xref: /dragonfly/sys/vm/swap_pager.c (revision 16dd80e4)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/kcollect.h>
110 
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
122 
123 #include <sys/buf2.h>
124 #include <vm/vm_page2.h>
125 
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
128 #endif
129 
130 #define SWM_FREE	0x02	/* free, period			*/
131 #define SWM_POP		0x04	/* pop out			*/
132 
133 #define SWBIO_READ	0x01
134 #define SWBIO_WRITE	0x02
135 #define SWBIO_SYNC	0x04
136 #define SWBIO_TTC	0x08	/* for VM_PAGER_TRY_TO_CACHE */
137 
138 struct swfreeinfo {
139 	vm_object_t	object;
140 	vm_pindex_t	basei;
141 	vm_pindex_t	begi;
142 	vm_pindex_t	endi;	/* inclusive */
143 };
144 
145 struct swswapoffinfo {
146 	vm_object_t	object;
147 	int		devidx;
148 	int		shared;
149 };
150 
151 /*
152  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
153  * in the old system.
154  */
155 
156 int swap_pager_full;		/* swap space exhaustion (task killing) */
157 int swap_fail_ticks;		/* when we became exhausted */
158 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
159 swblk_t vm_swap_cache_use;
160 swblk_t vm_swap_anon_use;
161 static int vm_report_swap_allocs;
162 
163 static int nsw_rcount;		/* free read buffers			*/
164 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
165 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
166 static int nsw_wcount_async_max;/* assigned maximum			*/
167 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
168 
169 struct blist *swapblist;
170 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
171 static int swap_burst_read = 0;	/* allow burst reading */
172 static swblk_t swapiterator;	/* linearize allocations */
173 int swap_user_async = 0;	/* user swap pager operation can be async */
174 
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176 
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
181 
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
183 
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190 
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
197         CTLFLAG_RD, &vm_swap_size, 0, "");
198 #else
199 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
200         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
201 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
202         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_size,
204         CTLFLAG_RD, &vm_swap_size, 0, "");
205 #endif
206 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
207         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
208 
209 vm_zone_t		swap_zone;
210 
211 /*
212  * Red-Black tree for swblock entries
213  *
214  * The caller must hold vm_token
215  */
216 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
217 	     vm_pindex_t, swb_index);
218 
219 int
220 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
221 {
222 	if (swb1->swb_index < swb2->swb_index)
223 		return(-1);
224 	if (swb1->swb_index > swb2->swb_index)
225 		return(1);
226 	return(0);
227 }
228 
229 static
230 int
231 rb_swblock_scancmp(struct swblock *swb, void *data)
232 {
233 	struct swfreeinfo *info = data;
234 
235 	if (swb->swb_index < info->basei)
236 		return(-1);
237 	if (swb->swb_index > info->endi)
238 		return(1);
239 	return(0);
240 }
241 
242 static
243 int
244 rb_swblock_condcmp(struct swblock *swb, void *data)
245 {
246 	struct swfreeinfo *info = data;
247 
248 	if (swb->swb_index < info->basei)
249 		return(-1);
250 	return(0);
251 }
252 
253 /*
254  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
255  * calls hooked from other parts of the VM system and do not appear here.
256  * (see vm/swap_pager.h).
257  */
258 
259 static void	swap_pager_dealloc (vm_object_t object);
260 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
261 static void	swap_chain_iodone(struct bio *biox);
262 
263 struct pagerops swappagerops = {
264 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
265 	swap_pager_getpage,	/* pagein				*/
266 	swap_pager_putpages,	/* pageout				*/
267 	swap_pager_haspage	/* get backing store status for page	*/
268 };
269 
270 /*
271  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
272  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
273  *
274  * swap_*() routines are externally accessible.  swp_*() routines are
275  * internal.
276  */
277 
278 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
279 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
280 
281 static __inline void	swp_sizecheck (void);
282 static void	swp_pager_async_iodone (struct bio *bio);
283 
284 /*
285  * Swap bitmap functions
286  */
287 
288 static __inline void	swp_pager_freeswapspace(vm_object_t object,
289 						swblk_t blk, int npages);
290 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
291 
292 /*
293  * Metadata functions
294  */
295 
296 static void swp_pager_meta_convert(vm_object_t);
297 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
298 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
299 static void swp_pager_meta_free_all(vm_object_t);
300 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
301 
302 /*
303  * SWP_SIZECHECK() -	update swap_pager_full indication
304  *
305  *	update the swap_pager_almost_full indication and warn when we are
306  *	about to run out of swap space, using lowat/hiwat hysteresis.
307  *
308  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
309  *
310  * No restrictions on call
311  * This routine may not block.
312  * SMP races are ok.
313  */
314 static __inline void
315 swp_sizecheck(void)
316 {
317 	if (vm_swap_size < nswap_lowat) {
318 		if (swap_pager_almost_full == 0) {
319 			kprintf("swap_pager: out of swap space\n");
320 			swap_pager_almost_full = 1;
321 			swap_fail_ticks = ticks;
322 		}
323 	} else {
324 		swap_pager_full = 0;
325 		if (vm_swap_size > nswap_hiwat)
326 			swap_pager_almost_full = 0;
327 	}
328 }
329 
330 /*
331  * Long-term data collection on 10-second interval.  Return the value
332  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
333  *
334  * Return total swap in the scale field.  This can change if swap is
335  * regularly added or removed and may cause some historical confusion
336  * in that case, but SWAPPCT will always be historically accurate.
337  */
338 
339 #define PTOB(value)	((uint64_t)(value) << PAGE_SHIFT)
340 
341 static uint64_t
342 collect_swap_callback(int n)
343 {
344 	uint64_t total = vm_swap_max;
345 	uint64_t anon = vm_swap_anon_use;
346 	uint64_t cache = vm_swap_cache_use;
347 
348 	if (total == 0)		/* avoid divide by zero */
349 		total = 1;
350 	kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
351 	kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
352 	kcollect_setscale(KCOLLECT_SWAPANO,
353 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
354 	kcollect_setscale(KCOLLECT_SWAPCAC,
355 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
356 	return (((anon + cache) * 10000 + (total >> 1)) / total);
357 }
358 
359 /*
360  * SWAP_PAGER_INIT() -	initialize the swap pager!
361  *
362  *	Expected to be started from system init.  NOTE:  This code is run
363  *	before much else so be careful what you depend on.  Most of the VM
364  *	system has yet to be initialized at this point.
365  *
366  * Called from the low level boot code only.
367  */
368 static void
369 swap_pager_init(void *arg __unused)
370 {
371 	kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
372 			  KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
373 	kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
374 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
375 	kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
376 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
377 }
378 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
379 
380 /*
381  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
382  *
383  *	Expected to be started from pageout process once, prior to entering
384  *	its main loop.
385  *
386  * Called from the low level boot code only.
387  */
388 void
389 swap_pager_swap_init(void)
390 {
391 	int n, n2;
392 
393 	/*
394 	 * Number of in-transit swap bp operations.  Don't
395 	 * exhaust the pbufs completely.  Make sure we
396 	 * initialize workable values (0 will work for hysteresis
397 	 * but it isn't very efficient).
398 	 *
399 	 * The nsw_cluster_max is constrained by the number of pages an XIO
400 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
401 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
402 	 * constrained by the swap device interleave stripe size.
403 	 *
404 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
405 	 * designed to prevent other I/O from having high latencies due to
406 	 * our pageout I/O.  The value 4 works well for one or two active swap
407 	 * devices but is probably a little low if you have more.  Even so,
408 	 * a higher value would probably generate only a limited improvement
409 	 * with three or four active swap devices since the system does not
410 	 * typically have to pageout at extreme bandwidths.   We will want
411 	 * at least 2 per swap devices, and 4 is a pretty good value if you
412 	 * have one NFS swap device due to the command/ack latency over NFS.
413 	 * So it all works out pretty well.
414 	 */
415 
416 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
417 
418 	nsw_rcount = (nswbuf_kva + 1) / 2;
419 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
420 	nsw_wcount_async = 4;
421 	nsw_wcount_async_max = nsw_wcount_async;
422 
423 	/*
424 	 * The zone is dynamically allocated so generally size it to
425 	 * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
426 	 * on physical memory of around 8x (each swblock can hold 16 pages).
427 	 *
428 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
429 	 * has increased dramatically.
430 	 */
431 	n = vmstats.v_page_count / 2;
432 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
433 		n = maxswzone / sizeof(struct swblock);
434 	n2 = n;
435 
436 	do {
437 		swap_zone = zinit(
438 			"SWAPMETA",
439 			sizeof(struct swblock),
440 			n,
441 			ZONE_INTERRUPT);
442 		if (swap_zone != NULL)
443 			break;
444 		/*
445 		 * if the allocation failed, try a zone two thirds the
446 		 * size of the previous attempt.
447 		 */
448 		n -= ((n + 2) / 3);
449 	} while (n > 0);
450 
451 	if (swap_zone == NULL)
452 		panic("swap_pager_swap_init: swap_zone == NULL");
453 	if (n2 != n)
454 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
455 }
456 
457 /*
458  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
459  *			its metadata structures.
460  *
461  *	This routine is called from the mmap and fork code to create a new
462  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
463  *	and then converting it with swp_pager_meta_convert().
464  *
465  *	We only support unnamed objects.
466  *
467  * No restrictions.
468  */
469 vm_object_t
470 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
471 {
472 	vm_object_t object;
473 
474 	KKASSERT(handle == NULL);
475 	object = vm_object_allocate_hold(OBJT_DEFAULT,
476 					 OFF_TO_IDX(offset + PAGE_MASK + size));
477 	swp_pager_meta_convert(object);
478 	vm_object_drop(object);
479 
480 	return (object);
481 }
482 
483 /*
484  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
485  *
486  *	The swap backing for the object is destroyed.  The code is
487  *	designed such that we can reinstantiate it later, but this
488  *	routine is typically called only when the entire object is
489  *	about to be destroyed.
490  *
491  * The object must be locked or unreferenceable.
492  * No other requirements.
493  */
494 static void
495 swap_pager_dealloc(vm_object_t object)
496 {
497 	vm_object_hold(object);
498 	vm_object_pip_wait(object, "swpdea");
499 
500 	/*
501 	 * Free all remaining metadata.  We only bother to free it from
502 	 * the swap meta data.  We do not attempt to free swapblk's still
503 	 * associated with vm_page_t's for this object.  We do not care
504 	 * if paging is still in progress on some objects.
505 	 */
506 	swp_pager_meta_free_all(object);
507 	vm_object_drop(object);
508 }
509 
510 /************************************************************************
511  *			SWAP PAGER BITMAP ROUTINES			*
512  ************************************************************************/
513 
514 /*
515  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
516  *
517  *	Allocate swap for the requested number of pages.  The starting
518  *	swap block number (a page index) is returned or SWAPBLK_NONE
519  *	if the allocation failed.
520  *
521  *	Also has the side effect of advising that somebody made a mistake
522  *	when they configured swap and didn't configure enough.
523  *
524  * The caller must hold the object.
525  * This routine may not block.
526  */
527 static __inline swblk_t
528 swp_pager_getswapspace(vm_object_t object, int npages)
529 {
530 	swblk_t blk;
531 
532 	lwkt_gettoken(&vm_token);
533 	blk = blist_allocat(swapblist, npages, swapiterator);
534 	if (blk == SWAPBLK_NONE)
535 		blk = blist_allocat(swapblist, npages, 0);
536 	if (blk == SWAPBLK_NONE) {
537 		if (swap_pager_full != 2) {
538 			if (vm_swap_max == 0)
539 				kprintf("Warning: The system would like to "
540 					"page to swap but no swap space "
541 					"is configured!\n");
542 			else
543 				kprintf("swap_pager_getswapspace: "
544 					"swap full allocating %d pages\n",
545 					npages);
546 			swap_pager_full = 2;
547 			if (swap_pager_almost_full == 0)
548 				swap_fail_ticks = ticks;
549 			swap_pager_almost_full = 1;
550 		}
551 	} else {
552 		/* swapiterator = blk; disable for now, doesn't work well */
553 		swapacctspace(blk, -npages);
554 		if (object->type == OBJT_SWAP)
555 			vm_swap_anon_use += npages;
556 		else
557 			vm_swap_cache_use += npages;
558 		swp_sizecheck();
559 	}
560 	lwkt_reltoken(&vm_token);
561 	return(blk);
562 }
563 
564 /*
565  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
566  *
567  *	This routine returns the specified swap blocks back to the bitmap.
568  *
569  *	Note:  This routine may not block (it could in the old swap code),
570  *	and through the use of the new blist routines it does not block.
571  *
572  * This routine may not block.
573  */
574 
575 static __inline void
576 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
577 {
578 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
579 
580 	lwkt_gettoken(&vm_token);
581 	sp->sw_nused -= npages;
582 	if (object->type == OBJT_SWAP)
583 		vm_swap_anon_use -= npages;
584 	else
585 		vm_swap_cache_use -= npages;
586 
587 	if (sp->sw_flags & SW_CLOSING) {
588 		lwkt_reltoken(&vm_token);
589 		return;
590 	}
591 
592 	blist_free(swapblist, blk, npages);
593 	vm_swap_size += npages;
594 	swp_sizecheck();
595 	lwkt_reltoken(&vm_token);
596 }
597 
598 /*
599  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
600  *				range within an object.
601  *
602  *	This is a globally accessible routine.
603  *
604  *	This routine removes swapblk assignments from swap metadata.
605  *
606  *	The external callers of this routine typically have already destroyed
607  *	or renamed vm_page_t's associated with this range in the object so
608  *	we should be ok.
609  *
610  * No requirements.
611  */
612 void
613 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
614 {
615 	vm_object_hold(object);
616 	swp_pager_meta_free(object, start, size);
617 	vm_object_drop(object);
618 }
619 
620 /*
621  * No requirements.
622  */
623 void
624 swap_pager_freespace_all(vm_object_t object)
625 {
626 	vm_object_hold(object);
627 	swp_pager_meta_free_all(object);
628 	vm_object_drop(object);
629 }
630 
631 /*
632  * This function conditionally frees swap cache swap starting at
633  * (*basei) in the object.  (count) swap blocks will be nominally freed.
634  * The actual number of blocks freed can be more or less than the
635  * requested number.
636  *
637  * This function nominally returns the number of blocks freed.  However,
638  * the actual number of blocks freed may be less then the returned value.
639  * If the function is unable to exhaust the object or if it is able to
640  * free (approximately) the requested number of blocks it returns
641  * a value n > count.
642  *
643  * If we exhaust the object we will return a value n <= count.
644  *
645  * The caller must hold the object.
646  *
647  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
648  *	     callers should always pass a count value > 0.
649  */
650 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
651 
652 int
653 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
654 {
655 	struct swfreeinfo info;
656 	int n;
657 	int t;
658 
659 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
660 
661 	info.object = object;
662 	info.basei = *basei;	/* skip up to this page index */
663 	info.begi = count;	/* max swap pages to destroy */
664 	info.endi = count * 8;	/* max swblocks to scan */
665 
666 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
667 				swap_pager_condfree_callback, &info);
668 	*basei = info.basei;
669 
670 	/*
671 	 * Take the higher difference swblocks vs pages
672 	 */
673 	n = count - (int)info.begi;
674 	t = count * 8 - (int)info.endi;
675 	if (n < t)
676 		n = t;
677 	if (n < 1)
678 		n = 1;
679 	return(n);
680 }
681 
682 /*
683  * The idea is to free whole meta-block to avoid fragmenting
684  * the swap space or disk I/O.  We only do this if NO VM pages
685  * are present.
686  *
687  * We do not have to deal with clearing PG_SWAPPED in related VM
688  * pages because there are no related VM pages.
689  *
690  * The caller must hold the object.
691  */
692 static int
693 swap_pager_condfree_callback(struct swblock *swap, void *data)
694 {
695 	struct swfreeinfo *info = data;
696 	vm_object_t object = info->object;
697 	int i;
698 
699 	for (i = 0; i < SWAP_META_PAGES; ++i) {
700 		if (vm_page_lookup(object, swap->swb_index + i))
701 			break;
702 	}
703 	info->basei = swap->swb_index + SWAP_META_PAGES;
704 	if (i == SWAP_META_PAGES) {
705 		info->begi -= swap->swb_count;
706 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
707 	}
708 	--info->endi;
709 	if ((int)info->begi < 0 || (int)info->endi < 0)
710 		return(-1);
711 	lwkt_yield();
712 	return(0);
713 }
714 
715 /*
716  * Called by vm_page_alloc() when a new VM page is inserted
717  * into a VM object.  Checks whether swap has been assigned to
718  * the page and sets PG_SWAPPED as necessary.
719  *
720  * (m) must be busied by caller and remains busied on return.
721  */
722 void
723 swap_pager_page_inserted(vm_page_t m)
724 {
725 	if (m->object->swblock_count) {
726 		vm_object_hold(m->object);
727 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
728 			vm_page_flag_set(m, PG_SWAPPED);
729 		vm_object_drop(m->object);
730 	}
731 }
732 
733 /*
734  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
735  *
736  *	Assigns swap blocks to the specified range within the object.  The
737  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
738  *
739  *	Returns 0 on success, -1 on failure.
740  *
741  * The caller is responsible for avoiding races in the specified range.
742  * No other requirements.
743  */
744 int
745 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
746 {
747 	int n = 0;
748 	swblk_t blk = SWAPBLK_NONE;
749 	vm_pindex_t beg = start;	/* save start index */
750 
751 	vm_object_hold(object);
752 
753 	while (size) {
754 		if (n == 0) {
755 			n = BLIST_MAX_ALLOC;
756 			while ((blk = swp_pager_getswapspace(object, n)) ==
757 			       SWAPBLK_NONE)
758 			{
759 				n >>= 1;
760 				if (n == 0) {
761 					swp_pager_meta_free(object, beg,
762 							    start - beg);
763 					vm_object_drop(object);
764 					return(-1);
765 				}
766 			}
767 		}
768 		swp_pager_meta_build(object, start, blk);
769 		--size;
770 		++start;
771 		++blk;
772 		--n;
773 	}
774 	swp_pager_meta_free(object, start, n);
775 	vm_object_drop(object);
776 	return(0);
777 }
778 
779 /*
780  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
781  *			and destroy the source.
782  *
783  *	Copy any valid swapblks from the source to the destination.  In
784  *	cases where both the source and destination have a valid swapblk,
785  *	we keep the destination's.
786  *
787  *	This routine is allowed to block.  It may block allocating metadata
788  *	indirectly through swp_pager_meta_build() or if paging is still in
789  *	progress on the source.
790  *
791  *	XXX vm_page_collapse() kinda expects us not to block because we
792  *	supposedly do not need to allocate memory, but for the moment we
793  *	*may* have to get a little memory from the zone allocator, but
794  *	it is taken from the interrupt memory.  We should be ok.
795  *
796  *	The source object contains no vm_page_t's (which is just as well)
797  *	The source object is of type OBJT_SWAP.
798  *
799  *	The source and destination objects must be held by the caller.
800  */
801 void
802 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
803 		vm_pindex_t base_index, int destroysource)
804 {
805 	vm_pindex_t i;
806 
807 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
808 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
809 
810 	/*
811 	 * transfer source to destination.
812 	 */
813 	for (i = 0; i < dstobject->size; ++i) {
814 		swblk_t dstaddr;
815 
816 		/*
817 		 * Locate (without changing) the swapblk on the destination,
818 		 * unless it is invalid in which case free it silently, or
819 		 * if the destination is a resident page, in which case the
820 		 * source is thrown away.
821 		 */
822 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
823 
824 		if (dstaddr == SWAPBLK_NONE) {
825 			/*
826 			 * Destination has no swapblk and is not resident,
827 			 * copy source.
828 			 */
829 			swblk_t srcaddr;
830 
831 			srcaddr = swp_pager_meta_ctl(srcobject,
832 						     base_index + i, SWM_POP);
833 
834 			if (srcaddr != SWAPBLK_NONE)
835 				swp_pager_meta_build(dstobject, i, srcaddr);
836 		} else {
837 			/*
838 			 * Destination has valid swapblk or it is represented
839 			 * by a resident page.  We destroy the sourceblock.
840 			 */
841 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
842 		}
843 	}
844 
845 	/*
846 	 * Free left over swap blocks in source.
847 	 *
848 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
849 	 * double-remove the object from the swap queues.
850 	 */
851 	if (destroysource) {
852 		/*
853 		 * Reverting the type is not necessary, the caller is going
854 		 * to destroy srcobject directly, but I'm doing it here
855 		 * for consistency since we've removed the object from its
856 		 * queues.
857 		 */
858 		swp_pager_meta_free_all(srcobject);
859 		if (srcobject->type == OBJT_SWAP)
860 			srcobject->type = OBJT_DEFAULT;
861 	}
862 }
863 
864 /*
865  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
866  *				the requested page.
867  *
868  *	We determine whether good backing store exists for the requested
869  *	page and return TRUE if it does, FALSE if it doesn't.
870  *
871  *	If TRUE, we also try to determine how much valid, contiguous backing
872  *	store exists before and after the requested page within a reasonable
873  *	distance.  We do not try to restrict it to the swap device stripe
874  *	(that is handled in getpages/putpages).  It probably isn't worth
875  *	doing here.
876  *
877  * No requirements.
878  */
879 boolean_t
880 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
881 {
882 	swblk_t blk0;
883 
884 	/*
885 	 * do we have good backing store at the requested index ?
886 	 */
887 	vm_object_hold(object);
888 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
889 
890 	if (blk0 == SWAPBLK_NONE) {
891 		vm_object_drop(object);
892 		return (FALSE);
893 	}
894 	vm_object_drop(object);
895 	return (TRUE);
896 }
897 
898 /*
899  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
900  *
901  * This removes any associated swap backing store, whether valid or
902  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
903  * objects.
904  *
905  * This routine is typically called when a page is made dirty, at
906  * which point any associated swap can be freed.  MADV_FREE also
907  * calls us in a special-case situation
908  *
909  * NOTE!!!  If the page is clean and the swap was valid, the caller
910  *	    should make the page dirty before calling this routine.
911  *	    This routine does NOT change the m->dirty status of the page.
912  *	    Also: MADV_FREE depends on it.
913  *
914  * The page must be busied.
915  * The caller can hold the object to avoid blocking, else we might block.
916  * No other requirements.
917  */
918 void
919 swap_pager_unswapped(vm_page_t m)
920 {
921 	if (m->flags & PG_SWAPPED) {
922 		vm_object_hold(m->object);
923 		KKASSERT(m->flags & PG_SWAPPED);
924 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
925 		vm_page_flag_clear(m, PG_SWAPPED);
926 		vm_object_drop(m->object);
927 	}
928 }
929 
930 /*
931  * SWAP_PAGER_STRATEGY() - read, write, free blocks
932  *
933  * This implements a VM OBJECT strategy function using swap backing store.
934  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
935  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
936  * requests will return EINVAL.
937  *
938  * This is intended to be a cacheless interface (i.e. caching occurs at
939  * higher levels), and is also used as a swap-based SSD cache for vnode
940  * and device objects.
941  *
942  * All I/O goes directly to and from the swap device.
943  *
944  * We currently attempt to run I/O synchronously or asynchronously as
945  * the caller requests.  This isn't perfect because we loose error
946  * sequencing when we run multiple ops in parallel to satisfy a request.
947  * But this is swap, so we let it all hang out.
948  *
949  * NOTE: This function supports the KVABIO API wherein bp->b_data might
950  *	 not be synchronized to the current cpu.
951  *
952  * No requirements.
953  */
954 void
955 swap_pager_strategy(vm_object_t object, struct bio *bio)
956 {
957 	struct buf *bp = bio->bio_buf;
958 	struct bio *nbio;
959 	vm_pindex_t start;
960 	vm_pindex_t biox_blkno = 0;
961 	int count;
962 	char *data;
963 	struct bio *biox;
964 	struct buf *bufx;
965 #if 0
966 	struct bio_track *track;
967 #endif
968 
969 #if 0
970 	/*
971 	 * tracking for swapdev vnode I/Os
972 	 */
973 	if (bp->b_cmd == BUF_CMD_READ)
974 		track = &swapdev_vp->v_track_read;
975 	else
976 		track = &swapdev_vp->v_track_write;
977 #endif
978 
979 	/*
980 	 * Only supported commands
981 	 */
982 	if (bp->b_cmd != BUF_CMD_FREEBLKS &&
983 	    bp->b_cmd != BUF_CMD_READ &&
984 	    bp->b_cmd != BUF_CMD_WRITE) {
985 		bp->b_error = EINVAL;
986 		bp->b_flags |= B_ERROR | B_INVAL;
987 		biodone(bio);
988 		return;
989 	}
990 
991 	/*
992 	 * bcount must be an integral number of pages.
993 	 */
994 	if (bp->b_bcount & PAGE_MASK) {
995 		bp->b_error = EINVAL;
996 		bp->b_flags |= B_ERROR | B_INVAL;
997 		biodone(bio);
998 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
999 			"not page bounded\n",
1000 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1001 		return;
1002 	}
1003 
1004 	/*
1005 	 * Clear error indication, initialize page index, count, data pointer.
1006 	 */
1007 	bp->b_error = 0;
1008 	bp->b_flags &= ~B_ERROR;
1009 	bp->b_resid = bp->b_bcount;
1010 
1011 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1012 	count = howmany(bp->b_bcount, PAGE_SIZE);
1013 
1014 	/*
1015 	 * WARNING!  Do not dereference *data without issuing a bkvasync()
1016 	 */
1017 	data = bp->b_data;
1018 
1019 	/*
1020 	 * Deal with BUF_CMD_FREEBLKS
1021 	 */
1022 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1023 		/*
1024 		 * FREE PAGE(s) - destroy underlying swap that is no longer
1025 		 *		  needed.
1026 		 */
1027 		vm_object_hold(object);
1028 		swp_pager_meta_free(object, start, count);
1029 		vm_object_drop(object);
1030 		bp->b_resid = 0;
1031 		biodone(bio);
1032 		return;
1033 	}
1034 
1035 	/*
1036 	 * We need to be able to create a new cluster of I/O's.  We cannot
1037 	 * use the caller fields of the passed bio so push a new one.
1038 	 *
1039 	 * Because nbio is just a placeholder for the cluster links,
1040 	 * we can biodone() the original bio instead of nbio to make
1041 	 * things a bit more efficient.
1042 	 */
1043 	nbio = push_bio(bio);
1044 	nbio->bio_offset = bio->bio_offset;
1045 	nbio->bio_caller_info1.cluster_head = NULL;
1046 	nbio->bio_caller_info2.cluster_tail = NULL;
1047 
1048 	biox = NULL;
1049 	bufx = NULL;
1050 
1051 	/*
1052 	 * Execute read or write
1053 	 */
1054 	vm_object_hold(object);
1055 
1056 	while (count > 0) {
1057 		swblk_t blk;
1058 
1059 		/*
1060 		 * Obtain block.  If block not found and writing, allocate a
1061 		 * new block and build it into the object.
1062 		 */
1063 		blk = swp_pager_meta_ctl(object, start, 0);
1064 		if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1065 			blk = swp_pager_getswapspace(object, 1);
1066 			if (blk == SWAPBLK_NONE) {
1067 				bp->b_error = ENOMEM;
1068 				bp->b_flags |= B_ERROR;
1069 				break;
1070 			}
1071 			swp_pager_meta_build(object, start, blk);
1072 		}
1073 
1074 		/*
1075 		 * Do we have to flush our current collection?  Yes if:
1076 		 *
1077 		 *	- no swap block at this index
1078 		 *	- swap block is not contiguous
1079 		 *	- we cross a physical disk boundry in the
1080 		 *	  stripe.
1081 		 */
1082 		if (biox &&
1083 		    (biox_blkno + btoc(bufx->b_bcount) != blk ||
1084 		     ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1085 			switch(bp->b_cmd) {
1086 			case BUF_CMD_READ:
1087 				++mycpu->gd_cnt.v_swapin;
1088 				mycpu->gd_cnt.v_swappgsin +=
1089 					btoc(bufx->b_bcount);
1090 				break;
1091 			case BUF_CMD_WRITE:
1092 				++mycpu->gd_cnt.v_swapout;
1093 				mycpu->gd_cnt.v_swappgsout +=
1094 					btoc(bufx->b_bcount);
1095 				bufx->b_dirtyend = bufx->b_bcount;
1096 				break;
1097 			default:
1098 				/* NOT REACHED */
1099 				break;
1100 			}
1101 
1102 			/*
1103 			 * Finished with this buf.
1104 			 */
1105 			KKASSERT(bufx->b_bcount != 0);
1106 			if (bufx->b_cmd != BUF_CMD_READ)
1107 				bufx->b_dirtyend = bufx->b_bcount;
1108 			biox = NULL;
1109 			bufx = NULL;
1110 		}
1111 
1112 		/*
1113 		 * Add new swapblk to biox, instantiating biox if necessary.
1114 		 * Zero-fill reads are able to take a shortcut.
1115 		 */
1116 		if (blk == SWAPBLK_NONE) {
1117 			/*
1118 			 * We can only get here if we are reading.
1119 			 */
1120 			bkvasync(bp);
1121 			bzero(data, PAGE_SIZE);
1122 			bp->b_resid -= PAGE_SIZE;
1123 		} else {
1124 			if (biox == NULL) {
1125 				/* XXX chain count > 4, wait to <= 4 */
1126 
1127 				bufx = getpbuf(NULL);
1128 				bufx->b_flags |= B_KVABIO;
1129 				biox = &bufx->b_bio1;
1130 				cluster_append(nbio, bufx);
1131 				bufx->b_cmd = bp->b_cmd;
1132 				biox->bio_done = swap_chain_iodone;
1133 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1134 				biox->bio_caller_info1.cluster_parent = nbio;
1135 				biox_blkno = blk;
1136 				bufx->b_bcount = 0;
1137 				bufx->b_data = data;
1138 			}
1139 			bufx->b_bcount += PAGE_SIZE;
1140 		}
1141 		--count;
1142 		++start;
1143 		data += PAGE_SIZE;
1144 	}
1145 
1146 	vm_object_drop(object);
1147 
1148 	/*
1149 	 *  Flush out last buffer
1150 	 */
1151 	if (biox) {
1152 		if (bufx->b_cmd == BUF_CMD_READ) {
1153 			++mycpu->gd_cnt.v_swapin;
1154 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1155 		} else {
1156 			++mycpu->gd_cnt.v_swapout;
1157 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1158 			bufx->b_dirtyend = bufx->b_bcount;
1159 		}
1160 		KKASSERT(bufx->b_bcount);
1161 		if (bufx->b_cmd != BUF_CMD_READ)
1162 			bufx->b_dirtyend = bufx->b_bcount;
1163 		/* biox, bufx = NULL */
1164 	}
1165 
1166 	/*
1167 	 * Now initiate all the I/O.  Be careful looping on our chain as
1168 	 * I/O's may complete while we are still initiating them.
1169 	 *
1170 	 * If the request is a 100% sparse read no bios will be present
1171 	 * and we just biodone() the buffer.
1172 	 */
1173 	nbio->bio_caller_info2.cluster_tail = NULL;
1174 	bufx = nbio->bio_caller_info1.cluster_head;
1175 
1176 	if (bufx) {
1177 		while (bufx) {
1178 			biox = &bufx->b_bio1;
1179 			BUF_KERNPROC(bufx);
1180 			bufx = bufx->b_cluster_next;
1181 			vn_strategy(swapdev_vp, biox);
1182 		}
1183 	} else {
1184 		biodone(bio);
1185 	}
1186 
1187 	/*
1188 	 * Completion of the cluster will also call biodone_chain(nbio).
1189 	 * We never call biodone(nbio) so we don't have to worry about
1190 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1191 	 */
1192 	/**/
1193 }
1194 
1195 /*
1196  * biodone callback
1197  *
1198  * No requirements.
1199  */
1200 static void
1201 swap_chain_iodone(struct bio *biox)
1202 {
1203 	struct buf **nextp;
1204 	struct buf *bufx;	/* chained sub-buffer */
1205 	struct bio *nbio;	/* parent nbio with chain glue */
1206 	struct buf *bp;		/* original bp associated with nbio */
1207 	int chain_empty;
1208 
1209 	bufx = biox->bio_buf;
1210 	nbio = biox->bio_caller_info1.cluster_parent;
1211 	bp = nbio->bio_buf;
1212 
1213 	/*
1214 	 * Update the original buffer
1215 	 */
1216         KKASSERT(bp != NULL);
1217 	if (bufx->b_flags & B_ERROR) {
1218 		atomic_set_int(&bufx->b_flags, B_ERROR);
1219 		bp->b_error = bufx->b_error;	/* race ok */
1220 	} else if (bufx->b_resid != 0) {
1221 		atomic_set_int(&bufx->b_flags, B_ERROR);
1222 		bp->b_error = EINVAL;		/* race ok */
1223 	} else {
1224 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1225 	}
1226 
1227 	/*
1228 	 * Remove us from the chain.
1229 	 */
1230 	spin_lock(&swapbp_spin);
1231 	nextp = &nbio->bio_caller_info1.cluster_head;
1232 	while (*nextp != bufx) {
1233 		KKASSERT(*nextp != NULL);
1234 		nextp = &(*nextp)->b_cluster_next;
1235 	}
1236 	*nextp = bufx->b_cluster_next;
1237 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1238 	spin_unlock(&swapbp_spin);
1239 
1240 	/*
1241 	 * Clean up bufx.  If the chain is now empty we finish out
1242 	 * the parent.  Note that we may be racing other completions
1243 	 * so we must use the chain_empty status from above.
1244 	 */
1245 	if (chain_empty) {
1246 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1247 			atomic_set_int(&bp->b_flags, B_ERROR);
1248 			bp->b_error = EINVAL;
1249 		}
1250 		biodone_chain(nbio);
1251         }
1252         relpbuf(bufx, NULL);
1253 }
1254 
1255 /*
1256  * SWAP_PAGER_GETPAGES() - bring page in from swap
1257  *
1258  * The requested page may have to be brought in from swap.  Calculate the
1259  * swap block and bring in additional pages if possible.  All pages must
1260  * have contiguous swap block assignments and reside in the same object.
1261  *
1262  * The caller has a single vm_object_pip_add() reference prior to
1263  * calling us and we should return with the same.
1264  *
1265  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1266  * and any additinal pages unbusied.
1267  *
1268  * If the caller encounters a PG_RAM page it will pass it to us even though
1269  * it may be valid and dirty.  We cannot overwrite the page in this case!
1270  * The case is used to allow us to issue pure read-aheads.
1271  *
1272  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1273  *       the PG_RAM page is validated at the same time as mreq.  What we
1274  *	 really need to do is issue a separate read-ahead pbuf.
1275  *
1276  * No requirements.
1277  */
1278 static int
1279 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1280 {
1281 	struct buf *bp;
1282 	struct bio *bio;
1283 	vm_page_t mreq;
1284 	vm_page_t m;
1285 	vm_offset_t kva;
1286 	swblk_t blk;
1287 	int i;
1288 	int j;
1289 	int raonly;
1290 	int error;
1291 	u_int32_t busy_count;
1292 	vm_page_t marray[XIO_INTERNAL_PAGES];
1293 
1294 	mreq = *mpp;
1295 
1296 	vm_object_hold(object);
1297 	if (mreq->object != object) {
1298 		panic("swap_pager_getpages: object mismatch %p/%p",
1299 		    object,
1300 		    mreq->object
1301 		);
1302 	}
1303 
1304 	/*
1305 	 * We don't want to overwrite a fully valid page as it might be
1306 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1307 	 * valid page with PG_RAM set.
1308 	 *
1309 	 * In this case we see if the next page is a suitable page-in
1310 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1311 	 * set on the last page of the read-ahead to continue the pipeline.
1312 	 */
1313 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1314 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1315 			vm_object_drop(object);
1316 			return(VM_PAGER_OK);
1317 		}
1318 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1319 		if (blk == SWAPBLK_NONE) {
1320 			vm_object_drop(object);
1321 			return(VM_PAGER_OK);
1322 		}
1323 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1324 					    TRUE, &error);
1325 		if (error) {
1326 			vm_object_drop(object);
1327 			return(VM_PAGER_OK);
1328 		} else if (m == NULL) {
1329 			/*
1330 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1331 			 * page reuse.
1332 			 */
1333 			m = vm_page_alloc(object, mreq->pindex + 1,
1334 					  VM_ALLOC_QUICK);
1335 			if (m == NULL) {
1336 				vm_object_drop(object);
1337 				return(VM_PAGER_OK);
1338 			}
1339 		} else {
1340 			if (m->valid) {
1341 				vm_page_wakeup(m);
1342 				vm_object_drop(object);
1343 				return(VM_PAGER_OK);
1344 			}
1345 			vm_page_unqueue_nowakeup(m);
1346 		}
1347 		/* page is busy */
1348 		mreq = m;
1349 		raonly = 1;
1350 	} else {
1351 		raonly = 0;
1352 	}
1353 
1354 	/*
1355 	 * Try to block-read contiguous pages from swap if sequential,
1356 	 * otherwise just read one page.  Contiguous pages from swap must
1357 	 * reside within a single device stripe because the I/O cannot be
1358 	 * broken up across multiple stripes.
1359 	 *
1360 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1361 	 * set up such that the case(s) are handled implicitly.
1362 	 */
1363 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1364 	marray[0] = mreq;
1365 
1366 	for (i = 1; i <= swap_burst_read &&
1367 		    i < XIO_INTERNAL_PAGES &&
1368 		    mreq->pindex + i < object->size; ++i) {
1369 		swblk_t iblk;
1370 
1371 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1372 		if (iblk != blk + i)
1373 			break;
1374 		if ((blk ^ iblk) & ~SWB_DMMASK)
1375 			break;
1376 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1377 					    TRUE, &error);
1378 		if (error) {
1379 			break;
1380 		} else if (m == NULL) {
1381 			/*
1382 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1383 			 * page reuse.
1384 			 */
1385 			m = vm_page_alloc(object, mreq->pindex + i,
1386 					  VM_ALLOC_QUICK);
1387 			if (m == NULL)
1388 				break;
1389 		} else {
1390 			if (m->valid) {
1391 				vm_page_wakeup(m);
1392 				break;
1393 			}
1394 			vm_page_unqueue_nowakeup(m);
1395 		}
1396 		/* page is busy */
1397 		marray[i] = m;
1398 	}
1399 	if (i > 1)
1400 		vm_page_flag_set(marray[i - 1], PG_RAM);
1401 
1402 	/*
1403 	 * If mreq is the requested page and we have nothing to do return
1404 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1405 	 * page and must be cleaned up.
1406 	 */
1407 	if (blk == SWAPBLK_NONE) {
1408 		KKASSERT(i == 1);
1409 		if (raonly) {
1410 			vnode_pager_freepage(mreq);
1411 			vm_object_drop(object);
1412 			return(VM_PAGER_OK);
1413 		} else {
1414 			vm_object_drop(object);
1415 			return(VM_PAGER_FAIL);
1416 		}
1417 	}
1418 
1419 	/*
1420 	 * Map our page(s) into kva for input
1421 	 *
1422 	 * Use the KVABIO API to avoid synchronizing the pmap.
1423 	 */
1424 	bp = getpbuf_kva(&nsw_rcount);
1425 	bio = &bp->b_bio1;
1426 	kva = (vm_offset_t) bp->b_kvabase;
1427 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1428 	pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1429 
1430 	bp->b_data = (caddr_t)kva;
1431 	bp->b_bcount = PAGE_SIZE * i;
1432 	bp->b_xio.xio_npages = i;
1433 	bp->b_flags |= B_KVABIO;
1434 	bio->bio_done = swp_pager_async_iodone;
1435 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1436 	bio->bio_caller_info1.index = SWBIO_READ;
1437 
1438 	/*
1439 	 * Set index.  If raonly set the index beyond the array so all
1440 	 * the pages are treated the same, otherwise the original mreq is
1441 	 * at index 0.
1442 	 */
1443 	if (raonly)
1444 		bio->bio_driver_info = (void *)(intptr_t)i;
1445 	else
1446 		bio->bio_driver_info = (void *)(intptr_t)0;
1447 
1448 	for (j = 0; j < i; ++j) {
1449 		atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1450 			       PBUSY_SWAPINPROG);
1451 	}
1452 
1453 	mycpu->gd_cnt.v_swapin++;
1454 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1455 
1456 	/*
1457 	 * We still hold the lock on mreq, and our automatic completion routine
1458 	 * does not remove it.
1459 	 */
1460 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1461 
1462 	/*
1463 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1464 	 * this point because we automatically release it on completion.
1465 	 * Instead, we look at the one page we are interested in which we
1466 	 * still hold a lock on even through the I/O completion.
1467 	 *
1468 	 * The other pages in our m[] array are also released on completion,
1469 	 * so we cannot assume they are valid anymore either.
1470 	 */
1471 	bp->b_cmd = BUF_CMD_READ;
1472 	BUF_KERNPROC(bp);
1473 	vn_strategy(swapdev_vp, bio);
1474 
1475 	/*
1476 	 * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1477 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1478 	 * is set in the meta-data.
1479 	 *
1480 	 * If this is a read-ahead only we return immediately without
1481 	 * waiting for I/O.
1482 	 */
1483 	if (raonly) {
1484 		vm_object_drop(object);
1485 		return(VM_PAGER_OK);
1486 	}
1487 
1488 	/*
1489 	 * Read-ahead includes originally requested page case.
1490 	 */
1491 	for (;;) {
1492 		busy_count = mreq->busy_count;
1493 		cpu_ccfence();
1494 		if ((busy_count & PBUSY_SWAPINPROG) == 0)
1495 			break;
1496 		tsleep_interlock(mreq, 0);
1497 		if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1498 				       busy_count |
1499 				        PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1500 			continue;
1501 		}
1502 		atomic_set_int(&mreq->flags, PG_REFERENCED);
1503 		mycpu->gd_cnt.v_intrans++;
1504 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1505 			kprintf(
1506 			    "swap_pager: indefinite wait buffer: "
1507 				" bp %p offset: %lld, size: %ld\n",
1508 			    bp,
1509 			    (long long)bio->bio_offset,
1510 			    (long)bp->b_bcount
1511 			);
1512 		}
1513 	}
1514 
1515 	/*
1516 	 * Disallow speculative reads prior to the SWAPINPROG test.
1517 	 */
1518 	cpu_lfence();
1519 
1520 	/*
1521 	 * mreq is left busied after completion, but all the other pages
1522 	 * are freed.  If we had an unrecoverable read error the page will
1523 	 * not be valid.
1524 	 */
1525 	vm_object_drop(object);
1526 	if (mreq->valid != VM_PAGE_BITS_ALL)
1527 		return(VM_PAGER_ERROR);
1528 	else
1529 		return(VM_PAGER_OK);
1530 
1531 	/*
1532 	 * A final note: in a low swap situation, we cannot deallocate swap
1533 	 * and mark a page dirty here because the caller is likely to mark
1534 	 * the page clean when we return, causing the page to possibly revert
1535 	 * to all-zero's later.
1536 	 */
1537 }
1538 
1539 /*
1540  *	swap_pager_putpages:
1541  *
1542  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1543  *
1544  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1545  *	are automatically converted to SWAP objects.
1546  *
1547  *	In a low memory situation we may block in vn_strategy(), but the new
1548  *	vm_page reservation system coupled with properly written VFS devices
1549  *	should ensure that no low-memory deadlock occurs.  This is an area
1550  *	which needs work.
1551  *
1552  *	The parent has N vm_object_pip_add() references prior to
1553  *	calling us and will remove references for rtvals[] that are
1554  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1555  *	completion.
1556  *
1557  *	The parent has soft-busy'd the pages it passes us and will unbusy
1558  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1559  *	We need to unbusy the rest on I/O completion.
1560  *
1561  * No requirements.
1562  */
1563 void
1564 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1565 		    int flags, int *rtvals)
1566 {
1567 	int i;
1568 	int n = 0;
1569 
1570 	vm_object_hold(object);
1571 
1572 	if (count && m[0]->object != object) {
1573 		panic("swap_pager_getpages: object mismatch %p/%p",
1574 		    object,
1575 		    m[0]->object
1576 		);
1577 	}
1578 
1579 	/*
1580 	 * Step 1
1581 	 *
1582 	 * Turn object into OBJT_SWAP
1583 	 * Check for bogus sysops
1584 	 *
1585 	 * Force sync if not pageout process, we don't want any single
1586 	 * non-pageout process to be able to hog the I/O subsystem!  This
1587 	 * can be overridden by setting.
1588 	 */
1589 	if (object->type == OBJT_DEFAULT) {
1590 		if (object->type == OBJT_DEFAULT)
1591 			swp_pager_meta_convert(object);
1592 	}
1593 
1594 	/*
1595 	 * Normally we force synchronous swap I/O if this is not the
1596 	 * pageout daemon to prevent any single user process limited
1597 	 * via RLIMIT_RSS from hogging swap write bandwidth.
1598 	 */
1599 	if (curthread != pagethread &&
1600 	    curthread != emergpager &&
1601 	    swap_user_async == 0) {
1602 		flags |= VM_PAGER_PUT_SYNC;
1603 	}
1604 
1605 	/*
1606 	 * Step 2
1607 	 *
1608 	 * Update nsw parameters from swap_async_max sysctl values.
1609 	 * Do not let the sysop crash the machine with bogus numbers.
1610 	 */
1611 	if (swap_async_max != nsw_wcount_async_max) {
1612 		int n;
1613 
1614 		/*
1615 		 * limit range
1616 		 */
1617 		if ((n = swap_async_max) > nswbuf_kva / 2)
1618 			n = nswbuf_kva / 2;
1619 		if (n < 1)
1620 			n = 1;
1621 		swap_async_max = n;
1622 
1623 		/*
1624 		 * Adjust difference ( if possible ).  If the current async
1625 		 * count is too low, we may not be able to make the adjustment
1626 		 * at this time.
1627 		 *
1628 		 * vm_token needed for nsw_wcount sleep interlock
1629 		 */
1630 		lwkt_gettoken(&vm_token);
1631 		n -= nsw_wcount_async_max;
1632 		if (nsw_wcount_async + n >= 0) {
1633 			nsw_wcount_async_max += n;
1634 			pbuf_adjcount(&nsw_wcount_async, n);
1635 		}
1636 		lwkt_reltoken(&vm_token);
1637 	}
1638 
1639 	/*
1640 	 * Step 3
1641 	 *
1642 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1643 	 * The page is left dirty until the pageout operation completes
1644 	 * successfully.
1645 	 */
1646 
1647 	for (i = 0; i < count; i += n) {
1648 		struct buf *bp;
1649 		struct bio *bio;
1650 		swblk_t blk;
1651 		int j;
1652 
1653 		/*
1654 		 * Maximum I/O size is limited by a number of factors.
1655 		 */
1656 
1657 		n = min(BLIST_MAX_ALLOC, count - i);
1658 		n = min(n, nsw_cluster_max);
1659 
1660 		lwkt_gettoken(&vm_token);
1661 
1662 		/*
1663 		 * Get biggest block of swap we can.  If we fail, fall
1664 		 * back and try to allocate a smaller block.  Don't go
1665 		 * overboard trying to allocate space if it would overly
1666 		 * fragment swap.
1667 		 */
1668 		while (
1669 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1670 		    n > 4
1671 		) {
1672 			n >>= 1;
1673 		}
1674 		if (blk == SWAPBLK_NONE) {
1675 			for (j = 0; j < n; ++j)
1676 				rtvals[i+j] = VM_PAGER_FAIL;
1677 			lwkt_reltoken(&vm_token);
1678 			continue;
1679 		}
1680 		if (vm_report_swap_allocs > 0) {
1681 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1682 			--vm_report_swap_allocs;
1683 		}
1684 
1685 		/*
1686 		 * The I/O we are constructing cannot cross a physical
1687 		 * disk boundry in the swap stripe.
1688 		 */
1689 		if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1690 			j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1691 			swp_pager_freeswapspace(object, blk + j, n - j);
1692 			n = j;
1693 		}
1694 
1695 		/*
1696 		 * All I/O parameters have been satisfied, build the I/O
1697 		 * request and assign the swap space.
1698 		 *
1699 		 * Use the KVABIO API to avoid synchronizing the pmap.
1700 		 */
1701 		if ((flags & VM_PAGER_PUT_SYNC))
1702 			bp = getpbuf_kva(&nsw_wcount_sync);
1703 		else
1704 			bp = getpbuf_kva(&nsw_wcount_async);
1705 		bio = &bp->b_bio1;
1706 
1707 		lwkt_reltoken(&vm_token);
1708 
1709 		pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1710 
1711 		bp->b_flags |= B_KVABIO;
1712 		bp->b_bcount = PAGE_SIZE * n;
1713 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1714 
1715 		for (j = 0; j < n; ++j) {
1716 			vm_page_t mreq = m[i+j];
1717 
1718 			swp_pager_meta_build(mreq->object, mreq->pindex,
1719 					     blk + j);
1720 			if (object->type == OBJT_SWAP)
1721 				vm_page_dirty(mreq);
1722 			rtvals[i+j] = VM_PAGER_OK;
1723 
1724 			atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1725 			bp->b_xio.xio_pages[j] = mreq;
1726 		}
1727 		bp->b_xio.xio_npages = n;
1728 
1729 		mycpu->gd_cnt.v_swapout++;
1730 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1731 
1732 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1733 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1734 		bp->b_cmd = BUF_CMD_WRITE;
1735 		bio->bio_caller_info1.index = SWBIO_WRITE;
1736 
1737 		/*
1738 		 * asynchronous
1739 		 */
1740 		if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1741 			bio->bio_done = swp_pager_async_iodone;
1742 			BUF_KERNPROC(bp);
1743 			vn_strategy(swapdev_vp, bio);
1744 
1745 			for (j = 0; j < n; ++j)
1746 				rtvals[i+j] = VM_PAGER_PEND;
1747 			continue;
1748 		}
1749 
1750 		/*
1751 		 * Issue synchrnously.
1752 		 *
1753 		 * Wait for the sync I/O to complete, then update rtvals.
1754 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1755 		 * our async completion routine at the end, thus avoiding a
1756 		 * double-free.
1757 		 */
1758 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1759 		if (flags & VM_PAGER_TRY_TO_CACHE)
1760 			bio->bio_caller_info1.index |= SWBIO_TTC;
1761 		bio->bio_done = biodone_sync;
1762 		bio->bio_flags |= BIO_SYNC;
1763 		vn_strategy(swapdev_vp, bio);
1764 		biowait(bio, "swwrt");
1765 
1766 		for (j = 0; j < n; ++j)
1767 			rtvals[i+j] = VM_PAGER_PEND;
1768 
1769 		/*
1770 		 * Now that we are through with the bp, we can call the
1771 		 * normal async completion, which frees everything up.
1772 		 */
1773 		swp_pager_async_iodone(bio);
1774 	}
1775 	vm_object_drop(object);
1776 }
1777 
1778 /*
1779  * No requirements.
1780  *
1781  * Recalculate the low and high-water marks.
1782  */
1783 void
1784 swap_pager_newswap(void)
1785 {
1786 	/*
1787 	 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1788 	 *	 limitation imposed by the blist code.  Remember that this
1789 	 *	 will be divided by NSWAP_MAX (4), so each swap device is
1790 	 *	 limited to around a terrabyte.
1791 	 */
1792 	if (vm_swap_max) {
1793 		nswap_lowat = (int64_t)vm_swap_max * 4 / 100;	/* 4% left */
1794 		nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;	/* 6% left */
1795 		kprintf("swap low/high-water marks set to %d/%d\n",
1796 			nswap_lowat, nswap_hiwat);
1797 	} else {
1798 		nswap_lowat = 128;
1799 		nswap_hiwat = 512;
1800 	}
1801 	swp_sizecheck();
1802 }
1803 
1804 /*
1805  *	swp_pager_async_iodone:
1806  *
1807  *	Completion routine for asynchronous reads and writes from/to swap.
1808  *	Also called manually by synchronous code to finish up a bp.
1809  *
1810  *	For READ operations, the pages are BUSY'd.  For WRITE operations,
1811  *	the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1812  *	unbusy all pages except the 'main' request page.  For WRITE
1813  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1814  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1815  *
1816  *	This routine may not block.
1817  *
1818  * No requirements.
1819  */
1820 static void
1821 swp_pager_async_iodone(struct bio *bio)
1822 {
1823 	struct buf *bp = bio->bio_buf;
1824 	vm_object_t object = NULL;
1825 	int i;
1826 	int *nswptr;
1827 
1828 	/*
1829 	 * report error
1830 	 */
1831 	if (bp->b_flags & B_ERROR) {
1832 		kprintf(
1833 		    "swap_pager: I/O error - %s failed; offset %lld,"
1834 			"size %ld, error %d\n",
1835 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1836 			"pagein" : "pageout"),
1837 		    (long long)bio->bio_offset,
1838 		    (long)bp->b_bcount,
1839 		    bp->b_error
1840 		);
1841 	}
1842 
1843 	/*
1844 	 * set object.
1845 	 */
1846 	if (bp->b_xio.xio_npages)
1847 		object = bp->b_xio.xio_pages[0]->object;
1848 
1849 #if 0
1850 	/* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1851 	if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1852 		if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1853 			kprintf("SWAPOUT: BADCRC %08x %08x\n",
1854 				bio->bio_crc,
1855 				iscsi_crc32(bp->b_data, bp->b_bcount));
1856 			for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1857 				vm_page_t m = bp->b_xio.xio_pages[i];
1858 				if (m->flags & PG_WRITEABLE)
1859 					kprintf("SWAPOUT: "
1860 						"%d/%d %p writable\n",
1861 						i, bp->b_xio.xio_npages, m);
1862 			}
1863 		}
1864 	}
1865 #endif
1866 
1867 	/*
1868 	 * remove the mapping for kernel virtual
1869 	 */
1870 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1871 
1872 	/*
1873 	 * cleanup pages.  If an error occurs writing to swap, we are in
1874 	 * very serious trouble.  If it happens to be a disk error, though,
1875 	 * we may be able to recover by reassigning the swap later on.  So
1876 	 * in this case we remove the m->swapblk assignment for the page
1877 	 * but do not free it in the rlist.  The errornous block(s) are thus
1878 	 * never reallocated as swap.  Redirty the page and continue.
1879 	 */
1880 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1881 		vm_page_t m = bp->b_xio.xio_pages[i];
1882 
1883 		if (bp->b_flags & B_ERROR) {
1884 			/*
1885 			 * If an error occurs I'd love to throw the swapblk
1886 			 * away without freeing it back to swapspace, so it
1887 			 * can never be used again.  But I can't from an
1888 			 * interrupt.
1889 			 */
1890 
1891 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1892 				/*
1893 				 * When reading, reqpage needs to stay
1894 				 * locked for the parent, but all other
1895 				 * pages can be freed.  We still want to
1896 				 * wakeup the parent waiting on the page,
1897 				 * though.  ( also: pg_reqpage can be -1 and
1898 				 * not match anything ).
1899 				 *
1900 				 * We have to wake specifically requested pages
1901 				 * up too because we cleared SWAPINPROG and
1902 				 * someone may be waiting for that.
1903 				 *
1904 				 * NOTE: For reads, m->dirty will probably
1905 				 *	 be overridden by the original caller
1906 				 *	 of getpages so don't play cute tricks
1907 				 *	 here.
1908 				 *
1909 				 * NOTE: We can't actually free the page from
1910 				 *	 here, because this is an interrupt.
1911 				 *	 It is not legal to mess with
1912 				 *	 object->memq from an interrupt.
1913 				 *	 Deactivate the page instead.
1914 				 *
1915 				 * WARNING! The instant SWAPINPROG is
1916 				 *	    cleared another cpu may start
1917 				 *	    using the mreq page (it will
1918 				 *	    check m->valid immediately).
1919 				 */
1920 
1921 				m->valid = 0;
1922 				atomic_clear_int(&m->busy_count,
1923 						 PBUSY_SWAPINPROG);
1924 
1925 				/*
1926 				 * bio_driver_info holds the requested page
1927 				 * index.
1928 				 */
1929 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1930 					vm_page_deactivate(m);
1931 					vm_page_wakeup(m);
1932 				} else {
1933 					vm_page_flash(m);
1934 				}
1935 				/*
1936 				 * If i == bp->b_pager.pg_reqpage, do not wake
1937 				 * the page up.  The caller needs to.
1938 				 */
1939 			} else {
1940 				/*
1941 				 * If a write error occurs remove the swap
1942 				 * assignment (note that PG_SWAPPED may or
1943 				 * may not be set depending on prior activity).
1944 				 *
1945 				 * Re-dirty OBJT_SWAP pages as there is no
1946 				 * other backing store, we can't throw the
1947 				 * page away.
1948 				 *
1949 				 * Non-OBJT_SWAP pages (aka swapcache) must
1950 				 * not be dirtied since they may not have
1951 				 * been dirty in the first place, and they
1952 				 * do have backing store (the vnode).
1953 				 */
1954 				vm_page_busy_wait(m, FALSE, "swadpg");
1955 				vm_object_hold(m->object);
1956 				swp_pager_meta_ctl(m->object, m->pindex,
1957 						   SWM_FREE);
1958 				vm_page_flag_clear(m, PG_SWAPPED);
1959 				vm_object_drop(m->object);
1960 				if (m->object->type == OBJT_SWAP) {
1961 					vm_page_dirty(m);
1962 					vm_page_activate(m);
1963 				}
1964 				vm_page_io_finish(m);
1965 				atomic_clear_int(&m->busy_count,
1966 						 PBUSY_SWAPINPROG);
1967 				vm_page_wakeup(m);
1968 			}
1969 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1970 			/*
1971 			 * NOTE: for reads, m->dirty will probably be
1972 			 * overridden by the original caller of getpages so
1973 			 * we cannot set them in order to free the underlying
1974 			 * swap in a low-swap situation.  I don't think we'd
1975 			 * want to do that anyway, but it was an optimization
1976 			 * that existed in the old swapper for a time before
1977 			 * it got ripped out due to precisely this problem.
1978 			 *
1979 			 * If not the requested page then deactivate it.
1980 			 *
1981 			 * Note that the requested page, reqpage, is left
1982 			 * busied, but we still have to wake it up.  The
1983 			 * other pages are released (unbusied) by
1984 			 * vm_page_wakeup().  We do not set reqpage's
1985 			 * valid bits here, it is up to the caller.
1986 			 */
1987 
1988 			/*
1989 			 * NOTE: Can't call pmap_clear_modify(m) from an
1990 			 *	 interrupt thread, the pmap code may have to
1991 			 *	 map non-kernel pmaps and currently asserts
1992 			 *	 the case.
1993 			 *
1994 			 * WARNING! The instant SWAPINPROG is
1995 			 *	    cleared another cpu may start
1996 			 *	    using the mreq page (it will
1997 			 *	    check m->valid immediately).
1998 			 */
1999 			/*pmap_clear_modify(m);*/
2000 			m->valid = VM_PAGE_BITS_ALL;
2001 			vm_page_undirty(m);
2002 			vm_page_flag_set(m, PG_SWAPPED);
2003 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2004 
2005 			/*
2006 			 * We have to wake specifically requested pages
2007 			 * up too because we cleared SWAPINPROG and
2008 			 * could be waiting for it in getpages.  However,
2009 			 * be sure to not unbusy getpages specifically
2010 			 * requested page - getpages expects it to be
2011 			 * left busy.
2012 			 *
2013 			 * bio_driver_info holds the requested page
2014 			 */
2015 			if (i != (int)(intptr_t)bio->bio_driver_info) {
2016 				vm_page_deactivate(m);
2017 				vm_page_wakeup(m);
2018 			} else {
2019 				vm_page_flash(m);
2020 			}
2021 		} else {
2022 			/*
2023 			 * Mark the page clean but do not mess with the
2024 			 * pmap-layer's modified state.  That state should
2025 			 * also be clear since the caller protected the
2026 			 * page VM_PROT_READ, but allow the case.
2027 			 *
2028 			 * We are in an interrupt, avoid pmap operations.
2029 			 *
2030 			 * If we have a severe page deficit, deactivate the
2031 			 * page.  Do not try to cache it (which would also
2032 			 * involve a pmap op), because the page might still
2033 			 * be read-heavy.
2034 			 *
2035 			 * When using the swap to cache clean vnode pages
2036 			 * we do not mess with the page dirty bits.
2037 			 *
2038 			 * NOTE! Nobody is waiting for the key mreq page
2039 			 *	 on write completion.
2040 			 */
2041 			vm_page_busy_wait(m, FALSE, "swadpg");
2042 			if (m->object->type == OBJT_SWAP)
2043 				vm_page_undirty(m);
2044 			vm_page_flag_set(m, PG_SWAPPED);
2045 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2046 			if (vm_page_count_severe())
2047 				vm_page_deactivate(m);
2048 			vm_page_io_finish(m);
2049 			if (bio->bio_caller_info1.index & SWBIO_TTC)
2050 				vm_page_try_to_cache(m);
2051 			else
2052 				vm_page_wakeup(m);
2053 		}
2054 	}
2055 
2056 	/*
2057 	 * adjust pip.  NOTE: the original parent may still have its own
2058 	 * pip refs on the object.
2059 	 */
2060 
2061 	if (object)
2062 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2063 
2064 	/*
2065 	 * Release the physical I/O buffer.
2066 	 *
2067 	 * NOTE: Due to synchronous operations in the write case b_cmd may
2068 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
2069 	 *	 been cleared.
2070 	 *
2071 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2072 	 */
2073 	lwkt_gettoken(&vm_token);
2074 	if (bio->bio_caller_info1.index & SWBIO_READ)
2075 		nswptr = &nsw_rcount;
2076 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2077 		nswptr = &nsw_wcount_sync;
2078 	else
2079 		nswptr = &nsw_wcount_async;
2080 	bp->b_cmd = BUF_CMD_DONE;
2081 	relpbuf(bp, nswptr);
2082 	lwkt_reltoken(&vm_token);
2083 }
2084 
2085 /*
2086  * Fault-in a potentially swapped page and remove the swap reference.
2087  * (used by swapoff code)
2088  *
2089  * object must be held.
2090  */
2091 static __inline void
2092 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2093 {
2094 	struct vnode *vp;
2095 	vm_page_t m;
2096 	int error;
2097 
2098 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2099 
2100 	if (object->type == OBJT_VNODE) {
2101 		/*
2102 		 * Any swap related to a vnode is due to swapcache.  We must
2103 		 * vget() the vnode in case it is not active (otherwise
2104 		 * vref() will panic).  Calling vm_object_page_remove() will
2105 		 * ensure that any swap ref is removed interlocked with the
2106 		 * page.  clean_only is set to TRUE so we don't throw away
2107 		 * dirty pages.
2108 		 */
2109 		vp = object->handle;
2110 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2111 		if (error == 0) {
2112 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2113 			vput(vp);
2114 		}
2115 	} else {
2116 		/*
2117 		 * Otherwise it is a normal OBJT_SWAP object and we can
2118 		 * fault the page in and remove the swap.
2119 		 */
2120 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2121 					 VM_PROT_NONE,
2122 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2123 					 sharedp, &error);
2124 		if (m)
2125 			vm_page_unhold(m);
2126 	}
2127 }
2128 
2129 /*
2130  * This removes all swap blocks related to a particular device.  We have
2131  * to be careful of ripups during the scan.
2132  */
2133 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2134 
2135 int
2136 swap_pager_swapoff(int devidx)
2137 {
2138 	struct vm_object_hash *hash;
2139 	struct swswapoffinfo info;
2140 	struct vm_object marker;
2141 	vm_object_t object;
2142 	int n;
2143 
2144 	bzero(&marker, sizeof(marker));
2145 	marker.type = OBJT_MARKER;
2146 
2147 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2148 		hash = &vm_object_hash[n];
2149 
2150 		lwkt_gettoken(&hash->token);
2151 		TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2152 
2153 		while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2154 			if (object->type == OBJT_MARKER)
2155 				goto skip;
2156 			if (object->type != OBJT_SWAP &&
2157 			    object->type != OBJT_VNODE)
2158 				goto skip;
2159 			vm_object_hold(object);
2160 			if (object->type != OBJT_SWAP &&
2161 			    object->type != OBJT_VNODE) {
2162 				vm_object_drop(object);
2163 				goto skip;
2164 			}
2165 
2166 			/*
2167 			 * Object is special in that we can't just pagein
2168 			 * into vm_page's in it (tmpfs, vn).
2169 			 */
2170 			if ((object->flags & OBJ_NOPAGEIN) &&
2171 			    RB_ROOT(&object->swblock_root)) {
2172 				vm_object_drop(object);
2173 				goto skip;
2174 			}
2175 
2176 			info.object = object;
2177 			info.shared = 0;
2178 			info.devidx = devidx;
2179 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2180 					    NULL, swp_pager_swapoff_callback,
2181 					    &info);
2182 			vm_object_drop(object);
2183 skip:
2184 			if (object == TAILQ_NEXT(&marker, object_list)) {
2185 				TAILQ_REMOVE(&hash->list, &marker, object_list);
2186 				TAILQ_INSERT_AFTER(&hash->list, object,
2187 						   &marker, object_list);
2188 			}
2189 		}
2190 		TAILQ_REMOVE(&hash->list, &marker, object_list);
2191 		lwkt_reltoken(&hash->token);
2192 	}
2193 
2194 	/*
2195 	 * If we fail to locate all swblocks we just fail gracefully and
2196 	 * do not bother to restore paging on the swap device.  If the
2197 	 * user wants to retry the user can retry.
2198 	 */
2199 	if (swdevt[devidx].sw_nused)
2200 		return (1);
2201 	else
2202 		return (0);
2203 }
2204 
2205 static
2206 int
2207 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2208 {
2209 	struct swswapoffinfo *info = data;
2210 	vm_object_t object = info->object;
2211 	vm_pindex_t index;
2212 	swblk_t v;
2213 	int i;
2214 
2215 	index = swap->swb_index;
2216 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2217 		/*
2218 		 * Make sure we don't race a dying object.  This will
2219 		 * kill the scan of the object's swap blocks entirely.
2220 		 */
2221 		if (object->flags & OBJ_DEAD)
2222 			return(-1);
2223 
2224 		/*
2225 		 * Fault the page, which can obviously block.  If the swap
2226 		 * structure disappears break out.
2227 		 */
2228 		v = swap->swb_pages[i];
2229 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2230 			swp_pager_fault_page(object, &info->shared,
2231 					     swap->swb_index + i);
2232 			/* swap ptr might go away */
2233 			if (RB_LOOKUP(swblock_rb_tree,
2234 				      &object->swblock_root, index) != swap) {
2235 				break;
2236 			}
2237 		}
2238 	}
2239 	return(0);
2240 }
2241 
2242 /************************************************************************
2243  *				SWAP META DATA 				*
2244  ************************************************************************
2245  *
2246  *	These routines manipulate the swap metadata stored in the
2247  *	OBJT_SWAP object.
2248  *
2249  *	Swap metadata is implemented with a global hash and not directly
2250  *	linked into the object.  Instead the object simply contains
2251  *	appropriate tracking counters.
2252  */
2253 
2254 /*
2255  * Lookup the swblock containing the specified swap block index.
2256  *
2257  * The caller must hold the object.
2258  */
2259 static __inline
2260 struct swblock *
2261 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2262 {
2263 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2264 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2265 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2266 }
2267 
2268 /*
2269  * Remove a swblock from the RB tree.
2270  *
2271  * The caller must hold the object.
2272  */
2273 static __inline
2274 void
2275 swp_pager_remove(vm_object_t object, struct swblock *swap)
2276 {
2277 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2278 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2279 }
2280 
2281 /*
2282  * Convert default object to swap object if necessary
2283  *
2284  * The caller must hold the object.
2285  */
2286 static void
2287 swp_pager_meta_convert(vm_object_t object)
2288 {
2289 	if (object->type == OBJT_DEFAULT) {
2290 		object->type = OBJT_SWAP;
2291 		KKASSERT(object->swblock_count == 0);
2292 	}
2293 }
2294 
2295 /*
2296  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2297  *
2298  *	We first convert the object to a swap object if it is a default
2299  *	object.  Vnode objects do not need to be converted.
2300  *
2301  *	The specified swapblk is added to the object's swap metadata.  If
2302  *	the swapblk is not valid, it is freed instead.  Any previously
2303  *	assigned swapblk is freed.
2304  *
2305  * The caller must hold the object.
2306  */
2307 static void
2308 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2309 {
2310 	struct swblock *swap;
2311 	struct swblock *oswap;
2312 	vm_pindex_t v;
2313 
2314 	KKASSERT(swapblk != SWAPBLK_NONE);
2315 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2316 
2317 	/*
2318 	 * Convert object if necessary
2319 	 */
2320 	if (object->type == OBJT_DEFAULT)
2321 		swp_pager_meta_convert(object);
2322 
2323 	/*
2324 	 * Locate swblock.  If not found create, but if we aren't adding
2325 	 * anything just return.  If we run out of space in the map we wait
2326 	 * and, since the hash table may have changed, retry.
2327 	 */
2328 retry:
2329 	swap = swp_pager_lookup(object, index);
2330 
2331 	if (swap == NULL) {
2332 		int i;
2333 
2334 		swap = zalloc(swap_zone);
2335 		if (swap == NULL) {
2336 			vm_wait(0);
2337 			goto retry;
2338 		}
2339 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2340 		swap->swb_count = 0;
2341 
2342 		++object->swblock_count;
2343 
2344 		for (i = 0; i < SWAP_META_PAGES; ++i)
2345 			swap->swb_pages[i] = SWAPBLK_NONE;
2346 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2347 		KKASSERT(oswap == NULL);
2348 	}
2349 
2350 	/*
2351 	 * Delete prior contents of metadata.
2352 	 *
2353 	 * NOTE: Decrement swb_count after the freeing operation (which
2354 	 *	 might block) to prevent racing destruction of the swblock.
2355 	 */
2356 	index &= SWAP_META_MASK;
2357 
2358 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2359 		swap->swb_pages[index] = SWAPBLK_NONE;
2360 		/* can block */
2361 		swp_pager_freeswapspace(object, v, 1);
2362 		--swap->swb_count;
2363 		--mycpu->gd_vmtotal.t_vm;
2364 	}
2365 
2366 	/*
2367 	 * Enter block into metadata
2368 	 */
2369 	swap->swb_pages[index] = swapblk;
2370 	if (swapblk != SWAPBLK_NONE) {
2371 		++swap->swb_count;
2372 		++mycpu->gd_vmtotal.t_vm;
2373 	}
2374 }
2375 
2376 /*
2377  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2378  *
2379  *	The requested range of blocks is freed, with any associated swap
2380  *	returned to the swap bitmap.
2381  *
2382  *	This routine will free swap metadata structures as they are cleaned
2383  *	out.  This routine does *NOT* operate on swap metadata associated
2384  *	with resident pages.
2385  *
2386  * The caller must hold the object.
2387  */
2388 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2389 
2390 static void
2391 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2392 {
2393 	struct swfreeinfo info;
2394 
2395 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2396 
2397 	/*
2398 	 * Nothing to do
2399 	 */
2400 	if (object->swblock_count == 0) {
2401 		KKASSERT(RB_EMPTY(&object->swblock_root));
2402 		return;
2403 	}
2404 	if (count == 0)
2405 		return;
2406 
2407 	/*
2408 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2409 	 * due to the 64 bit page index space so we cannot safely iterate.
2410 	 */
2411 	info.object = object;
2412 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2413 	info.begi = index;
2414 	info.endi = index + count - 1;
2415 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2416 				swp_pager_meta_free_callback, &info);
2417 }
2418 
2419 /*
2420  * The caller must hold the object.
2421  */
2422 static
2423 int
2424 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2425 {
2426 	struct swfreeinfo *info = data;
2427 	vm_object_t object = info->object;
2428 	int index;
2429 	int eindex;
2430 
2431 	/*
2432 	 * Figure out the range within the swblock.  The wider scan may
2433 	 * return edge-case swap blocks when the start and/or end points
2434 	 * are in the middle of a block.
2435 	 */
2436 	if (swap->swb_index < info->begi)
2437 		index = (int)info->begi & SWAP_META_MASK;
2438 	else
2439 		index = 0;
2440 
2441 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2442 		eindex = (int)info->endi & SWAP_META_MASK;
2443 	else
2444 		eindex = SWAP_META_MASK;
2445 
2446 	/*
2447 	 * Scan and free the blocks.  The loop terminates early
2448 	 * if (swap) runs out of blocks and could be freed.
2449 	 *
2450 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2451 	 *	 to deal with a zfree race.
2452 	 */
2453 	while (index <= eindex) {
2454 		swblk_t v = swap->swb_pages[index];
2455 
2456 		if (v != SWAPBLK_NONE) {
2457 			swap->swb_pages[index] = SWAPBLK_NONE;
2458 			/* can block */
2459 			swp_pager_freeswapspace(object, v, 1);
2460 			--mycpu->gd_vmtotal.t_vm;
2461 			if (--swap->swb_count == 0) {
2462 				swp_pager_remove(object, swap);
2463 				zfree(swap_zone, swap);
2464 				--object->swblock_count;
2465 				break;
2466 			}
2467 		}
2468 		++index;
2469 	}
2470 
2471 	/* swap may be invalid here due to zfree above */
2472 	lwkt_yield();
2473 
2474 	return(0);
2475 }
2476 
2477 /*
2478  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2479  *
2480  *	This routine locates and destroys all swap metadata associated with
2481  *	an object.
2482  *
2483  * NOTE: Decrement swb_count after the freeing operation (which
2484  *	 might block) to prevent racing destruction of the swblock.
2485  *
2486  * The caller must hold the object.
2487  */
2488 static void
2489 swp_pager_meta_free_all(vm_object_t object)
2490 {
2491 	struct swblock *swap;
2492 	int i;
2493 
2494 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2495 
2496 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2497 		swp_pager_remove(object, swap);
2498 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2499 			swblk_t v = swap->swb_pages[i];
2500 			if (v != SWAPBLK_NONE) {
2501 				/* can block */
2502 				swp_pager_freeswapspace(object, v, 1);
2503 				--swap->swb_count;
2504 				--mycpu->gd_vmtotal.t_vm;
2505 			}
2506 		}
2507 		if (swap->swb_count != 0)
2508 			panic("swap_pager_meta_free_all: swb_count != 0");
2509 		zfree(swap_zone, swap);
2510 		--object->swblock_count;
2511 		lwkt_yield();
2512 	}
2513 	KKASSERT(object->swblock_count == 0);
2514 }
2515 
2516 /*
2517  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2518  *
2519  *	This routine is capable of looking up, popping, or freeing
2520  *	swapblk assignments in the swap meta data or in the vm_page_t.
2521  *	The routine typically returns the swapblk being looked-up, or popped,
2522  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2523  *	was invalid.  This routine will automatically free any invalid
2524  *	meta-data swapblks.
2525  *
2526  *	It is not possible to store invalid swapblks in the swap meta data
2527  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2528  *
2529  *	When acting on a busy resident page and paging is in progress, we
2530  *	have to wait until paging is complete but otherwise can act on the
2531  *	busy page.
2532  *
2533  *	SWM_FREE	remove and free swap block from metadata
2534  *	SWM_POP		remove from meta data but do not free.. pop it out
2535  *
2536  * The caller must hold the object.
2537  */
2538 static swblk_t
2539 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2540 {
2541 	struct swblock *swap;
2542 	swblk_t r1;
2543 
2544 	if (object->swblock_count == 0)
2545 		return(SWAPBLK_NONE);
2546 
2547 	r1 = SWAPBLK_NONE;
2548 	swap = swp_pager_lookup(object, index);
2549 
2550 	if (swap != NULL) {
2551 		index &= SWAP_META_MASK;
2552 		r1 = swap->swb_pages[index];
2553 
2554 		if (r1 != SWAPBLK_NONE) {
2555 			if (flags & (SWM_FREE|SWM_POP)) {
2556 				swap->swb_pages[index] = SWAPBLK_NONE;
2557 				--mycpu->gd_vmtotal.t_vm;
2558 				if (--swap->swb_count == 0) {
2559 					swp_pager_remove(object, swap);
2560 					zfree(swap_zone, swap);
2561 					--object->swblock_count;
2562 				}
2563 			}
2564 			/* swap ptr may be invalid */
2565 			if (flags & SWM_FREE) {
2566 				swp_pager_freeswapspace(object, r1, 1);
2567 				r1 = SWAPBLK_NONE;
2568 			}
2569 		}
2570 		/* swap ptr may be invalid */
2571 	}
2572 	return(r1);
2573 }
2574