xref: /dragonfly/sys/vm/swap_pager.c (revision 207ba670)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include "opt_swap.h"
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/conf.h>
101 #include <sys/kernel.h>
102 #include <sys/proc.h>
103 #include <sys/buf.h>
104 #include <sys/vnode.h>
105 #include <sys/malloc.h>
106 #include <sys/vmmeter.h>
107 #include <sys/sysctl.h>
108 #include <sys/blist.h>
109 #include <sys/lock.h>
110 #include <sys/kcollect.h>
111 
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
121 
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
124 
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
127 #endif
128 
129 #define SWM_FREE	0x02	/* free, period			*/
130 #define SWM_POP		0x04	/* pop out			*/
131 
132 #define SWBIO_READ	0x01
133 #define SWBIO_WRITE	0x02
134 #define SWBIO_SYNC	0x04
135 #define SWBIO_TTC	0x08	/* for VM_PAGER_TRY_TO_CACHE */
136 
137 struct swfreeinfo {
138 	vm_object_t	object;
139 	vm_pindex_t	basei;
140 	vm_pindex_t	begi;
141 	vm_pindex_t	endi;	/* inclusive */
142 };
143 
144 struct swswapoffinfo {
145 	vm_object_t	object;
146 	int		devidx;
147 	int		shared;
148 };
149 
150 /*
151  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
152  * in the old system.
153  */
154 
155 int swap_pager_full;		/* swap space exhaustion (task killing) */
156 int swap_fail_ticks;		/* when we became exhausted */
157 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
158 swblk_t vm_swap_cache_use;
159 swblk_t vm_swap_anon_use;
160 static int vm_report_swap_allocs;
161 
162 static struct krate kswaprate = { 1 };
163 static int nsw_rcount;		/* free read buffers			*/
164 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
165 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
166 static int nsw_wcount_async_max;/* assigned maximum			*/
167 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
168 
169 struct blist *swapblist;
170 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
171 static int swap_burst_read = 0;	/* allow burst reading */
172 static swblk_t swapiterator;	/* linearize allocations */
173 int swap_user_async = 0;	/* user swap pager operation can be async */
174 
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176 
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
181 
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
183 
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190 
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_free,
197         CTLFLAG_RD, &vm_swap_size, 0, "");
198 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
199         CTLFLAG_RD, &vm_swap_max, 0, "");
200 #else
201 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
202         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
204         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
205 SYSCTL_INT(_vm, OID_AUTO, swap_free,
206         CTLFLAG_RD, &vm_swap_size, 0, "");
207 SYSCTL_INT(_vm, OID_AUTO, swap_size,
208         CTLFLAG_RD, &vm_swap_max, 0, "");
209 #endif
210 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
211         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
212 
213 __read_mostly vm_zone_t	swap_zone;
214 
215 /*
216  * Red-Black tree for swblock entries
217  *
218  * The caller must hold vm_token
219  */
220 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
221 	     vm_pindex_t, swb_index);
222 
223 int
224 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
225 {
226 	if (swb1->swb_index < swb2->swb_index)
227 		return(-1);
228 	if (swb1->swb_index > swb2->swb_index)
229 		return(1);
230 	return(0);
231 }
232 
233 static
234 int
235 rb_swblock_scancmp(struct swblock *swb, void *data)
236 {
237 	struct swfreeinfo *info = data;
238 
239 	if (swb->swb_index < info->basei)
240 		return(-1);
241 	if (swb->swb_index > info->endi)
242 		return(1);
243 	return(0);
244 }
245 
246 static
247 int
248 rb_swblock_condcmp(struct swblock *swb, void *data)
249 {
250 	struct swfreeinfo *info = data;
251 
252 	if (swb->swb_index < info->basei)
253 		return(-1);
254 	return(0);
255 }
256 
257 /*
258  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
259  * calls hooked from other parts of the VM system and do not appear here.
260  * (see vm/swap_pager.h).
261  */
262 
263 static void	swap_pager_dealloc (vm_object_t object);
264 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
265 static void	swap_chain_iodone(struct bio *biox);
266 
267 struct pagerops swappagerops = {
268 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
269 	swap_pager_getpage,	/* pagein				*/
270 	swap_pager_putpages,	/* pageout				*/
271 	swap_pager_haspage	/* get backing store status for page	*/
272 };
273 
274 /*
275  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
276  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
277  *
278  * swap_*() routines are externally accessible.  swp_*() routines are
279  * internal.
280  */
281 
282 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
283 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
284 
285 static __inline void	swp_sizecheck (void);
286 static void	swp_pager_async_iodone (struct bio *bio);
287 
288 /*
289  * Swap bitmap functions
290  */
291 
292 static __inline void	swp_pager_freeswapspace(vm_object_t object,
293 						swblk_t blk, int npages);
294 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
295 
296 /*
297  * Metadata functions
298  */
299 
300 static void swp_pager_meta_convert(vm_object_t);
301 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
302 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
303 static void swp_pager_meta_free_all(vm_object_t);
304 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
305 
306 /*
307  * SWP_SIZECHECK() -	update swap_pager_full indication
308  *
309  *	update the swap_pager_almost_full indication and warn when we are
310  *	about to run out of swap space, using lowat/hiwat hysteresis.
311  *
312  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
313  *
314  * No restrictions on call
315  * This routine may not block.
316  * SMP races are ok.
317  */
318 static __inline void
319 swp_sizecheck(void)
320 {
321 	if (vm_swap_size < nswap_lowat) {
322 		if (swap_pager_almost_full == 0) {
323 			kprintf("swap_pager: out of swap space\n");
324 			swap_pager_almost_full = 1;
325 			swap_fail_ticks = ticks;
326 		}
327 	} else {
328 		swap_pager_full = 0;
329 		if (vm_swap_size > nswap_hiwat)
330 			swap_pager_almost_full = 0;
331 	}
332 }
333 
334 /*
335  * Long-term data collection on 10-second interval.  Return the value
336  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
337  *
338  * Return total swap in the scale field.  This can change if swap is
339  * regularly added or removed and may cause some historical confusion
340  * in that case, but SWAPPCT will always be historically accurate.
341  */
342 
343 #define PTOB(value)	((uint64_t)(value) << PAGE_SHIFT)
344 
345 static uint64_t
346 collect_swap_callback(int n)
347 {
348 	uint64_t total = vm_swap_max;
349 	uint64_t anon = vm_swap_anon_use;
350 	uint64_t cache = vm_swap_cache_use;
351 
352 	if (total == 0)		/* avoid divide by zero */
353 		total = 1;
354 	kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
355 	kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
356 	kcollect_setscale(KCOLLECT_SWAPANO,
357 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
358 	kcollect_setscale(KCOLLECT_SWAPCAC,
359 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
360 	return (((anon + cache) * 10000 + (total >> 1)) / total);
361 }
362 
363 /*
364  * SWAP_PAGER_INIT() -	initialize the swap pager!
365  *
366  *	Expected to be started from system init.  NOTE:  This code is run
367  *	before much else so be careful what you depend on.  Most of the VM
368  *	system has yet to be initialized at this point.
369  *
370  * Called from the low level boot code only.
371  */
372 static void
373 swap_pager_init(void *arg __unused)
374 {
375 	kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
376 			  KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
377 	kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
378 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
379 	kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
380 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
381 }
382 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
383 
384 /*
385  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
386  *
387  *	Expected to be started from pageout process once, prior to entering
388  *	its main loop.
389  *
390  * Called from the low level boot code only.
391  */
392 void
393 swap_pager_swap_init(void)
394 {
395 	int n, n2;
396 
397 	/*
398 	 * Number of in-transit swap bp operations.  Don't
399 	 * exhaust the pbufs completely.  Make sure we
400 	 * initialize workable values (0 will work for hysteresis
401 	 * but it isn't very efficient).
402 	 *
403 	 * The nsw_cluster_max is constrained by the number of pages an XIO
404 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
405 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
406 	 * constrained by the swap device interleave stripe size.
407 	 *
408 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
409 	 * designed to prevent other I/O from having high latencies due to
410 	 * our pageout I/O.  The value 4 works well for one or two active swap
411 	 * devices but is probably a little low if you have more.  Even so,
412 	 * a higher value would probably generate only a limited improvement
413 	 * with three or four active swap devices since the system does not
414 	 * typically have to pageout at extreme bandwidths.   We will want
415 	 * at least 2 per swap devices, and 4 is a pretty good value if you
416 	 * have one NFS swap device due to the command/ack latency over NFS.
417 	 * So it all works out pretty well.
418 	 */
419 
420 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
421 
422 	nsw_rcount = (nswbuf_kva + 1) / 2;
423 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
424 	nsw_wcount_async = 4;
425 	nsw_wcount_async_max = nsw_wcount_async;
426 
427 	/*
428 	 * The zone is dynamically allocated so generally size it to
429 	 * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
430 	 * on physical memory of around 8x (each swblock can hold 16 pages).
431 	 *
432 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
433 	 * has increased dramatically.
434 	 */
435 	n = vmstats.v_page_count / 2;
436 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
437 		n = maxswzone / sizeof(struct swblock);
438 	n2 = n;
439 
440 	do {
441 		swap_zone = zinit(
442 			"SWAPMETA",
443 			sizeof(struct swblock),
444 			n,
445 			ZONE_INTERRUPT);
446 		if (swap_zone != NULL)
447 			break;
448 		/*
449 		 * if the allocation failed, try a zone two thirds the
450 		 * size of the previous attempt.
451 		 */
452 		n -= ((n + 2) / 3);
453 	} while (n > 0);
454 
455 	if (swap_zone == NULL)
456 		panic("swap_pager_swap_init: swap_zone == NULL");
457 	if (n2 != n)
458 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
459 }
460 
461 /*
462  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
463  *			its metadata structures.
464  *
465  *	This routine is called from the mmap and fork code to create a new
466  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
467  *	and then converting it with swp_pager_meta_convert().
468  *
469  *	We only support unnamed objects.
470  *
471  * No restrictions.
472  */
473 vm_object_t
474 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
475 {
476 	vm_object_t object;
477 
478 	KKASSERT(handle == NULL);
479 	object = vm_object_allocate_hold(OBJT_DEFAULT,
480 					 OFF_TO_IDX(offset + PAGE_MASK + size));
481 	swp_pager_meta_convert(object);
482 	vm_object_drop(object);
483 
484 	return (object);
485 }
486 
487 /*
488  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
489  *
490  *	The swap backing for the object is destroyed.  The code is
491  *	designed such that we can reinstantiate it later, but this
492  *	routine is typically called only when the entire object is
493  *	about to be destroyed.
494  *
495  * The object must be locked or unreferenceable.
496  * No other requirements.
497  */
498 static void
499 swap_pager_dealloc(vm_object_t object)
500 {
501 	vm_object_hold(object);
502 	vm_object_pip_wait(object, "swpdea");
503 
504 	/*
505 	 * Free all remaining metadata.  We only bother to free it from
506 	 * the swap meta data.  We do not attempt to free swapblk's still
507 	 * associated with vm_page_t's for this object.  We do not care
508 	 * if paging is still in progress on some objects.
509 	 */
510 	swp_pager_meta_free_all(object);
511 	vm_object_drop(object);
512 }
513 
514 /************************************************************************
515  *			SWAP PAGER BITMAP ROUTINES			*
516  ************************************************************************/
517 
518 /*
519  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
520  *
521  *	Allocate swap for the requested number of pages.  The starting
522  *	swap block number (a page index) is returned or SWAPBLK_NONE
523  *	if the allocation failed.
524  *
525  *	Also has the side effect of advising that somebody made a mistake
526  *	when they configured swap and didn't configure enough.
527  *
528  * The caller must hold the object.
529  * This routine may not block.
530  */
531 static __inline swblk_t
532 swp_pager_getswapspace(vm_object_t object, int npages)
533 {
534 	swblk_t blk;
535 
536 	lwkt_gettoken(&vm_token);
537 	blk = blist_allocat(swapblist, npages, swapiterator);
538 	if (blk == SWAPBLK_NONE)
539 		blk = blist_allocat(swapblist, npages, 0);
540 	if (blk == SWAPBLK_NONE) {
541 		if (swap_pager_full != 2) {
542 			if (vm_swap_max == 0) {
543 				krateprintf(&kswaprate,
544 					"Warning: The system would like to "
545 					"page to swap but no swap space "
546 					"is configured!\n");
547 			} else {
548 				krateprintf(&kswaprate,
549 					"swap_pager_getswapspace: "
550 					"swap full allocating %d pages\n",
551 					npages);
552 			}
553 			swap_pager_full = 2;
554 			if (swap_pager_almost_full == 0)
555 				swap_fail_ticks = ticks;
556 			swap_pager_almost_full = 1;
557 		}
558 	} else {
559 		/* swapiterator = blk; disable for now, doesn't work well */
560 		swapacctspace(blk, -npages);
561 		if (object->type == OBJT_SWAP)
562 			vm_swap_anon_use += npages;
563 		else
564 			vm_swap_cache_use += npages;
565 		swp_sizecheck();
566 	}
567 	lwkt_reltoken(&vm_token);
568 	return(blk);
569 }
570 
571 /*
572  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
573  *
574  *	This routine returns the specified swap blocks back to the bitmap.
575  *
576  *	Note:  This routine may not block (it could in the old swap code),
577  *	and through the use of the new blist routines it does not block.
578  *
579  * This routine may not block.
580  */
581 
582 static __inline void
583 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
584 {
585 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
586 
587 	lwkt_gettoken(&vm_token);
588 	sp->sw_nused -= npages;
589 	if (object->type == OBJT_SWAP)
590 		vm_swap_anon_use -= npages;
591 	else
592 		vm_swap_cache_use -= npages;
593 
594 	if (sp->sw_flags & SW_CLOSING) {
595 		lwkt_reltoken(&vm_token);
596 		return;
597 	}
598 
599 	blist_free(swapblist, blk, npages);
600 	vm_swap_size += npages;
601 	swp_sizecheck();
602 	lwkt_reltoken(&vm_token);
603 }
604 
605 /*
606  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
607  *				range within an object.
608  *
609  *	This is a globally accessible routine.
610  *
611  *	This routine removes swapblk assignments from swap metadata.
612  *
613  *	The external callers of this routine typically have already destroyed
614  *	or renamed vm_page_t's associated with this range in the object so
615  *	we should be ok.
616  *
617  * No requirements.
618  */
619 void
620 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
621 {
622 	vm_object_hold(object);
623 	swp_pager_meta_free(object, start, size);
624 	vm_object_drop(object);
625 }
626 
627 /*
628  * No requirements.
629  */
630 void
631 swap_pager_freespace_all(vm_object_t object)
632 {
633 	vm_object_hold(object);
634 	swp_pager_meta_free_all(object);
635 	vm_object_drop(object);
636 }
637 
638 /*
639  * This function conditionally frees swap cache swap starting at
640  * (*basei) in the object.  (count) swap blocks will be nominally freed.
641  * The actual number of blocks freed can be more or less than the
642  * requested number.
643  *
644  * This function nominally returns the number of blocks freed.  However,
645  * the actual number of blocks freed may be less then the returned value.
646  * If the function is unable to exhaust the object or if it is able to
647  * free (approximately) the requested number of blocks it returns
648  * a value n > count.
649  *
650  * If we exhaust the object we will return a value n <= count.
651  *
652  * The caller must hold the object.
653  *
654  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
655  *	     callers should always pass a count value > 0.
656  */
657 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
658 
659 int
660 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
661 {
662 	struct swfreeinfo info;
663 	int n;
664 	int t;
665 
666 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
667 
668 	info.object = object;
669 	info.basei = *basei;	/* skip up to this page index */
670 	info.begi = count;	/* max swap pages to destroy */
671 	info.endi = count * 8;	/* max swblocks to scan */
672 
673 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
674 				swap_pager_condfree_callback, &info);
675 	*basei = info.basei;
676 
677 	/*
678 	 * Take the higher difference swblocks vs pages
679 	 */
680 	n = count - (int)info.begi;
681 	t = count * 8 - (int)info.endi;
682 	if (n < t)
683 		n = t;
684 	if (n < 1)
685 		n = 1;
686 	return(n);
687 }
688 
689 /*
690  * The idea is to free whole meta-block to avoid fragmenting
691  * the swap space or disk I/O.  We only do this if NO VM pages
692  * are present.
693  *
694  * We do not have to deal with clearing PG_SWAPPED in related VM
695  * pages because there are no related VM pages.
696  *
697  * The caller must hold the object.
698  */
699 static int
700 swap_pager_condfree_callback(struct swblock *swap, void *data)
701 {
702 	struct swfreeinfo *info = data;
703 	vm_object_t object = info->object;
704 	int i;
705 
706 	for (i = 0; i < SWAP_META_PAGES; ++i) {
707 		if (vm_page_lookup(object, swap->swb_index + i))
708 			break;
709 	}
710 	info->basei = swap->swb_index + SWAP_META_PAGES;
711 	if (i == SWAP_META_PAGES) {
712 		info->begi -= swap->swb_count;
713 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
714 	}
715 	--info->endi;
716 	if ((int)info->begi < 0 || (int)info->endi < 0)
717 		return(-1);
718 	lwkt_yield();
719 	return(0);
720 }
721 
722 /*
723  * Called by vm_page_alloc() when a new VM page is inserted
724  * into a VM object.  Checks whether swap has been assigned to
725  * the page and sets PG_SWAPPED as necessary.
726  *
727  * (m) must be busied by caller and remains busied on return.
728  */
729 void
730 swap_pager_page_inserted(vm_page_t m)
731 {
732 	if (m->object->swblock_count) {
733 		vm_object_hold(m->object);
734 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
735 			vm_page_flag_set(m, PG_SWAPPED);
736 		vm_object_drop(m->object);
737 	}
738 }
739 
740 /*
741  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
742  *
743  *	Assigns swap blocks to the specified range within the object.  The
744  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
745  *
746  *	Returns 0 on success, -1 on failure.
747  *
748  * The caller is responsible for avoiding races in the specified range.
749  * No other requirements.
750  */
751 int
752 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
753 {
754 	int n = 0;
755 	swblk_t blk = SWAPBLK_NONE;
756 	vm_pindex_t beg = start;	/* save start index */
757 
758 	vm_object_hold(object);
759 
760 	while (size) {
761 		if (n == 0) {
762 			n = BLIST_MAX_ALLOC;
763 			while ((blk = swp_pager_getswapspace(object, n)) ==
764 			       SWAPBLK_NONE)
765 			{
766 				n >>= 1;
767 				if (n == 0) {
768 					swp_pager_meta_free(object, beg,
769 							    start - beg);
770 					vm_object_drop(object);
771 					return(-1);
772 				}
773 			}
774 		}
775 		swp_pager_meta_build(object, start, blk);
776 		--size;
777 		++start;
778 		++blk;
779 		--n;
780 	}
781 	swp_pager_meta_free(object, start, n);
782 	vm_object_drop(object);
783 	return(0);
784 }
785 
786 /*
787  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
788  *			and destroy the source.
789  *
790  *	Copy any valid swapblks from the source to the destination.  In
791  *	cases where both the source and destination have a valid swapblk,
792  *	we keep the destination's.
793  *
794  *	This routine is allowed to block.  It may block allocating metadata
795  *	indirectly through swp_pager_meta_build() or if paging is still in
796  *	progress on the source.
797  *
798  *	XXX vm_page_collapse() kinda expects us not to block because we
799  *	supposedly do not need to allocate memory, but for the moment we
800  *	*may* have to get a little memory from the zone allocator, but
801  *	it is taken from the interrupt memory.  We should be ok.
802  *
803  *	The source object contains no vm_page_t's (which is just as well)
804  *	The source object is of type OBJT_SWAP.
805  *
806  *	The source and destination objects must be held by the caller.
807  */
808 void
809 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
810 		vm_pindex_t base_index, int destroysource)
811 {
812 	vm_pindex_t i;
813 
814 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
815 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
816 
817 	/*
818 	 * transfer source to destination.
819 	 */
820 	for (i = 0; i < dstobject->size; ++i) {
821 		swblk_t dstaddr;
822 
823 		/*
824 		 * Locate (without changing) the swapblk on the destination,
825 		 * unless it is invalid in which case free it silently, or
826 		 * if the destination is a resident page, in which case the
827 		 * source is thrown away.
828 		 */
829 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
830 
831 		if (dstaddr == SWAPBLK_NONE) {
832 			/*
833 			 * Destination has no swapblk and is not resident,
834 			 * copy source.
835 			 */
836 			swblk_t srcaddr;
837 
838 			srcaddr = swp_pager_meta_ctl(srcobject,
839 						     base_index + i, SWM_POP);
840 
841 			if (srcaddr != SWAPBLK_NONE)
842 				swp_pager_meta_build(dstobject, i, srcaddr);
843 		} else {
844 			/*
845 			 * Destination has valid swapblk or it is represented
846 			 * by a resident page.  We destroy the sourceblock.
847 			 */
848 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
849 		}
850 	}
851 
852 	/*
853 	 * Free left over swap blocks in source.
854 	 *
855 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
856 	 * double-remove the object from the swap queues.
857 	 */
858 	if (destroysource) {
859 		/*
860 		 * Reverting the type is not necessary, the caller is going
861 		 * to destroy srcobject directly, but I'm doing it here
862 		 * for consistency since we've removed the object from its
863 		 * queues.
864 		 */
865 		swp_pager_meta_free_all(srcobject);
866 		if (srcobject->type == OBJT_SWAP)
867 			srcobject->type = OBJT_DEFAULT;
868 	}
869 }
870 
871 /*
872  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
873  *				the requested page.
874  *
875  *	We determine whether good backing store exists for the requested
876  *	page and return TRUE if it does, FALSE if it doesn't.
877  *
878  *	If TRUE, we also try to determine how much valid, contiguous backing
879  *	store exists before and after the requested page within a reasonable
880  *	distance.  We do not try to restrict it to the swap device stripe
881  *	(that is handled in getpages/putpages).  It probably isn't worth
882  *	doing here.
883  *
884  * No requirements.
885  */
886 boolean_t
887 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
888 {
889 	swblk_t blk0;
890 
891 	/*
892 	 * do we have good backing store at the requested index ?
893 	 */
894 	vm_object_hold(object);
895 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
896 
897 	if (blk0 == SWAPBLK_NONE) {
898 		vm_object_drop(object);
899 		return (FALSE);
900 	}
901 	vm_object_drop(object);
902 	return (TRUE);
903 }
904 
905 /*
906  * Object must be held exclusive or shared by the caller.
907  */
908 boolean_t
909 swap_pager_haspage_locked(vm_object_t object, vm_pindex_t pindex)
910 {
911 	if (swp_pager_meta_ctl(object, pindex, 0) == SWAPBLK_NONE)
912 		return FALSE;
913 	return TRUE;
914 }
915 
916 /*
917  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
918  *
919  * This removes any associated swap backing store, whether valid or
920  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
921  * objects.
922  *
923  * This routine is typically called when a page is made dirty, at
924  * which point any associated swap can be freed.  MADV_FREE also
925  * calls us in a special-case situation
926  *
927  * NOTE!!!  If the page is clean and the swap was valid, the caller
928  *	    should make the page dirty before calling this routine.
929  *	    This routine does NOT change the m->dirty status of the page.
930  *	    Also: MADV_FREE depends on it.
931  *
932  * The page must be busied.
933  * The caller can hold the object to avoid blocking, else we might block.
934  * No other requirements.
935  */
936 void
937 swap_pager_unswapped(vm_page_t m)
938 {
939 	if (m->flags & PG_SWAPPED) {
940 		vm_object_hold(m->object);
941 		KKASSERT(m->flags & PG_SWAPPED);
942 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
943 		vm_page_flag_clear(m, PG_SWAPPED);
944 		vm_object_drop(m->object);
945 	}
946 }
947 
948 /*
949  * SWAP_PAGER_STRATEGY() - read, write, free blocks
950  *
951  * This implements a VM OBJECT strategy function using swap backing store.
952  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
953  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
954  * requests will return EINVAL.
955  *
956  * This is intended to be a cacheless interface (i.e. caching occurs at
957  * higher levels), and is also used as a swap-based SSD cache for vnode
958  * and device objects.
959  *
960  * All I/O goes directly to and from the swap device.
961  *
962  * We currently attempt to run I/O synchronously or asynchronously as
963  * the caller requests.  This isn't perfect because we loose error
964  * sequencing when we run multiple ops in parallel to satisfy a request.
965  * But this is swap, so we let it all hang out.
966  *
967  * NOTE: This function supports the KVABIO API wherein bp->b_data might
968  *	 not be synchronized to the current cpu.
969  *
970  * No requirements.
971  */
972 void
973 swap_pager_strategy(vm_object_t object, struct bio *bio)
974 {
975 	struct buf *bp = bio->bio_buf;
976 	struct bio *nbio;
977 	vm_pindex_t start;
978 	vm_pindex_t biox_blkno = 0;
979 	int count;
980 	char *data;
981 	struct bio *biox;
982 	struct buf *bufx;
983 #if 0
984 	struct bio_track *track;
985 #endif
986 
987 #if 0
988 	/*
989 	 * tracking for swapdev vnode I/Os
990 	 */
991 	if (bp->b_cmd == BUF_CMD_READ)
992 		track = &swapdev_vp->v_track_read;
993 	else
994 		track = &swapdev_vp->v_track_write;
995 #endif
996 
997 	/*
998 	 * Only supported commands
999 	 */
1000 	if (bp->b_cmd != BUF_CMD_FREEBLKS &&
1001 	    bp->b_cmd != BUF_CMD_READ &&
1002 	    bp->b_cmd != BUF_CMD_WRITE) {
1003 		bp->b_error = EINVAL;
1004 		bp->b_flags |= B_ERROR | B_INVAL;
1005 		biodone(bio);
1006 		return;
1007 	}
1008 
1009 	/*
1010 	 * bcount must be an integral number of pages.
1011 	 */
1012 	if (bp->b_bcount & PAGE_MASK) {
1013 		bp->b_error = EINVAL;
1014 		bp->b_flags |= B_ERROR | B_INVAL;
1015 		biodone(bio);
1016 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1017 			"not page bounded\n",
1018 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1019 		return;
1020 	}
1021 
1022 	/*
1023 	 * Clear error indication, initialize page index, count, data pointer.
1024 	 */
1025 	bp->b_error = 0;
1026 	bp->b_flags &= ~B_ERROR;
1027 	bp->b_resid = bp->b_bcount;
1028 
1029 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1030 	count = howmany(bp->b_bcount, PAGE_SIZE);
1031 
1032 	/*
1033 	 * WARNING!  Do not dereference *data without issuing a bkvasync()
1034 	 */
1035 	data = bp->b_data;
1036 
1037 	/*
1038 	 * Deal with BUF_CMD_FREEBLKS
1039 	 */
1040 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1041 		/*
1042 		 * FREE PAGE(s) - destroy underlying swap that is no longer
1043 		 *		  needed.
1044 		 */
1045 		vm_object_hold(object);
1046 		swp_pager_meta_free(object, start, count);
1047 		vm_object_drop(object);
1048 		bp->b_resid = 0;
1049 		biodone(bio);
1050 		return;
1051 	}
1052 
1053 	/*
1054 	 * We need to be able to create a new cluster of I/O's.  We cannot
1055 	 * use the caller fields of the passed bio so push a new one.
1056 	 *
1057 	 * Because nbio is just a placeholder for the cluster links,
1058 	 * we can biodone() the original bio instead of nbio to make
1059 	 * things a bit more efficient.
1060 	 */
1061 	nbio = push_bio(bio);
1062 	nbio->bio_offset = bio->bio_offset;
1063 	nbio->bio_caller_info1.cluster_head = NULL;
1064 	nbio->bio_caller_info2.cluster_tail = NULL;
1065 
1066 	biox = NULL;
1067 	bufx = NULL;
1068 
1069 	/*
1070 	 * Execute read or write
1071 	 */
1072 	vm_object_hold(object);
1073 
1074 	while (count > 0) {
1075 		swblk_t blk;
1076 
1077 		/*
1078 		 * Obtain block.  If block not found and writing, allocate a
1079 		 * new block and build it into the object.
1080 		 */
1081 		blk = swp_pager_meta_ctl(object, start, 0);
1082 		if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1083 			blk = swp_pager_getswapspace(object, 1);
1084 			if (blk == SWAPBLK_NONE) {
1085 				bp->b_error = ENOMEM;
1086 				bp->b_flags |= B_ERROR;
1087 				break;
1088 			}
1089 			swp_pager_meta_build(object, start, blk);
1090 		}
1091 
1092 		/*
1093 		 * Do we have to flush our current collection?  Yes if:
1094 		 *
1095 		 *	- no swap block at this index
1096 		 *	- swap block is not contiguous
1097 		 *	- we cross a physical disk boundry in the
1098 		 *	  stripe.
1099 		 */
1100 		if (biox &&
1101 		    (biox_blkno + btoc(bufx->b_bcount) != blk ||
1102 		     ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1103 			switch(bp->b_cmd) {
1104 			case BUF_CMD_READ:
1105 				++mycpu->gd_cnt.v_swapin;
1106 				mycpu->gd_cnt.v_swappgsin +=
1107 					btoc(bufx->b_bcount);
1108 				break;
1109 			case BUF_CMD_WRITE:
1110 				++mycpu->gd_cnt.v_swapout;
1111 				mycpu->gd_cnt.v_swappgsout +=
1112 					btoc(bufx->b_bcount);
1113 				bufx->b_dirtyend = bufx->b_bcount;
1114 				break;
1115 			default:
1116 				/* NOT REACHED */
1117 				break;
1118 			}
1119 
1120 			/*
1121 			 * Finished with this buf.
1122 			 */
1123 			KKASSERT(bufx->b_bcount != 0);
1124 			if (bufx->b_cmd != BUF_CMD_READ)
1125 				bufx->b_dirtyend = bufx->b_bcount;
1126 			biox = NULL;
1127 			bufx = NULL;
1128 		}
1129 
1130 		/*
1131 		 * Add new swapblk to biox, instantiating biox if necessary.
1132 		 * Zero-fill reads are able to take a shortcut.
1133 		 */
1134 		if (blk == SWAPBLK_NONE) {
1135 			/*
1136 			 * We can only get here if we are reading.
1137 			 */
1138 			bkvasync(bp);
1139 			bzero(data, PAGE_SIZE);
1140 			bp->b_resid -= PAGE_SIZE;
1141 		} else {
1142 			if (biox == NULL) {
1143 				/* XXX chain count > 4, wait to <= 4 */
1144 
1145 				bufx = getpbuf(NULL);
1146 				bufx->b_flags |= B_KVABIO;
1147 				biox = &bufx->b_bio1;
1148 				cluster_append(nbio, bufx);
1149 				bufx->b_cmd = bp->b_cmd;
1150 				biox->bio_done = swap_chain_iodone;
1151 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1152 				biox->bio_caller_info1.cluster_parent = nbio;
1153 				biox_blkno = blk;
1154 				bufx->b_bcount = 0;
1155 				bufx->b_data = data;
1156 			}
1157 			bufx->b_bcount += PAGE_SIZE;
1158 		}
1159 		--count;
1160 		++start;
1161 		data += PAGE_SIZE;
1162 	}
1163 
1164 	vm_object_drop(object);
1165 
1166 	/*
1167 	 *  Flush out last buffer
1168 	 */
1169 	if (biox) {
1170 		if (bufx->b_cmd == BUF_CMD_READ) {
1171 			++mycpu->gd_cnt.v_swapin;
1172 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1173 		} else {
1174 			++mycpu->gd_cnt.v_swapout;
1175 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1176 			bufx->b_dirtyend = bufx->b_bcount;
1177 		}
1178 		KKASSERT(bufx->b_bcount);
1179 		if (bufx->b_cmd != BUF_CMD_READ)
1180 			bufx->b_dirtyend = bufx->b_bcount;
1181 		/* biox, bufx = NULL */
1182 	}
1183 
1184 	/*
1185 	 * Now initiate all the I/O.  Be careful looping on our chain as
1186 	 * I/O's may complete while we are still initiating them.
1187 	 *
1188 	 * If the request is a 100% sparse read no bios will be present
1189 	 * and we just biodone() the buffer.
1190 	 */
1191 	nbio->bio_caller_info2.cluster_tail = NULL;
1192 	bufx = nbio->bio_caller_info1.cluster_head;
1193 
1194 	if (bufx) {
1195 		while (bufx) {
1196 			biox = &bufx->b_bio1;
1197 			BUF_KERNPROC(bufx);
1198 			bufx = bufx->b_cluster_next;
1199 			vn_strategy(swapdev_vp, biox);
1200 		}
1201 	} else {
1202 		biodone(bio);
1203 	}
1204 
1205 	/*
1206 	 * Completion of the cluster will also call biodone_chain(nbio).
1207 	 * We never call biodone(nbio) so we don't have to worry about
1208 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1209 	 */
1210 	/**/
1211 }
1212 
1213 /*
1214  * biodone callback
1215  *
1216  * No requirements.
1217  */
1218 static void
1219 swap_chain_iodone(struct bio *biox)
1220 {
1221 	struct buf **nextp;
1222 	struct buf *bufx;	/* chained sub-buffer */
1223 	struct bio *nbio;	/* parent nbio with chain glue */
1224 	struct buf *bp;		/* original bp associated with nbio */
1225 	int chain_empty;
1226 
1227 	bufx = biox->bio_buf;
1228 	nbio = biox->bio_caller_info1.cluster_parent;
1229 	bp = nbio->bio_buf;
1230 
1231 	/*
1232 	 * Update the original buffer
1233 	 */
1234         KKASSERT(bp != NULL);
1235 	if (bufx->b_flags & B_ERROR) {
1236 		atomic_set_int(&bufx->b_flags, B_ERROR);
1237 		bp->b_error = bufx->b_error;	/* race ok */
1238 	} else if (bufx->b_resid != 0) {
1239 		atomic_set_int(&bufx->b_flags, B_ERROR);
1240 		bp->b_error = EINVAL;		/* race ok */
1241 	} else {
1242 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1243 	}
1244 
1245 	/*
1246 	 * Remove us from the chain.
1247 	 */
1248 	spin_lock(&swapbp_spin);
1249 	nextp = &nbio->bio_caller_info1.cluster_head;
1250 	while (*nextp != bufx) {
1251 		KKASSERT(*nextp != NULL);
1252 		nextp = &(*nextp)->b_cluster_next;
1253 	}
1254 	*nextp = bufx->b_cluster_next;
1255 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1256 	spin_unlock(&swapbp_spin);
1257 
1258 	/*
1259 	 * Clean up bufx.  If the chain is now empty we finish out
1260 	 * the parent.  Note that we may be racing other completions
1261 	 * so we must use the chain_empty status from above.
1262 	 */
1263 	if (chain_empty) {
1264 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1265 			atomic_set_int(&bp->b_flags, B_ERROR);
1266 			bp->b_error = EINVAL;
1267 		}
1268 		biodone_chain(nbio);
1269         }
1270         relpbuf(bufx, NULL);
1271 }
1272 
1273 /*
1274  * SWAP_PAGER_GETPAGES() - bring page in from swap
1275  *
1276  * The requested page may have to be brought in from swap.  Calculate the
1277  * swap block and bring in additional pages if possible.  All pages must
1278  * have contiguous swap block assignments and reside in the same object.
1279  *
1280  * The caller has a single vm_object_pip_add() reference prior to
1281  * calling us and we should return with the same.
1282  *
1283  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1284  * and any additinal pages unbusied.
1285  *
1286  * If the caller encounters a PG_RAM page it will pass it to us even though
1287  * it may be valid and dirty.  We cannot overwrite the page in this case!
1288  * The case is used to allow us to issue pure read-aheads.
1289  *
1290  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1291  *       the PG_RAM page is validated at the same time as mreq.  What we
1292  *	 really need to do is issue a separate read-ahead pbuf.
1293  *
1294  * No requirements.
1295  */
1296 static int
1297 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1298 {
1299 	struct buf *bp;
1300 	struct bio *bio;
1301 	vm_page_t mreq;
1302 	vm_page_t m;
1303 	vm_offset_t kva;
1304 	swblk_t blk;
1305 	int i;
1306 	int j;
1307 	int raonly;
1308 	int error;
1309 	u_int32_t busy_count;
1310 	vm_page_t marray[XIO_INTERNAL_PAGES];
1311 
1312 	mreq = *mpp;
1313 
1314 	vm_object_hold(object);
1315 	if (mreq->object != object) {
1316 		panic("swap_pager_getpages: object mismatch %p/%p",
1317 		    object,
1318 		    mreq->object
1319 		);
1320 	}
1321 
1322 	/*
1323 	 * We don't want to overwrite a fully valid page as it might be
1324 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1325 	 * valid page with PG_RAM set.
1326 	 *
1327 	 * In this case we see if the next page is a suitable page-in
1328 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1329 	 * set on the last page of the read-ahead to continue the pipeline.
1330 	 */
1331 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1332 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1333 			vm_object_drop(object);
1334 			return(VM_PAGER_OK);
1335 		}
1336 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1337 		if (blk == SWAPBLK_NONE) {
1338 			vm_object_drop(object);
1339 			return(VM_PAGER_OK);
1340 		}
1341 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1342 					    TRUE, &error);
1343 		if (error) {
1344 			vm_object_drop(object);
1345 			return(VM_PAGER_OK);
1346 		} else if (m == NULL) {
1347 			/*
1348 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1349 			 * page reuse.
1350 			 */
1351 			m = vm_page_alloc(object, mreq->pindex + 1,
1352 					  VM_ALLOC_QUICK);
1353 			if (m == NULL) {
1354 				vm_object_drop(object);
1355 				return(VM_PAGER_OK);
1356 			}
1357 		} else {
1358 			if (m->valid) {
1359 				vm_page_wakeup(m);
1360 				vm_object_drop(object);
1361 				return(VM_PAGER_OK);
1362 			}
1363 			vm_page_unqueue_nowakeup(m);
1364 		}
1365 		/* page is busy */
1366 		mreq = m;
1367 		raonly = 1;
1368 	} else {
1369 		raonly = 0;
1370 	}
1371 
1372 	/*
1373 	 * Try to block-read contiguous pages from swap if sequential,
1374 	 * otherwise just read one page.  Contiguous pages from swap must
1375 	 * reside within a single device stripe because the I/O cannot be
1376 	 * broken up across multiple stripes.
1377 	 *
1378 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1379 	 * set up such that the case(s) are handled implicitly.
1380 	 */
1381 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1382 	marray[0] = mreq;
1383 
1384 	for (i = 1; i <= swap_burst_read &&
1385 		    i < XIO_INTERNAL_PAGES &&
1386 		    mreq->pindex + i < object->size; ++i) {
1387 		swblk_t iblk;
1388 
1389 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1390 		if (iblk != blk + i)
1391 			break;
1392 		if ((blk ^ iblk) & ~SWB_DMMASK)
1393 			break;
1394 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1395 					    TRUE, &error);
1396 		if (error) {
1397 			break;
1398 		} else if (m == NULL) {
1399 			/*
1400 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1401 			 * page reuse.
1402 			 */
1403 			m = vm_page_alloc(object, mreq->pindex + i,
1404 					  VM_ALLOC_QUICK);
1405 			if (m == NULL)
1406 				break;
1407 		} else {
1408 			if (m->valid) {
1409 				vm_page_wakeup(m);
1410 				break;
1411 			}
1412 			vm_page_unqueue_nowakeup(m);
1413 		}
1414 		/* page is busy */
1415 		marray[i] = m;
1416 	}
1417 	if (i > 1)
1418 		vm_page_flag_set(marray[i - 1], PG_RAM);
1419 
1420 	/*
1421 	 * If mreq is the requested page and we have nothing to do return
1422 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1423 	 * page and must be cleaned up.
1424 	 */
1425 	if (blk == SWAPBLK_NONE) {
1426 		KKASSERT(i == 1);
1427 		if (raonly) {
1428 			vnode_pager_freepage(mreq);
1429 			vm_object_drop(object);
1430 			return(VM_PAGER_OK);
1431 		} else {
1432 			vm_object_drop(object);
1433 			return(VM_PAGER_FAIL);
1434 		}
1435 	}
1436 
1437 	/*
1438 	 * Map our page(s) into kva for input
1439 	 *
1440 	 * Use the KVABIO API to avoid synchronizing the pmap.
1441 	 */
1442 	bp = getpbuf_kva(&nsw_rcount);
1443 	bio = &bp->b_bio1;
1444 	kva = (vm_offset_t) bp->b_kvabase;
1445 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1446 	pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1447 
1448 	bp->b_data = (caddr_t)kva;
1449 	bp->b_bcount = PAGE_SIZE * i;
1450 	bp->b_xio.xio_npages = i;
1451 	bp->b_flags |= B_KVABIO;
1452 	bio->bio_done = swp_pager_async_iodone;
1453 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1454 	bio->bio_caller_info1.index = SWBIO_READ;
1455 
1456 	/*
1457 	 * Set index.  If raonly set the index beyond the array so all
1458 	 * the pages are treated the same, otherwise the original mreq is
1459 	 * at index 0.
1460 	 */
1461 	if (raonly)
1462 		bio->bio_driver_info = (void *)(intptr_t)i;
1463 	else
1464 		bio->bio_driver_info = (void *)(intptr_t)0;
1465 
1466 	for (j = 0; j < i; ++j) {
1467 		atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1468 			       PBUSY_SWAPINPROG);
1469 	}
1470 
1471 	mycpu->gd_cnt.v_swapin++;
1472 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1473 
1474 	/*
1475 	 * We still hold the lock on mreq, and our automatic completion routine
1476 	 * does not remove it.
1477 	 */
1478 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1479 
1480 	/*
1481 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1482 	 * this point because we automatically release it on completion.
1483 	 * Instead, we look at the one page we are interested in which we
1484 	 * still hold a lock on even through the I/O completion.
1485 	 *
1486 	 * The other pages in our m[] array are also released on completion,
1487 	 * so we cannot assume they are valid anymore either.
1488 	 */
1489 	bp->b_cmd = BUF_CMD_READ;
1490 	BUF_KERNPROC(bp);
1491 	vn_strategy(swapdev_vp, bio);
1492 
1493 	/*
1494 	 * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1495 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1496 	 * is set in the meta-data.
1497 	 *
1498 	 * If this is a read-ahead only we return immediately without
1499 	 * waiting for I/O.
1500 	 */
1501 	if (raonly) {
1502 		vm_object_drop(object);
1503 		return(VM_PAGER_OK);
1504 	}
1505 
1506 	/*
1507 	 * Read-ahead includes originally requested page case.
1508 	 */
1509 	for (;;) {
1510 		busy_count = mreq->busy_count;
1511 		cpu_ccfence();
1512 		if ((busy_count & PBUSY_SWAPINPROG) == 0)
1513 			break;
1514 		tsleep_interlock(mreq, 0);
1515 		if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1516 				       busy_count |
1517 				        PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1518 			continue;
1519 		}
1520 		atomic_set_int(&mreq->flags, PG_REFERENCED);
1521 		mycpu->gd_cnt.v_intrans++;
1522 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1523 			kprintf(
1524 			    "swap_pager: indefinite wait buffer: "
1525 			    " bp %p offset: %lld, size: %ld "
1526 			    " m=%p busy=%08x flags=%08x\n",
1527 			    bp,
1528 			    (long long)bio->bio_offset,
1529 			    (long)bp->b_bcount,
1530 			    mreq, mreq->busy_count, mreq->flags);
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * Disallow speculative reads prior to the SWAPINPROG test.
1536 	 */
1537 	cpu_lfence();
1538 
1539 	/*
1540 	 * mreq is left busied after completion, but all the other pages
1541 	 * are freed.  If we had an unrecoverable read error the page will
1542 	 * not be valid.
1543 	 */
1544 	vm_object_drop(object);
1545 	if (mreq->valid != VM_PAGE_BITS_ALL)
1546 		return(VM_PAGER_ERROR);
1547 	else
1548 		return(VM_PAGER_OK);
1549 
1550 	/*
1551 	 * A final note: in a low swap situation, we cannot deallocate swap
1552 	 * and mark a page dirty here because the caller is likely to mark
1553 	 * the page clean when we return, causing the page to possibly revert
1554 	 * to all-zero's later.
1555 	 */
1556 }
1557 
1558 /*
1559  *	swap_pager_putpages:
1560  *
1561  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1562  *
1563  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1564  *	are automatically converted to SWAP objects.
1565  *
1566  *	In a low memory situation we may block in vn_strategy(), but the new
1567  *	vm_page reservation system coupled with properly written VFS devices
1568  *	should ensure that no low-memory deadlock occurs.  This is an area
1569  *	which needs work.
1570  *
1571  *	The parent has N vm_object_pip_add() references prior to
1572  *	calling us and will remove references for rtvals[] that are
1573  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1574  *	completion.
1575  *
1576  *	The parent has soft-busy'd the pages it passes us and will unbusy
1577  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1578  *	We need to unbusy the rest on I/O completion.
1579  *
1580  * No requirements.
1581  */
1582 void
1583 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1584 		    int flags, int *rtvals)
1585 {
1586 	int i;
1587 	int n = 0;
1588 
1589 	vm_object_hold(object);
1590 
1591 	if (count && m[0]->object != object) {
1592 		panic("swap_pager_getpages: object mismatch %p/%p",
1593 		    object,
1594 		    m[0]->object
1595 		);
1596 	}
1597 
1598 	/*
1599 	 * Step 1
1600 	 *
1601 	 * Turn object into OBJT_SWAP
1602 	 * Check for bogus sysops
1603 	 *
1604 	 * Force sync if not pageout process, we don't want any single
1605 	 * non-pageout process to be able to hog the I/O subsystem!  This
1606 	 * can be overridden by setting.
1607 	 */
1608 	if (object->type == OBJT_DEFAULT) {
1609 		if (object->type == OBJT_DEFAULT)
1610 			swp_pager_meta_convert(object);
1611 	}
1612 
1613 	/*
1614 	 * Normally we force synchronous swap I/O if this is not the
1615 	 * pageout daemon to prevent any single user process limited
1616 	 * via RLIMIT_RSS from hogging swap write bandwidth.
1617 	 */
1618 	if (curthread != pagethread &&
1619 	    curthread != emergpager &&
1620 	    swap_user_async == 0) {
1621 		flags |= VM_PAGER_PUT_SYNC;
1622 	}
1623 
1624 	/*
1625 	 * Step 2
1626 	 *
1627 	 * Update nsw parameters from swap_async_max sysctl values.
1628 	 * Do not let the sysop crash the machine with bogus numbers.
1629 	 */
1630 	if (swap_async_max != nsw_wcount_async_max) {
1631 		int n;
1632 
1633 		/*
1634 		 * limit range
1635 		 */
1636 		if ((n = swap_async_max) > nswbuf_kva / 2)
1637 			n = nswbuf_kva / 2;
1638 		if (n < 1)
1639 			n = 1;
1640 		swap_async_max = n;
1641 
1642 		/*
1643 		 * Adjust difference ( if possible ).  If the current async
1644 		 * count is too low, we may not be able to make the adjustment
1645 		 * at this time.
1646 		 *
1647 		 * vm_token needed for nsw_wcount sleep interlock
1648 		 */
1649 		lwkt_gettoken(&vm_token);
1650 		n -= nsw_wcount_async_max;
1651 		if (nsw_wcount_async + n >= 0) {
1652 			nsw_wcount_async_max += n;
1653 			pbuf_adjcount(&nsw_wcount_async, n);
1654 		}
1655 		lwkt_reltoken(&vm_token);
1656 	}
1657 
1658 	/*
1659 	 * Step 3
1660 	 *
1661 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1662 	 * The page is left dirty until the pageout operation completes
1663 	 * successfully.
1664 	 */
1665 
1666 	for (i = 0; i < count; i += n) {
1667 		struct buf *bp;
1668 		struct bio *bio;
1669 		swblk_t blk;
1670 		int j;
1671 
1672 		/*
1673 		 * Maximum I/O size is limited by a number of factors.
1674 		 */
1675 
1676 		n = min(BLIST_MAX_ALLOC, count - i);
1677 		n = min(n, nsw_cluster_max);
1678 
1679 		lwkt_gettoken(&vm_token);
1680 
1681 		/*
1682 		 * Get biggest block of swap we can.  If we fail, fall
1683 		 * back and try to allocate a smaller block.  Don't go
1684 		 * overboard trying to allocate space if it would overly
1685 		 * fragment swap.
1686 		 */
1687 		while (
1688 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1689 		    n > 4
1690 		) {
1691 			n >>= 1;
1692 		}
1693 		if (blk == SWAPBLK_NONE) {
1694 			for (j = 0; j < n; ++j)
1695 				rtvals[i+j] = VM_PAGER_FAIL;
1696 			lwkt_reltoken(&vm_token);
1697 			continue;
1698 		}
1699 		if (vm_report_swap_allocs > 0) {
1700 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1701 			--vm_report_swap_allocs;
1702 		}
1703 
1704 		/*
1705 		 * The I/O we are constructing cannot cross a physical
1706 		 * disk boundry in the swap stripe.
1707 		 */
1708 		if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1709 			j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1710 			swp_pager_freeswapspace(object, blk + j, n - j);
1711 			n = j;
1712 		}
1713 
1714 		/*
1715 		 * All I/O parameters have been satisfied, build the I/O
1716 		 * request and assign the swap space.
1717 		 *
1718 		 * Use the KVABIO API to avoid synchronizing the pmap.
1719 		 */
1720 		if ((flags & VM_PAGER_PUT_SYNC))
1721 			bp = getpbuf_kva(&nsw_wcount_sync);
1722 		else
1723 			bp = getpbuf_kva(&nsw_wcount_async);
1724 		bio = &bp->b_bio1;
1725 
1726 		lwkt_reltoken(&vm_token);
1727 
1728 		pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1729 
1730 		bp->b_flags |= B_KVABIO;
1731 		bp->b_bcount = PAGE_SIZE * n;
1732 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1733 
1734 		for (j = 0; j < n; ++j) {
1735 			vm_page_t mreq = m[i+j];
1736 
1737 			swp_pager_meta_build(mreq->object, mreq->pindex,
1738 					     blk + j);
1739 			if (object->type == OBJT_SWAP)
1740 				vm_page_dirty(mreq);
1741 			rtvals[i+j] = VM_PAGER_OK;
1742 
1743 			atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1744 			bp->b_xio.xio_pages[j] = mreq;
1745 		}
1746 		bp->b_xio.xio_npages = n;
1747 
1748 		mycpu->gd_cnt.v_swapout++;
1749 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1750 
1751 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1752 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1753 		bp->b_cmd = BUF_CMD_WRITE;
1754 		bio->bio_caller_info1.index = SWBIO_WRITE;
1755 
1756 		/*
1757 		 * asynchronous
1758 		 */
1759 		if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1760 			bio->bio_done = swp_pager_async_iodone;
1761 			BUF_KERNPROC(bp);
1762 			vn_strategy(swapdev_vp, bio);
1763 
1764 			for (j = 0; j < n; ++j)
1765 				rtvals[i+j] = VM_PAGER_PEND;
1766 			continue;
1767 		}
1768 
1769 		/*
1770 		 * Issue synchrnously.
1771 		 *
1772 		 * Wait for the sync I/O to complete, then update rtvals.
1773 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1774 		 * our async completion routine at the end, thus avoiding a
1775 		 * double-free.
1776 		 */
1777 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1778 		if (flags & VM_PAGER_TRY_TO_CACHE)
1779 			bio->bio_caller_info1.index |= SWBIO_TTC;
1780 		bio->bio_done = biodone_sync;
1781 		bio->bio_flags |= BIO_SYNC;
1782 		vn_strategy(swapdev_vp, bio);
1783 		biowait(bio, "swwrt");
1784 
1785 		for (j = 0; j < n; ++j)
1786 			rtvals[i+j] = VM_PAGER_PEND;
1787 
1788 		/*
1789 		 * Now that we are through with the bp, we can call the
1790 		 * normal async completion, which frees everything up.
1791 		 */
1792 		swp_pager_async_iodone(bio);
1793 	}
1794 	vm_object_drop(object);
1795 }
1796 
1797 /*
1798  * No requirements.
1799  *
1800  * Recalculate the low and high-water marks.
1801  */
1802 void
1803 swap_pager_newswap(void)
1804 {
1805 	/*
1806 	 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1807 	 *	 limitation imposed by the blist code.  Remember that this
1808 	 *	 will be divided by NSWAP_MAX (4), so each swap device is
1809 	 *	 limited to around a terrabyte.
1810 	 */
1811 	if (vm_swap_max) {
1812 		nswap_lowat = (int64_t)vm_swap_max * 4 / 100;	/* 4% left */
1813 		nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;	/* 6% left */
1814 		kprintf("swap low/high-water marks set to %d/%d\n",
1815 			nswap_lowat, nswap_hiwat);
1816 	} else {
1817 		nswap_lowat = 128;
1818 		nswap_hiwat = 512;
1819 	}
1820 	swp_sizecheck();
1821 }
1822 
1823 /*
1824  *	swp_pager_async_iodone:
1825  *
1826  *	Completion routine for asynchronous reads and writes from/to swap.
1827  *	Also called manually by synchronous code to finish up a bp.
1828  *
1829  *	For READ operations, the pages are BUSY'd.  For WRITE operations,
1830  *	the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1831  *	unbusy all pages except the 'main' request page.  For WRITE
1832  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1833  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1834  *
1835  *	This routine may not block.
1836  *
1837  * No requirements.
1838  */
1839 static void
1840 swp_pager_async_iodone(struct bio *bio)
1841 {
1842 	struct buf *bp = bio->bio_buf;
1843 	vm_object_t object = NULL;
1844 	int i;
1845 	int *nswptr;
1846 
1847 	/*
1848 	 * report error
1849 	 */
1850 	if (bp->b_flags & B_ERROR) {
1851 		kprintf(
1852 		    "swap_pager: I/O error - %s failed; offset %lld,"
1853 			"size %ld, error %d\n",
1854 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1855 			"pagein" : "pageout"),
1856 		    (long long)bio->bio_offset,
1857 		    (long)bp->b_bcount,
1858 		    bp->b_error
1859 		);
1860 	}
1861 
1862 	/*
1863 	 * set object.
1864 	 */
1865 	if (bp->b_xio.xio_npages)
1866 		object = bp->b_xio.xio_pages[0]->object;
1867 
1868 #if 0
1869 	/* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1870 	if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1871 		if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1872 			kprintf("SWAPOUT: BADCRC %08x %08x\n",
1873 				bio->bio_crc,
1874 				iscsi_crc32(bp->b_data, bp->b_bcount));
1875 			for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1876 				vm_page_t m = bp->b_xio.xio_pages[i];
1877 				if ((m->flags & PG_WRITEABLE) &&
1878 				    (pmap_mapped_sync(m) & PG_WRITEABLE)) {
1879 					kprintf("SWAPOUT: "
1880 						"%d/%d %p writable\n",
1881 						i, bp->b_xio.xio_npages, m);
1882 				}
1883 			}
1884 		}
1885 	}
1886 #endif
1887 
1888 	/*
1889 	 * remove the mapping for kernel virtual
1890 	 */
1891 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1892 
1893 	/*
1894 	 * cleanup pages.  If an error occurs writing to swap, we are in
1895 	 * very serious trouble.  If it happens to be a disk error, though,
1896 	 * we may be able to recover by reassigning the swap later on.  So
1897 	 * in this case we remove the m->swapblk assignment for the page
1898 	 * but do not free it in the rlist.  The errornous block(s) are thus
1899 	 * never reallocated as swap.  Redirty the page and continue.
1900 	 */
1901 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1902 		vm_page_t m = bp->b_xio.xio_pages[i];
1903 
1904 		if (bp->b_flags & B_ERROR) {
1905 			/*
1906 			 * If an error occurs I'd love to throw the swapblk
1907 			 * away without freeing it back to swapspace, so it
1908 			 * can never be used again.  But I can't from an
1909 			 * interrupt.
1910 			 */
1911 
1912 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1913 				/*
1914 				 * When reading, reqpage needs to stay
1915 				 * locked for the parent, but all other
1916 				 * pages can be freed.  We still want to
1917 				 * wakeup the parent waiting on the page,
1918 				 * though.  ( also: pg_reqpage can be -1 and
1919 				 * not match anything ).
1920 				 *
1921 				 * We have to wake specifically requested pages
1922 				 * up too because we cleared SWAPINPROG and
1923 				 * someone may be waiting for that.
1924 				 *
1925 				 * NOTE: For reads, m->dirty will probably
1926 				 *	 be overridden by the original caller
1927 				 *	 of getpages so don't play cute tricks
1928 				 *	 here.
1929 				 *
1930 				 * NOTE: We can't actually free the page from
1931 				 *	 here, because this is an interrupt.
1932 				 *	 It is not legal to mess with
1933 				 *	 object->memq from an interrupt.
1934 				 *	 Deactivate the page instead.
1935 				 *
1936 				 * WARNING! The instant SWAPINPROG is
1937 				 *	    cleared another cpu may start
1938 				 *	    using the mreq page (it will
1939 				 *	    check m->valid immediately).
1940 				 */
1941 
1942 				m->valid = 0;
1943 				atomic_clear_int(&m->busy_count,
1944 						 PBUSY_SWAPINPROG);
1945 
1946 				/*
1947 				 * bio_driver_info holds the requested page
1948 				 * index.
1949 				 */
1950 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1951 					vm_page_deactivate(m);
1952 					vm_page_wakeup(m);
1953 				} else {
1954 					vm_page_flash(m);
1955 				}
1956 				/*
1957 				 * If i == bp->b_pager.pg_reqpage, do not wake
1958 				 * the page up.  The caller needs to.
1959 				 */
1960 			} else {
1961 				/*
1962 				 * If a write error occurs remove the swap
1963 				 * assignment (note that PG_SWAPPED may or
1964 				 * may not be set depending on prior activity).
1965 				 *
1966 				 * Re-dirty OBJT_SWAP pages as there is no
1967 				 * other backing store, we can't throw the
1968 				 * page away.
1969 				 *
1970 				 * Non-OBJT_SWAP pages (aka swapcache) must
1971 				 * not be dirtied since they may not have
1972 				 * been dirty in the first place, and they
1973 				 * do have backing store (the vnode).
1974 				 */
1975 				vm_page_busy_wait(m, FALSE, "swadpg");
1976 				vm_object_hold(m->object);
1977 				swp_pager_meta_ctl(m->object, m->pindex,
1978 						   SWM_FREE);
1979 				vm_page_flag_clear(m, PG_SWAPPED);
1980 				vm_object_drop(m->object);
1981 				if (m->object->type == OBJT_SWAP) {
1982 					vm_page_dirty(m);
1983 					vm_page_activate(m);
1984 				}
1985 				vm_page_io_finish(m);
1986 				atomic_clear_int(&m->busy_count,
1987 						 PBUSY_SWAPINPROG);
1988 				vm_page_wakeup(m);
1989 			}
1990 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1991 			/*
1992 			 * NOTE: for reads, m->dirty will probably be
1993 			 * overridden by the original caller of getpages so
1994 			 * we cannot set them in order to free the underlying
1995 			 * swap in a low-swap situation.  I don't think we'd
1996 			 * want to do that anyway, but it was an optimization
1997 			 * that existed in the old swapper for a time before
1998 			 * it got ripped out due to precisely this problem.
1999 			 *
2000 			 * If not the requested page then deactivate it.
2001 			 *
2002 			 * Note that the requested page, reqpage, is left
2003 			 * busied, but we still have to wake it up.  The
2004 			 * other pages are released (unbusied) by
2005 			 * vm_page_wakeup().  We do not set reqpage's
2006 			 * valid bits here, it is up to the caller.
2007 			 */
2008 
2009 			/*
2010 			 * NOTE: Can't call pmap_clear_modify(m) from an
2011 			 *	 interrupt thread, the pmap code may have to
2012 			 *	 map non-kernel pmaps and currently asserts
2013 			 *	 the case.
2014 			 *
2015 			 * WARNING! The instant SWAPINPROG is
2016 			 *	    cleared another cpu may start
2017 			 *	    using the mreq page (it will
2018 			 *	    check m->valid immediately).
2019 			 */
2020 			/*pmap_clear_modify(m);*/
2021 			m->valid = VM_PAGE_BITS_ALL;
2022 			vm_page_undirty(m);
2023 			vm_page_flag_set(m, PG_SWAPPED);
2024 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2025 
2026 			/*
2027 			 * We have to wake specifically requested pages
2028 			 * up too because we cleared SWAPINPROG and
2029 			 * could be waiting for it in getpages.  However,
2030 			 * be sure to not unbusy getpages specifically
2031 			 * requested page - getpages expects it to be
2032 			 * left busy.
2033 			 *
2034 			 * bio_driver_info holds the requested page
2035 			 */
2036 			if (i != (int)(intptr_t)bio->bio_driver_info) {
2037 				vm_page_deactivate(m);
2038 				vm_page_wakeup(m);
2039 			} else {
2040 				vm_page_flash(m);
2041 			}
2042 		} else {
2043 			/*
2044 			 * Mark the page clean but do not mess with the
2045 			 * pmap-layer's modified state.  That state should
2046 			 * also be clear since the caller protected the
2047 			 * page VM_PROT_READ, but allow the case.
2048 			 *
2049 			 * We are in an interrupt, avoid pmap operations.
2050 			 *
2051 			 * If we have a severe page deficit, deactivate the
2052 			 * page.  Do not try to cache it (which would also
2053 			 * involve a pmap op), because the page might still
2054 			 * be read-heavy.
2055 			 *
2056 			 * When using the swap to cache clean vnode pages
2057 			 * we do not mess with the page dirty bits.
2058 			 *
2059 			 * NOTE! Nobody is waiting for the key mreq page
2060 			 *	 on write completion.
2061 			 */
2062 			vm_page_busy_wait(m, FALSE, "swadpg");
2063 			if (m->object->type == OBJT_SWAP)
2064 				vm_page_undirty(m);
2065 			vm_page_flag_set(m, PG_SWAPPED);
2066 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2067 			if (vm_page_count_severe())
2068 				vm_page_deactivate(m);
2069 			vm_page_io_finish(m);
2070 			if (bio->bio_caller_info1.index & SWBIO_TTC)
2071 				vm_page_try_to_cache(m);
2072 			else
2073 				vm_page_wakeup(m);
2074 		}
2075 	}
2076 
2077 	/*
2078 	 * adjust pip.  NOTE: the original parent may still have its own
2079 	 * pip refs on the object.
2080 	 */
2081 
2082 	if (object)
2083 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2084 
2085 	/*
2086 	 * Release the physical I/O buffer.
2087 	 *
2088 	 * NOTE: Due to synchronous operations in the write case b_cmd may
2089 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
2090 	 *	 been cleared.
2091 	 *
2092 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2093 	 */
2094 	lwkt_gettoken(&vm_token);
2095 	if (bio->bio_caller_info1.index & SWBIO_READ)
2096 		nswptr = &nsw_rcount;
2097 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2098 		nswptr = &nsw_wcount_sync;
2099 	else
2100 		nswptr = &nsw_wcount_async;
2101 	bp->b_cmd = BUF_CMD_DONE;
2102 	relpbuf(bp, nswptr);
2103 	lwkt_reltoken(&vm_token);
2104 }
2105 
2106 /*
2107  * Fault-in a potentially swapped page and remove the swap reference.
2108  * (used by swapoff code)
2109  *
2110  * object must be held.
2111  */
2112 static __inline void
2113 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2114 {
2115 	struct vnode *vp;
2116 	vm_page_t m;
2117 	int error;
2118 
2119 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2120 
2121 	if (object->type == OBJT_VNODE) {
2122 		/*
2123 		 * Any swap related to a vnode is due to swapcache.  We must
2124 		 * vget() the vnode in case it is not active (otherwise
2125 		 * vref() will panic).  Calling vm_object_page_remove() will
2126 		 * ensure that any swap ref is removed interlocked with the
2127 		 * page.  clean_only is set to TRUE so we don't throw away
2128 		 * dirty pages.
2129 		 */
2130 		vp = object->handle;
2131 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2132 		if (error == 0) {
2133 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2134 			vput(vp);
2135 		}
2136 	} else {
2137 		/*
2138 		 * Otherwise it is a normal OBJT_SWAP object and we can
2139 		 * fault the page in and remove the swap.
2140 		 */
2141 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2142 					 VM_PROT_NONE,
2143 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2144 					 sharedp, &error);
2145 		if (m)
2146 			vm_page_unhold(m);
2147 	}
2148 }
2149 
2150 /*
2151  * This removes all swap blocks related to a particular device.  We have
2152  * to be careful of ripups during the scan.
2153  */
2154 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2155 
2156 int
2157 swap_pager_swapoff(int devidx)
2158 {
2159 	struct vm_object_hash *hash;
2160 	struct swswapoffinfo info;
2161 	struct vm_object marker;
2162 	vm_object_t object;
2163 	int n;
2164 
2165 	bzero(&marker, sizeof(marker));
2166 	marker.type = OBJT_MARKER;
2167 
2168 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2169 		hash = &vm_object_hash[n];
2170 
2171 		lwkt_gettoken(&hash->token);
2172 		TAILQ_INSERT_HEAD(&hash->list, &marker, object_entry);
2173 
2174 		while ((object = TAILQ_NEXT(&marker, object_entry)) != NULL) {
2175 			if (object->type == OBJT_MARKER)
2176 				goto skip;
2177 			if (object->type != OBJT_SWAP &&
2178 			    object->type != OBJT_VNODE)
2179 				goto skip;
2180 			vm_object_hold(object);
2181 			if (object->type != OBJT_SWAP &&
2182 			    object->type != OBJT_VNODE) {
2183 				vm_object_drop(object);
2184 				goto skip;
2185 			}
2186 
2187 			/*
2188 			 * Object is special in that we can't just pagein
2189 			 * into vm_page's in it (tmpfs, vn).
2190 			 */
2191 			if ((object->flags & OBJ_NOPAGEIN) &&
2192 			    RB_ROOT(&object->swblock_root)) {
2193 				vm_object_drop(object);
2194 				goto skip;
2195 			}
2196 
2197 			info.object = object;
2198 			info.shared = 0;
2199 			info.devidx = devidx;
2200 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2201 					    NULL, swp_pager_swapoff_callback,
2202 					    &info);
2203 			vm_object_drop(object);
2204 skip:
2205 			if (object == TAILQ_NEXT(&marker, object_entry)) {
2206 				TAILQ_REMOVE(&hash->list, &marker,
2207 					     object_entry);
2208 				TAILQ_INSERT_AFTER(&hash->list, object,
2209 						   &marker, object_entry);
2210 			}
2211 		}
2212 		TAILQ_REMOVE(&hash->list, &marker, object_entry);
2213 		lwkt_reltoken(&hash->token);
2214 	}
2215 
2216 	/*
2217 	 * If we fail to locate all swblocks we just fail gracefully and
2218 	 * do not bother to restore paging on the swap device.  If the
2219 	 * user wants to retry the user can retry.
2220 	 */
2221 	if (swdevt[devidx].sw_nused)
2222 		return (1);
2223 	else
2224 		return (0);
2225 }
2226 
2227 static
2228 int
2229 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2230 {
2231 	struct swswapoffinfo *info = data;
2232 	vm_object_t object = info->object;
2233 	vm_pindex_t index;
2234 	swblk_t v;
2235 	int i;
2236 
2237 	index = swap->swb_index;
2238 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2239 		/*
2240 		 * Make sure we don't race a dying object.  This will
2241 		 * kill the scan of the object's swap blocks entirely.
2242 		 */
2243 		if (object->flags & OBJ_DEAD)
2244 			return(-1);
2245 
2246 		/*
2247 		 * Fault the page, which can obviously block.  If the swap
2248 		 * structure disappears break out.
2249 		 */
2250 		v = swap->swb_pages[i];
2251 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2252 			swp_pager_fault_page(object, &info->shared,
2253 					     swap->swb_index + i);
2254 			/* swap ptr might go away */
2255 			if (RB_LOOKUP(swblock_rb_tree,
2256 				      &object->swblock_root, index) != swap) {
2257 				break;
2258 			}
2259 		}
2260 	}
2261 	return(0);
2262 }
2263 
2264 /************************************************************************
2265  *				SWAP META DATA 				*
2266  ************************************************************************
2267  *
2268  *	These routines manipulate the swap metadata stored in the
2269  *	OBJT_SWAP object.
2270  *
2271  *	Swap metadata is implemented with a global hash and not directly
2272  *	linked into the object.  Instead the object simply contains
2273  *	appropriate tracking counters.
2274  */
2275 
2276 /*
2277  * Lookup the swblock containing the specified swap block index.
2278  *
2279  * The caller must hold the object.
2280  */
2281 static __inline
2282 struct swblock *
2283 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2284 {
2285 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2286 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2287 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2288 }
2289 
2290 /*
2291  * Remove a swblock from the RB tree.
2292  *
2293  * The caller must hold the object.
2294  */
2295 static __inline
2296 void
2297 swp_pager_remove(vm_object_t object, struct swblock *swap)
2298 {
2299 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2300 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2301 }
2302 
2303 /*
2304  * Convert default object to swap object if necessary
2305  *
2306  * The caller must hold the object.
2307  */
2308 static void
2309 swp_pager_meta_convert(vm_object_t object)
2310 {
2311 	if (object->type == OBJT_DEFAULT) {
2312 		object->type = OBJT_SWAP;
2313 		KKASSERT(object->swblock_count == 0);
2314 	}
2315 }
2316 
2317 /*
2318  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2319  *
2320  *	We first convert the object to a swap object if it is a default
2321  *	object.  Vnode objects do not need to be converted.
2322  *
2323  *	The specified swapblk is added to the object's swap metadata.  If
2324  *	the swapblk is not valid, it is freed instead.  Any previously
2325  *	assigned swapblk is freed.
2326  *
2327  * The caller must hold the object.
2328  */
2329 static void
2330 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2331 {
2332 	struct swblock *swap;
2333 	struct swblock *oswap;
2334 	vm_pindex_t v;
2335 
2336 	KKASSERT(swapblk != SWAPBLK_NONE);
2337 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2338 
2339 	/*
2340 	 * Convert object if necessary
2341 	 */
2342 	if (object->type == OBJT_DEFAULT)
2343 		swp_pager_meta_convert(object);
2344 
2345 	/*
2346 	 * Locate swblock.  If not found create, but if we aren't adding
2347 	 * anything just return.  If we run out of space in the map we wait
2348 	 * and, since the hash table may have changed, retry.
2349 	 */
2350 retry:
2351 	swap = swp_pager_lookup(object, index);
2352 
2353 	if (swap == NULL) {
2354 		int i;
2355 
2356 		swap = zalloc(swap_zone);
2357 		if (swap == NULL) {
2358 			vm_wait(0);
2359 			goto retry;
2360 		}
2361 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2362 		swap->swb_count = 0;
2363 
2364 		++object->swblock_count;
2365 
2366 		for (i = 0; i < SWAP_META_PAGES; ++i)
2367 			swap->swb_pages[i] = SWAPBLK_NONE;
2368 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2369 		KKASSERT(oswap == NULL);
2370 	}
2371 
2372 	/*
2373 	 * Delete prior contents of metadata.
2374 	 *
2375 	 * NOTE: Decrement swb_count after the freeing operation (which
2376 	 *	 might block) to prevent racing destruction of the swblock.
2377 	 */
2378 	index &= SWAP_META_MASK;
2379 
2380 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2381 		swap->swb_pages[index] = SWAPBLK_NONE;
2382 		/* can block */
2383 		swp_pager_freeswapspace(object, v, 1);
2384 		--swap->swb_count;
2385 		--mycpu->gd_vmtotal.t_vm;
2386 	}
2387 
2388 	/*
2389 	 * Enter block into metadata
2390 	 */
2391 	swap->swb_pages[index] = swapblk;
2392 	if (swapblk != SWAPBLK_NONE) {
2393 		++swap->swb_count;
2394 		++mycpu->gd_vmtotal.t_vm;
2395 	}
2396 }
2397 
2398 /*
2399  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2400  *
2401  *	The requested range of blocks is freed, with any associated swap
2402  *	returned to the swap bitmap.
2403  *
2404  *	This routine will free swap metadata structures as they are cleaned
2405  *	out.  This routine does *NOT* operate on swap metadata associated
2406  *	with resident pages.
2407  *
2408  * The caller must hold the object.
2409  */
2410 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2411 
2412 static void
2413 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2414 {
2415 	struct swfreeinfo info;
2416 
2417 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2418 
2419 	/*
2420 	 * Nothing to do
2421 	 */
2422 	if (object->swblock_count == 0) {
2423 		KKASSERT(RB_EMPTY(&object->swblock_root));
2424 		return;
2425 	}
2426 	if (count == 0)
2427 		return;
2428 
2429 	/*
2430 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2431 	 * due to the 64 bit page index space so we cannot safely iterate.
2432 	 */
2433 	info.object = object;
2434 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2435 	info.begi = index;
2436 	info.endi = index + count - 1;
2437 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2438 				swp_pager_meta_free_callback, &info);
2439 }
2440 
2441 /*
2442  * The caller must hold the object.
2443  */
2444 static
2445 int
2446 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2447 {
2448 	struct swfreeinfo *info = data;
2449 	vm_object_t object = info->object;
2450 	int index;
2451 	int eindex;
2452 
2453 	/*
2454 	 * Figure out the range within the swblock.  The wider scan may
2455 	 * return edge-case swap blocks when the start and/or end points
2456 	 * are in the middle of a block.
2457 	 */
2458 	if (swap->swb_index < info->begi)
2459 		index = (int)info->begi & SWAP_META_MASK;
2460 	else
2461 		index = 0;
2462 
2463 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2464 		eindex = (int)info->endi & SWAP_META_MASK;
2465 	else
2466 		eindex = SWAP_META_MASK;
2467 
2468 	/*
2469 	 * Scan and free the blocks.  The loop terminates early
2470 	 * if (swap) runs out of blocks and could be freed.
2471 	 *
2472 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2473 	 *	 to deal with a zfree race.
2474 	 */
2475 	while (index <= eindex) {
2476 		swblk_t v = swap->swb_pages[index];
2477 
2478 		if (v != SWAPBLK_NONE) {
2479 			swap->swb_pages[index] = SWAPBLK_NONE;
2480 			/* can block */
2481 			swp_pager_freeswapspace(object, v, 1);
2482 			--mycpu->gd_vmtotal.t_vm;
2483 			if (--swap->swb_count == 0) {
2484 				swp_pager_remove(object, swap);
2485 				zfree(swap_zone, swap);
2486 				--object->swblock_count;
2487 				break;
2488 			}
2489 		}
2490 		++index;
2491 	}
2492 
2493 	/* swap may be invalid here due to zfree above */
2494 	lwkt_yield();
2495 
2496 	return(0);
2497 }
2498 
2499 /*
2500  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2501  *
2502  *	This routine locates and destroys all swap metadata associated with
2503  *	an object.
2504  *
2505  * NOTE: Decrement swb_count after the freeing operation (which
2506  *	 might block) to prevent racing destruction of the swblock.
2507  *
2508  * The caller must hold the object.
2509  */
2510 static void
2511 swp_pager_meta_free_all(vm_object_t object)
2512 {
2513 	struct swblock *swap;
2514 	int i;
2515 
2516 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2517 
2518 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2519 		swp_pager_remove(object, swap);
2520 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2521 			swblk_t v = swap->swb_pages[i];
2522 			if (v != SWAPBLK_NONE) {
2523 				/* can block */
2524 				swp_pager_freeswapspace(object, v, 1);
2525 				--swap->swb_count;
2526 				--mycpu->gd_vmtotal.t_vm;
2527 			}
2528 		}
2529 		if (swap->swb_count != 0)
2530 			panic("swap_pager_meta_free_all: swb_count != 0");
2531 		zfree(swap_zone, swap);
2532 		--object->swblock_count;
2533 		lwkt_yield();
2534 	}
2535 	KKASSERT(object->swblock_count == 0);
2536 }
2537 
2538 /*
2539  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2540  *
2541  *	This routine is capable of looking up, popping, or freeing
2542  *	swapblk assignments in the swap meta data or in the vm_page_t.
2543  *	The routine typically returns the swapblk being looked-up, or popped,
2544  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2545  *	was invalid.  This routine will automatically free any invalid
2546  *	meta-data swapblks.
2547  *
2548  *	It is not possible to store invalid swapblks in the swap meta data
2549  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2550  *
2551  *	When acting on a busy resident page and paging is in progress, we
2552  *	have to wait until paging is complete but otherwise can act on the
2553  *	busy page.
2554  *
2555  *	SWM_FREE	remove and free swap block from metadata
2556  *	SWM_POP		remove from meta data but do not free.. pop it out
2557  *
2558  * The caller must hold the object.
2559  */
2560 static swblk_t
2561 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2562 {
2563 	struct swblock *swap;
2564 	swblk_t r1;
2565 
2566 	if (object->swblock_count == 0)
2567 		return(SWAPBLK_NONE);
2568 
2569 	r1 = SWAPBLK_NONE;
2570 	swap = swp_pager_lookup(object, index);
2571 
2572 	if (swap != NULL) {
2573 		index &= SWAP_META_MASK;
2574 		r1 = swap->swb_pages[index];
2575 
2576 		if (r1 != SWAPBLK_NONE) {
2577 			if (flags & (SWM_FREE|SWM_POP)) {
2578 				swap->swb_pages[index] = SWAPBLK_NONE;
2579 				--mycpu->gd_vmtotal.t_vm;
2580 				if (--swap->swb_count == 0) {
2581 					swp_pager_remove(object, swap);
2582 					zfree(swap_zone, swap);
2583 					--object->swblock_count;
2584 				}
2585 			}
2586 			/* swap ptr may be invalid */
2587 			if (flags & SWM_FREE) {
2588 				swp_pager_freeswapspace(object, r1, 1);
2589 				r1 = SWAPBLK_NONE;
2590 			}
2591 		}
2592 		/* swap ptr may be invalid */
2593 	}
2594 	return(r1);
2595 }
2596