be
1325  * initialized (with zeros or new data) before the on-disk inode points to
1326  * them.  Also, the freemap from which the block was allocated must be
1327  * updated (on disk) before the inode's pointer. These two dependencies are
1328  * independent of each other and are needed for all file blocks and indirect
1329  * blocks that are pointed to directly by the inode.  Just before the
1330  * "in-core" version of the inode is updated with a newly allocated block
1331  * number, a procedure (below) is called to setup allocation dependency
1332  * structures.  These structures are removed when the corresponding
1333  * dependencies are satisfied or when the block allocation becomes obsolete
1334  * (i.e., the file is deleted, the block is de-allocated, or the block is a
1335  * fragment that gets upgraded).  All of these cases are handled in
1336  * procedures described later.
1337  *
1338  * When a file extension causes a fragment to be upgraded, either to a larger
1339  * fragment or to a full block, the on-disk location may change (if the
1340  * previous fragment could not simply be extended). In this case, the old
1341  * fragment must be de-allocated, but not until after the inode's pointer has
1342  * been updated. In most cases, this is handled by later procedures, which
1343  * will construct a "freefrag" structure to be added to the workitem queue
1344  * when the inode update is complete (or obsolete).  The main exception to
1345  * this is when an allocation occurs while a pending allocation dependency
1346  * (for the same block pointer) remains.  This case is handled in the main
1347  * allocation dependency setup procedure by immediately freeing the
1348  * unreferenced fragments.
1349  *
1350  * Parameters:
1351  *	ip:		inode to which block is being added
1352  *	lbn:		block pointer within inode
1353  *	newblkno:	disk block number being added
1354  *	oldblkno:	previous block number, 0 unless frag
1355  *	newsize:	size of new block
1356  *	oldsize:	size of new block
1357  *	bp:		bp for allocated block
1358  */
1359 void
1360 softdep_setup_allocdirect(struct inode *ip, ufs_lbn_t lbn, ufs_daddr_t newblkno,
1361 			  ufs_daddr_t oldblkno, long newsize, long oldsize,
1362 			  struct buf *bp)
1363 {
1364 	struct allocdirect *adp, *oldadp;
1365 	struct allocdirectlst *adphead;
1366 	struct bmsafemap *bmsafemap;
1367 	struct inodedep *inodedep;
1368 	struct pagedep *pagedep;
1369 	struct newblk *newblk;
1370 
1371 	MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
1372 		M_ALLOCDIRECT, M_SOFTDEP_FLAGS | M_ZERO);
1373 	adp->ad_list.wk_type = D_ALLOCDIRECT;
1374 	adp->ad_lbn = lbn;
1375 	adp->ad_newblkno = newblkno;
1376 	adp->ad_oldblkno = oldblkno;
1377 	adp->ad_newsize = newsize;
1378 	adp->ad_oldsize = oldsize;
1379 	adp->ad_state = ATTACHED;
1380 	if (newblkno == oldblkno)
1381 		adp->ad_freefrag = NULL;
1382 	else
1383 		adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
1384 
1385 	if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
1386 		panic("softdep_setup_allocdirect: lost block");
1387 
1388 	ACQUIRE_LOCK(&lk);
1389 	inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC | NODELAY, &inodedep);
1390 	adp->ad_inodedep = inodedep;
1391 
1392 	if (newblk->nb_state == DEPCOMPLETE) {
1393 		adp->ad_state |= DEPCOMPLETE;
1394 		adp->ad_buf = NULL;
1395 	} else {
1396 		bmsafemap = newblk->nb_bmsafemap;
1397 		adp->ad_buf = bmsafemap->sm_buf;
1398 		LIST_REMOVE(newblk, nb_deps);
1399 		LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
1400 	}
1401 	LIST_REMOVE(newblk, nb_hash);
1402 	FREE(newblk, M_NEWBLK);
1403 
1404 	WORKLIST_INSERT_BP(bp, &adp->ad_list);
1405 	if (lbn >= NDADDR) {
1406 		/* allocating an indirect block */
1407 		if (oldblkno != 0) {
1408 			FREE_LOCK(&lk);
1409 			panic("softdep_setup_allocdirect: non-zero indir");
1410 		}
1411 	} else {
1412 		/*
1413 		 * Allocating a direct block.
1414 		 *
1415 		 * If we are allocating a directory block, then we must
1416 		 * allocate an associated pagedep to track additions and
1417 		 * deletions.
1418 		 */
1419 		if ((ip->i_mode & IFMT) == IFDIR &&
1420 		    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0) {
1421 			WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
1422 		}
1423 	}
1424 	/*
1425 	 * The list of allocdirects must be kept in sorted and ascending
1426 	 * order so that the rollback routines can quickly determine the
1427 	 * first uncommitted block (the size of the file stored on disk
1428 	 * ends at the end of the lowest committed fragment, or if there
1429 	 * are no fragments, at the end of the highest committed block).
1430 	 * Since files generally grow, the typical case is that the new
1431 	 * block is to be added at the end of the list. We speed this
1432 	 * special case by checking against the last allocdirect in the
1433 	 * list before laboriously traversing the list looking for the
1434 	 * insertion point.
1435 	 */
1436 	adphead = &inodedep->id_newinoupdt;
1437 	oldadp = TAILQ_LAST(adphead, allocdirectlst);
1438 	if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
1439 		/* insert at end of list */
1440 		TAILQ_INSERT_TAIL(adphead, adp, ad_next);
1441 		if (oldadp != NULL && oldadp->ad_lbn == lbn)
1442 			allocdirect_merge(adphead, adp, oldadp);
1443 		FREE_LOCK(&lk);
1444 		return;
1445 	}
1446 	TAILQ_FOREACH(oldadp, adphead, ad_next) {
1447 		if (oldadp->ad_lbn >= lbn)
1448 			break;
1449 	}
1450 	if (oldadp == NULL) {
1451 		FREE_LOCK(&lk);
1452 		panic("softdep_setup_allocdirect: lost entry");
1453 	}
1454 	/* insert in middle of list */
1455 	TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
1456 	if (oldadp->ad_lbn == lbn)
1457 		allocdirect_merge(adphead, adp, oldadp);
1458 	FREE_LOCK(&lk);
1459 }
1460 
1461 /*
1462  * Replace an old allocdirect dependency with a newer one.
1463  * This routine must be called with splbio interrupts blocked.
1464  *
1465  * Parameters:
1466  *	adphead:	head of list holding allocdirects
1467  *	newadp:		allocdirect being added
1468  *	oldadp:		existing allocdirect being checked
1469  */
1470 static void
1471 allocdirect_merge(struct allocdirectlst *adphead,
1472 		  struct allocdirect *newadp,
1473 		  struct allocdirect *oldadp)
1474 {
1475 	struct freefrag *freefrag;
1476 
1477 #ifdef DEBUG
1478 	if (lk.lkt_held == NOHOLDER)
1479 		panic("allocdirect_merge: lock not held");
1480 #endif
1481 	if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
1482 	    newadp->ad_oldsize != oldadp->ad_newsize ||
1483 	    newadp->ad_lbn >= NDADDR) {
1484 		FREE_LOCK(&lk);
1485 		panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
1486 		    newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
1487 		    NDADDR);
1488 	}
1489 	newadp->ad_oldblkno = oldadp->ad_oldblkno;
1490 	newadp->ad_oldsize = oldadp->ad_oldsize;
1491 	/*
1492 	 * If the old dependency had a fragment to free or had never
1493 	 * previously had a block allocated, then the new dependency
1494 	 * can immediately post its freefrag and adopt the old freefrag.
1495 	 * This action is done by swapping the freefrag dependencies.
1496 	 * The new dependency gains the old one's freefrag, and the
1497 	 * old one gets the new one and then immediately puts it on
1498 	 * the worklist when it is freed by free_allocdirect. It is
1499 	 * not possible to do this swap when the old dependency had a
1500 	 * non-zero size but no previous fragment to free. This condition
1501 	 * arises when the new block is an extension of the old block.
1502 	 * Here, the first part of the fragment allocated to the new
1503 	 * dependency is part of the block currently claimed on disk by
1504 	 * the old dependency, so cannot legitimately be freed until the
1505 	 * conditions for the new dependency are fulfilled.
1506 	 */
1507 	if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
1508 		freefrag = newadp->ad_freefrag;
1509 		newadp->ad_freefrag = oldadp->ad_freefrag;
1510 		oldadp->ad_freefrag = freefrag;
1511 	}
1512 	free_allocdirect(adphead, oldadp, 0);
1513 }
1514 
1515 /*
1516  * Allocate a new freefrag structure if needed.
1517  */
1518 static struct freefrag *
1519 newfreefrag(struct inode *ip, ufs_daddr_t blkno, long size)
1520 {
1521 	struct freefrag *freefrag;
1522 	struct fs *fs;
1523 
1524 	if (blkno == 0)
1525 		return (NULL);
1526 	fs = ip->i_fs;
1527 	if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
1528 		panic("newfreefrag: frag size");
1529 	MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
1530 		M_FREEFRAG, M_SOFTDEP_FLAGS);
1531 	freefrag->ff_list.wk_type = D_FREEFRAG;
1532 	freefrag->ff_state = ip->i_uid & ~ONWORKLIST;	/* XXX - used below */
1533 	freefrag->ff_inum = ip->i_number;
1534 	freefrag->ff_fs = fs;
1535 	freefrag->ff_devvp = ip->i_devvp;
1536 	freefrag->ff_blkno = blkno;
1537 	freefrag->ff_fragsize = size;
1538 	return (freefrag);
1539 }
1540 
1541 /*
1542  * This workitem de-allocates fragments that were replaced during
1543  * file block allocation.
1544  */
1545 static void
1546 handle_workitem_freefrag(struct freefrag *freefrag)
1547 {
1548 	struct inode tip;
1549 
1550 	tip.i_fs = freefrag->ff_fs;
1551 	tip.i_devvp = freefrag->ff_devvp;
1552 	tip.i_dev = freefrag->ff_devvp->v_rdev;
1553 	tip.i_number = freefrag->ff_inum;
1554 	tip.i_uid = freefrag->ff_state & ~ONWORKLIST;	/* XXX - set above */
1555 	ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
1556 	FREE(freefrag, M_FREEFRAG);
1557 }
1558 
1559 /*
1560  * Indirect block allocation dependencies.
1561  *
1562  * The same dependencies that exist for a direct block also exist when
1563  * a new block is allocated and pointed to by an entry in a block of
1564  * indirect pointers. The undo/redo states described above are also
1565  * used here. Because an indirect block contains many pointers that
1566  * may have dependencies, a second copy of the entire in-memory indirect
1567  * block is kept. The buffer cache copy is always completely up-to-date.
1568  * The second copy, which is used only as a source for disk writes,
1569  * contains only the safe pointers (i.e., those that have no remaining
1570  * update dependencies). The second copy is freed when all pointers
1571  * are safe. The cache is not allowed to replace indirect blocks with
1572  * pending update dependencies. If a buffer containing an indirect
1573  * block with dependencies is written, these routines will mark it
1574  * dirty again. It can only be successfully written once all the
1575  * dependencies are removed. The ffs_fsync routine in conjunction with
1576  * softdep_sync_metadata work together to get all the dependencies
1577  * removed so that a file can be successfully written to disk. Three
1578  * procedures are used when setting up indirect block pointer
1579  * dependencies. The division is necessary because of the organization
1580  * of the "balloc" routine and because of the distinction between file
1581  * pages and file metadata blocks.
1582  */
1583 
1584 /*
1585  * Allocate a new allocindir structure.
1586  *
1587  * Parameters:
1588  *	ip:		inode for file being extended
1589  *	ptrno:		offset of pointer in indirect block
1590  *	newblkno:	disk block number being added
1591  *	oldblkno:	previous block number, 0 if none
1592  */
1593 static struct allocindir *
1594 newallocindir(struct inode *ip, int ptrno, ufs_daddr_t newblkno,
1595 	      ufs_daddr_t oldblkno)
1596 {
1597 	struct allocindir *aip;
1598 
1599 	MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
1600 		M_ALLOCINDIR, M_SOFTDEP_FLAGS | M_ZERO);
1601 	aip->ai_list.wk_type = D_ALLOCINDIR;
1602 	aip->ai_state = ATTACHED;
1603 	aip->ai_offset = ptrno;
1604 	aip->ai_newblkno = newblkno;
1605 	aip->ai_oldblkno = oldblkno;
1606 	aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
1607 	return (aip);
1608 }
1609 
1610 /*
1611  * Called just before setting an indirect block pointer
1612  * to a newly allocated file page.
1613  *
1614  * Parameters:
1615  *	ip:		inode for file being extended
1616  *	lbn:		allocated block number within file
1617  *	bp:		buffer with indirect blk referencing page
1618  *	ptrno:		offset of pointer in indirect block
1619  *	newblkno:	disk block number being added
1620  *	oldblkno:	previous block number, 0 if none
1621  *	nbp:		buffer holding allocated page
1622  */
1623 void
1624 softdep_setup_allocindir_page(struct inode *ip, ufs_lbn_t lbn,
1625 			      struct buf *bp, int ptrno,
1626 			      ufs_daddr_t newblkno, ufs_daddr_t oldblkno,
1627 			      struct buf *nbp)
1628 {
1629 	struct allocindir *aip;
1630 	struct pagedep *pagedep;
1631 
1632 	aip = newallocindir(ip, ptrno, newblkno, oldblkno);
1633 	ACQUIRE_LOCK(&lk);
1634 	/*
1635 	 * If we are allocating a directory page, then we must
1636 	 * allocate an associated pagedep to track additions and
1637 	 * deletions.
1638 	 */
1639 	if ((ip->i_mode & IFMT) == IFDIR &&
1640 	    pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
1641 		WORKLIST_INSERT_BP(nbp, &pagedep->pd_list);
1642 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1643 	FREE_LOCK(&lk);
1644 	setup_allocindir_phase2(bp, ip, aip);
1645 }
1646 
1647 /*
1648  * Called just before setting an indirect block pointer to a
1649  * newly allocated indirect block.
1650  * Parameters:
1651  *	nbp:		newly allocated indirect block
1652  *	ip:		inode for file being extended
1653  *	bp:		indirect block referencing allocated block
1654  *	ptrno:		offset of pointer in indirect block
1655  *	newblkno:	disk block number being added
1656  */
1657 void
1658 softdep_setup_allocindir_meta(struct buf *nbp, struct inode *ip,
1659 			      struct buf *bp, int ptrno,
1660 			      ufs_daddr_t newblkno)
1661 {
1662 	struct allocindir *aip;
1663 
1664 	aip = newallocindir(ip, ptrno, newblkno, 0);
1665 	ACQUIRE_LOCK(&lk);
1666 	WORKLIST_INSERT_BP(nbp, &aip->ai_list);
1667 	FREE_LOCK(&lk);
1668 	setup_allocindir_phase2(bp, ip, aip);
1669 }
1670 
1671 /*
1672  * Called to finish the allocation of the "aip" allocated
1673  * by one of the two routines above.
1674  *
1675  * Parameters:
1676  *	bp:	in-memory copy of the indirect block
1677  *	ip:	inode for file being extended
1678  *	aip:	allocindir allocated by the above routines
1679  */
1680 static void
1681 setup_allocindir_phase2(struct buf *bp, struct inode *ip,
1682 			struct allocindir *aip)
1683 {
1684 	struct worklist *wk;
1685 	struct indirdep *indirdep, *newindirdep;
1686 	struct bmsafemap *bmsafemap;
1687 	struct allocindir *oldaip;
1688 	struct freefrag *freefrag;
1689 	struct newblk *newblk;
1690 
1691 	if (bp->b_loffset >= 0)
1692 		panic("setup_allocindir_phase2: not indir blk");
1693 	for (indirdep = NULL, newindirdep = NULL; ; ) {
1694 		ACQUIRE_LOCK(&lk);
1695 		LIST_FOREACH(wk, &bp->b_dep, wk_list) {
1696 			if (wk->wk_type != D_INDIRDEP)
1697 				continue;
1698 			indirdep = WK_INDIRDEP(wk);
1699 			break;
1700 		}
1701 		if (indirdep == NULL && newindirdep) {
1702 			indirdep = newindirdep;
1703 			WORKLIST_INSERT_BP(bp, &indirdep->ir_list);
1704 			newindirdep = NULL;
1705 		}
1706 		FREE_LOCK(&lk);
1707 		if (indirdep) {
1708 			if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
1709 			    &newblk) == 0)
1710 				panic("setup_allocindir: lost block");
1711 			ACQUIRE_LOCK(&lk);
1712 			if (newblk->nb_state == DEPCOMPLETE) {
1713 				aip->ai_state |= DEPCOMPLETE;
1714 				aip->ai_buf = NULL;
1715 			} else {
1716 				bmsafemap = newblk->nb_bmsafemap;
1717 				aip->ai_buf = bmsafemap->sm_buf;
1718 				LIST_REMOVE(newblk, nb_deps);
1719 				LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
1720 				    aip, ai_deps);
1721 			}
1722 			LIST_REMOVE(newblk, nb_hash);
1723 			FREE(newblk, M_NEWBLK);
1724 			aip->ai_indirdep = indirdep;
1725 			/*
1726 			 * Check to see if there is an existing dependency
1727 			 * for this block. If there is, merge the old
1728 			 * dependency into the new one.
1729 			 */
1730 			if (aip->ai_oldblkno == 0)
1731 				oldaip = NULL;
1732 			else
1733 
1734 				LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next)
1735 					if (oldaip->ai_offset == aip->ai_offset)
1736 						break;
1737 			if (oldaip != NULL) {
1738 				if (oldaip->ai_newblkno != aip->ai_oldblkno) {
1739 					FREE_LOCK(&lk);
1740 					panic("setup_allocindir_phase2: blkno");
1741 				}
1742 				aip->ai_oldblkno = oldaip->ai_oldblkno;
1743 				freefrag = oldaip->ai_freefrag;
1744 				oldaip->ai_freefrag = aip->ai_freefrag;
1745 				aip->ai_freefrag = freefrag;
1746 				free_allocindir(oldaip, NULL);
1747 			}
1748 			LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
1749 			((ufs_daddr_t *)indirdep->ir_savebp->b_data)
1750 			    [aip->ai_offset] = aip->ai_oldblkno;
1751 			FREE_LOCK(&lk);
1752 		}
1753 		if (newindirdep) {
1754 			/*
1755 			 * Avoid any possibility of data corruption by
1756 			 * ensuring that our old version is thrown away.
1757 			 */
1758 			newindirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
1759 			brelse(newindirdep->ir_savebp);
1760 			WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
1761 		}
1762 		if (indirdep)
1763 			break;
1764 		MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
1765 			M_INDIRDEP, M_SOFTDEP_FLAGS);
1766 		newindirdep->ir_list.wk_type = D_INDIRDEP;
1767 		newindirdep->ir_state = ATTACHED;
1768 		LIST_INIT(&newindirdep->ir_deplisthd);
1769 		LIST_INIT(&newindirdep->ir_donehd);
1770 		if (bp->b_bio2.bio_offset == NOOFFSET) {
1771 			VOP_BMAP(bp->b_vp, bp->b_bio1.bio_offset,
1772 				 &bp->b_bio2.bio_offset, NULL, NULL,
1773 				 BUF_CMD_WRITE);
1774 		}
1775 		KKASSERT(bp->b_bio2.bio_offset != NOOFFSET);
1776 		newindirdep->ir_savebp = getblk(ip->i_devvp,
1777 						bp->b_bio2.bio_offset,
1778 					        bp->b_bcount, 0, 0);
1779 		BUF_KERNPROC(newindirdep->ir_savebp);
1780 		bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
1781 	}
1782 }
1783 
1784 /*
1785  * Block de-allocation dependencies.
1786  *
1787  * When blocks are de-allocated, the on-disk pointers must be nullified before
1788  * the blocks are made available for use by other files.  (The true
1789  * requirement is that old pointers must be nullified before new on-disk
1790  * pointers are set.  We chose this slightly more stringent requirement to
1791  * reduce complexity.) Our implementation handles this dependency by updating
1792  * the inode (or indirect block) appropriately but delaying the actual block
1793  * de-allocation (i.e., freemap and free space count manipulation) until
1794  * after the updated versions reach stable storage.  After the disk is
1795  * updated, the blocks can be safely de-allocated whenever it is convenient.
1796  * This implementation handles only the common case of reducing a file's
1797  * length to zero. Other cases are handled by the conventional synchronous
1798  * write approach.
1799  *
1800  * The ffs implementation with which we worked double-checks
1801  * the state of the block pointers and file size as it reduces
1802  * a file's length.  Some of this code is replicated here in our
1803  * soft updates implementation.  The freeblks->fb_chkcnt field is
1804  * used to transfer a part of this information to the procedure
1805  * that eventually de-allocates the blocks.
1806  *
1807  * This routine should be called from the routine that shortens
1808  * a file's length, before the inode's size or block pointers
1809  * are modified. It will save the block pointer information for
1810  * later release and zero the inode so that the calling routine
1811  * can release it.
1812  */
1813 struct softdep_setup_freeblocks_info {
1814 	struct fs *fs;
1815 	struct inode *ip;
1816 };
1817 
1818 static int softdep_setup_freeblocks_bp(struct buf *bp, void *data);
1819 
1820 /*
1821  * Parameters:
1822  *	ip:	The inode whose length is to be reduced
1823  *	length:	The new length for the file
1824  */
1825 void
1826 softdep_setup_freeblocks(struct inode *ip, off_t length)
1827 {
1828 	struct softdep_setup_freeblocks_info info;
1829 	struct freeblks *freeblks;
1830 	struct inodedep *inodedep;
1831 	struct allocdirect *adp;
1832 	struct vnode *vp;
1833 	struct buf *bp;
1834 	struct fs *fs;
1835 	int i, error, delay;
1836 	int count;
1837 
1838 	fs = ip->i_fs;
1839 	if (length != 0)
1840 		panic("softde_setup_freeblocks: non-zero length");
1841 	MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
1842 		M_FREEBLKS, M_SOFTDEP_FLAGS | M_ZERO);
1843 	freeblks->fb_list.wk_type = D_FREEBLKS;
1844 	freeblks->fb_state = ATTACHED;
1845 	freeblks->fb_uid = ip->i_uid;
1846 	freeblks->fb_previousinum = ip->i_number;
1847 	freeblks->fb_devvp = ip->i_devvp;
1848 	freeblks->fb_fs = fs;
1849 	freeblks->fb_oldsize = ip->i_size;
1850 	freeblks->fb_newsize = length;
1851 	freeblks->fb_chkcnt = ip->i_blocks;
1852 	for (i = 0; i < NDADDR; i++) {
1853 		freeblks->fb_dblks[i] = ip->i_db[i];
1854 		ip->i_db[i] = 0;
1855 	}
1856 	for (i = 0; i < NIADDR; i++) {
1857 		freeblks->fb_iblks[i] = ip->i_ib[i];
1858 		ip->i_ib[i] = 0;
1859 	}
1860 	ip->i_blocks = 0;
1861 	ip->i_size = 0;
1862 	/*
1863 	 * Push the zero'ed inode to to its disk buffer so that we are free
1864 	 * to delete its dependencies below. Once the dependencies are gone
1865 	 * the buffer can be safely released.
1866 	 */
1867 	if ((error = bread(ip->i_devvp,
1868 			    fsbtodoff(fs, ino_to_fsba(fs, ip->i_number)),
1869 	    (int)fs->fs_bsize, &bp)) != 0)
1870 		softdep_error("softdep_setup_freeblocks", error);
1871 	*((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
1872 	    ip->i_din;
1873 	/*
1874 	 * Find and eliminate any inode dependencies.
1875 	 */
1876 	ACQUIRE_LOCK(&lk);
1877 	(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
1878 	if ((inodedep->id_state & IOSTARTED) != 0) {
1879 		FREE_LOCK(&lk);
1880 		panic("softdep_setup_freeblocks: inode busy");
1881 	}
1882 	/*
1883 	 * Add the freeblks structure to the list of operations that
1884 	 * must await the zero'ed inode being written to disk. If we
1885 	 * still have a bitmap dependency (delay == 0), then the inode
1886 	 * has never been written to disk, so we can process the
1887 	 * freeblks below once we have deleted the dependencies.
1888 	 */
1889 	delay = (inodedep->id_state & DEPCOMPLETE);
1890 	if (delay)
1891 		WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
1892 	/*
1893 	 * Because the file length has been truncated to zero, any
1894 	 * pending block allocation dependency structures associated
1895 	 * with this inode are obsolete and can simply be de-allocated.
1896 	 * We must first merge the two dependency lists to get rid of
1897 	 * any duplicate freefrag structures, then purge the merged list.
1898 	 */
1899 	merge_inode_lists(inodedep);
1900 	while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
1901 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
1902 	FREE_LOCK(&lk);
1903 	bdwrite(bp);
1904 	/*
1905 	 * We must wait for any I/O in progress to finish so that
1906 	 * all potential buffers on the dirty list will be visible.
1907 	 * Once they are all there, walk the list and get rid of
1908 	 * any dependencies.
1909 	 */
1910 	vp = ITOV(ip);
1911 	ACQUIRE_LOCK(&lk);
1912 	drain_output(vp, 1);
1913 
1914 	info.fs = fs;
1915 	info.ip = ip;
1916 	lwkt_gettoken(&vp->v_token);
1917 	do {
1918 		count = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
1919 				softdep_setup_freeblocks_bp, &info);
1920 	} while (count != 0);
1921 	lwkt_reltoken(&vp->v_token);
1922 
1923 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) != 0)
1924 		(void)free_inodedep(inodedep);
1925 
1926 	if (delay) {
1927 		freeblks->fb_state |= DEPCOMPLETE;
1928 		/*
1929 		 * If the inode with zeroed block pointers is now on disk
1930 		 * we can start freeing blocks. Add freeblks to the worklist
1931 		 * instead of calling  handle_workitem_freeblocks directly as
1932 		 * it is more likely that additional IO is needed to complete
1933 		 * the request here than in the !delay case.
1934 		 */
1935 		if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE)
1936 			add_to_worklist(&freeblks->fb_list);
1937 	}
1938 
1939 	FREE_LOCK(&lk);
1940 	/*
1941 	 * If the inode has never been written to disk (delay == 0),
1942 	 * then we can process the freeblks now that we have deleted
1943 	 * the dependencies.
1944 	 */
1945 	if (!delay)
1946 		handle_workitem_freeblocks(freeblks);
1947 }
1948 
1949 static int
1950 softdep_setup_freeblocks_bp(struct buf *bp, void *data)
1951 {
1952 	struct softdep_setup_freeblocks_info *info = data;
1953 	struct inodedep *inodedep;
1954 
1955 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
1956 		kprintf("softdep_setup_freeblocks_bp(1): caught bp %p going away\n", bp);
1957 		return(-1);
1958 	}
1959 	if (bp->b_vp != ITOV(info->ip) || (bp->b_flags & B_DELWRI) == 0) {
1960 		kprintf("softdep_setup_freeblocks_bp(2): caught bp %p going away\n", bp);
1961 		BUF_UNLOCK(bp);
1962 		return(-1);
1963 	}
1964 	(void) inodedep_lookup(info->fs, info->ip->i_number, 0, &inodedep);
1965 	deallocate_dependencies(bp, inodedep);
1966 	bp->b_flags |= B_INVAL | B_NOCACHE;
1967 	FREE_LOCK(&lk);
1968 	brelse(bp);
1969 	ACQUIRE_LOCK(&lk);
1970 	return(1);
1971 }
1972 
1973 /*
1974  * Reclaim any dependency structures from a buffer that is about to
1975  * be reallocated to a new vnode. The buffer must be locked, thus,
1976  * no I/O completion operations can occur while we are manipulating
1977  * its associated dependencies. The mutex is held so that other I/O's
1978  * associated with related dependencies do not occur.
1979  */
1980 static void
1981 deallocate_dependencies(struct buf *bp, struct inodedep *inodedep)
1982 {
1983 	struct worklist *wk;
1984 	struct indirdep *indirdep;
1985 	struct allocindir *aip;
1986 	struct pagedep *pagedep;
1987 	struct dirrem *dirrem;
1988 	struct diradd *dap;
1989 	int i;
1990 
1991 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
1992 		switch (wk->wk_type) {
1993 
1994 		case D_INDIRDEP:
1995 			indirdep = WK_INDIRDEP(wk);
1996 			/*
1997 			 * None of the indirect pointers will ever be visible,
1998 			 * so they can simply be tossed. GOINGAWAY ensures
1999 			 * that allocated pointers will be saved in the buffer
2000 			 * cache until they are freed. Note that they will
2001 			 * only be able to be found by their physical address
2002 			 * since the inode mapping the logical address will
2003 			 * be gone. The save buffer used for the safe copy
2004 			 * was allocated in setup_allocindir_phase2 using
2005 			 * the physical address so it could be used for this
2006 			 * purpose. Hence we swap the safe copy with the real
2007 			 * copy, allowing the safe copy to be freed and holding
2008 			 * on to the real copy for later use in indir_trunc.
2009 			 *
2010 			 * NOTE: ir_savebp is relative to the block device
2011 			 * so b_bio1 contains the device block number.
2012 			 */
2013 			if (indirdep->ir_state & GOINGAWAY) {
2014 				FREE_LOCK(&lk);
2015 				panic("deallocate_dependencies: already gone");
2016 			}
2017 			indirdep->ir_state |= GOINGAWAY;
2018 			while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
2019 				free_allocindir(aip, inodedep);
2020 			if (bp->b_bio1.bio_offset >= 0 ||
2021 			    bp->b_bio2.bio_offset != indirdep->ir_savebp->b_bio1.bio_offset) {
2022 				FREE_LOCK(&lk);
2023 				panic("deallocate_dependencies: not indir");
2024 			}
2025 			bcopy(bp->b_data, indirdep->ir_savebp->b_data,
2026 			    bp->b_bcount);
2027 			WORKLIST_REMOVE(wk);
2028 			WORKLIST_INSERT_BP(indirdep->ir_savebp, wk);
2029 			continue;
2030 
2031 		case D_PAGEDEP:
2032 			pagedep = WK_PAGEDEP(wk);
2033 			/*
2034 			 * None of the directory additions will ever be
2035 			 * visible, so they can simply be tossed.
2036 			 */
2037 			for (i = 0; i < DAHASHSZ; i++)
2038 				while ((dap =
2039 				    LIST_FIRST(&pagedep->pd_diraddhd[i])))
2040 					free_diradd(dap);
2041 			while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
2042 				free_diradd(dap);
2043 			/*
2044 			 * Copy any directory remove dependencies to the list
2045 			 * to be processed after the zero'ed inode is written.
2046 			 * If the inode has already been written, then they
2047 			 * can be dumped directly onto the work list.
2048 			 */
2049 			LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) {
2050 				LIST_REMOVE(dirrem, dm_next);
2051 				dirrem->dm_dirinum = pagedep->pd_ino;
2052 				if (inodedep == NULL ||
2053 				    (inodedep->id_state & ALLCOMPLETE) ==
2054 				     ALLCOMPLETE)
2055 					add_to_worklist(&dirrem->dm_list);
2056 				else
2057 					WORKLIST_INSERT(&inodedep->id_bufwait,
2058 					    &dirrem->dm_list);
2059 			}
2060 			WORKLIST_REMOVE(&pagedep->pd_list);
2061 			LIST_REMOVE(pagedep, pd_hash);
2062 			WORKITEM_FREE(pagedep, D_PAGEDEP);
2063 			continue;
2064 
2065 		case D_ALLOCINDIR:
2066 			free_allocindir(WK_ALLOCINDIR(wk), inodedep);
2067 			continue;
2068 
2069 		case D_ALLOCDIRECT:
2070 		case D_INODEDEP:
2071 			FREE_LOCK(&lk);
2072 			panic("deallocate_dependencies: Unexpected type %s",
2073 			    TYPENAME(wk->wk_type));
2074 			/* NOTREACHED */
2075 
2076 		default:
2077 			FREE_LOCK(&lk);
2078 			panic("deallocate_dependencies: Unknown type %s",
2079 			    TYPENAME(wk->wk_type));
2080 			/* NOTREACHED */
2081 		}
2082 	}
2083 }
2084 
2085 /*
2086  * Free an allocdirect. Generate a new freefrag work request if appropriate.
2087  * This routine must be called with splbio interrupts blocked.
2088  */
2089 static void
2090 free_allocdirect(struct allocdirectlst *adphead,
2091 		 struct allocdirect *adp, int delay)
2092 {
2093 
2094 #ifdef DEBUG
2095 	if (lk.lkt_held == NOHOLDER)
2096 		panic("free_allocdirect: lock not held");
2097 #endif
2098 	if ((adp->ad_state & DEPCOMPLETE) == 0)
2099 		LIST_REMOVE(adp, ad_deps);
2100 	TAILQ_REMOVE(adphead, adp, ad_next);
2101 	if ((adp->ad_state & COMPLETE) == 0)
2102 		WORKLIST_REMOVE(&adp->ad_list);
2103 	if (adp->ad_freefrag != NULL) {
2104 		if (delay)
2105 			WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
2106 			    &adp->ad_freefrag->ff_list);
2107 		else
2108 			add_to_worklist(&adp->ad_freefrag->ff_list);
2109 	}
2110 	WORKITEM_FREE(adp, D_ALLOCDIRECT);
2111 }
2112 
2113 /*
2114  * Prepare an inode to be freed. The actual free operation is not
2115  * done until the zero'ed inode has been written to disk.
2116  */
2117 void
2118 softdep_freefile(struct vnode *pvp, ino_t ino, int mode)
2119 {
2120 	struct inode *ip = VTOI(pvp);
2121 	struct inodedep *inodedep;
2122 	struct freefile *freefile;
2123 
2124 	/*
2125 	 * This sets up the inode de-allocation dependency.
2126 	 */
2127 	MALLOC(freefile, struct freefile *, sizeof(struct freefile),
2128 		M_FREEFILE, M_SOFTDEP_FLAGS);
2129 	freefile->fx_list.wk_type = D_FREEFILE;
2130 	freefile->fx_list.wk_state = 0;
2131 	freefile->fx_mode = mode;
2132 	freefile->fx_oldinum = ino;
2133 	freefile->fx_devvp = ip->i_devvp;
2134 	freefile->fx_fs = ip->i_fs;
2135 
2136 	/*
2137 	 * If the inodedep does not exist, then the zero'ed inode has
2138 	 * been written to disk. If the allocated inode has never been
2139 	 * written to disk, then the on-disk inode is zero'ed. In either
2140 	 * case we can free the file immediately.
2141 	 */
2142 	ACQUIRE_LOCK(&lk);
2143 	if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0 ||
2144 	    check_inode_unwritten(inodedep)) {
2145 		FREE_LOCK(&lk);
2146 		handle_workitem_freefile(freefile);
2147 		return;
2148 	}
2149 	WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
2150 	FREE_LOCK(&lk);
2151 }
2152 
2153 /*
2154  * Check to see if an inode has never been written to disk. If
2155  * so free the inodedep and return success, otherwise return failure.
2156  * This routine must be called with splbio interrupts blocked.
2157  *
2158  * If we still have a bitmap dependency, then the inode has never
2159  * been written to disk. Drop the dependency as it is no longer
2160  * necessary since the inode is being deallocated. We set the
2161  * ALLCOMPLETE flags since the bitmap now properly shows that the
2162  * inode is not allocated. Even if the inode is actively being
2163  * written, it has been rolled back to its zero'ed state, so we
2164  * are ensured that a zero inode is what is on the disk. For short
2165  * lived files, this change will usually result in removing all the
2166  * dependencies from the inode so that it can be freed immediately.
2167  */
2168 static int
2169 check_inode_unwritten(struct inodedep *inodedep)
2170 {
2171 
2172 	if ((inodedep->id_state & DEPCOMPLETE) != 0 ||
2173 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2174 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2175 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2176 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2177 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2178 	    inodedep->id_nlinkdelta != 0)
2179 		return (0);
2180 
2181 	/*
2182 	 * Another process might be in initiate_write_inodeblock
2183 	 * trying to allocate memory without holding "Softdep Lock".
2184 	 */
2185 	if ((inodedep->id_state & IOSTARTED) != 0 &&
2186 	    inodedep->id_savedino == NULL)
2187 		return(0);
2188 
2189 	inodedep->id_state |= ALLCOMPLETE;
2190 	LIST_REMOVE(inodedep, id_deps);
2191 	inodedep->id_buf = NULL;
2192 	if (inodedep->id_state & ONWORKLIST)
2193 		WORKLIST_REMOVE(&inodedep->id_list);
2194 	if (inodedep->id_savedino != NULL) {
2195 		FREE(inodedep->id_savedino, M_INODEDEP);
2196 		inodedep->id_savedino = NULL;
2197 	}
2198 	if (free_inodedep(inodedep) == 0) {
2199 		FREE_LOCK(&lk);
2200 		panic("check_inode_unwritten: busy inode");
2201 	}
2202 	return (1);
2203 }
2204 
2205 /*
2206  * Try to free an inodedep structure. Return 1 if it could be freed.
2207  */
2208 static int
2209 free_inodedep(struct inodedep *inodedep)
2210 {
2211 
2212 	if ((inodedep->id_state & ONWORKLIST) != 0 ||
2213 	    (inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
2214 	    LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
2215 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
2216 	    LIST_FIRST(&inodedep->id_inowait) != NULL ||
2217 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
2218 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
2219 	    inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
2220 		return (0);
2221 	LIST_REMOVE(inodedep, id_hash);
2222 	WORKITEM_FREE(inodedep, D_INODEDEP);
2223 	num_inodedep -= 1;
2224 	return (1);
2225 }
2226 
2227 /*
2228  * This workitem routine performs the block de-allocation.
2229  * The workitem is added to the pending list after the updated
2230  * inode block has been written to disk.  As mentioned above,
2231  * checks regarding the number of blocks de-allocated (compared
2232  * to the number of blocks allocated for the file) are also
2233  * performed in this function.
2234  */
2235 static void
2236 handle_workitem_freeblocks(struct freeblks *freeblks)
2237 {
2238 	struct inode tip;
2239 	ufs_daddr_t bn;
2240 	struct fs *fs;
2241 	int i, level, bsize;
2242 	long nblocks, blocksreleased = 0;
2243 	int error, allerror = 0;
2244 	ufs_lbn_t baselbns[NIADDR], tmpval;
2245 
2246 	tip.i_number = freeblks->fb_previousinum;
2247 	tip.i_devvp = freeblks->fb_devvp;
2248 	tip.i_dev = freeblks->fb_devvp->v_rdev;
2249 	tip.i_fs = freeblks->fb_fs;
2250 	tip.i_size = freeblks->fb_oldsize;
2251 	tip.i_uid = freeblks->fb_uid;
2252 	fs = freeblks->fb_fs;
2253 	tmpval = 1;
2254 	baselbns[0] = NDADDR;
2255 	for (i = 1; i < NIADDR; i++) {
2256 		tmpval *= NINDIR(fs);
2257 		baselbns[i] = baselbns[i - 1] + tmpval;
2258 	}
2259 	nblocks = btodb(fs->fs_bsize);
2260 	blocksreleased = 0;
2261 	/*
2262 	 * Indirect blocks first.
2263 	 */
2264 	for (level = (NIADDR - 1); level >= 0; level--) {
2265 		if ((bn = freeblks->fb_iblks[level]) == 0)
2266 			continue;
2267 		if ((error = indir_trunc(&tip, fsbtodoff(fs, bn), level,
2268 		    baselbns[level], &blocksreleased)) == 0)
2269 			allerror = error;
2270 		ffs_blkfree(&tip, bn, fs->fs_bsize);
2271 		blocksreleased += nblocks;
2272 	}
2273 	/*
2274 	 * All direct blocks or frags.
2275 	 */
2276 	for (i = (NDADDR - 1); i >= 0; i--) {
2277 		if ((bn = freeblks->fb_dblks[i]) == 0)
2278 			continue;
2279 		bsize = blksize(fs, &tip, i);
2280 		ffs_blkfree(&tip, bn, bsize);
2281 		blocksreleased += btodb(bsize);
2282 	}
2283 
2284 #ifdef DIAGNOSTIC
2285 	if (freeblks->fb_chkcnt != blocksreleased)
2286 		kprintf("handle_workitem_freeblocks: block count\n");
2287 	if (allerror)
2288 		softdep_error("handle_workitem_freeblks", allerror);
2289 #endif /* DIAGNOSTIC */
2290 	WORKITEM_FREE(freeblks, D_FREEBLKS);
2291 }
2292 
2293 /*
2294  * Release blocks associated with the inode ip and stored in the indirect
2295  * block at doffset. If level is greater than SINGLE, the block is an
2296  * indirect block and recursive calls to indirtrunc must be used to
2297  * cleanse other indirect blocks.
2298  */
2299 static int
2300 indir_trunc(struct inode *ip, off_t doffset, int level, ufs_lbn_t lbn,
2301 	    long *countp)
2302 {
2303 	struct buf *bp;
2304 	ufs_daddr_t *bap;
2305 	ufs_daddr_t nb;
2306 	struct fs *fs;
2307 	struct worklist *wk;
2308 	struct indirdep *indirdep;
2309 	int i, lbnadd, nblocks;
2310 	int error, allerror = 0;
2311 
2312 	fs = ip->i_fs;
2313 	lbnadd = 1;
2314 	for (i = level; i > 0; i--)
2315 		lbnadd *= NINDIR(fs);
2316 	/*
2317 	 * Get buffer of block pointers to be freed. This routine is not
2318 	 * called until the zero'ed inode has been written, so it is safe
2319 	 * to free blocks as they are encountered. Because the inode has
2320 	 * been zero'ed, calls to bmap on these blocks will fail. So, we
2321 	 * have to use the on-disk address and the block device for the
2322 	 * filesystem to look them up. If the file was deleted before its
2323 	 * indirect blocks were all written to disk, the routine that set
2324 	 * us up (deallocate_dependencies) will have arranged to leave
2325 	 * a complete copy of the indirect block in memory for our use.
2326 	 * Otherwise we have to read the blocks in from the disk.
2327 	 */
2328 	ACQUIRE_LOCK(&lk);
2329 	if ((bp = findblk(ip->i_devvp, doffset, FINDBLK_TEST)) != NULL &&
2330 	    (wk = LIST_FIRST(&bp->b_dep)) != NULL) {
2331 		/*
2332 		 * bp must be ir_savebp, which is held locked for our use.
2333 		 */
2334 		if (wk->wk_type != D_INDIRDEP ||
2335 		    (indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
2336 		    (indirdep->ir_state & GOINGAWAY) == 0) {
2337 			FREE_LOCK(&lk);
2338 			panic("indir_trunc: lost indirdep");
2339 		}
2340 		WORKLIST_REMOVE(wk);
2341 		WORKITEM_FREE(indirdep, D_INDIRDEP);
2342 		if (LIST_FIRST(&bp->b_dep) != NULL) {
2343 			FREE_LOCK(&lk);
2344 			panic("indir_trunc: dangling dep");
2345 		}
2346 		FREE_LOCK(&lk);
2347 	} else {
2348 		FREE_LOCK(&lk);
2349 		error = bread(ip->i_devvp, doffset, (int)fs->fs_bsize, &bp);
2350 		if (error)
2351 			return (error);
2352 	}
2353 	/*
2354 	 * Recursively free indirect blocks.
2355 	 */
2356 	bap = (ufs_daddr_t *)bp->b_data;
2357 	nblocks = btodb(fs->fs_bsize);
2358 	for (i = NINDIR(fs) - 1; i >= 0; i--) {
2359 		if ((nb = bap[i]) == 0)
2360 			continue;
2361 		if (level != 0) {
2362 			if ((error = indir_trunc(ip, fsbtodoff(fs, nb),
2363 			     level - 1, lbn + (i * lbnadd), countp)) != 0)
2364 				allerror = error;
2365 		}
2366 		ffs_blkfree(ip, nb, fs->fs_bsize);
2367 		*countp += nblocks;
2368 	}
2369 	bp->b_flags |= B_INVAL | B_NOCACHE;
2370 	brelse(bp);
2371 	return (allerror);
2372 }
2373 
2374 /*
2375  * Free an allocindir.
2376  * This routine must be called with splbio interrupts blocked.
2377  */
2378 static void
2379 free_allocindir(struct allocindir *aip, struct inodedep *inodedep)
2380 {
2381 	struct freefrag *freefrag;
2382 
2383 #ifdef DEBUG
2384 	if (lk.lkt_held == NOHOLDER)
2385 		panic("free_allocindir: lock not held");
2386 #endif
2387 	if ((aip->ai_state & DEPCOMPLETE) == 0)
2388 		LIST_REMOVE(aip, ai_deps);
2389 	if (aip->ai_state & ONWORKLIST)
2390 		WORKLIST_REMOVE(&aip->ai_list);
2391 	LIST_REMOVE(aip, ai_next);
2392 	if ((freefrag = aip->ai_freefrag) != NULL) {
2393 		if (inodedep == NULL)
2394 			add_to_worklist(&freefrag->ff_list);
2395 		else
2396 			WORKLIST_INSERT(&inodedep->id_bufwait,
2397 			    &freefrag->ff_list);
2398 	}
2399 	WORKITEM_FREE(aip, D_ALLOCINDIR);
2400 }
2401 
2402 /*
2403  * Directory entry addition dependencies.
2404  *
2405  * When adding a new directory entry, the inode (with its incremented link
2406  * count) must be written to disk before the directory entry's pointer to it.
2407  * Also, if the inode is newly allocated, the corresponding freemap must be
2408  * updated (on disk) before the directory entry's pointer. These requirements
2409  * are met via undo/redo on the directory entry's pointer, which consists
2410  * simply of the inode number.
2411  *
2412  * As directory entries are added and deleted, the free space within a
2413  * directory block can become fragmented.  The ufs filesystem will compact
2414  * a fragmented directory block to make space for a new entry. When this
2415  * occurs, the offsets of previously added entries change. Any "diradd"
2416  * dependency structures corresponding to these entries must be updated with
2417  * the new offsets.
2418  */
2419 
2420 /*
2421  * This routine is called after the in-memory inode's link
2422  * count has been incremented, but before the directory entry's
2423  * pointer to the inode has been set.
2424  *
2425  * Parameters:
2426  *	bp:		buffer containing directory block
2427  *	dp:		inode for directory
2428  *	diroffset:	offset of new entry in directory
2429  *	newinum:	inode referenced by new directory entry
2430  *	newdirbp:	non-NULL => contents of new mkdir
2431  */
2432 void
2433 softdep_setup_directory_add(struct buf *bp, struct inode *dp, off_t diroffset,
2434 			    ino_t newinum, struct buf *newdirbp)
2435 {
2436 	int offset;		/* offset of new entry within directory block */
2437 	ufs_lbn_t lbn;		/* block in directory containing new entry */
2438 	struct fs *fs;
2439 	struct diradd *dap;
2440 	struct pagedep *pagedep;
2441 	struct inodedep *inodedep;
2442 	struct mkdir *mkdir1, *mkdir2;
2443 
2444 	/*
2445 	 * Whiteouts have no dependencies.
2446 	 */
2447 	if (newinum == WINO) {
2448 		if (newdirbp != NULL)
2449 			bdwrite(newdirbp);
2450 		return;
2451 	}
2452 
2453 	fs = dp->i_fs;
2454 	lbn = lblkno(fs, diroffset);
2455 	offset = blkoff(fs, diroffset);
2456 	MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD,
2457 	    M_SOFTDEP_FLAGS | M_ZERO);
2458 	dap->da_list.wk_type = D_DIRADD;
2459 	dap->da_offset = offset;
2460 	dap->da_newinum = newinum;
2461 	dap->da_state = ATTACHED;
2462 	if (newdirbp == NULL) {
2463 		dap->da_state |= DEPCOMPLETE;
2464 		ACQUIRE_LOCK(&lk);
2465 	} else {
2466 		dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
2467 		MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2468 		    M_SOFTDEP_FLAGS);
2469 		mkdir1->md_list.wk_type = D_MKDIR;
2470 		mkdir1->md_state = MKDIR_BODY;
2471 		mkdir1->md_diradd = dap;
2472 		MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
2473 		    M_SOFTDEP_FLAGS);
2474 		mkdir2->md_list.wk_type = D_MKDIR;
2475 		mkdir2->md_state = MKDIR_PARENT;
2476 		mkdir2->md_diradd = dap;
2477 		/*
2478 		 * Dependency on "." and ".." being written to disk.
2479 		 */
2480 		mkdir1->md_buf = newdirbp;
2481 		ACQUIRE_LOCK(&lk);
2482 		LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
2483 		WORKLIST_INSERT_BP(newdirbp, &mkdir1->md_list);
2484 		FREE_LOCK(&lk);
2485 		bdwrite(newdirbp);
2486 		/*
2487 		 * Dependency on link count increase for parent directory
2488 		 */
2489 		ACQUIRE_LOCK(&lk);
2490 		if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
2491 		    || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2492 			dap->da_state &= ~MKDIR_PARENT;
2493 			WORKITEM_FREE(mkdir2, D_MKDIR);
2494 		} else {
2495 			LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
2496 			WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
2497 		}
2498 	}
2499 	/*
2500 	 * Link into parent directory pagedep to await its being written.
2501 	 */
2502 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2503 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2504 	dap->da_pagedep = pagedep;
2505 	LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
2506 	    da_pdlist);
2507 	/*
2508 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2509 	 * is not yet written. If it is written, do the post-inode write
2510 	 * processing to put it on the id_pendinghd list.
2511 	 */
2512 	(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
2513 	if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
2514 		diradd_inode_written(dap, inodedep);
2515 	else
2516 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2517 	FREE_LOCK(&lk);
2518 }
2519 
2520 /*
2521  * This procedure is called to change the offset of a directory
2522  * entry when compacting a directory block which must be owned
2523  * exclusively by the caller. Note that the actual entry movement
2524  * must be done in this procedure to ensure that no I/O completions
2525  * occur while the move is in progress.
2526  *
2527  * Parameters:
2528  *	dp:	inode for directory
2529  *	base:		address of dp->i_offset
2530  *	oldloc:		address of old directory location
2531  *	newloc:		address of new directory location
2532  *	entrysize:	size of directory entry
2533  */
2534 void
2535 softdep_change_directoryentry_offset(struct inode *dp, caddr_t base,
2536 				     caddr_t oldloc, caddr_t newloc,
2537 				     int entrysize)
2538 {
2539 	int offset, oldoffset, newoffset;
2540 	struct pagedep *pagedep;
2541 	struct diradd *dap;
2542 	ufs_lbn_t lbn;
2543 
2544 	ACQUIRE_LOCK(&lk);
2545 	lbn = lblkno(dp->i_fs, dp->i_offset);
2546 	offset = blkoff(dp->i_fs, dp->i_offset);
2547 	if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
2548 		goto done;
2549 	oldoffset = offset + (oldloc - base);
2550 	newoffset = offset + (newloc - base);
2551 
2552 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(oldoffset)], da_pdlist) {
2553 		if (dap->da_offset != oldoffset)
2554 			continue;
2555 		dap->da_offset = newoffset;
2556 		if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
2557 			break;
2558 		LIST_REMOVE(dap, da_pdlist);
2559 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
2560 		    dap, da_pdlist);
2561 		break;
2562 	}
2563 	if (dap == NULL) {
2564 
2565 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) {
2566 			if (dap->da_offset == oldoffset) {
2567 				dap->da_offset = newoffset;
2568 				break;
2569 			}
2570 		}
2571 	}
2572 done:
2573 	bcopy(oldloc, newloc, entrysize);
2574 	FREE_LOCK(&lk);
2575 }
2576 
2577 /*
2578  * Free a diradd dependency structure. This routine must be called
2579  * with splbio interrupts blocked.
2580  */
2581 static void
2582 free_diradd(struct diradd *dap)
2583 {
2584 	struct dirrem *dirrem;
2585 	struct pagedep *pagedep;
2586 	struct inodedep *inodedep;
2587 	struct mkdir *mkdir, *nextmd;
2588 
2589 #ifdef DEBUG
2590 	if (lk.lkt_held == NOHOLDER)
2591 		panic("free_diradd: lock not held");
2592 #endif
2593 	WORKLIST_REMOVE(&dap->da_list);
2594 	LIST_REMOVE(dap, da_pdlist);
2595 	if ((dap->da_state & DIRCHG) == 0) {
2596 		pagedep = dap->da_pagedep;
2597 	} else {
2598 		dirrem = dap->da_previous;
2599 		pagedep = dirrem->dm_pagedep;
2600 		dirrem->dm_dirinum = pagedep->pd_ino;
2601 		add_to_worklist(&dirrem->dm_list);
2602 	}
2603 	if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
2604 	    0, &inodedep) != 0)
2605 		(void) free_inodedep(inodedep);
2606 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2607 		for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
2608 			nextmd = LIST_NEXT(mkdir, md_mkdirs);
2609 			if (mkdir->md_diradd != dap)
2610 				continue;
2611 			dap->da_state &= ~mkdir->md_state;
2612 			WORKLIST_REMOVE(&mkdir->md_list);
2613 			LIST_REMOVE(mkdir, md_mkdirs);
2614 			WORKITEM_FREE(mkdir, D_MKDIR);
2615 		}
2616 		if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
2617 			FREE_LOCK(&lk);
2618 			panic("free_diradd: unfound ref");
2619 		}
2620 	}
2621 	WORKITEM_FREE(dap, D_DIRADD);
2622 }
2623 
2624 /*
2625  * Directory entry removal dependencies.
2626  *
2627  * When removing a directory entry, the entry's inode pointer must be
2628  * zero'ed on disk before the corresponding inode's link count is decremented
2629  * (possibly freeing the inode for re-use). This dependency is handled by
2630  * updating the directory entry but delaying the inode count reduction until
2631  * after the directory block has been written to disk. After this point, the
2632  * inode count can be decremented whenever it is convenient.
2633  */
2634 
2635 /*
2636  * This routine should be called immediately after removing
2637  * a directory entry.  The inode's link count should not be
2638  * decremented by the calling procedure -- the soft updates
2639  * code will do this task when it is safe.
2640  *
2641  * Parameters:
2642  *	bp:		buffer containing directory block
2643  *	dp:		inode for the directory being modified
2644  *	ip:		inode for directory entry being removed
2645  *	isrmdir:	indicates if doing RMDIR
2646  */
2647 void
2648 softdep_setup_remove(struct buf *bp, struct inode *dp, struct inode *ip,
2649 		     int isrmdir)
2650 {
2651 	struct dirrem *dirrem, *prevdirrem;
2652 
2653 	/*
2654 	 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
2655 	 */
2656 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2657 
2658 	/*
2659 	 * If the COMPLETE flag is clear, then there were no active
2660 	 * entries and we want to roll back to a zeroed entry until
2661 	 * the new inode is committed to disk. If the COMPLETE flag is
2662 	 * set then we have deleted an entry that never made it to
2663 	 * disk. If the entry we deleted resulted from a name change,
2664 	 * then the old name still resides on disk. We cannot delete
2665 	 * its inode (returned to us in prevdirrem) until the zeroed
2666 	 * directory entry gets to disk. The new inode has never been
2667 	 * referenced on the disk, so can be deleted immediately.
2668 	 */
2669 	if ((dirrem->dm_state & COMPLETE) == 0) {
2670 		LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
2671 		    dm_next);
2672 		FREE_LOCK(&lk);
2673 	} else {
2674 		if (prevdirrem != NULL)
2675 			LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd,
2676 			    prevdirrem, dm_next);
2677 		dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
2678 		FREE_LOCK(&lk);
2679 		handle_workitem_remove(dirrem);
2680 	}
2681 }
2682 
2683 /*
2684  * Allocate a new dirrem if appropriate and return it along with
2685  * its associated pagedep. Called without a lock, returns with lock.
2686  */
2687 static long num_dirrem;		/* number of dirrem allocated */
2688 
2689 /*
2690  * Parameters:
2691  *	bp:		buffer containing directory block
2692  *	dp:		inode for the directory being modified
2693  *	ip:		inode for directory entry being removed
2694  *	isrmdir:	indicates if doing RMDIR
2695  *	prevdirremp:	previously referenced inode, if any
2696  */
2697 static struct dirrem *
2698 newdirrem(struct buf *bp, struct inode *dp, struct inode *ip,
2699 	  int isrmdir, struct dirrem **prevdirremp)
2700 {
2701 	int offset;
2702 	ufs_lbn_t lbn;
2703 	struct diradd *dap;
2704 	struct dirrem *dirrem;
2705 	struct pagedep *pagedep;
2706 
2707 	/*
2708 	 * Whiteouts have no deletion dependencies.
2709 	 */
2710 	if (ip == NULL)
2711 		panic("newdirrem: whiteout");
2712 	/*
2713 	 * If we are over our limit, try to improve the situation.
2714 	 * Limiting the number of dirrem structures will also limit
2715 	 * the number of freefile and freeblks structures.
2716 	 */
2717 	if (num_dirrem > max_softdeps / 2 && speedup_syncer() == 0)
2718 		(void) request_cleanup(FLUSH_REMOVE, 0);
2719 	num_dirrem += 1;
2720 	MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
2721 		M_DIRREM, M_SOFTDEP_FLAGS | M_ZERO);
2722 	dirrem->dm_list.wk_type = D_DIRREM;
2723 	dirrem->dm_state = isrmdir ? RMDIR : 0;
2724 	dirrem->dm_mnt = ITOV(ip)->v_mount;
2725 	dirrem->dm_oldinum = ip->i_number;
2726 	*prevdirremp = NULL;
2727 
2728 	ACQUIRE_LOCK(&lk);
2729 	lbn = lblkno(dp->i_fs, dp->i_offset);
2730 	offset = blkoff(dp->i_fs, dp->i_offset);
2731 	if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
2732 		WORKLIST_INSERT_BP(bp, &pagedep->pd_list);
2733 	dirrem->dm_pagedep = pagedep;
2734 	/*
2735 	 * Check for a diradd dependency for the same directory entry.
2736 	 * If present, then both dependencies become obsolete and can
2737 	 * be de-allocated. Check for an entry on both the pd_dirraddhd
2738 	 * list and the pd_pendinghd list.
2739 	 */
2740 
2741 	LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist)
2742 		if (dap->da_offset == offset)
2743 			break;
2744 	if (dap == NULL) {
2745 
2746 		LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist)
2747 			if (dap->da_offset == offset)
2748 				break;
2749 		if (dap == NULL)
2750 			return (dirrem);
2751 	}
2752 	/*
2753 	 * Must be ATTACHED at this point.
2754 	 */
2755 	if ((dap->da_state & ATTACHED) == 0) {
2756 		FREE_LOCK(&lk);
2757 		panic("newdirrem: not ATTACHED");
2758 	}
2759 	if (dap->da_newinum != ip->i_number) {
2760 		FREE_LOCK(&lk);
2761 		panic("newdirrem: inum %"PRId64" should be %"PRId64,
2762 		    ip->i_number, dap->da_newinum);
2763 	}
2764 	/*
2765 	 * If we are deleting a changed name that never made it to disk,
2766 	 * then return the dirrem describing the previous inode (which
2767 	 * represents the inode currently referenced from this entry on disk).
2768 	 */
2769 	if ((dap->da_state & DIRCHG) != 0) {
2770 		*prevdirremp = dap->da_previous;
2771 		dap->da_state &= ~DIRCHG;
2772 		dap->da_pagedep = pagedep;
2773 	}
2774 	/*
2775 	 * We are deleting an entry that never made it to disk.
2776 	 * Mark it COMPLETE so we can delete its inode immediately.
2777 	 */
2778 	dirrem->dm_state |= COMPLETE;
2779 	free_diradd(dap);
2780 	return (dirrem);
2781 }
2782 
2783 /*
2784  * Directory entry change dependencies.
2785  *
2786  * Changing an existing directory entry requires that an add operation
2787  * be completed first followed by a deletion. The semantics for the addition
2788  * are identical to the description of adding a new entry above except
2789  * that the rollback is to the old inode number rather than zero. Once
2790  * the addition dependency is completed, the removal is done as described
2791  * in the removal routine above.
2792  */
2793 
2794 /*
2795  * This routine should be called immediately after changing
2796  * a directory entry.  The inode's link count should not be
2797  * decremented by the calling procedure -- the soft updates
2798  * code will perform this task when it is safe.
2799  *
2800  * Parameters:
2801  *	bp:		buffer containing directory block
2802  *	dp:		inode for the directory being modified
2803  *	ip:		inode for directory entry being removed
2804  *	newinum:	new inode number for changed entry
2805  *	isrmdir:	indicates if doing RMDIR
2806  */
2807 void
2808 softdep_setup_directory_change(struct buf *bp, struct inode *dp,
2809 			       struct inode *ip, ino_t newinum,
2810 			       int isrmdir)
2811 {
2812 	int offset;
2813 	struct diradd *dap = NULL;
2814 	struct dirrem *dirrem, *prevdirrem;
2815 	struct pagedep *pagedep;
2816 	struct inodedep *inodedep;
2817 
2818 	offset = blkoff(dp->i_fs, dp->i_offset);
2819 
2820 	/*
2821 	 * Whiteouts do not need diradd dependencies.
2822 	 */
2823 	if (newinum != WINO) {
2824 		MALLOC(dap, struct diradd *, sizeof(struct diradd),
2825 		    M_DIRADD, M_SOFTDEP_FLAGS | M_ZERO);
2826 		dap->da_list.wk_type = D_DIRADD;
2827 		dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
2828 		dap->da_offset = offset;
2829 		dap->da_newinum = newinum;
2830 	}
2831 
2832 	/*
2833 	 * Allocate a new dirrem and ACQUIRE_LOCK.
2834 	 */
2835 	dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem);
2836 	pagedep = dirrem->dm_pagedep;
2837 	/*
2838 	 * The possible values for isrmdir:
2839 	 *	0 - non-directory file rename
2840 	 *	1 - directory rename within same directory
2841 	 *   inum - directory rename to new directory of given inode number
2842 	 * When renaming to a new directory, we are both deleting and
2843 	 * creating a new directory entry, so the link count on the new
2844 	 * directory should not change. Thus we do not need the followup
2845 	 * dirrem which is usually done in handle_workitem_remove. We set
2846 	 * the DIRCHG flag to tell handle_workitem_remove to skip the
2847 	 * followup dirrem.
2848 	 */
2849 	if (isrmdir > 1)
2850 		dirrem->dm_state |= DIRCHG;
2851 
2852 	/*
2853 	 * Whiteouts have no additional dependencies,
2854 	 * so just put the dirrem on the correct list.
2855 	 */
2856 	if (newinum == WINO) {
2857 		if ((dirrem->dm_state & COMPLETE) == 0) {
2858 			LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
2859 			    dm_next);
2860 		} else {
2861 			dirrem->dm_dirinum = pagedep->pd_ino;
2862 			add_to_worklist(&dirrem->dm_list);
2863 		}
2864 		FREE_LOCK(&lk);
2865 		return;
2866 	}
2867 
2868 	/*
2869 	 * If the COMPLETE flag is clear, then there were no active
2870 	 * entries and we want to roll back to the previous inode until
2871 	 * the new inode is committed to disk. If the COMPLETE flag is
2872 	 * set, then we have deleted an entry that never made it to disk.
2873 	 * If the entry we deleted resulted from a name change, then the old
2874 	 * inode reference still resides on disk. Any rollback that we do
2875 	 * needs to be to that old inode (returned to us in prevdirrem). If
2876 	 * the entry we deleted resulted from a create, then there is
2877 	 * no entry on the disk, so we want to roll back to zero rather
2878 	 * than the uncommitted inode. In either of the COMPLETE cases we
2879 	 * want to immediately free the unwritten and unreferenced inode.
2880 	 */
2881 	if ((dirrem->dm_state & COMPLETE) == 0) {
2882 		dap->da_previous = dirrem;
2883 	} else {
2884 		if (prevdirrem != NULL) {
2885 			dap->da_previous = prevdirrem;
2886 		} else {
2887 			dap->da_state &= ~DIRCHG;
2888 			dap->da_pagedep = pagedep;
2889 		}
2890 		dirrem->dm_dirinum = pagedep->pd_ino;
2891 		add_to_worklist(&dirrem->dm_list);
2892 	}
2893 	/*
2894 	 * Link into its inodedep. Put it on the id_bufwait list if the inode
2895 	 * is not yet written. If it is written, do the post-inode write
2896 	 * processing to put it on the id_pendinghd list.
2897 	 */
2898 	if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
2899 	    (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
2900 		dap->da_state |= COMPLETE;
2901 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
2902 		WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
2903 	} else {
2904 		LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
2905 		    dap, da_pdlist);
2906 		WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
2907 	}
2908 	FREE_LOCK(&lk);
2909 }
2910 
2911 /*
2912  * Called whenever the link count on an inode is changed.
2913  * It creates an inode dependency so that the new reference(s)
2914  * to the inode cannot be committed to disk until the updated
2915  * inode has been written.
2916  *
2917  * Parameters:
2918  *	ip:	the inode with the increased link count
2919  */
2920 void
2921 softdep_change_linkcnt(struct inode *ip)
2922 {
2923 	struct inodedep *inodedep;
2924 
2925 	ACQUIRE_LOCK(&lk);
2926 	(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
2927 	if (ip->i_nlink < ip->i_effnlink) {
2928 		FREE_LOCK(&lk);
2929 		panic("softdep_change_linkcnt: bad delta");
2930 	}
2931 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2932 	FREE_LOCK(&lk);
2933 }
2934 
2935 /*
2936  * This workitem decrements the inode's link count.
2937  * If the link count reaches zero, the file is removed.
2938  */
2939 static void
2940 handle_workitem_remove(struct dirrem *dirrem)
2941 {
2942 	struct inodedep *inodedep;
2943 	struct vnode *vp;
2944 	struct inode *ip;
2945 	ino_t oldinum;
2946 	int error;
2947 
2948 	error = VFS_VGET(dirrem->dm_mnt, NULL, dirrem->dm_oldinum, &vp);
2949 	if (error) {
2950 		softdep_error("handle_workitem_remove: vget", error);
2951 		return;
2952 	}
2953 	ip = VTOI(vp);
2954 	ACQUIRE_LOCK(&lk);
2955 	if ((inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, 0, &inodedep)) == 0){
2956 		FREE_LOCK(&lk);
2957 		panic("handle_workitem_remove: lost inodedep");
2958 	}
2959 	/*
2960 	 * Normal file deletion.
2961 	 */
2962 	if ((dirrem->dm_state & RMDIR) == 0) {
2963 		ip->i_nlink--;
2964 		ip->i_flag |= IN_CHANGE;
2965 		if (ip->i_nlink < ip->i_effnlink) {
2966 			FREE_LOCK(&lk);
2967 			panic("handle_workitem_remove: bad file delta");
2968 		}
2969 		inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2970 		FREE_LOCK(&lk);
2971 		vput(vp);
2972 		num_dirrem -= 1;
2973 		WORKITEM_FREE(dirrem, D_DIRREM);
2974 		return;
2975 	}
2976 	/*
2977 	 * Directory deletion. Decrement reference count for both the
2978 	 * just deleted parent directory entry and the reference for ".".
2979 	 * Next truncate the directory to length zero. When the
2980 	 * truncation completes, arrange to have the reference count on
2981 	 * the parent decremented to account for the loss of "..".
2982 	 */
2983 	ip->i_nlink -= 2;
2984 	ip->i_flag |= IN_CHANGE;
2985 	if (ip->i_nlink < ip->i_effnlink) {
2986 		FREE_LOCK(&lk);
2987 		panic("handle_workitem_remove: bad dir delta");
2988 	}
2989 	inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
2990 	FREE_LOCK(&lk);
2991 	if ((error = ffs_truncate(vp, (off_t)0, 0, proc0.p_ucred)) != 0)
2992 		softdep_error("handle_workitem_remove: truncate", error);
2993 	/*
2994 	 * Rename a directory to a new parent. Since, we are both deleting
2995 	 * and creating a new directory entry, the link count on the new
2996 	 * directory should not change. Thus we skip the followup dirrem.
2997 	 */
2998 	if (dirrem->dm_state & DIRCHG) {
2999 		vput(vp);
3000 		num_dirrem -= 1;
3001 		WORKITEM_FREE(dirrem, D_DIRREM);
3002 		return;
3003 	}
3004 	/*
3005 	 * If the inodedep does not exist, then the zero'ed inode has
3006 	 * been written to disk. If the allocated inode has never been
3007 	 * written to disk, then the on-disk inode is zero'ed. In either
3008 	 * case we can remove the file immediately.
3009 	 */
3010 	ACQUIRE_LOCK(&lk);
3011 	dirrem->dm_state = 0;
3012 	oldinum = dirrem->dm_oldinum;
3013 	dirrem->dm_oldinum = dirrem->dm_dirinum;
3014 	if (inodedep_lookup(ip->i_fs, oldinum, 0, &inodedep) == 0 ||
3015 	    check_inode_unwritten(inodedep)) {
3016 		FREE_LOCK(&lk);
3017 		vput(vp);
3018 		handle_workitem_remove(dirrem);
3019 		return;
3020 	}
3021 	WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
3022 	FREE_LOCK(&lk);
3023 	ip->i_flag |= IN_CHANGE;
3024 	ffs_update(vp, 0);
3025 	vput(vp);
3026 }
3027 
3028 /*
3029  * Inode de-allocation dependencies.
3030  *
3031  * When an inode's link count is reduced to zero, it can be de-allocated. We
3032  * found it convenient to postpone de-allocation until after the inode is
3033  * written to disk with its new link count (zero).  At this point, all of the
3034  * on-disk inode's block pointers are nullified and, with careful dependency
3035  * list ordering, all dependencies related to the inode will be satisfied and
3036  * the corresponding dependency structures de-allocated.  So, if/when the
3037  * inode is reused, there will be no mixing of old dependencies with new
3038  * ones.  This artificial dependency is set up by the block de-allocation
3039  * procedure above (softdep_setup_freeblocks) and completed by the
3040  * following procedure.
3041  */
3042 static void
3043 handle_workitem_freefile(struct freefile *freefile)
3044 {
3045 	struct vnode vp;
3046 	struct inode tip;
3047 	struct inodedep *idp;
3048 	int error;
3049 
3050 #ifdef DEBUG
3051 	ACQUIRE_LOCK(&lk);
3052 	error = inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp);
3053 	FREE_LOCK(&lk);
3054 	if (error)
3055 		panic("handle_workitem_freefile: inodedep survived");
3056 #endif
3057 	tip.i_devvp = freefile->fx_devvp;
3058 	tip.i_dev = freefile->fx_devvp->v_rdev;
3059 	tip.i_fs = freefile->fx_fs;
3060 	vp.v_data = &tip;
3061 	if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
3062 		softdep_error("handle_workitem_freefile", error);
3063 	WORKITEM_FREE(freefile, D_FREEFILE);
3064 }
3065 
3066 /*
3067  * Helper function which unlinks marker element from work list and returns
3068  * the next element on the list.
3069  */
3070 static __inline struct worklist *
3071 markernext(struct worklist *marker)
3072 {
3073 	struct worklist *next;
3074 
3075 	next = LIST_NEXT(marker, wk_list);
3076 	LIST_REMOVE(marker, wk_list);
3077 	return next;
3078 }
3079 
3080 /*
3081  * checkread, checkwrite
3082  *
3083  * bioops callback - hold io_token
3084  */
3085 static  int
3086 softdep_checkread(struct buf *bp)
3087 {
3088 	/* nothing to do, mp lock not needed */
3089 	return(0);
3090 }
3091 
3092 /*
3093  * bioops callback - hold io_token
3094  */
3095 static  int
3096 softdep_checkwrite(struct buf *bp)
3097 {
3098 	/* nothing to do, mp lock not needed */
3099 	return(0);
3100 }
3101 
3102 /*
3103  * Disk writes.
3104  *
3105  * The dependency structures constructed above are most actively used when file
3106  * system blocks are written to disk.  No constraints are placed on when a
3107  * block can be written, but unsatisfied update dependencies are made safe by
3108  * modifying (or replacing) the source memory for the duration of the disk
3109  * write.  When the disk write completes, the memory block is again brought
3110  * up-to-date.
3111  *
3112  * In-core inode structure reclamation.
3113  *
3114  * Because there are a finite number of "in-core" inode structures, they are
3115  * reused regularly.  By transferring all inode-related dependencies to the
3116  * in-memory inode block and indexing them separately (via "inodedep"s), we
3117  * can allow "in-core" inode structures to be reused at any time and avoid
3118  * any increase in contention.
3119  *
3120  * Called just before entering the device driver to initiate a new disk I/O.
3121  * The buffer must be locked, thus, no I/O completion operations can occur
3122  * while we are manipulating its associated dependencies.
3123  *
3124  * bioops callback - hold io_token
3125  *
3126  * Parameters:
3127  *	bp:	structure describing disk write to occur
3128  */
3129 static void
3130 softdep_disk_io_initiation(struct buf *bp)
3131 {
3132 	struct worklist *wk;
3133 	struct worklist marker;
3134 	struct indirdep *indirdep;
3135 
3136 	/*
3137 	 * We only care about write operations. There should never
3138 	 * be dependencies for reads.
3139 	 */
3140 	if (bp->b_cmd == BUF_CMD_READ)
3141 		panic("softdep_disk_io_initiation: read");
3142 
3143 	get_mplock();
3144 	marker.wk_type = D_LAST + 1;	/* Not a normal workitem */
3145 
3146 	/*
3147 	 * Do any necessary pre-I/O processing.
3148 	 */
3149 	for (wk = LIST_FIRST(&bp->b_dep); wk; wk = markernext(&marker)) {
3150 		LIST_INSERT_AFTER(wk, &marker, wk_list);
3151 
3152 		switch (wk->wk_type) {
3153 		case D_PAGEDEP:
3154 			initiate_write_filepage(WK_PAGEDEP(wk), bp);
3155 			continue;
3156 
3157 		case D_INODEDEP:
3158 			initiate_write_inodeblock(WK_INODEDEP(wk), bp);
3159 			continue;
3160 
3161 		case D_INDIRDEP:
3162 			indirdep = WK_INDIRDEP(wk);
3163 			if (indirdep->ir_state & GOINGAWAY)
3164 				panic("disk_io_initiation: indirdep gone");
3165 			/*
3166 			 * If there are no remaining dependencies, this
3167 			 * will be writing the real pointers, so the
3168 			 * dependency can be freed.
3169 			 */
3170 			if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
3171 				indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
3172 				brelse(indirdep->ir_savebp);
3173 				/* inline expand WORKLIST_REMOVE(wk); */
3174 				wk->wk_state &= ~ONWORKLIST;
3175 				LIST_REMOVE(wk, wk_list);
3176 				WORKITEM_FREE(indirdep, D_INDIRDEP);
3177 				continue;
3178 			}
3179 			/*
3180 			 * Replace up-to-date version with safe version.
3181 			 */
3182 			MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
3183 			    M_INDIRDEP, M_SOFTDEP_FLAGS);
3184 			ACQUIRE_LOCK(&lk);
3185 			indirdep->ir_state &= ~ATTACHED;
3186 			indirdep->ir_state |= UNDONE;
3187 			bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
3188 			bcopy(indirdep->ir_savebp->b_data, bp->b_data,
3189 			    bp->b_bcount);
3190 			FREE_LOCK(&lk);
3191 			continue;
3192 
3193 		case D_MKDIR:
3194 		case D_BMSAFEMAP:
3195 		case D_ALLOCDIRECT:
3196 		case D_ALLOCINDIR:
3197 			continue;
3198 
3199 		default:
3200 			panic("handle_disk_io_initiation: Unexpected type %s",
3201 			    TYPENAME(wk->wk_type));
3202 			/* NOTREACHED */
3203 		}
3204 	}
3205 	rel_mplock();
3206 }
3207 
3208 /*
3209  * Called from within the procedure above to deal with unsatisfied
3210  * allocation dependencies in a directory. The buffer must be locked,
3211  * thus, no I/O completion operations can occur while we are
3212  * manipulating its associated dependencies.
3213  */
3214 static void
3215 initiate_write_filepage(struct pagedep *pagedep, struct buf *bp)
3216 {
3217 	struct diradd *dap;
3218 	struct direct *ep;
3219 	int i;
3220 
3221 	if (pagedep->pd_state & IOSTARTED) {
3222 		/*
3223 		 * This can only happen if there is a driver that does not
3224 		 * understand chaining. Here biodone will reissue the call
3225 		 * to strategy for the incomplete buffers.
3226 		 */
3227 		kprintf("initiate_write_filepage: already started\n");
3228 		return;
3229 	}
3230 	pagedep->pd_state |= IOSTARTED;
3231 	ACQUIRE_LOCK(&lk);
3232 	for (i = 0; i < DAHASHSZ; i++) {
3233 		LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
3234 			ep = (struct direct *)
3235 			    ((char *)bp->b_data + dap->da_offset);
3236 			if (ep->d_ino != dap->da_newinum) {
3237 				FREE_LOCK(&lk);
3238 				panic("%s: dir inum %d != new %"PRId64,
3239 				    "initiate_write_filepage",
3240 				    ep->d_ino, dap->da_newinum);
3241 			}
3242 			if (dap->da_state & DIRCHG)
3243 				ep->d_ino = dap->da_previous->dm_oldinum;
3244 			else
3245 				ep->d_ino = 0;
3246 			dap->da_state &= ~ATTACHED;
3247 			dap->da_state |= UNDONE;
3248 		}
3249 	}
3250 	FREE_LOCK(&lk);
3251 }
3252 
3253 /*
3254  * Called from within the procedure above to deal with unsatisfied
3255  * allocation dependencies in an inodeblock. The buffer must be
3256  * locked, thus, no I/O completion operations can occur while we
3257  * are manipulating its associated dependencies.
3258  *
3259  * Parameters:
3260  *	bp:	The inode block
3261  */
3262 static void
3263 initiate_write_inodeblock(struct inodedep *inodedep, struct buf *bp)
3264 {
3265 	struct allocdirect *adp, *lastadp;
3266 	struct ufs1_dinode *dp;
3267 	struct ufs1_dinode *sip;
3268 	struct fs *fs;
3269 	ufs_lbn_t prevlbn = 0;
3270 	int i, deplist;
3271 
3272 	if (inodedep->id_state & IOSTARTED)
3273 		panic("initiate_write_inodeblock: already started");
3274 	inodedep->id_state |= IOSTARTED;
3275 	fs = inodedep->id_fs;
3276 	dp = (struct ufs1_dinode *)bp->b_data +
3277 	    ino_to_fsbo(fs, inodedep->id_ino);
3278 	/*
3279 	 * If the bitmap is not yet written, then the allocated
3280 	 * inode cannot be written to disk.
3281 	 */
3282 	if ((inodedep->id_state & DEPCOMPLETE) == 0) {
3283 		if (inodedep->id_savedino != NULL)
3284 			panic("initiate_write_inodeblock: already doing I/O");
3285 		MALLOC(sip, struct ufs1_dinode *,
3286 		    sizeof(struct ufs1_dinode), M_INODEDEP, M_SOFTDEP_FLAGS);
3287 		inodedep->id_savedino = sip;
3288 		*inodedep->id_savedino = *dp;
3289 		bzero((caddr_t)dp, sizeof(struct ufs1_dinode));
3290 		dp->di_gen = inodedep->id_savedino->di_gen;
3291 		return;
3292 	}
3293 	/*
3294 	 * If no dependencies, then there is nothing to roll back.
3295 	 */
3296 	inodedep->id_savedsize = dp->di_size;
3297 	if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
3298 		return;
3299 	/*
3300 	 * Set the dependencies to busy.
3301 	 */
3302 	ACQUIRE_LOCK(&lk);
3303 	for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3304 	     adp = TAILQ_NEXT(adp, ad_next)) {
3305 #ifdef DIAGNOSTIC
3306 		if (deplist != 0 && prevlbn >= adp->ad_lbn) {
3307 			FREE_LOCK(&lk);
3308 			panic("softdep_write_inodeblock: lbn order");
3309 		}
3310 		prevlbn = adp->ad_lbn;
3311 		if (adp->ad_lbn < NDADDR &&
3312 		    dp->di_db[adp->ad_lbn] != adp->ad_newblkno) {
3313 			FREE_LOCK(&lk);
3314 			panic("%s: direct pointer #%ld mismatch %d != %d",
3315 			    "softdep_write_inodeblock", adp->ad_lbn,
3316 			    dp->di_db[adp->ad_lbn], adp->ad_newblkno);
3317 		}
3318 		if (adp->ad_lbn >= NDADDR &&
3319 		    dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno) {
3320 			FREE_LOCK(&lk);
3321 			panic("%s: indirect pointer #%ld mismatch %d != %d",
3322 			    "softdep_write_inodeblock", adp->ad_lbn - NDADDR,
3323 			    dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
3324 		}
3325 		deplist |= 1 << adp->ad_lbn;
3326 		if ((adp->ad_state & ATTACHED) == 0) {
3327 			FREE_LOCK(&lk);
3328 			panic("softdep_write_inodeblock: Unknown state 0x%x",
3329 			    adp->ad_state);
3330 		}
3331 #endif /* DIAGNOSTIC */
3332 		adp->ad_state &= ~ATTACHED;
3333 		adp->ad_state |= UNDONE;
3334 	}
3335 	/*
3336 	 * The on-disk inode cannot claim to be any larger than the last
3337 	 * fragment that has been written. Otherwise, the on-disk inode
3338 	 * might have fragments that were not the last block in the file
3339 	 * which would corrupt the filesystem.
3340 	 */
3341 	for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
3342 	     lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
3343 		if (adp->ad_lbn >= NDADDR)
3344 			break;
3345 		dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
3346 		/* keep going until hitting a rollback to a frag */
3347 		if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
3348 			continue;
3349 		dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
3350 		for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
3351 #ifdef DIAGNOSTIC
3352 			if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) {
3353 				FREE_LOCK(&lk);
3354 				panic("softdep_write_inodeblock: lost dep1");
3355 			}
3356 #endif /* DIAGNOSTIC */
3357 			dp->di_db[i] = 0;
3358 		}
3359 		for (i = 0; i < NIADDR; i++) {
3360 #ifdef DIAGNOSTIC
3361 			if (dp->di_ib[i] != 0 &&
3362 			    (deplist & ((1 << NDADDR) << i)) == 0) {
3363 				FREE_LOCK(&lk);
3364 				panic("softdep_write_inodeblock: lost dep2");
3365 			}
3366 #endif /* DIAGNOSTIC */
3367 			dp->di_ib[i] = 0;
3368 		}
3369 		FREE_LOCK(&lk);
3370 		return;
3371 	}
3372 	/*
3373 	 * If we have zero'ed out the last allocated block of the file,
3374 	 * roll back the size to the last currently allocated block.
3375 	 * We know that this last allocated block is a full-sized as
3376 	 * we already checked for fragments in the loop above.
3377 	 */
3378 	if (lastadp != NULL &&
3379 	    dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
3380 		for (i = lastadp->ad_lbn; i >= 0; i--)
3381 			if (dp->di_db[i] != 0)
3382 				break;
3383 		dp->di_size = (i + 1) * fs->fs_bsize;
3384 	}
3385 	/*
3386 	 * The only dependencies are for indirect blocks.
3387 	 *
3388 	 * The file size for indirect block additions is not guaranteed.
3389 	 * Such a guarantee would be non-trivial to achieve. The conventional
3390 	 * synchronous write implementation also does not make this guarantee.
3391 	 * Fsck should catch and fix discrepancies. Arguably, the file size
3392 	 * can be over-estimated without destroying integrity when the file
3393 	 * moves into the indirect blocks (i.e., is large). If we want to
3394 	 * postpone fsck, we are stuck with this argument.
3395 	 */
3396 	for (; adp; adp = TAILQ_NEXT(adp, ad_next))
3397 		dp->di_ib[adp->ad_lbn - NDADDR] = 0;
3398 	FREE_LOCK(&lk);
3399 }
3400 
3401 /*
3402  * This routine is called during the completion interrupt
3403  * service routine for a disk write (from the procedure called
3404  * by the device driver to inform the filesystem caches of
3405  * a request completion).  It should be called early in this
3406  * procedure, before the block is made available to other
3407  * processes or other routines are called.
3408  *
3409  * bioops callback - hold io_token
3410  *
3411  * Parameters:
3412  *	bp:	describes the completed disk write
3413  */
3414 static void
3415 softdep_disk_write_complete(struct buf *bp)
3416 {
3417 	struct worklist *wk;
3418 	struct workhead reattach;
3419 	struct newblk *newblk;
3420 	struct allocindir *aip;
3421 	struct allocdirect *adp;
3422 	struct indirdep *indirdep;
3423 	struct inodedep *inodedep;
3424 	struct bmsafemap *bmsafemap;
3425 
3426 	get_mplock();
3427 #ifdef DEBUG
3428 	if (lk.lkt_held != NOHOLDER)
3429 		panic("softdep_disk_write_complete: lock is held");
3430 	lk.lkt_held = SPECIAL_FLAG;
3431 #endif
3432 	LIST_INIT(&reattach);
3433 	while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
3434 		WORKLIST_REMOVE(wk);
3435 		switch (wk->wk_type) {
3436 
3437 		case D_PAGEDEP:
3438 			if (handle_written_filepage(WK_PAGEDEP(wk), bp))
3439 				WORKLIST_INSERT(&reattach, wk);
3440 			continue;
3441 
3442 		case D_INODEDEP:
3443 			if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
3444 				WORKLIST_INSERT(&reattach, wk);
3445 			continue;
3446 
3447 		case D_BMSAFEMAP:
3448 			bmsafemap = WK_BMSAFEMAP(wk);
3449 			while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
3450 				newblk->nb_state |= DEPCOMPLETE;
3451 				newblk->nb_bmsafemap = NULL;
3452 				LIST_REMOVE(newblk, nb_deps);
3453 			}
3454 			while ((adp =
3455 			   LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
3456 				adp->ad_state |= DEPCOMPLETE;
3457 				adp->ad_buf = NULL;
3458 				LIST_REMOVE(adp, ad_deps);
3459 				handle_allocdirect_partdone(adp);
3460 			}
3461 			while ((aip =
3462 			    LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
3463 				aip->ai_state |= DEPCOMPLETE;
3464 				aip->ai_buf = NULL;
3465 				LIST_REMOVE(aip, ai_deps);
3466 				handle_allocindir_partdone(aip);
3467 			}
3468 			while ((inodedep =
3469 			     LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
3470 				inodedep->id_state |= DEPCOMPLETE;
3471 				LIST_REMOVE(inodedep, id_deps);
3472 				inodedep->id_buf = NULL;
3473 			}
3474 			WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
3475 			continue;
3476 
3477 		case D_MKDIR:
3478 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
3479 			continue;
3480 
3481 		case D_ALLOCDIRECT:
3482 			adp = WK_ALLOCDIRECT(wk);
3483 			adp->ad_state |= COMPLETE;
3484 			handle_allocdirect_partdone(adp);
3485 			continue;
3486 
3487 		case D_ALLOCINDIR:
3488 			aip = WK_ALLOCINDIR(wk);
3489 			aip->ai_state |= COMPLETE;
3490 			handle_allocindir_partdone(aip);
3491 			continue;
3492 
3493 		case D_INDIRDEP:
3494 			indirdep = WK_INDIRDEP(wk);
3495 			if (indirdep->ir_state & GOINGAWAY) {
3496 				lk.lkt_held = NOHOLDER;
3497 				panic("disk_write_complete: indirdep gone");
3498 			}
3499 			bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
3500 			FREE(indirdep->ir_saveddata, M_INDIRDEP);
3501 			indirdep->ir_saveddata = 0;
3502 			indirdep->ir_state &= ~UNDONE;
3503 			indirdep->ir_state |= ATTACHED;
3504 			while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
3505 				handle_allocindir_partdone(aip);
3506 				if (aip == LIST_FIRST(&indirdep->ir_donehd)) {
3507 					lk.lkt_held = NOHOLDER;
3508 					panic("disk_write_complete: not gone");
3509 				}
3510 			}
3511 			WORKLIST_INSERT(&reattach, wk);
3512 			if ((bp->b_flags & B_DELWRI) == 0)
3513 				stat_indir_blk_ptrs++;
3514 			bdirty(bp);
3515 			continue;
3516 
3517 		default:
3518 			lk.lkt_held = NOHOLDER;
3519 			panic("handle_disk_write_complete: Unknown type %s",
3520 			    TYPENAME(wk->wk_type));
3521 			/* NOTREACHED */
3522 		}
3523 	}
3524 	/*
3525 	 * Reattach any requests that must be redone.
3526 	 */
3527 	while ((wk = LIST_FIRST(&reattach)) != NULL) {
3528 		WORKLIST_REMOVE(wk);
3529 		WORKLIST_INSERT_BP(bp, wk);
3530 	}
3531 #ifdef DEBUG
3532 	if (lk.lkt_held != SPECIAL_FLAG)
3533 		panic("softdep_disk_write_complete: lock lost");
3534 	lk.lkt_held = NOHOLDER;
3535 #endif
3536 	rel_mplock();
3537 }
3538 
3539 /*
3540  * Called from within softdep_disk_write_complete above. Note that
3541  * this routine is always called from interrupt level with further
3542  * splbio interrupts blocked.
3543  *
3544  * Parameters:
3545  *	adp:	the completed allocdirect
3546  */
3547 static void
3548 handle_allocdirect_partdone(struct allocdirect *adp)
3549 {
3550 	struct allocdirect *listadp;
3551 	struct inodedep *inodedep;
3552 	long bsize;
3553 
3554 	if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3555 		return;
3556 	if (adp->ad_buf != NULL) {
3557 		lk.lkt_held = NOHOLDER;
3558 		panic("handle_allocdirect_partdone: dangling dep");
3559 	}
3560 	/*
3561 	 * The on-disk inode cannot claim to be any larger than the last
3562 	 * fragment that has been written. Otherwise, the on-disk inode
3563 	 * might have fragments that were not the last block in the file
3564 	 * which would corrupt the filesystem. Thus, we cannot free any
3565 	 * allocdirects after one whose ad_oldblkno claims a fragment as
3566 	 * these blocks must be rolled back to zero before writing the inode.
3567 	 * We check the currently active set of allocdirects in id_inoupdt.
3568 	 */
3569 	inodedep = adp->ad_inodedep;
3570 	bsize = inodedep->id_fs->fs_bsize;
3571 	TAILQ_FOREACH(listadp, &inodedep->id_inoupdt, ad_next) {
3572 		/* found our block */
3573 		if (listadp == adp)
3574 			break;
3575 		/* continue if ad_oldlbn is not a fragment */
3576 		if (listadp->ad_oldsize == 0 ||
3577 		    listadp->ad_oldsize == bsize)
3578 			continue;
3579 		/* hit a fragment */
3580 		return;
3581 	}
3582 	/*
3583 	 * If we have reached the end of the current list without
3584 	 * finding the just finished dependency, then it must be
3585 	 * on the future dependency list. Future dependencies cannot
3586 	 * be freed until they are moved to the current list.
3587 	 */
3588 	if (listadp == NULL) {
3589 #ifdef DEBUG
3590 		TAILQ_FOREACH(listadp, &inodedep->id_newinoupdt, ad_next)
3591 			/* found our block */
3592 			if (listadp == adp)
3593 				break;
3594 		if (listadp == NULL) {
3595 			lk.lkt_held = NOHOLDER;
3596 			panic("handle_allocdirect_partdone: lost dep");
3597 		}
3598 #endif /* DEBUG */
3599 		return;
3600 	}
3601 	/*
3602 	 * If we have found the just finished dependency, then free
3603 	 * it along with anything that follows it that is complete.
3604 	 */
3605 	for (; adp; adp = listadp) {
3606 		listadp = TAILQ_NEXT(adp, ad_next);
3607 		if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
3608 			return;
3609 		free_allocdirect(&inodedep->id_inoupdt, adp, 1);
3610 	}
3611 }
3612 
3613 /*
3614  * Called from within softdep_disk_write_complete above. Note that
3615  * this routine is always called from interrupt level with further
3616  * splbio interrupts blocked.
3617  *
3618  * Parameters:
3619  *	aip:	the completed allocindir
3620  */
3621 static void
3622 handle_allocindir_partdone(struct allocindir *aip)
3623 {
3624 	struct indirdep *indirdep;
3625 
3626 	if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
3627 		return;
3628 	if (aip->ai_buf != NULL) {
3629 		lk.lkt_held = NOHOLDER;
3630 		panic("handle_allocindir_partdone: dangling dependency");
3631 	}
3632 	indirdep = aip->ai_indirdep;
3633 	if (indirdep->ir_state & UNDONE) {
3634 		LIST_REMOVE(aip, ai_next);
3635 		LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
3636 		return;
3637 	}
3638 	((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
3639 	    aip->ai_newblkno;
3640 	LIST_REMOVE(aip, ai_next);
3641 	if (aip->ai_freefrag != NULL)
3642 		add_to_worklist(&aip->ai_freefrag->ff_list);
3643 	WORKITEM_FREE(aip, D_ALLOCINDIR);
3644 }
3645 
3646 /*
3647  * Called from within softdep_disk_write_complete above to restore
3648  * in-memory inode block contents to their most up-to-date state. Note
3649  * that this routine is always called from interrupt level with further
3650  * splbio interrupts blocked.
3651  *
3652  * Parameters:
3653  *	bp:	buffer containing the inode block
3654  */
3655 static int
3656 handle_written_inodeblock(struct inodedep *inodedep, struct buf *bp)
3657 {
3658 	struct worklist *wk, *filefree;
3659 	struct allocdirect *adp, *nextadp;
3660 	struct ufs1_dinode *dp;
3661 	int hadchanges;
3662 
3663 	if ((inodedep->id_state & IOSTARTED) == 0) {
3664 		lk.lkt_held = NOHOLDER;
3665 		panic("handle_written_inodeblock: not started");
3666 	}
3667 	inodedep->id_state &= ~IOSTARTED;
3668 	dp = (struct ufs1_dinode *)bp->b_data +
3669 	    ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
3670 	/*
3671 	 * If we had to rollback the inode allocation because of
3672 	 * bitmaps being incomplete, then simply restore it.
3673 	 * Keep the block dirty so that it will not be reclaimed until
3674 	 * all associated dependencies have been cleared and the
3675 	 * corresponding updates written to disk.
3676 	 */
3677 	if (inodedep->id_savedino != NULL) {
3678 		*dp = *inodedep->id_savedino;
3679 		FREE(inodedep->id_savedino, M_INODEDEP);
3680 		inodedep->id_savedino = NULL;
3681 		if ((bp->b_flags & B_DELWRI) == 0)
3682 			stat_inode_bitmap++;
3683 		bdirty(bp);
3684 		return (1);
3685 	}
3686 	inodedep->id_state |= COMPLETE;
3687 	/*
3688 	 * Roll forward anything that had to be rolled back before
3689 	 * the inode could be updated.
3690 	 */
3691 	hadchanges = 0;
3692 	for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
3693 		nextadp = TAILQ_NEXT(adp, ad_next);
3694 		if (adp->ad_state & ATTACHED) {
3695 			lk.lkt_held = NOHOLDER;
3696 			panic("handle_written_inodeblock: new entry");
3697 		}
3698 		if (adp->ad_lbn < NDADDR) {
3699 			if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno) {
3700 				lk.lkt_held = NOHOLDER;
3701 				panic("%s: %s #%ld mismatch %d != %d",
3702 				    "handle_written_inodeblock",
3703 				    "direct pointer", adp->ad_lbn,
3704 				    dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
3705 			}
3706 			dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
3707 		} else {
3708 			if (dp->di_ib[adp->ad_lbn - NDADDR] != 0) {
3709 				lk.lkt_held = NOHOLDER;
3710 				panic("%s: %s #%ld allocated as %d",
3711 				    "handle_written_inodeblock",
3712 				    "indirect pointer", adp->ad_lbn - NDADDR,
3713 				    dp->di_ib[adp->ad_lbn - NDADDR]);
3714 			}
3715 			dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
3716 		}
3717 		adp->ad_state &= ~UNDONE;
3718 		adp->ad_state |= ATTACHED;
3719 		hadchanges = 1;
3720 	}
3721 	if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
3722 		stat_direct_blk_ptrs++;
3723 	/*
3724 	 * Reset the file size to its most up-to-date value.
3725 	 */
3726 	if (inodedep->id_savedsize == -1) {
3727 		lk.lkt_held = NOHOLDER;
3728 		panic("handle_written_inodeblock: bad size");
3729 	}
3730 	if (dp->di_size != inodedep->id_savedsize) {
3731 		dp->di_size = inodedep->id_savedsize;
3732 		hadchanges = 1;
3733 	}
3734 	inodedep->id_savedsize = -1;
3735 	/*
3736 	 * If there were any rollbacks in the inode block, then it must be
3737 	 * marked dirty so that its will eventually get written back in
3738 	 * its correct form.
3739 	 */
3740 	if (hadchanges)
3741 		bdirty(bp);
3742 	/*
3743 	 * Process any allocdirects that completed during the update.
3744 	 */
3745 	if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
3746 		handle_allocdirect_partdone(adp);
3747 	/*
3748 	 * Process deallocations that were held pending until the
3749 	 * inode had been written to disk. Freeing of the inode
3750 	 * is delayed until after all blocks have been freed to
3751 	 * avoid creation of new <vfsid, inum, lbn> triples
3752 	 * before the old ones have been deleted.
3753 	 */
3754 	filefree = NULL;
3755 	while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
3756 		WORKLIST_REMOVE(wk);
3757 		switch (wk->wk_type) {
3758 
3759 		case D_FREEFILE:
3760 			/*
3761 			 * We defer adding filefree to the worklist until
3762 			 * all other additions have been made to ensure
3763 			 * that it will be done after all the old blocks
3764 			 * have been freed.
3765 			 */
3766 			if (filefree != NULL) {
3767 				lk.lkt_held = NOHOLDER;
3768 				panic("handle_written_inodeblock: filefree");
3769 			}
3770 			filefree = wk;
3771 			continue;
3772 
3773 		case D_MKDIR:
3774 			handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
3775 			continue;
3776 
3777 		case D_DIRADD:
3778 			diradd_inode_written(WK_DIRADD(wk), inodedep);
3779 			continue;
3780 
3781 		case D_FREEBLKS:
3782 			wk->wk_state |= COMPLETE;
3783 			if ((wk->wk_state  & ALLCOMPLETE) != ALLCOMPLETE)
3784 				continue;
3785 			/* -- fall through -- */
3786 		case D_FREEFRAG:
3787 		case D_DIRREM:
3788 			add_to_worklist(wk);
3789 			continue;
3790 
3791 		default:
3792 			lk.lkt_held = NOHOLDER;
3793 			panic("handle_written_inodeblock: Unknown type %s",
3794 			    TYPENAME(wk->wk_type));
3795 			/* NOTREACHED */
3796 		}
3797 	}
3798 	if (filefree != NULL) {
3799 		if (free_inodedep(inodedep) == 0) {
3800 			lk.lkt_held = NOHOLDER;
3801 			panic("handle_written_inodeblock: live inodedep");
3802 		}
3803 		add_to_worklist(filefree);
3804 		return (0);
3805 	}
3806 
3807 	/*
3808 	 * If no outstanding dependencies, free it.
3809 	 */
3810 	if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
3811 		return (0);
3812 	return (hadchanges);
3813 }
3814 
3815 /*
3816  * Process a diradd entry after its dependent inode has been written.
3817  * This routine must be called with splbio interrupts blocked.
3818  */
3819 static void
3820 diradd_inode_written(struct diradd *dap, struct inodedep *inodedep)
3821 {
3822 	struct pagedep *pagedep;
3823 
3824 	dap->da_state |= COMPLETE;
3825 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3826 		if (dap->da_state & DIRCHG)
3827 			pagedep = dap->da_previous->dm_pagedep;
3828 		else
3829 			pagedep = dap->da_pagedep;
3830 		LIST_REMOVE(dap, da_pdlist);
3831 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3832 	}
3833 	WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
3834 }
3835 
3836 /*
3837  * Handle the completion of a mkdir dependency.
3838  */
3839 static void
3840 handle_written_mkdir(struct mkdir *mkdir, int type)
3841 {
3842 	struct diradd *dap;
3843 	struct pagedep *pagedep;
3844 
3845 	if (mkdir->md_state != type) {
3846 		lk.lkt_held = NOHOLDER;
3847 		panic("handle_written_mkdir: bad type");
3848 	}
3849 	dap = mkdir->md_diradd;
3850 	dap->da_state &= ~type;
3851 	if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
3852 		dap->da_state |= DEPCOMPLETE;
3853 	if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3854 		if (dap->da_state & DIRCHG)
3855 			pagedep = dap->da_previous->dm_pagedep;
3856 		else
3857 			pagedep = dap->da_pagedep;
3858 		LIST_REMOVE(dap, da_pdlist);
3859 		LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
3860 	}
3861 	LIST_REMOVE(mkdir, md_mkdirs);
3862 	WORKITEM_FREE(mkdir, D_MKDIR);
3863 }
3864 
3865 /*
3866  * Called from within softdep_disk_write_complete above.
3867  * A write operation was just completed. Removed inodes can
3868  * now be freed and associated block pointers may be committed.
3869  * Note that this routine is always called from interrupt level
3870  * with further splbio interrupts blocked.
3871  *
3872  * Parameters:
3873  *	bp:	buffer containing the written page
3874  */
3875 static int
3876 handle_written_filepage(struct pagedep *pagedep, struct buf *bp)
3877 {
3878 	struct dirrem *dirrem;
3879 	struct diradd *dap, *nextdap;
3880 	struct direct *ep;
3881 	int i, chgs;
3882 
3883 	if ((pagedep->pd_state & IOSTARTED) == 0) {
3884 		lk.lkt_held = NOHOLDER;
3885 		panic("handle_written_filepage: not started");
3886 	}
3887 	pagedep->pd_state &= ~IOSTARTED;
3888 	/*
3889 	 * Process any directory removals that have been committed.
3890 	 */
3891 	while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
3892 		LIST_REMOVE(dirrem, dm_next);
3893 		dirrem->dm_dirinum = pagedep->pd_ino;
3894 		add_to_worklist(&dirrem->dm_list);
3895 	}
3896 	/*
3897 	 * Free any directory additions that have been committed.
3898 	 */
3899 	while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
3900 		free_diradd(dap);
3901 	/*
3902 	 * Uncommitted directory entries must be restored.
3903 	 */
3904 	for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
3905 		for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
3906 		     dap = nextdap) {
3907 			nextdap = LIST_NEXT(dap, da_pdlist);
3908 			if (dap->da_state & ATTACHED) {
3909 				lk.lkt_held = NOHOLDER;
3910 				panic("handle_written_filepage: attached");
3911 			}
3912 			ep = (struct direct *)
3913 			    ((char *)bp->b_data + dap->da_offset);
3914 			ep->d_ino = dap->da_newinum;
3915 			dap->da_state &= ~UNDONE;
3916 			dap->da_state |= ATTACHED;
3917 			chgs = 1;
3918 			/*
3919 			 * If the inode referenced by the directory has
3920 			 * been written out, then the dependency can be
3921 			 * moved to the pending list.
3922 			 */
3923 			if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
3924 				LIST_REMOVE(dap, da_pdlist);
3925 				LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
3926 				    da_pdlist);
3927 			}
3928 		}
3929 	}
3930 	/*
3931 	 * If there were any rollbacks in the directory, then it must be
3932 	 * marked dirty so that its will eventually get written back in
3933 	 * its correct form.
3934 	 */
3935 	if (chgs) {
3936 		if ((bp->b_flags & B_DELWRI) == 0)
3937 			stat_dir_entry++;
3938 		bdirty(bp);
3939 	}
3940 	/*
3941 	 * If no dependencies remain, the pagedep will be freed.
3942 	 * Otherwise it will remain to update the page before it
3943 	 * is written back to disk.
3944 	 */
3945 	if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
3946 		for (i = 0; i < DAHASHSZ; i++)
3947 			if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
3948 				break;
3949 		if (i == DAHASHSZ) {
3950 			LIST_REMOVE(pagedep, pd_hash);
3951 			WORKITEM_FREE(pagedep, D_PAGEDEP);
3952 			return (0);
3953 		}
3954 	}
3955 	return (1);
3956 }
3957 
3958 /*
3959  * Writing back in-core inode structures.
3960  *
3961  * The filesystem only accesses an inode's contents when it occupies an
3962  * "in-core" inode structure.  These "in-core" structures are separate from
3963  * the page frames used to cache inode blocks.  Only the latter are
3964  * transferred to/from the disk.  So, when the updated contents of the
3965  * "in-core" inode structure are copied to the corresponding in-memory inode
3966  * block, the dependencies are also transferred.  The following procedure is
3967  * called when copying a dirty "in-core" inode to a cached inode block.
3968  */
3969 
3970 /*
3971  * Called when an inode is loaded from disk. If the effective link count
3972  * differed from the actual link count when it was last flushed, then we
3973  * need to ensure that the correct effective link count is put back.
3974  *
3975  * Parameters:
3976  *	ip:	the "in_core" copy of the inode
3977  */
3978 void
3979 softdep_load_inodeblock(struct inode *ip)
3980 {
3981 	struct inodedep *inodedep;
3982 
3983 	/*
3984 	 * Check for alternate nlink count.
3985 	 */
3986 	ip->i_effnlink = ip->i_nlink;
3987 	ACQUIRE_LOCK(&lk);
3988 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
3989 		FREE_LOCK(&lk);
3990 		return;
3991 	}
3992 	ip->i_effnlink -= inodedep->id_nlinkdelta;
3993 	FREE_LOCK(&lk);
3994 }
3995 
3996 /*
3997  * This routine is called just before the "in-core" inode
3998  * information is to be copied to the in-memory inode block.
3999  * Recall that an inode block contains several inodes. If
4000  * the force flag is set, then the dependencies will be
4001  * cleared so that the update can always be made. Note that
4002  * the buffer is locked when this routine is called, so we
4003  * will never be in the middle of writing the inode block
4004  * to disk.
4005  *
4006  * Parameters:
4007  *	ip:		the "in_core" copy of the inode
4008  *	bp:		the buffer containing the inode block
4009  *	waitfor:	nonzero => update must be allowed
4010  */
4011 void
4012 softdep_update_inodeblock(struct inode *ip, struct buf *bp,
4013 			  int waitfor)
4014 {
4015 	struct inodedep *inodedep;
4016 	struct worklist *wk;
4017 	int error, gotit;
4018 
4019 	/*
4020 	 * If the effective link count is not equal to the actual link
4021 	 * count, then we must track the difference in an inodedep while
4022 	 * the inode is (potentially) tossed out of the cache. Otherwise,
4023 	 * if there is no existing inodedep, then there are no dependencies
4024 	 * to track.
4025 	 */
4026 	ACQUIRE_LOCK(&lk);
4027 	if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
4028 		FREE_LOCK(&lk);
4029 		if (ip->i_effnlink != ip->i_nlink)
4030 			panic("softdep_update_inodeblock: bad link count");
4031 		return;
4032 	}
4033 	if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) {
4034 		FREE_LOCK(&lk);
4035 		panic("softdep_update_inodeblock: bad delta");
4036 	}
4037 	/*
4038 	 * Changes have been initiated. Anything depending on these
4039 	 * changes cannot occur until this inode has been written.
4040 	 */
4041 	inodedep->id_state &= ~COMPLETE;
4042 	if ((inodedep->id_state & ONWORKLIST) == 0)
4043 		WORKLIST_INSERT_BP(bp, &inodedep->id_list);
4044 	/*
4045 	 * Any new dependencies associated with the incore inode must
4046 	 * now be moved to the list associated with the buffer holding
4047 	 * the in-memory copy of the inode. Once merged process any
4048 	 * allocdirects that are completed by the merger.
4049 	 */
4050 	merge_inode_lists(inodedep);
4051 	if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
4052 		handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
4053 	/*
4054 	 * Now that the inode has been pushed into the buffer, the
4055 	 * operations dependent on the inode being written to disk
4056 	 * can be moved to the id_bufwait so that they will be
4057 	 * processed when the buffer I/O completes.
4058 	 */
4059 	while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
4060 		WORKLIST_REMOVE(wk);
4061 		WORKLIST_INSERT(&inodedep->id_bufwait, wk);
4062 	}
4063 	/*
4064 	 * Newly allocated inodes cannot be written until the bitmap
4065 	 * that allocates them have been written (indicated by
4066 	 * DEPCOMPLETE being set in id_state). If we are doing a
4067 	 * forced sync (e.g., an fsync on a file), we force the bitmap
4068 	 * to be written so that the update can be done.
4069 	 */
4070 	if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
4071 		FREE_LOCK(&lk);
4072 		return;
4073 	}
4074 	gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4075 	FREE_LOCK(&lk);
4076 	if (gotit &&
4077 	    (error = bwrite(inodedep->id_buf)) != 0)
4078 		softdep_error("softdep_update_inodeblock: bwrite", error);
4079 }
4080 
4081 /*
4082  * Merge the new inode dependency list (id_newinoupdt) into the old
4083  * inode dependency list (id_inoupdt). This routine must be called
4084  * with splbio interrupts blocked.
4085  */
4086 static void
4087 merge_inode_lists(struct inodedep *inodedep)
4088 {
4089 	struct allocdirect *listadp, *newadp;
4090 
4091 	newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4092 	for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
4093 		if (listadp->ad_lbn < newadp->ad_lbn) {
4094 			listadp = TAILQ_NEXT(listadp, ad_next);
4095 			continue;
4096 		}
4097 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4098 		TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
4099 		if (listadp->ad_lbn == newadp->ad_lbn) {
4100 			allocdirect_merge(&inodedep->id_inoupdt, newadp,
4101 			    listadp);
4102 			listadp = newadp;
4103 		}
4104 		newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
4105 	}
4106 	while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
4107 		TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
4108 		TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
4109 	}
4110 }
4111 
4112 /*
4113  * If we are doing an fsync, then we must ensure that any directory
4114  * entries for the inode have been written after the inode gets to disk.
4115  *
4116  * bioops callback - hold io_token
4117  *
4118  * Parameters:
4119  *	vp:	the "in_core" copy of the inode
4120  */
4121 static int
4122 softdep_fsync(struct vnode *vp)
4123 {
4124 	struct inodedep *inodedep;
4125 	struct pagedep *pagedep;
4126 	struct worklist *wk;
4127 	struct diradd *dap;
4128 	struct mount *mnt;
4129 	struct vnode *pvp;
4130 	struct inode *ip;
4131 	struct buf *bp;
4132 	struct fs *fs;
4133 	int error, flushparent;
4134 	ino_t parentino;
4135 	ufs_lbn_t lbn;
4136 
4137 	/*
4138 	 * Move check from original kernel code, possibly not needed any
4139 	 * more with the per-mount bioops.
4140 	 */
4141 	if ((vp->v_mount->mnt_flag & MNT_SOFTDEP) == 0)
4142 		return (0);
4143 
4144 	get_mplock();
4145 	ip = VTOI(vp);
4146 	fs = ip->i_fs;
4147 	ACQUIRE_LOCK(&lk);
4148 	if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0) {
4149 		FREE_LOCK(&lk);
4150 		rel_mplock();
4151 		return (0);
4152 	}
4153 	if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
4154 	    LIST_FIRST(&inodedep->id_bufwait) != NULL ||
4155 	    TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
4156 	    TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL) {
4157 		FREE_LOCK(&lk);
4158 		panic("softdep_fsync: pending ops");
4159 	}
4160 	for (error = 0, flushparent = 0; ; ) {
4161 		if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
4162 			break;
4163 		if (wk->wk_type != D_DIRADD) {
4164 			FREE_LOCK(&lk);
4165 			panic("softdep_fsync: Unexpected type %s",
4166 			    TYPENAME(wk->wk_type));
4167 		}
4168 		dap = WK_DIRADD(wk);
4169 		/*
4170 		 * Flush our parent if this directory entry
4171 		 * has a MKDIR_PARENT dependency.
4172 		 */
4173 		if (dap->da_state & DIRCHG)
4174 			pagedep = dap->da_previous->dm_pagedep;
4175 		else
4176 			pagedep = dap->da_pagedep;
4177 		mnt = pagedep->pd_mnt;
4178 		parentino = pagedep->pd_ino;
4179 		lbn = pagedep->pd_lbn;
4180 		if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) {
4181 			FREE_LOCK(&lk);
4182 			panic("softdep_fsync: dirty");
4183 		}
4184 		flushparent = dap->da_state & MKDIR_PARENT;
4185 		/*
4186 		 * If we are being fsync'ed as part of vgone'ing this vnode,
4187 		 * then we will not be able to release and recover the
4188 		 * vnode below, so we just have to give up on writing its
4189 		 * directory entry out. It will eventually be written, just
4190 		 * not now, but then the user was not asking to have it
4191 		 * written, so we are not breaking any promises.
4192 		 */
4193 		if (vp->v_flag & VRECLAIMED)
4194 			break;
4195 		/*
4196 		 * We prevent deadlock by always fetching inodes from the
4197 		 * root, moving down the directory tree. Thus, when fetching
4198 		 * our parent directory, we must unlock ourselves before
4199 		 * requesting the lock on our parent. See the comment in
4200 		 * ufs_lookup for details on possible races.
4201 		 */
4202 		FREE_LOCK(&lk);
4203 		vn_unlock(vp);
4204 		error = VFS_VGET(mnt, NULL, parentino, &pvp);
4205 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
4206 		if (error != 0) {
4207 			rel_mplock();
4208 			return (error);
4209 		}
4210 		if (flushparent) {
4211 			if ((error = ffs_update(pvp, 1)) != 0) {
4212 				vput(pvp);
4213 				rel_mplock();
4214 				return (error);
4215 			}
4216 		}
4217 		/*
4218 		 * Flush directory page containing the inode's name.
4219 		 */
4220 		error = bread(pvp, lblktodoff(fs, lbn), blksize(fs, VTOI(pvp), lbn), &bp);
4221 		if (error == 0)
4222 			error = bwrite(bp);
4223 		vput(pvp);
4224 		if (error != 0) {
4225 			rel_mplock();
4226 			return (error);
4227 		}
4228 		ACQUIRE_LOCK(&lk);
4229 		if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
4230 			break;
4231 	}
4232 	FREE_LOCK(&lk);
4233 	rel_mplock();
4234 	return (0);
4235 }
4236 
4237 /*
4238  * Flush all the dirty bitmaps associated with the block device
4239  * before flushing the rest of the dirty blocks so as to reduce
4240  * the number of dependencies that will have to be rolled back.
4241  */
4242 static int softdep_fsync_mountdev_bp(struct buf *bp, void *data);
4243 
4244 void
4245 softdep_fsync_mountdev(struct vnode *vp)
4246 {
4247 	if (!vn_isdisk(vp, NULL))
4248 		panic("softdep_fsync_mountdev: vnode not a disk");
4249 	ACQUIRE_LOCK(&lk);
4250 	lwkt_gettoken(&vp->v_token);
4251 	RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4252 		softdep_fsync_mountdev_bp, vp);
4253 	lwkt_reltoken(&vp->v_token);
4254 	drain_output(vp, 1);
4255 	FREE_LOCK(&lk);
4256 }
4257 
4258 static int
4259 softdep_fsync_mountdev_bp(struct buf *bp, void *data)
4260 {
4261 	struct worklist *wk;
4262 	struct vnode *vp = data;
4263 
4264 	/*
4265 	 * If it is already scheduled, skip to the next buffer.
4266 	 */
4267 	if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
4268 		return(0);
4269 	if (bp->b_vp != vp || (bp->b_flags & B_DELWRI) == 0) {
4270 		BUF_UNLOCK(bp);
4271 		kprintf("softdep_fsync_mountdev_bp: warning, buffer %p ripped out from under vnode %p\n", bp, vp);
4272 		return(0);
4273 	}
4274 	/*
4275 	 * We are only interested in bitmaps with outstanding
4276 	 * dependencies.
4277 	 */
4278 	if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
4279 	    wk->wk_type != D_BMSAFEMAP) {
4280 		BUF_UNLOCK(bp);
4281 		return(0);
4282 	}
4283 	bremfree(bp);
4284 	FREE_LOCK(&lk);
4285 	(void) bawrite(bp);
4286 	ACQUIRE_LOCK(&lk);
4287 	return(0);
4288 }
4289 
4290 /*
4291  * This routine is called when we are trying to synchronously flush a
4292  * file. This routine must eliminate any filesystem metadata dependencies
4293  * so that the syncing routine can succeed by pushing the dirty blocks
4294  * associated with the file. If any I/O errors occur, they are returned.
4295  */
4296 struct softdep_sync_metadata_info {
4297 	struct vnode *vp;
4298 	int waitfor;
4299 };
4300 
4301 static int softdep_sync_metadata_bp(struct buf *bp, void *data);
4302 
4303 int
4304 softdep_sync_metadata(struct vnode *vp, struct thread *td)
4305 {
4306 	struct softdep_sync_metadata_info info;
4307 	int error, waitfor;
4308 
4309 	/*
4310 	 * Check whether this vnode is involved in a filesystem
4311 	 * that is doing soft dependency processing.
4312 	 */
4313 	if (!vn_isdisk(vp, NULL)) {
4314 		if (!DOINGSOFTDEP(vp))
4315 			return (0);
4316 	} else
4317 		if (vp->v_rdev->si_mountpoint == NULL ||
4318 		    (vp->v_rdev->si_mountpoint->mnt_flag & MNT_SOFTDEP) == 0)
4319 			return (0);
4320 	/*
4321 	 * Ensure that any direct block dependencies have been cleared.
4322 	 */
4323 	ACQUIRE_LOCK(&lk);
4324 	if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
4325 		FREE_LOCK(&lk);
4326 		return (error);
4327 	}
4328 	/*
4329 	 * For most files, the only metadata dependencies are the
4330 	 * cylinder group maps that allocate their inode or blocks.
4331 	 * The block allocation dependencies can be found by traversing
4332 	 * the dependency lists for any buffers that remain on their
4333 	 * dirty buffer list. The inode allocation dependency will
4334 	 * be resolved when the inode is updated with MNT_WAIT.
4335 	 * This work is done in two passes. The first pass grabs most
4336 	 * of the buffers and begins asynchronously writing them. The
4337 	 * only way to wait for these asynchronous writes is to sleep
4338 	 * on the filesystem vnode which may stay busy for a long time
4339 	 * if the filesystem is active. So, instead, we make a second
4340 	 * pass over the dependencies blocking on each write. In the
4341 	 * usual case we will be blocking against a write that we
4342 	 * initiated, so when it is done the dependency will have been
4343 	 * resolved. Thus the second pass is expected to end quickly.
4344 	 */
4345 	waitfor = MNT_NOWAIT;
4346 top:
4347 	/*
4348 	 * We must wait for any I/O in progress to finish so that
4349 	 * all potential buffers on the dirty list will be visible.
4350 	 */
4351 	drain_output(vp, 1);
4352 
4353 	info.vp = vp;
4354 	info.waitfor = waitfor;
4355 	lwkt_gettoken(&vp->v_token);
4356 	error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
4357 			softdep_sync_metadata_bp, &info);
4358 	lwkt_reltoken(&vp->v_token);
4359 	if (error < 0) {
4360 		FREE_LOCK(&lk);
4361 		return(-error);	/* error code */
4362 	}
4363 
4364 	/*
4365 	 * The brief unlock is to allow any pent up dependency
4366 	 * processing to be done.  Then proceed with the second pass.
4367 	 */
4368 	if (waitfor == MNT_NOWAIT) {
4369 		waitfor = MNT_WAIT;
4370 		FREE_LOCK(&lk);
4371 		ACQUIRE_LOCK(&lk);
4372 		goto top;
4373 	}
4374 
4375 	/*
4376 	 * If we have managed to get rid of all the dirty buffers,
4377 	 * then we are done. For certain directories and block
4378 	 * devices, we may need to do further work.
4379 	 *
4380 	 * We must wait for any I/O in progress to finish so that
4381 	 * all potential buffers on the dirty list will be visible.
4382 	 */
4383 	drain_output(vp, 1);
4384 	if (RB_EMPTY(&vp->v_rbdirty_tree)) {
4385 		FREE_LOCK(&lk);
4386 		return (0);
4387 	}
4388 
4389 	FREE_LOCK(&lk);
4390 	/*
4391 	 * If we are trying to sync a block device, some of its buffers may
4392 	 * contain metadata that cannot be written until the contents of some
4393 	 * partially written files have been written to disk. The only easy
4394 	 * way to accomplish this is to sync the entire filesystem (luckily
4395 	 * this happens rarely).
4396 	 */
4397 	if (vn_isdisk(vp, NULL) &&
4398 	    vp->v_rdev &&
4399 	    vp->v_rdev->si_mountpoint && !vn_islocked(vp) &&
4400 	    (error = VFS_SYNC(vp->v_rdev->si_mountpoint, MNT_WAIT)) != 0)
4401 		return (error);
4402 	return (0);
4403 }
4404 
4405 static int
4406 softdep_sync_metadata_bp(struct buf *bp, void *data)
4407 {
4408 	struct softdep_sync_metadata_info *info = data;
4409 	struct pagedep *pagedep;
4410 	struct allocdirect *adp;
4411 	struct allocindir *aip;
4412 	struct worklist *wk;
4413 	struct buf *nbp;
4414 	int error;
4415 	int i;
4416 
4417 	if (getdirtybuf(&bp, MNT_WAIT) == 0) {
4418 		kprintf("softdep_sync_metadata_bp(1): caught buf %p going away\n", bp);
4419 		return (1);
4420 	}
4421 	if (bp->b_vp != info->vp || (bp->b_flags & B_DELWRI) == 0) {
4422 		kprintf("softdep_sync_metadata_bp(2): caught buf %p going away vp %p\n", bp, info->vp);
4423 		BUF_UNLOCK(bp);
4424 		return(1);
4425 	}
4426 
4427 	/*
4428 	 * As we hold the buffer locked, none of its dependencies
4429 	 * will disappear.
4430 	 */
4431 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
4432 		switch (wk->wk_type) {
4433 
4434 		case D_ALLOCDIRECT:
4435 			adp = WK_ALLOCDIRECT(wk);
4436 			if (adp->ad_state & DEPCOMPLETE)
4437 				break;
4438 			nbp = adp->ad_buf;
4439 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4440 				break;
4441 			FREE_LOCK(&lk);
4442 			if (info->waitfor == MNT_NOWAIT) {
4443 				bawrite(nbp);
4444 			} else if ((error = bwrite(nbp)) != 0) {
4445 				bawrite(bp);
4446 				ACQUIRE_LOCK(&lk);
4447 				return (-error);
4448 			}
4449 			ACQUIRE_LOCK(&lk);
4450 			break;
4451 
4452 		case D_ALLOCINDIR:
4453 			aip = WK_ALLOCINDIR(wk);
4454 			if (aip->ai_state & DEPCOMPLETE)
4455 				break;
4456 			nbp = aip->ai_buf;
4457 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4458 				break;
4459 			FREE_LOCK(&lk);
4460 			if (info->waitfor == MNT_NOWAIT) {
4461 				bawrite(nbp);
4462 			} else if ((error = bwrite(nbp)) != 0) {
4463 				bawrite(bp);
4464 				ACQUIRE_LOCK(&lk);
4465 				return (-error);
4466 			}
4467 			ACQUIRE_LOCK(&lk);
4468 			break;
4469 
4470 		case D_INDIRDEP:
4471 		restart:
4472 
4473 			LIST_FOREACH(aip, &WK_INDIRDEP(wk)->ir_deplisthd, ai_next) {
4474 				if (aip->ai_state & DEPCOMPLETE)
4475 					continue;
4476 				nbp = aip->ai_buf;
4477 				if (getdirtybuf(&nbp, MNT_WAIT) == 0)
4478 					goto restart;
4479 				FREE_LOCK(&lk);
4480 				if ((error = bwrite(nbp)) != 0) {
4481 					bawrite(bp);
4482 					ACQUIRE_LOCK(&lk);
4483 					return (-error);
4484 				}
4485 				ACQUIRE_LOCK(&lk);
4486 				goto restart;
4487 			}
4488 			break;
4489 
4490 		case D_INODEDEP:
4491 			if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
4492 			    WK_INODEDEP(wk)->id_ino)) != 0) {
4493 				FREE_LOCK(&lk);
4494 				bawrite(bp);
4495 				ACQUIRE_LOCK(&lk);
4496 				return (-error);
4497 			}
4498 			break;
4499 
4500 		case D_PAGEDEP:
4501 			/*
4502 			 * We are trying to sync a directory that may
4503 			 * have dependencies on both its own metadata
4504 			 * and/or dependencies on the inodes of any
4505 			 * recently allocated files. We walk its diradd
4506 			 * lists pushing out the associated inode.
4507 			 */
4508 			pagedep = WK_PAGEDEP(wk);
4509 			for (i = 0; i < DAHASHSZ; i++) {
4510 				if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
4511 					continue;
4512 				if ((error =
4513 				    flush_pagedep_deps(info->vp,
4514 						pagedep->pd_mnt,
4515 						&pagedep->pd_diraddhd[i]))) {
4516 					FREE_LOCK(&lk);
4517 					bawrite(bp);
4518 					ACQUIRE_LOCK(&lk);
4519 					return (-error);
4520 				}
4521 			}
4522 			break;
4523 
4524 		case D_MKDIR:
4525 			/*
4526 			 * This case should never happen if the vnode has
4527 			 * been properly sync'ed. However, if this function
4528 			 * is used at a place where the vnode has not yet
4529 			 * been sync'ed, this dependency can show up. So,
4530 			 * rather than panic, just flush it.
4531 			 */
4532 			nbp = WK_MKDIR(wk)->md_buf;
4533 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4534 				break;
4535 			FREE_LOCK(&lk);
4536 			if (info->waitfor == MNT_NOWAIT) {
4537 				bawrite(nbp);
4538 			} else if ((error = bwrite(nbp)) != 0) {
4539 				bawrite(bp);
4540 				ACQUIRE_LOCK(&lk);
4541 				return (-error);
4542 			}
4543 			ACQUIRE_LOCK(&lk);
4544 			break;
4545 
4546 		case D_BMSAFEMAP:
4547 			/*
4548 			 * This case should never happen if the vnode has
4549 			 * been properly sync'ed. However, if this function
4550 			 * is used at a place where the vnode has not yet
4551 			 * been sync'ed, this dependency can show up. So,
4552 			 * rather than panic, just flush it.
4553 			 *
4554 			 * nbp can wind up == bp if a device node for the
4555 			 * same filesystem is being fsynced at the same time,
4556 			 * leading to a panic if we don't catch the case.
4557 			 */
4558 			nbp = WK_BMSAFEMAP(wk)->sm_buf;
4559 			if (nbp == bp)
4560 				break;
4561 			if (getdirtybuf(&nbp, info->waitfor) == 0)
4562 				break;
4563 			FREE_LOCK(&lk);
4564 			if (info->waitfor == MNT_NOWAIT) {
4565 				bawrite(nbp);
4566 			} else if ((error = bwrite(nbp)) != 0) {
4567 				bawrite(bp);
4568 				ACQUIRE_LOCK(&lk);
4569 				return (-error);
4570 			}
4571 			ACQUIRE_LOCK(&lk);
4572 			break;
4573 
4574 		default:
4575 			FREE_LOCK(&lk);
4576 			panic("softdep_sync_metadata: Unknown type %s",
4577 			    TYPENAME(wk->wk_type));
4578 			/* NOTREACHED */
4579 		}
4580 	}
4581 	FREE_LOCK(&lk);
4582 	bawrite(bp);
4583 	ACQUIRE_LOCK(&lk);
4584 	return(0);
4585 }
4586 
4587 /*
4588  * Flush the dependencies associated with an inodedep.
4589  * Called with splbio blocked.
4590  */
4591 static int
4592 flush_inodedep_deps(struct fs *fs, ino_t ino)
4593 {
4594 	struct inodedep *inodedep;
4595 	struct allocdirect *adp;
4596 	int error, waitfor;
4597 	struct buf *bp;
4598 
4599 	/*
4600 	 * This work is done in two passes. The first pass grabs most
4601 	 * of the buffers and begins asynchronously writing them. The
4602 	 * only way to wait for these asynchronous writes is to sleep
4603 	 * on the filesystem vnode which may stay busy for a long time
4604 	 * if the filesystem is active. So, instead, we make a second
4605 	 * pass over the dependencies blocking on each write. In the
4606 	 * usual case we will be blocking against a write that we
4607 	 * initiated, so when it is done the dependency will have been
4608 	 * resolved. Thus the second pass is expected to end quickly.
4609 	 * We give a brief window at the top of the loop to allow
4610 	 * any pending I/O to complete.
4611 	 */
4612 	for (waitfor = MNT_NOWAIT; ; ) {
4613 		FREE_LOCK(&lk);
4614 		ACQUIRE_LOCK(&lk);
4615 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
4616 			return (0);
4617 		TAILQ_FOREACH(adp, &inodedep->id_inoupdt, ad_next) {
4618 			if (adp->ad_state & DEPCOMPLETE)
4619 				continue;
4620 			bp = adp->ad_buf;
4621 			if (getdirtybuf(&bp, waitfor) == 0) {
4622 				if (waitfor == MNT_NOWAIT)
4623 					continue;
4624 				break;
4625 			}
4626 			FREE_LOCK(&lk);
4627 			if (waitfor == MNT_NOWAIT) {
4628 				bawrite(bp);
4629 			} else if ((error = bwrite(bp)) != 0) {
4630 				ACQUIRE_LOCK(&lk);
4631 				return (error);
4632 			}
4633 			ACQUIRE_LOCK(&lk);
4634 			break;
4635 		}
4636 		if (adp != NULL)
4637 			continue;
4638 		TAILQ_FOREACH(adp, &inodedep->id_newinoupdt, ad_next) {
4639 			if (adp->ad_state & DEPCOMPLETE)
4640 				continue;
4641 			bp = adp->ad_buf;
4642 			if (getdirtybuf(&bp, waitfor) == 0) {
4643 				if (waitfor == MNT_NOWAIT)
4644 					continue;
4645 				break;
4646 			}
4647 			FREE_LOCK(&lk);
4648 			if (waitfor == MNT_NOWAIT) {
4649 				bawrite(bp);
4650 			} else if ((error = bwrite(bp)) != 0) {
4651 				ACQUIRE_LOCK(&lk);
4652 				return (error);
4653 			}
4654 			ACQUIRE_LOCK(&lk);
4655 			break;
4656 		}
4657 		if (adp != NULL)
4658 			continue;
4659 		/*
4660 		 * If pass2, we are done, otherwise do pass 2.
4661 		 */
4662 		if (waitfor == MNT_WAIT)
4663 			break;
4664 		waitfor = MNT_WAIT;
4665 	}
4666 	/*
4667 	 * Try freeing inodedep in case all dependencies have been removed.
4668 	 */
4669 	if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
4670 		(void) free_inodedep(inodedep);
4671 	return (0);
4672 }
4673 
4674 /*
4675  * Eliminate a pagedep dependency by flushing out all its diradd dependencies.
4676  * Called with splbio blocked.
4677  */
4678 static int
4679 flush_pagedep_deps(struct vnode *pvp, struct mount *mp,
4680 		   struct diraddhd *diraddhdp)
4681 {
4682 	struct inodedep *inodedep;
4683 	struct ufsmount *ump;
4684 	struct diradd *dap;
4685 	struct vnode *vp;
4686 	int gotit, error = 0;
4687 	struct buf *bp;
4688 	ino_t inum;
4689 
4690 	ump = VFSTOUFS(mp);
4691 	while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
4692 		/*
4693 		 * Flush ourselves if this directory entry
4694 		 * has a MKDIR_PARENT dependency.
4695 		 */
4696 		if (dap->da_state & MKDIR_PARENT) {
4697 			FREE_LOCK(&lk);
4698 			if ((error = ffs_update(pvp, 1)) != 0)
4699 				break;
4700 			ACQUIRE_LOCK(&lk);
4701 			/*
4702 			 * If that cleared dependencies, go on to next.
4703 			 */
4704 			if (dap != LIST_FIRST(diraddhdp))
4705 				continue;
4706 			if (dap->da_state & MKDIR_PARENT) {
4707 				FREE_LOCK(&lk);
4708 				panic("flush_pagedep_deps: MKDIR_PARENT");
4709 			}
4710 		}
4711 		/*
4712 		 * A newly allocated directory must have its "." and
4713 		 * ".." entries written out before its name can be
4714 		 * committed in its parent. We do not want or need
4715 		 * the full semantics of a synchronous VOP_FSYNC as
4716 		 * that may end up here again, once for each directory
4717 		 * level in the filesystem. Instead, we push the blocks
4718 		 * and wait for them to clear. We have to fsync twice
4719 		 * because the first call may choose to defer blocks
4720 		 * that still have dependencies, but deferral will
4721 		 * happen at most once.
4722 		 */
4723 		inum = dap->da_newinum;
4724 		if (dap->da_state & MKDIR_BODY) {
4725 			FREE_LOCK(&lk);
4726 			if ((error = VFS_VGET(mp, NULL, inum, &vp)) != 0)
4727 				break;
4728 			if ((error=VOP_FSYNC(vp, MNT_NOWAIT, 0)) ||
4729 			    (error=VOP_FSYNC(vp, MNT_NOWAIT, 0))) {
4730 				vput(vp);
4731 				break;
4732 			}
4733 			drain_output(vp, 0);
4734 			vput(vp);
4735 			ACQUIRE_LOCK(&lk);
4736 			/*
4737 			 * If that cleared dependencies, go on to next.
4738 			 */
4739 			if (dap != LIST_FIRST(diraddhdp))
4740 				continue;
4741 			if (dap->da_state & MKDIR_BODY) {
4742 				FREE_LOCK(&lk);
4743 				panic("flush_pagedep_deps: MKDIR_BODY");
4744 			}
4745 		}
4746 		/*
4747 		 * Flush the inode on which the directory entry depends.
4748 		 * Having accounted for MKDIR_PARENT and MKDIR_BODY above,
4749 		 * the only remaining dependency is that the updated inode
4750 		 * count must get pushed to disk. The inode has already
4751 		 * been pushed into its inode buffer (via VOP_UPDATE) at
4752 		 * the time of the reference count change. So we need only
4753 		 * locate that buffer, ensure that there will be no rollback
4754 		 * caused by a bitmap dependency, then write the inode buffer.
4755 		 */
4756 		if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0) {
4757 			FREE_LOCK(&lk);
4758 			panic("flush_pagedep_deps: lost inode");
4759 		}
4760 		/*
4761 		 * If the inode still has bitmap dependencies,
4762 		 * push them to disk.
4763 		 */
4764 		if ((inodedep->id_state & DEPCOMPLETE) == 0) {
4765 			gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
4766 			FREE_LOCK(&lk);
4767 			if (gotit && (error = bwrite(inodedep->id_buf)) != 0)
4768 				break;
4769 			ACQUIRE_LOCK(&lk);
4770 			if (dap != LIST_FIRST(diraddhdp))
4771 				continue;
4772 		}
4773 		/*
4774 		 * If the inode is still sitting in a buffer waiting
4775 		 * to be written, push it to disk.
4776 		 */
4777 		FREE_LOCK(&lk);
4778 		if ((error = bread(ump->um_devvp,
4779 			fsbtodoff(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
4780 		    (int)ump->um_fs->fs_bsize, &bp)) != 0)
4781 			break;
4782 		if ((error = bwrite(bp)) != 0)
4783 			break;
4784 		ACQUIRE_LOCK(&lk);
4785 		/*
4786 		 * If we have failed to get rid of all the dependencies
4787 		 * then something is seriously wrong.
4788 		 */
4789 		if (dap == LIST_FIRST(diraddhdp)) {
4790 			FREE_LOCK(&lk);
4791 			panic("flush_pagedep_deps: flush failed");
4792 		}
4793 	}
4794 	if (error)
4795 		ACQUIRE_LOCK(&lk);
4796 	return (error);
4797 }
4798 
4799 /*
4800  * A large burst of file addition or deletion activity can drive the
4801  * memory load excessively high. First attempt to slow things down
4802  * using the techniques below. If that fails, this routine requests
4803  * the offending operations to fall back to running synchronously
4804  * until the memory load returns to a reasonable level.
4805  */
4806 int
4807 softdep_slowdown(struct vnode *vp)
4808 {
4809 	int max_softdeps_hard;
4810 
4811 	max_softdeps_hard = max_softdeps * 11 / 10;
4812 	if (num_dirrem < max_softdeps_hard / 2 &&
4813 	    num_inodedep < max_softdeps_hard)
4814 		return (0);
4815 	stat_sync_limit_hit += 1;
4816 	return (1);
4817 }
4818 
4819 /*
4820  * If memory utilization has gotten too high, deliberately slow things
4821  * down and speed up the I/O processing.
4822  */
4823 static int
4824 request_cleanup(int resource, int islocked)
4825 {
4826 	struct thread *td = curthread;		/* XXX */
4827 
4828 	/*
4829 	 * We never hold up the filesystem syncer process.
4830 	 */
4831 	if (td == filesys_syncer)
4832 		return (0);
4833 	/*
4834 	 * First check to see if the work list has gotten backlogged.
4835 	 * If it has, co-opt this process to help clean up two entries.
4836 	 * Because this process may hold inodes locked, we cannot
4837 	 * handle any remove requests that might block on a locked
4838 	 * inode as that could lead to deadlock.
4839 	 */
4840 	if (num_on_worklist > max_softdeps / 10) {
4841 		if (islocked)
4842 			FREE_LOCK(&lk);
4843 		process_worklist_item(NULL, LK_NOWAIT);
4844 		process_worklist_item(NULL, LK_NOWAIT);
4845 		stat_worklist_push += 2;
4846 		if (islocked)
4847 			ACQUIRE_LOCK(&lk);
4848 		return(1);
4849 	}
4850 
4851 	/*
4852 	 * If we are resource constrained on inode dependencies, try
4853 	 * flushing some dirty inodes. Otherwise, we are constrained
4854 	 * by file deletions, so try accelerating flushes of directories
4855 	 * with removal dependencies. We would like to do the cleanup
4856 	 * here, but we probably hold an inode locked at this point and
4857 	 * that might deadlock against one that we try to clean. So,
4858 	 * the best that we can do is request the syncer daemon to do
4859 	 * the cleanup for us.
4860 	 */
4861 	switch (resource) {
4862 
4863 	case FLUSH_INODES:
4864 		stat_ino_limit_push += 1;
4865 		req_clear_inodedeps += 1;
4866 		stat_countp = &stat_ino_limit_hit;
4867 		break;
4868 
4869 	case FLUSH_REMOVE:
4870 		stat_blk_limit_push += 1;
4871 		req_clear_remove += 1;
4872 		stat_countp = &stat_blk_limit_hit;
4873 		break;
4874 
4875 	default:
4876 		if (islocked)
4877 			FREE_LOCK(&lk);
4878 		panic("request_cleanup: unknown type");
4879 	}
4880 	/*
4881 	 * Hopefully the syncer daemon will catch up and awaken us.
4882 	 * We wait at most tickdelay before proceeding in any case.
4883 	 */
4884 	if (islocked == 0)
4885 		ACQUIRE_LOCK(&lk);
4886 	proc_waiting += 1;
4887 	if (!callout_active(&handle))
4888 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4889 			      pause_timer, NULL);
4890 	interlocked_sleep(&lk, SLEEP, (caddr_t)&proc_waiting, 0,
4891 	    "softupdate", 0);
4892 	proc_waiting -= 1;
4893 	if (islocked == 0)
4894 		FREE_LOCK(&lk);
4895 	return (1);
4896 }
4897 
4898 /*
4899  * Awaken processes pausing in request_cleanup and clear proc_waiting
4900  * to indicate that there is no longer a timer running.
4901  */
4902 void
4903 pause_timer(void *arg)
4904 {
4905 	*stat_countp += 1;
4906 	wakeup_one(&proc_waiting);
4907 	if (proc_waiting > 0)
4908 		callout_reset(&handle, tickdelay > 2 ? tickdelay : 2,
4909 			      pause_timer, NULL);
4910 	else
4911 		callout_deactivate(&handle);
4912 }
4913 
4914 /*
4915  * Flush out a directory with at least one removal dependency in an effort to
4916  * reduce the number of dirrem, freefile, and freeblks dependency structures.
4917  */
4918 static void
4919 clear_remove(struct thread *td)
4920 {
4921 	struct pagedep_hashhead *pagedephd;
4922 	struct pagedep *pagedep;
4923 	static int next = 0;
4924 	struct mount *mp;
4925 	struct vnode *vp;
4926 	int error, cnt;
4927 	ino_t ino;
4928 
4929 	ACQUIRE_LOCK(&lk);
4930 	for (cnt = 0; cnt < pagedep_hash; cnt++) {
4931 		pagedephd = &pagedep_hashtbl[next++];
4932 		if (next >= pagedep_hash)
4933 			next = 0;
4934 		LIST_FOREACH(pagedep, pagedephd, pd_hash) {
4935 			if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
4936 				continue;
4937 			mp = pagedep->pd_mnt;
4938 			ino = pagedep->pd_ino;
4939 			FREE_LOCK(&lk);
4940 			if ((error = VFS_VGET(mp, NULL, ino, &vp)) != 0) {
4941 				softdep_error("clear_remove: vget", error);
4942 				return;
4943 			}
4944 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
4945 				softdep_error("clear_remove: fsync", error);
4946 			drain_output(vp, 0);
4947 			vput(vp);
4948 			return;
4949 		}
4950 	}
4951 	FREE_LOCK(&lk);
4952 }
4953 
4954 /*
4955  * Clear out a block of dirty inodes in an effort to reduce
4956  * the number of inodedep dependency structures.
4957  */
4958 struct clear_inodedeps_info {
4959 	struct fs *fs;
4960 	struct mount *mp;
4961 };
4962 
4963 static int
4964 clear_inodedeps_mountlist_callback(struct mount *mp, void *data)
4965 {
4966 	struct clear_inodedeps_info *info = data;
4967 
4968 	if ((mp->mnt_flag & MNT_SOFTDEP) && info->fs == VFSTOUFS(mp)->um_fs) {
4969 		info->mp = mp;
4970 		return(-1);
4971 	}
4972 	return(0);
4973 }
4974 
4975 static void
4976 clear_inodedeps(struct thread *td)
4977 {
4978 	struct clear_inodedeps_info info;
4979 	struct inodedep_hashhead *inodedephd;
4980 	struct inodedep *inodedep;
4981 	static int next = 0;
4982 	struct vnode *vp;
4983 	struct fs *fs;
4984 	int error, cnt;
4985 	ino_t firstino, lastino, ino;
4986 
4987 	ACQUIRE_LOCK(&lk);
4988 	/*
4989 	 * Pick a random inode dependency to be cleared.
4990 	 * We will then gather up all the inodes in its block
4991 	 * that have dependencies and flush them out.
4992 	 */
4993 	for (cnt = 0; cnt < inodedep_hash; cnt++) {
4994 		inodedephd = &inodedep_hashtbl[next++];
4995 		if (next >= inodedep_hash)
4996 			next = 0;
4997 		if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
4998 			break;
4999 	}
5000 	if (inodedep == NULL) {
5001 		FREE_LOCK(&lk);
5002 		return;
5003 	}
5004 	/*
5005 	 * Ugly code to find mount point given pointer to superblock.
5006 	 */
5007 	fs = inodedep->id_fs;
5008 	info.mp = NULL;
5009 	info.fs = fs;
5010 	mountlist_scan(clear_inodedeps_mountlist_callback,
5011 			&info, MNTSCAN_FORWARD|MNTSCAN_NOBUSY);
5012 	/*
5013 	 * Find the last inode in the block with dependencies.
5014 	 */
5015 	firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
5016 	for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
5017 		if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
5018 			break;
5019 	/*
5020 	 * Asynchronously push all but the last inode with dependencies.
5021 	 * Synchronously push the last inode with dependencies to ensure
5022 	 * that the inode block gets written to free up the inodedeps.
5023 	 */
5024 	for (ino = firstino; ino <= lastino; ino++) {
5025 		if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
5026 			continue;
5027 		FREE_LOCK(&lk);
5028 		if ((error = VFS_VGET(info.mp, NULL, ino, &vp)) != 0) {
5029 			softdep_error("clear_inodedeps: vget", error);
5030 			return;
5031 		}
5032 		if (ino == lastino) {
5033 			if ((error = VOP_FSYNC(vp, MNT_WAIT, 0)))
5034 				softdep_error("clear_inodedeps: fsync1", error);
5035 		} else {
5036 			if ((error = VOP_FSYNC(vp, MNT_NOWAIT, 0)))
5037 				softdep_error("clear_inodedeps: fsync2", error);
5038 			drain_output(vp, 0);
5039 		}
5040 		vput(vp);
5041 		ACQUIRE_LOCK(&lk);
5042 	}
5043 	FREE_LOCK(&lk);
5044 }
5045 
5046 /*
5047  * Function to determine if the buffer has outstanding dependencies
5048  * that will cause a roll-back if the buffer is written. If wantcount
5049  * is set, return number of dependencies, otherwise just yes or no.
5050  *
5051  * bioops callback - hold io_token
5052  */
5053 static int
5054 softdep_count_dependencies(struct buf *bp, int wantcount)
5055 {
5056 	struct worklist *wk;
5057 	struct inodedep *inodedep;
5058 	struct indirdep *indirdep;
5059 	struct allocindir *aip;
5060 	struct pagedep *pagedep;
5061 	struct diradd *dap;
5062 	int i, retval;
5063 
5064 	get_mplock();
5065 
5066 	retval = 0;
5067 	ACQUIRE_LOCK(&lk);
5068 
5069 	LIST_FOREACH(wk, &bp->b_dep, wk_list) {
5070 		switch (wk->wk_type) {
5071 
5072 		case D_INODEDEP:
5073 			inodedep = WK_INODEDEP(wk);
5074 			if ((inodedep->id_state & DEPCOMPLETE) == 0) {
5075 				/* bitmap allocation dependency */
5076 				retval += 1;
5077 				if (!wantcount)
5078 					goto out;
5079 			}
5080 			if (TAILQ_FIRST(&inodedep->id_inoupdt)) {
5081 				/* direct block pointer dependency */
5082 				retval += 1;
5083 				if (!wantcount)
5084 					goto out;
5085 			}
5086 			continue;
5087 
5088 		case D_INDIRDEP:
5089 			indirdep = WK_INDIRDEP(wk);
5090 
5091 			LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) {
5092 				/* indirect block pointer dependency */
5093 				retval += 1;
5094 				if (!wantcount)
5095 					goto out;
5096 			}
5097 			continue;
5098 
5099 		case D_PAGEDEP:
5100 			pagedep = WK_PAGEDEP(wk);
5101 			for (i = 0; i < DAHASHSZ; i++) {
5102 
5103 				LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) {
5104 					/* directory entry dependency */
5105 					retval += 1;
5106 					if (!wantcount)
5107 						goto out;
5108 				}
5109 			}
5110 			continue;
5111 
5112 		case D_BMSAFEMAP:
5113 		case D_ALLOCDIRECT:
5114 		case D_ALLOCINDIR:
5115 		case D_MKDIR:
5116 			/* never a dependency on these blocks */
5117 			continue;
5118 
5119 		default:
5120 			FREE_LOCK(&lk);
5121 			panic("softdep_check_for_rollback: Unexpected type %s",
5122 			    TYPENAME(wk->wk_type));
5123 			/* NOTREACHED */
5124 		}
5125 	}
5126 out:
5127 	FREE_LOCK(&lk);
5128 	rel_mplock();
5129 
5130 	return retval;
5131 }
5132 
5133 /*
5134  * Acquire exclusive access to a buffer.
5135  * Must be called with splbio blocked.
5136  * Return 1 if buffer was acquired.
5137  */
5138 static int
5139 getdirtybuf(struct buf **bpp, int waitfor)
5140 {
5141 	struct buf *bp;
5142 	int error;
5143 
5144 	for (;;) {
5145 		if ((bp = *bpp) == NULL)
5146 			return (0);
5147 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
5148 			break;
5149 		if (waitfor != MNT_WAIT)
5150 			return (0);
5151 		error = interlocked_sleep(&lk, LOCKBUF, bp,
5152 		    LK_EXCLUSIVE | LK_SLEEPFAIL, 0, 0);
5153 		if (error != ENOLCK) {
5154 			FREE_LOCK(&lk);
5155 			panic("getdirtybuf: inconsistent lock");
5156 		}
5157 	}
5158 	if ((bp->b_flags & B_DELWRI) == 0) {
5159 		BUF_UNLOCK(bp);
5160 		return (0);
5161 	}
5162 	bremfree(bp);
5163 	return (1);
5164 }
5165 
5166 /*
5167  * Wait for pending output on a vnode to complete.
5168  * Must be called with vnode locked.
5169  */
5170 static void
5171 drain_output(struct vnode *vp, int islocked)
5172 {
5173 
5174 	if (!islocked)
5175 		ACQUIRE_LOCK(&lk);
5176 	while (bio_track_active(&vp->v_track_write)) {
5177 		FREE_LOCK(&lk);
5178 		bio_track_wait(&vp->v_track_write, 0, 0);
5179 		ACQUIRE_LOCK(&lk);
5180 	}
5181 	if (!islocked)
5182 		FREE_LOCK(&lk);
5183 }
5184 
5185 /*
5186  * Called whenever a buffer that is being invalidated or reallocated
5187  * contains dependencies. This should only happen if an I/O error has
5188  * occurred. The routine is called with the buffer locked.
5189  *
5190  * bioops callback - hold io_token
5191  */
5192 static void
5193 softdep_deallocate_dependencies(struct buf *bp)
5194 {
5195 	/* nothing to do, mp lock not needed */
5196 	if ((bp->b_flags & B_ERROR) == 0)
5197 		panic("softdep_deallocate_dependencies: dangling deps");
5198 	softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntfromname, bp->b_error);
5199 	panic("softdep_deallocate_dependencies: unrecovered I/O error");
5200 }
5201 
5202 /*
5203  * Function to handle asynchronous write errors in the filesystem.
5204  */
5205 void
5206 softdep_error(char *func, int error)
5207 {
5208 
5209 	/* XXX should do something better! */
5210 	kprintf("%s: got error %d while accessing filesystem\n", func, error);
5211 }
5212