xref: /dragonfly/sys/vm/swap_pager.c (revision 2ee85085)
1 /*
2  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1994 John S. Dyson
35  * Copyright (c) 1990 University of Utah.
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * the Systems Programming Group of the University of Utah Computer
41  * Science Department.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *				New Swap System
72  *				Matthew Dillon
73  *
74  * Radix Bitmap 'blists'.
75  *
76  *	- The new swapper uses the new radix bitmap code.  This should scale
77  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
78  *	  arbitrary degree of fragmentation.
79  *
80  * Features:
81  *
82  *	- on the fly reallocation of swap during putpages.  The new system
83  *	  does not try to keep previously allocated swap blocks for dirty
84  *	  pages.
85  *
86  *	- on the fly deallocation of swap
87  *
88  *	- No more garbage collection required.  Unnecessarily allocated swap
89  *	  blocks only exist for dirty vm_page_t's now and these are already
90  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
91  *	  removal of invalidated swap blocks when a page is destroyed
92  *	  or renamed.
93  *
94  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
95  *
96  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
97  *
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  * $DragonFly: src/sys/vm/swap_pager.c,v 1.16 2005/06/02 20:57:21 swildner Exp $
100  */
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/thread2.h>
115 
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
119 
120 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
121 
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 /*
139  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
140  * in the old system.
141  */
142 
143 extern int vm_swap_size;	/* number of free swap blocks, in pages */
144 
145 int swap_pager_full;		/* swap space exhaustion (task killing) */
146 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
147 static int nsw_rcount;		/* free read buffers			*/
148 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
149 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
150 static int nsw_wcount_async_max;/* assigned maximum			*/
151 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
152 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
153 
154 struct blist *swapblist;
155 static struct swblock **swhash;
156 static int swhash_mask;
157 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
158 
159 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
160 
161 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
162         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
163 
164 /*
165  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
166  * of searching a named list by hashing it just a little.
167  */
168 
169 #define NOBJLISTS		8
170 
171 #define NOBJLIST(handle)	\
172 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
173 
174 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
175 struct pagerlst		swap_pager_un_object_list;
176 vm_zone_t		swap_zone;
177 
178 /*
179  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
180  * calls hooked from other parts of the VM system and do not appear here.
181  * (see vm/swap_pager.h).
182  */
183 
184 static vm_object_t
185 		swap_pager_alloc (void *handle, vm_ooffset_t size,
186 				      vm_prot_t prot, vm_ooffset_t offset);
187 static void	swap_pager_dealloc (vm_object_t object);
188 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
189 static void	swap_pager_init (void);
190 static void	swap_pager_unswapped (vm_page_t);
191 static void	swap_pager_strategy (vm_object_t, struct buf *);
192 
193 struct pagerops swappagerops = {
194 	swap_pager_init,	/* early system initialization of pager	*/
195 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
196 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
197 	swap_pager_getpages,	/* pagein				*/
198 	swap_pager_putpages,	/* pageout				*/
199 	swap_pager_haspage,	/* get backing store status for page	*/
200 	swap_pager_unswapped,	/* remove swap related to page		*/
201 	swap_pager_strategy	/* pager strategy call			*/
202 };
203 
204 /*
205  * dmmax is in page-sized chunks with the new swap system.  It was
206  * dev-bsized chunks in the old.  dmmax is always a power of 2.
207  *
208  * swap_*() routines are externally accessible.  swp_*() routines are
209  * internal.
210  */
211 
212 int dmmax;
213 static int dmmax_mask;
214 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
215 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
216 
217 static __inline void	swp_sizecheck (void);
218 static void	swp_pager_sync_iodone (struct buf *bp);
219 static void	swp_pager_async_iodone (struct buf *bp);
220 
221 /*
222  * Swap bitmap functions
223  */
224 
225 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
226 static __inline daddr_t	swp_pager_getswapspace (int npages);
227 
228 /*
229  * Metadata functions
230  */
231 
232 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
233 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
234 static void swp_pager_meta_free_all (vm_object_t);
235 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
236 
237 /*
238  * SWP_SIZECHECK() -	update swap_pager_full indication
239  *
240  *	update the swap_pager_almost_full indication and warn when we are
241  *	about to run out of swap space, using lowat/hiwat hysteresis.
242  *
243  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
244  *
245  *	No restrictions on call
246  *	This routine may not block.
247  *	This routine must be called at splvm()
248  */
249 
250 static __inline void
251 swp_sizecheck(void)
252 {
253 	if (vm_swap_size < nswap_lowat) {
254 		if (swap_pager_almost_full == 0) {
255 			printf("swap_pager: out of swap space\n");
256 			swap_pager_almost_full = 1;
257 		}
258 	} else {
259 		swap_pager_full = 0;
260 		if (vm_swap_size > nswap_hiwat)
261 			swap_pager_almost_full = 0;
262 	}
263 }
264 
265 /*
266  * SWAP_PAGER_INIT() -	initialize the swap pager!
267  *
268  *	Expected to be started from system init.  NOTE:  This code is run
269  *	before much else so be careful what you depend on.  Most of the VM
270  *	system has yet to be initialized at this point.
271  */
272 
273 static void
274 swap_pager_init(void)
275 {
276 	/*
277 	 * Initialize object lists
278 	 */
279 	int i;
280 
281 	for (i = 0; i < NOBJLISTS; ++i)
282 		TAILQ_INIT(&swap_pager_object_list[i]);
283 	TAILQ_INIT(&swap_pager_un_object_list);
284 
285 	/*
286 	 * Device Stripe, in PAGE_SIZE'd blocks
287 	 */
288 
289 	dmmax = SWB_NPAGES * 2;
290 	dmmax_mask = ~(dmmax - 1);
291 }
292 
293 /*
294  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
295  *
296  *	Expected to be started from pageout process once, prior to entering
297  *	its main loop.
298  */
299 
300 void
301 swap_pager_swap_init(void)
302 {
303 	int n, n2;
304 
305 	/*
306 	 * Number of in-transit swap bp operations.  Don't
307 	 * exhaust the pbufs completely.  Make sure we
308 	 * initialize workable values (0 will work for hysteresis
309 	 * but it isn't very efficient).
310 	 *
311 	 * The nsw_cluster_max is constrained by the number of pages an XIO
312 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
313 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
314 	 * constrained by the swap device interleave stripe size.
315 	 *
316 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
317 	 * designed to prevent other I/O from having high latencies due to
318 	 * our pageout I/O.  The value 4 works well for one or two active swap
319 	 * devices but is probably a little low if you have more.  Even so,
320 	 * a higher value would probably generate only a limited improvement
321 	 * with three or four active swap devices since the system does not
322 	 * typically have to pageout at extreme bandwidths.   We will want
323 	 * at least 2 per swap devices, and 4 is a pretty good value if you
324 	 * have one NFS swap device due to the command/ack latency over NFS.
325 	 * So it all works out pretty well.
326 	 */
327 
328 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
329 
330 	nsw_rcount = (nswbuf + 1) / 2;
331 	nsw_wcount_sync = (nswbuf + 3) / 4;
332 	nsw_wcount_async = 4;
333 	nsw_wcount_async_max = nsw_wcount_async;
334 
335 	/*
336 	 * Initialize our zone.  Right now I'm just guessing on the number
337 	 * we need based on the number of pages in the system.  Each swblock
338 	 * can hold 16 pages, so this is probably overkill.  This reservation
339 	 * is typically limited to around 32MB by default.
340 	 */
341 	n = vmstats.v_page_count / 2;
342 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
343 		n = maxswzone / sizeof(struct swblock);
344 	n2 = n;
345 
346 	do {
347 		swap_zone = zinit(
348 			"SWAPMETA",
349 			sizeof(struct swblock),
350 			n,
351 			ZONE_INTERRUPT,
352 			1);
353 		if (swap_zone != NULL)
354 			break;
355 		/*
356 		 * if the allocation failed, try a zone two thirds the
357 		 * size of the previous attempt.
358 		 */
359 		n -= ((n + 2) / 3);
360 	} while (n > 0);
361 
362 	if (swap_zone == NULL)
363 		panic("swap_pager_swap_init: swap_zone == NULL");
364 	if (n2 != n)
365 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
366 	n2 = n;
367 
368 	/*
369 	 * Initialize our meta-data hash table.  The swapper does not need to
370 	 * be quite as efficient as the VM system, so we do not use an
371 	 * oversized hash table.
372 	 *
373 	 * 	n: 		size of hash table, must be power of 2
374 	 *	swhash_mask:	hash table index mask
375 	 */
376 
377 	for (n = 1; n < n2 / 8; n *= 2)
378 		;
379 
380 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
381 	bzero(swhash, sizeof(struct swblock *) * n);
382 
383 	swhash_mask = n - 1;
384 }
385 
386 /*
387  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
388  *			its metadata structures.
389  *
390  *	This routine is called from the mmap and fork code to create a new
391  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
392  *	and then converting it with swp_pager_meta_build().
393  *
394  *	This routine may block in vm_object_allocate() and create a named
395  *	object lookup race, so we must interlock.   We must also run at
396  *	splvm() for the object lookup to handle races with interrupts, but
397  *	we do not have to maintain splvm() in between the lookup and the
398  *	add because (I believe) it is not possible to attempt to create
399  *	a new swap object w/handle when a default object with that handle
400  *	already exists.
401  */
402 
403 static vm_object_t
404 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
405 		 vm_ooffset_t offset)
406 {
407 	vm_object_t object;
408 
409 	if (handle) {
410 		/*
411 		 * Reference existing named region or allocate new one.  There
412 		 * should not be a race here against swp_pager_meta_build()
413 		 * as called from vm_page_remove() in regards to the lookup
414 		 * of the handle.
415 		 */
416 
417 		while (sw_alloc_interlock) {
418 			sw_alloc_interlock = -1;
419 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
420 		}
421 		sw_alloc_interlock = 1;
422 
423 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
424 
425 		if (object != NULL) {
426 			vm_object_reference(object);
427 		} else {
428 			object = vm_object_allocate(OBJT_DEFAULT,
429 				OFF_TO_IDX(offset + PAGE_MASK + size));
430 			object->handle = handle;
431 
432 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
433 		}
434 
435 		if (sw_alloc_interlock < 0)
436 			wakeup(&sw_alloc_interlock);
437 
438 		sw_alloc_interlock = 0;
439 	} else {
440 		object = vm_object_allocate(OBJT_DEFAULT,
441 			OFF_TO_IDX(offset + PAGE_MASK + size));
442 
443 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
444 	}
445 
446 	return (object);
447 }
448 
449 /*
450  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
451  *
452  *	The swap backing for the object is destroyed.  The code is
453  *	designed such that we can reinstantiate it later, but this
454  *	routine is typically called only when the entire object is
455  *	about to be destroyed.
456  *
457  *	This routine may block, but no longer does.
458  *
459  *	The object must be locked or unreferenceable.
460  */
461 
462 static void
463 swap_pager_dealloc(vm_object_t object)
464 {
465 	/*
466 	 * Remove from list right away so lookups will fail if we block for
467 	 * pageout completion.
468 	 */
469 
470 	if (object->handle == NULL) {
471 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
472 	} else {
473 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
474 	}
475 
476 	vm_object_pip_wait(object, "swpdea");
477 
478 	/*
479 	 * Free all remaining metadata.  We only bother to free it from
480 	 * the swap meta data.  We do not attempt to free swapblk's still
481 	 * associated with vm_page_t's for this object.  We do not care
482 	 * if paging is still in progress on some objects.
483 	 */
484 	crit_enter();
485 	swp_pager_meta_free_all(object);
486 	crit_exit();
487 }
488 
489 /************************************************************************
490  *			SWAP PAGER BITMAP ROUTINES			*
491  ************************************************************************/
492 
493 /*
494  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
495  *
496  *	Allocate swap for the requested number of pages.  The starting
497  *	swap block number (a page index) is returned or SWAPBLK_NONE
498  *	if the allocation failed.
499  *
500  *	Also has the side effect of advising that somebody made a mistake
501  *	when they configured swap and didn't configure enough.
502  *
503  *	Must be called at splvm() to avoid races with bitmap frees from
504  *	vm_page_remove() aka swap_pager_page_removed().
505  *
506  *	This routine may not block
507  *	This routine must be called at splvm().
508  */
509 
510 static __inline daddr_t
511 swp_pager_getswapspace(int npages)
512 {
513 	daddr_t blk;
514 
515 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
516 		if (swap_pager_full != 2) {
517 			printf("swap_pager_getswapspace: failed\n");
518 			swap_pager_full = 2;
519 			swap_pager_almost_full = 1;
520 		}
521 	} else {
522 		vm_swap_size -= npages;
523 		swp_sizecheck();
524 	}
525 	return(blk);
526 }
527 
528 /*
529  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
530  *
531  *	This routine returns the specified swap blocks back to the bitmap.
532  *
533  *	Note:  This routine may not block (it could in the old swap code),
534  *	and through the use of the new blist routines it does not block.
535  *
536  *	We must be called at splvm() to avoid races with bitmap frees from
537  *	vm_page_remove() aka swap_pager_page_removed().
538  *
539  *	This routine may not block
540  *	This routine must be called at splvm().
541  */
542 
543 static __inline void
544 swp_pager_freeswapspace(daddr_t blk, int npages)
545 {
546 	blist_free(swapblist, blk, npages);
547 	vm_swap_size += npages;
548 	swp_sizecheck();
549 }
550 
551 /*
552  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
553  *				range within an object.
554  *
555  *	This is a globally accessible routine.
556  *
557  *	This routine removes swapblk assignments from swap metadata.
558  *
559  *	The external callers of this routine typically have already destroyed
560  *	or renamed vm_page_t's associated with this range in the object so
561  *	we should be ok.
562  *
563  *	This routine may be called at any spl.  We up our spl to splvm temporarily
564  *	in order to perform the metadata removal.
565  */
566 
567 void
568 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
569 {
570 	crit_enter();
571 	swp_pager_meta_free(object, start, size);
572 	crit_exit();
573 }
574 
575 /*
576  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
577  *
578  *	Assigns swap blocks to the specified range within the object.  The
579  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
580  *
581  *	Returns 0 on success, -1 on failure.
582  */
583 
584 int
585 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
586 {
587 	int n = 0;
588 	daddr_t blk = SWAPBLK_NONE;
589 	vm_pindex_t beg = start;	/* save start index */
590 
591 	crit_enter();
592 	while (size) {
593 		if (n == 0) {
594 			n = BLIST_MAX_ALLOC;
595 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
596 				n >>= 1;
597 				if (n == 0) {
598 					swp_pager_meta_free(object, beg, start - beg);
599 					crit_exit();
600 					return(-1);
601 				}
602 			}
603 		}
604 		swp_pager_meta_build(object, start, blk);
605 		--size;
606 		++start;
607 		++blk;
608 		--n;
609 	}
610 	swp_pager_meta_free(object, start, n);
611 	crit_exit();
612 	return(0);
613 }
614 
615 /*
616  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
617  *			and destroy the source.
618  *
619  *	Copy any valid swapblks from the source to the destination.  In
620  *	cases where both the source and destination have a valid swapblk,
621  *	we keep the destination's.
622  *
623  *	This routine is allowed to block.  It may block allocating metadata
624  *	indirectly through swp_pager_meta_build() or if paging is still in
625  *	progress on the source.
626  *
627  *	This routine can be called at any spl
628  *
629  *	XXX vm_page_collapse() kinda expects us not to block because we
630  *	supposedly do not need to allocate memory, but for the moment we
631  *	*may* have to get a little memory from the zone allocator, but
632  *	it is taken from the interrupt memory.  We should be ok.
633  *
634  *	The source object contains no vm_page_t's (which is just as well)
635  *
636  *	The source object is of type OBJT_SWAP.
637  *
638  *	The source and destination objects must be locked or
639  *	inaccessible (XXX are they ?)
640  */
641 
642 void
643 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
644     vm_pindex_t offset, int destroysource)
645 {
646 	vm_pindex_t i;
647 
648 	crit_enter();
649 
650 	/*
651 	 * If destroysource is set, we remove the source object from the
652 	 * swap_pager internal queue now.
653 	 */
654 
655 	if (destroysource) {
656 		if (srcobject->handle == NULL) {
657 			TAILQ_REMOVE(
658 			    &swap_pager_un_object_list,
659 			    srcobject,
660 			    pager_object_list
661 			);
662 		} else {
663 			TAILQ_REMOVE(
664 			    NOBJLIST(srcobject->handle),
665 			    srcobject,
666 			    pager_object_list
667 			);
668 		}
669 	}
670 
671 	/*
672 	 * transfer source to destination.
673 	 */
674 
675 	for (i = 0; i < dstobject->size; ++i) {
676 		daddr_t dstaddr;
677 
678 		/*
679 		 * Locate (without changing) the swapblk on the destination,
680 		 * unless it is invalid in which case free it silently, or
681 		 * if the destination is a resident page, in which case the
682 		 * source is thrown away.
683 		 */
684 
685 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
686 
687 		if (dstaddr == SWAPBLK_NONE) {
688 			/*
689 			 * Destination has no swapblk and is not resident,
690 			 * copy source.
691 			 */
692 			daddr_t srcaddr;
693 
694 			srcaddr = swp_pager_meta_ctl(
695 			    srcobject,
696 			    i + offset,
697 			    SWM_POP
698 			);
699 
700 			if (srcaddr != SWAPBLK_NONE)
701 				swp_pager_meta_build(dstobject, i, srcaddr);
702 		} else {
703 			/*
704 			 * Destination has valid swapblk or it is represented
705 			 * by a resident page.  We destroy the sourceblock.
706 			 */
707 
708 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
709 		}
710 	}
711 
712 	/*
713 	 * Free left over swap blocks in source.
714 	 *
715 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
716 	 * double-remove the object from the swap queues.
717 	 */
718 
719 	if (destroysource) {
720 		swp_pager_meta_free_all(srcobject);
721 		/*
722 		 * Reverting the type is not necessary, the caller is going
723 		 * to destroy srcobject directly, but I'm doing it here
724 		 * for consistency since we've removed the object from its
725 		 * queues.
726 		 */
727 		srcobject->type = OBJT_DEFAULT;
728 	}
729 	crit_exit();
730 }
731 
732 /*
733  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
734  *				the requested page.
735  *
736  *	We determine whether good backing store exists for the requested
737  *	page and return TRUE if it does, FALSE if it doesn't.
738  *
739  *	If TRUE, we also try to determine how much valid, contiguous backing
740  *	store exists before and after the requested page within a reasonable
741  *	distance.  We do not try to restrict it to the swap device stripe
742  *	(that is handled in getpages/putpages).  It probably isn't worth
743  *	doing here.
744  */
745 
746 boolean_t
747 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
748     int *after)
749 {
750 	daddr_t blk0;
751 
752 	/*
753 	 * do we have good backing store at the requested index ?
754 	 */
755 
756 	crit_enter();
757 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
758 
759 	if (blk0 == SWAPBLK_NONE) {
760 		crit_exit();
761 		if (before)
762 			*before = 0;
763 		if (after)
764 			*after = 0;
765 		return (FALSE);
766 	}
767 
768 	/*
769 	 * find backwards-looking contiguous good backing store
770 	 */
771 
772 	if (before != NULL) {
773 		int i;
774 
775 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
776 			daddr_t blk;
777 
778 			if (i > pindex)
779 				break;
780 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
781 			if (blk != blk0 - i)
782 				break;
783 		}
784 		*before = (i - 1);
785 	}
786 
787 	/*
788 	 * find forward-looking contiguous good backing store
789 	 */
790 
791 	if (after != NULL) {
792 		int i;
793 
794 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
795 			daddr_t blk;
796 
797 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
798 			if (blk != blk0 + i)
799 				break;
800 		}
801 		*after = (i - 1);
802 	}
803 	crit_exit();
804 	return (TRUE);
805 }
806 
807 /*
808  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
809  *
810  *	This removes any associated swap backing store, whether valid or
811  *	not, from the page.
812  *
813  *	This routine is typically called when a page is made dirty, at
814  *	which point any associated swap can be freed.  MADV_FREE also
815  *	calls us in a special-case situation
816  *
817  *	NOTE!!!  If the page is clean and the swap was valid, the caller
818  *	should make the page dirty before calling this routine.  This routine
819  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
820  *	depends on it.
821  *
822  *	This routine may not block
823  *	This routine must be called at splvm()
824  */
825 
826 static void
827 swap_pager_unswapped(vm_page_t m)
828 {
829 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
830 }
831 
832 /*
833  * SWAP_PAGER_STRATEGY() - read, write, free blocks
834  *
835  *	This implements the vm_pager_strategy() interface to swap and allows
836  *	other parts of the system to directly access swap as backing store
837  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
838  *	cacheless interface ( i.e. caching occurs at higher levels ).
839  *	Therefore we do not maintain any resident pages.  All I/O goes
840  *	directly to and from the swap device.
841  *
842  *	Note that b_blkno is scaled for PAGE_SIZE
843  *
844  *	We currently attempt to run I/O synchronously or asynchronously as
845  *	the caller requests.  This isn't perfect because we loose error
846  *	sequencing when we run multiple ops in parallel to satisfy a request.
847  *	But this is swap, so we let it all hang out.
848  */
849 
850 static void
851 swap_pager_strategy(vm_object_t object, struct buf *bp)
852 {
853 	vm_pindex_t start;
854 	int count;
855 	char *data;
856 	struct buf *nbp = NULL;
857 
858 	if (bp->b_bcount & PAGE_MASK) {
859 		bp->b_error = EINVAL;
860 		bp->b_flags |= B_ERROR | B_INVAL;
861 		biodone(bp);
862 		printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
863 		return;
864 	}
865 
866 	/*
867 	 * Clear error indication, initialize page index, count, data pointer.
868 	 */
869 
870 	bp->b_error = 0;
871 	bp->b_flags &= ~B_ERROR;
872 	bp->b_resid = bp->b_bcount;
873 
874 	start = bp->b_pblkno;
875 	count = howmany(bp->b_bcount, PAGE_SIZE);
876 	data = bp->b_data;
877 
878 	crit_enter();
879 
880 	/*
881 	 * Deal with B_FREEBUF
882 	 */
883 
884 	if (bp->b_flags & B_FREEBUF) {
885 		/*
886 		 * FREE PAGE(s) - destroy underlying swap that is no longer
887 		 *		  needed.
888 		 */
889 		swp_pager_meta_free(object, start, count);
890 		crit_exit();
891 		bp->b_resid = 0;
892 		biodone(bp);
893 		return;
894 	}
895 
896 	/*
897 	 * Execute read or write
898 	 */
899 
900 	while (count > 0) {
901 		daddr_t blk;
902 
903 		/*
904 		 * Obtain block.  If block not found and writing, allocate a
905 		 * new block and build it into the object.
906 		 */
907 
908 		blk = swp_pager_meta_ctl(object, start, 0);
909 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
910 			blk = swp_pager_getswapspace(1);
911 			if (blk == SWAPBLK_NONE) {
912 				bp->b_error = ENOMEM;
913 				bp->b_flags |= B_ERROR;
914 				break;
915 			}
916 			swp_pager_meta_build(object, start, blk);
917 		}
918 
919 		/*
920 		 * Do we have to flush our current collection?  Yes if:
921 		 *
922 		 *	- no swap block at this index
923 		 *	- swap block is not contiguous
924 		 *	- we cross a physical disk boundry in the
925 		 *	  stripe.
926 		 */
927 
928 		if (
929 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
930 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
931 		    )
932 		) {
933 			crit_exit();
934 			if (bp->b_flags & B_READ) {
935 				++mycpu->gd_cnt.v_swapin;
936 				mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
937 			} else {
938 				++mycpu->gd_cnt.v_swapout;
939 				mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
940 				nbp->b_dirtyend = nbp->b_bcount;
941 			}
942 			flushchainbuf(nbp);
943 			crit_enter();
944 			nbp = NULL;
945 		}
946 
947 		/*
948 		 * Add new swapblk to nbp, instantiating nbp if necessary.
949 		 * Zero-fill reads are able to take a shortcut.
950 		 */
951 
952 		if (blk == SWAPBLK_NONE) {
953 			/*
954 			 * We can only get here if we are reading.  Since
955 			 * we are at splvm() we can safely modify b_resid,
956 			 * even if chain ops are in progress.
957 			 */
958 			bzero(data, PAGE_SIZE);
959 			bp->b_resid -= PAGE_SIZE;
960 		} else {
961 			if (nbp == NULL) {
962 				nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC);
963 				nbp->b_blkno = blk;
964 				nbp->b_bcount = 0;
965 				nbp->b_data = data;
966 			}
967 			nbp->b_bcount += PAGE_SIZE;
968 		}
969 		--count;
970 		++start;
971 		data += PAGE_SIZE;
972 	}
973 
974 	/*
975 	 *  Flush out last buffer
976 	 */
977 
978 	crit_exit();
979 
980 	if (nbp) {
981 		if ((bp->b_flags & B_ASYNC) == 0)
982 			nbp->b_flags &= ~B_ASYNC;
983 		if (nbp->b_flags & B_READ) {
984 			++mycpu->gd_cnt.v_swapin;
985 			mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
986 		} else {
987 			++mycpu->gd_cnt.v_swapout;
988 			mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
989 			nbp->b_dirtyend = nbp->b_bcount;
990 		}
991 		flushchainbuf(nbp);
992 		/* nbp = NULL; */
993 	}
994 
995 	/*
996 	 * Wait for completion.
997 	 */
998 
999 	if (bp->b_flags & B_ASYNC) {
1000 		autochaindone(bp);
1001 	} else {
1002 		waitchainbuf(bp, 0, 1);
1003 	}
1004 }
1005 
1006 /*
1007  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1008  *
1009  *	Attempt to retrieve (m, count) pages from backing store, but make
1010  *	sure we retrieve at least m[reqpage].  We try to load in as large
1011  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1012  *	belongs to the same object.
1013  *
1014  *	The code is designed for asynchronous operation and
1015  *	immediate-notification of 'reqpage' but tends not to be
1016  *	used that way.  Please do not optimize-out this algorithmic
1017  *	feature, I intend to improve on it in the future.
1018  *
1019  *	The parent has a single vm_object_pip_add() reference prior to
1020  *	calling us and we should return with the same.
1021  *
1022  *	The parent has BUSY'd the pages.  We should return with 'm'
1023  *	left busy, but the others adjusted.
1024  */
1025 
1026 static int
1027 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1028 {
1029 	struct buf *bp;
1030 	vm_page_t mreq;
1031 	int i;
1032 	int j;
1033 	daddr_t blk;
1034 	vm_offset_t kva;
1035 	vm_pindex_t lastpindex;
1036 
1037 	mreq = m[reqpage];
1038 
1039 	if (mreq->object != object) {
1040 		panic("swap_pager_getpages: object mismatch %p/%p",
1041 		    object,
1042 		    mreq->object
1043 		);
1044 	}
1045 	/*
1046 	 * Calculate range to retrieve.  The pages have already been assigned
1047 	 * their swapblks.  We require a *contiguous* range that falls entirely
1048 	 * within a single device stripe.   If we do not supply it, bad things
1049 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1050 	 * loops are set up such that the case(s) are handled implicitly.
1051 	 *
1052 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1053 	 * not need to be, but it will go a little faster if it is.
1054 	 */
1055 
1056 	crit_enter();
1057 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1058 
1059 	for (i = reqpage - 1; i >= 0; --i) {
1060 		daddr_t iblk;
1061 
1062 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1063 		if (blk != iblk + (reqpage - i))
1064 			break;
1065 		if ((blk ^ iblk) & dmmax_mask)
1066 			break;
1067 	}
1068 	++i;
1069 
1070 	for (j = reqpage + 1; j < count; ++j) {
1071 		daddr_t jblk;
1072 
1073 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1074 		if (blk != jblk - (j - reqpage))
1075 			break;
1076 		if ((blk ^ jblk) & dmmax_mask)
1077 			break;
1078 	}
1079 
1080 	/*
1081 	 * free pages outside our collection range.   Note: we never free
1082 	 * mreq, it must remain busy throughout.
1083 	 */
1084 
1085 	{
1086 		int k;
1087 
1088 		for (k = 0; k < i; ++k)
1089 			vm_page_free(m[k]);
1090 		for (k = j; k < count; ++k)
1091 			vm_page_free(m[k]);
1092 	}
1093 	crit_exit();
1094 
1095 
1096 	/*
1097 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1098 	 * still busy, but the others unbusied.
1099 	 */
1100 
1101 	if (blk == SWAPBLK_NONE)
1102 		return(VM_PAGER_FAIL);
1103 
1104 	/*
1105 	 * Get a swap buffer header to perform the IO
1106 	 */
1107 
1108 	bp = getpbuf(&nsw_rcount);
1109 	kva = (vm_offset_t) bp->b_data;
1110 
1111 	/*
1112 	 * map our page(s) into kva for input
1113 	 *
1114 	 * NOTE: B_PAGING is set by pbgetvp()
1115 	 */
1116 
1117 	pmap_qenter(kva, m + i, j - i);
1118 
1119 	bp->b_flags = B_READ | B_CALL;
1120 	bp->b_iodone = swp_pager_async_iodone;
1121 	bp->b_data = (caddr_t) kva;
1122 	bp->b_blkno = blk - (reqpage - i);
1123 	bp->b_bcount = PAGE_SIZE * (j - i);
1124 	bp->b_bufsize = PAGE_SIZE * (j - i);
1125 	bp->b_pager.pg_reqpage = reqpage - i;
1126 
1127 	{
1128 		int k;
1129 
1130 		for (k = i; k < j; ++k) {
1131 			bp->b_xio.xio_pages[k - i] = m[k];
1132 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1133 		}
1134 	}
1135 	bp->b_xio.xio_npages = j - i;
1136 
1137 	pbgetvp(swapdev_vp, bp);
1138 
1139 	mycpu->gd_cnt.v_swapin++;
1140 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1141 
1142 	/*
1143 	 * We still hold the lock on mreq, and our automatic completion routine
1144 	 * does not remove it.
1145 	 */
1146 
1147 	vm_object_pip_add(mreq->object, bp->b_xio.xio_npages);
1148 	lastpindex = m[j-1]->pindex;
1149 
1150 	/*
1151 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1152 	 * this point because we automatically release it on completion.
1153 	 * Instead, we look at the one page we are interested in which we
1154 	 * still hold a lock on even through the I/O completion.
1155 	 *
1156 	 * The other pages in our m[] array are also released on completion,
1157 	 * so we cannot assume they are valid anymore either.
1158 	 *
1159 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1160 	 */
1161 
1162 	BUF_KERNPROC(bp);
1163 	VOP_STRATEGY(bp->b_vp, bp);
1164 
1165 	/*
1166 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1167 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1168 	 * is set in the meta-data.
1169 	 */
1170 
1171 	crit_enter();
1172 
1173 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1174 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1175 		mycpu->gd_cnt.v_intrans++;
1176 		if (tsleep(mreq, 0, "swread", hz*20)) {
1177 			printf(
1178 			    "swap_pager: indefinite wait buffer: device:"
1179 				" %s, blkno: %ld, size: %ld\n",
1180 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1181 			    bp->b_bcount
1182 			);
1183 		}
1184 	}
1185 
1186 	crit_exit();
1187 
1188 	/*
1189 	 * mreq is left bussied after completion, but all the other pages
1190 	 * are freed.  If we had an unrecoverable read error the page will
1191 	 * not be valid.
1192 	 */
1193 
1194 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1195 		return(VM_PAGER_ERROR);
1196 	} else {
1197 		return(VM_PAGER_OK);
1198 	}
1199 
1200 	/*
1201 	 * A final note: in a low swap situation, we cannot deallocate swap
1202 	 * and mark a page dirty here because the caller is likely to mark
1203 	 * the page clean when we return, causing the page to possibly revert
1204 	 * to all-zero's later.
1205 	 */
1206 }
1207 
1208 /*
1209  *	swap_pager_putpages:
1210  *
1211  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1212  *
1213  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1214  *	are automatically converted to SWAP objects.
1215  *
1216  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1217  *	vm_page reservation system coupled with properly written VFS devices
1218  *	should ensure that no low-memory deadlock occurs.  This is an area
1219  *	which needs work.
1220  *
1221  *	The parent has N vm_object_pip_add() references prior to
1222  *	calling us and will remove references for rtvals[] that are
1223  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1224  *	completion.
1225  *
1226  *	The parent has soft-busy'd the pages it passes us and will unbusy
1227  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1228  *	We need to unbusy the rest on I/O completion.
1229  */
1230 
1231 void
1232 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, boolean_t sync,
1233     int *rtvals)
1234 {
1235 	int i;
1236 	int n = 0;
1237 
1238 	if (count && m[0]->object != object) {
1239 		panic("swap_pager_getpages: object mismatch %p/%p",
1240 		    object,
1241 		    m[0]->object
1242 		);
1243 	}
1244 	/*
1245 	 * Step 1
1246 	 *
1247 	 * Turn object into OBJT_SWAP
1248 	 * check for bogus sysops
1249 	 * force sync if not pageout process
1250 	 */
1251 
1252 	if (object->type != OBJT_SWAP)
1253 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1254 
1255 	if (curthread != pagethread)
1256 		sync = TRUE;
1257 
1258 	/*
1259 	 * Step 2
1260 	 *
1261 	 * Update nsw parameters from swap_async_max sysctl values.
1262 	 * Do not let the sysop crash the machine with bogus numbers.
1263 	 */
1264 
1265 	if (swap_async_max != nsw_wcount_async_max) {
1266 		int n;
1267 
1268 		/*
1269 		 * limit range
1270 		 */
1271 		if ((n = swap_async_max) > nswbuf / 2)
1272 			n = nswbuf / 2;
1273 		if (n < 1)
1274 			n = 1;
1275 		swap_async_max = n;
1276 
1277 		/*
1278 		 * Adjust difference ( if possible ).  If the current async
1279 		 * count is too low, we may not be able to make the adjustment
1280 		 * at this time.
1281 		 */
1282 		crit_enter();
1283 		n -= nsw_wcount_async_max;
1284 		if (nsw_wcount_async + n >= 0) {
1285 			nsw_wcount_async += n;
1286 			nsw_wcount_async_max += n;
1287 			wakeup(&nsw_wcount_async);
1288 		}
1289 		crit_exit();
1290 	}
1291 
1292 	/*
1293 	 * Step 3
1294 	 *
1295 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1296 	 * The page is left dirty until the pageout operation completes
1297 	 * successfully.
1298 	 */
1299 
1300 	for (i = 0; i < count; i += n) {
1301 		int j;
1302 		struct buf *bp;
1303 		daddr_t blk;
1304 
1305 		/*
1306 		 * Maximum I/O size is limited by a number of factors.
1307 		 */
1308 
1309 		n = min(BLIST_MAX_ALLOC, count - i);
1310 		n = min(n, nsw_cluster_max);
1311 
1312 		crit_enter();
1313 
1314 		/*
1315 		 * Get biggest block of swap we can.  If we fail, fall
1316 		 * back and try to allocate a smaller block.  Don't go
1317 		 * overboard trying to allocate space if it would overly
1318 		 * fragment swap.
1319 		 */
1320 		while (
1321 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1322 		    n > 4
1323 		) {
1324 			n >>= 1;
1325 		}
1326 		if (blk == SWAPBLK_NONE) {
1327 			for (j = 0; j < n; ++j)
1328 				rtvals[i+j] = VM_PAGER_FAIL;
1329 			crit_exit();
1330 			continue;
1331 		}
1332 
1333 		/*
1334 		 * The I/O we are constructing cannot cross a physical
1335 		 * disk boundry in the swap stripe.  Note: we are still
1336 		 * at splvm().
1337 		 */
1338 		if ((blk ^ (blk + n)) & dmmax_mask) {
1339 			j = ((blk + dmmax) & dmmax_mask) - blk;
1340 			swp_pager_freeswapspace(blk + j, n - j);
1341 			n = j;
1342 		}
1343 
1344 		/*
1345 		 * All I/O parameters have been satisfied, build the I/O
1346 		 * request and assign the swap space.
1347 		 *
1348 		 * NOTE: B_PAGING is set by pbgetvp()
1349 		 */
1350 
1351 		if (sync == TRUE) {
1352 			bp = getpbuf(&nsw_wcount_sync);
1353 			bp->b_flags = B_CALL;
1354 		} else {
1355 			bp = getpbuf(&nsw_wcount_async);
1356 			bp->b_flags = B_CALL | B_ASYNC;
1357 		}
1358 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1359 
1360 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1361 
1362 		bp->b_bcount = PAGE_SIZE * n;
1363 		bp->b_bufsize = PAGE_SIZE * n;
1364 		bp->b_blkno = blk;
1365 
1366 		pbgetvp(swapdev_vp, bp);
1367 
1368 		for (j = 0; j < n; ++j) {
1369 			vm_page_t mreq = m[i+j];
1370 
1371 			swp_pager_meta_build(
1372 			    mreq->object,
1373 			    mreq->pindex,
1374 			    blk + j
1375 			);
1376 			vm_page_dirty(mreq);
1377 			rtvals[i+j] = VM_PAGER_OK;
1378 
1379 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1380 			bp->b_xio.xio_pages[j] = mreq;
1381 		}
1382 		bp->b_xio.xio_npages = n;
1383 		/*
1384 		 * Must set dirty range for NFS to work.
1385 		 */
1386 		bp->b_dirtyoff = 0;
1387 		bp->b_dirtyend = bp->b_bcount;
1388 
1389 		mycpu->gd_cnt.v_swapout++;
1390 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1391 		swapdev_vp->v_numoutput++;
1392 
1393 		crit_exit();
1394 
1395 		/*
1396 		 * asynchronous
1397 		 *
1398 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1399 		 */
1400 
1401 		if (sync == FALSE) {
1402 			bp->b_iodone = swp_pager_async_iodone;
1403 			BUF_KERNPROC(bp);
1404 			VOP_STRATEGY(bp->b_vp, bp);
1405 
1406 			for (j = 0; j < n; ++j)
1407 				rtvals[i+j] = VM_PAGER_PEND;
1408 			continue;
1409 		}
1410 
1411 		/*
1412 		 * synchronous
1413 		 *
1414 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1415 		 */
1416 
1417 		bp->b_iodone = swp_pager_sync_iodone;
1418 		VOP_STRATEGY(bp->b_vp, bp);
1419 
1420 		/*
1421 		 * Wait for the sync I/O to complete, then update rtvals.
1422 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1423 		 * our async completion routine at the end, thus avoiding a
1424 		 * double-free.
1425 		 */
1426 		crit_enter();
1427 
1428 		while ((bp->b_flags & B_DONE) == 0) {
1429 			tsleep(bp, 0, "swwrt", 0);
1430 		}
1431 
1432 		for (j = 0; j < n; ++j)
1433 			rtvals[i+j] = VM_PAGER_PEND;
1434 
1435 		/*
1436 		 * Now that we are through with the bp, we can call the
1437 		 * normal async completion, which frees everything up.
1438 		 */
1439 
1440 		swp_pager_async_iodone(bp);
1441 
1442 		crit_exit();
1443 	}
1444 }
1445 
1446 /*
1447  *	swap_pager_sync_iodone:
1448  *
1449  *	Completion routine for synchronous reads and writes from/to swap.
1450  *	We just mark the bp is complete and wake up anyone waiting on it.
1451  *
1452  *	This routine may not block.  This routine is called at splbio() or better.
1453  */
1454 
1455 static void
1456 swp_pager_sync_iodone(struct buf *bp)
1457 {
1458 	bp->b_flags |= B_DONE;
1459 	bp->b_flags &= ~B_ASYNC;
1460 	wakeup(bp);
1461 }
1462 
1463 /*
1464  *	swp_pager_async_iodone:
1465  *
1466  *	Completion routine for asynchronous reads and writes from/to swap.
1467  *	Also called manually by synchronous code to finish up a bp.
1468  *
1469  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1470  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1471  *	unbusy all pages except the 'main' request page.  For WRITE
1472  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1473  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1474  *
1475  *	This routine may not block.
1476  *	This routine is called at splbio() or better
1477  *
1478  *	We up ourselves to splvm() as required for various vm_page related
1479  *	calls.
1480  */
1481 
1482 static void
1483 swp_pager_async_iodone(struct buf *bp)
1484 {
1485 	int i;
1486 	vm_object_t object = NULL;
1487 
1488 	bp->b_flags |= B_DONE;
1489 
1490 	/*
1491 	 * report error
1492 	 */
1493 
1494 	if (bp->b_flags & B_ERROR) {
1495 		printf(
1496 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1497 			"size %ld, error %d\n",
1498 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1499 		    (long)bp->b_blkno,
1500 		    (long)bp->b_bcount,
1501 		    bp->b_error
1502 		);
1503 	}
1504 
1505 	/*
1506 	 * set object, raise to splvm().
1507 	 */
1508 
1509 	if (bp->b_xio.xio_npages)
1510 		object = bp->b_xio.xio_pages[0]->object;
1511 	crit_enter();
1512 
1513 	/*
1514 	 * remove the mapping for kernel virtual
1515 	 */
1516 
1517 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1518 
1519 	/*
1520 	 * cleanup pages.  If an error occurs writing to swap, we are in
1521 	 * very serious trouble.  If it happens to be a disk error, though,
1522 	 * we may be able to recover by reassigning the swap later on.  So
1523 	 * in this case we remove the m->swapblk assignment for the page
1524 	 * but do not free it in the rlist.  The errornous block(s) are thus
1525 	 * never reallocated as swap.  Redirty the page and continue.
1526 	 */
1527 
1528 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1529 		vm_page_t m = bp->b_xio.xio_pages[i];
1530 
1531 		vm_page_flag_clear(m, PG_SWAPINPROG);
1532 
1533 		if (bp->b_flags & B_ERROR) {
1534 			/*
1535 			 * If an error occurs I'd love to throw the swapblk
1536 			 * away without freeing it back to swapspace, so it
1537 			 * can never be used again.  But I can't from an
1538 			 * interrupt.
1539 			 */
1540 
1541 			if (bp->b_flags & B_READ) {
1542 				/*
1543 				 * When reading, reqpage needs to stay
1544 				 * locked for the parent, but all other
1545 				 * pages can be freed.  We still want to
1546 				 * wakeup the parent waiting on the page,
1547 				 * though.  ( also: pg_reqpage can be -1 and
1548 				 * not match anything ).
1549 				 *
1550 				 * We have to wake specifically requested pages
1551 				 * up too because we cleared PG_SWAPINPROG and
1552 				 * someone may be waiting for that.
1553 				 *
1554 				 * NOTE: for reads, m->dirty will probably
1555 				 * be overridden by the original caller of
1556 				 * getpages so don't play cute tricks here.
1557 				 *
1558 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1559 				 * AS THIS MESSES WITH object->memq, and it is
1560 				 * not legal to mess with object->memq from an
1561 				 * interrupt.
1562 				 */
1563 
1564 				m->valid = 0;
1565 				vm_page_flag_clear(m, PG_ZERO);
1566 
1567 				if (i != bp->b_pager.pg_reqpage)
1568 					vm_page_free(m);
1569 				else
1570 					vm_page_flash(m);
1571 				/*
1572 				 * If i == bp->b_pager.pg_reqpage, do not wake
1573 				 * the page up.  The caller needs to.
1574 				 */
1575 			} else {
1576 				/*
1577 				 * If a write error occurs, reactivate page
1578 				 * so it doesn't clog the inactive list,
1579 				 * then finish the I/O.
1580 				 */
1581 				vm_page_dirty(m);
1582 				vm_page_activate(m);
1583 				vm_page_io_finish(m);
1584 			}
1585 		} else if (bp->b_flags & B_READ) {
1586 			/*
1587 			 * For read success, clear dirty bits.  Nobody should
1588 			 * have this page mapped but don't take any chances,
1589 			 * make sure the pmap modify bits are also cleared.
1590 			 *
1591 			 * NOTE: for reads, m->dirty will probably be
1592 			 * overridden by the original caller of getpages so
1593 			 * we cannot set them in order to free the underlying
1594 			 * swap in a low-swap situation.  I don't think we'd
1595 			 * want to do that anyway, but it was an optimization
1596 			 * that existed in the old swapper for a time before
1597 			 * it got ripped out due to precisely this problem.
1598 			 *
1599 			 * clear PG_ZERO in page.
1600 			 *
1601 			 * If not the requested page then deactivate it.
1602 			 *
1603 			 * Note that the requested page, reqpage, is left
1604 			 * busied, but we still have to wake it up.  The
1605 			 * other pages are released (unbusied) by
1606 			 * vm_page_wakeup().  We do not set reqpage's
1607 			 * valid bits here, it is up to the caller.
1608 			 */
1609 
1610 			pmap_clear_modify(m);
1611 			m->valid = VM_PAGE_BITS_ALL;
1612 			vm_page_undirty(m);
1613 			vm_page_flag_clear(m, PG_ZERO);
1614 
1615 			/*
1616 			 * We have to wake specifically requested pages
1617 			 * up too because we cleared PG_SWAPINPROG and
1618 			 * could be waiting for it in getpages.  However,
1619 			 * be sure to not unbusy getpages specifically
1620 			 * requested page - getpages expects it to be
1621 			 * left busy.
1622 			 */
1623 			if (i != bp->b_pager.pg_reqpage) {
1624 				vm_page_deactivate(m);
1625 				vm_page_wakeup(m);
1626 			} else {
1627 				vm_page_flash(m);
1628 			}
1629 		} else {
1630 			/*
1631 			 * For write success, clear the modify and dirty
1632 			 * status, then finish the I/O ( which decrements the
1633 			 * busy count and possibly wakes waiter's up ).
1634 			 */
1635 			pmap_clear_modify(m);
1636 			vm_page_undirty(m);
1637 			vm_page_io_finish(m);
1638 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1639 				vm_page_protect(m, VM_PROT_READ);
1640 		}
1641 	}
1642 
1643 	/*
1644 	 * adjust pip.  NOTE: the original parent may still have its own
1645 	 * pip refs on the object.
1646 	 */
1647 
1648 	if (object)
1649 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1650 
1651 	/*
1652 	 * release the physical I/O buffer
1653 	 */
1654 
1655 	relpbuf(
1656 	    bp,
1657 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1658 		((bp->b_flags & B_ASYNC) ?
1659 		    &nsw_wcount_async :
1660 		    &nsw_wcount_sync
1661 		)
1662 	    )
1663 	);
1664 	crit_exit();
1665 }
1666 
1667 /************************************************************************
1668  *				SWAP META DATA 				*
1669  ************************************************************************
1670  *
1671  *	These routines manipulate the swap metadata stored in the
1672  *	OBJT_SWAP object.  All swp_*() routines must be called at
1673  *	splvm() because swap can be freed up by the low level vm_page
1674  *	code which might be called from interrupts beyond what splbio() covers.
1675  *
1676  *	Swap metadata is implemented with a global hash and not directly
1677  *	linked into the object.  Instead the object simply contains
1678  *	appropriate tracking counters.
1679  */
1680 
1681 /*
1682  * SWP_PAGER_HASH() -	hash swap meta data
1683  *
1684  *	This is an inline helper function which hashes the swapblk given
1685  *	the object and page index.  It returns a pointer to a pointer
1686  *	to the object, or a pointer to a NULL pointer if it could not
1687  *	find a swapblk.
1688  *
1689  *	This routine must be called at splvm().
1690  */
1691 
1692 static __inline struct swblock **
1693 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1694 {
1695 	struct swblock **pswap;
1696 	struct swblock *swap;
1697 
1698 	index &= ~SWAP_META_MASK;
1699 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1700 
1701 	while ((swap = *pswap) != NULL) {
1702 		if (swap->swb_object == object &&
1703 		    swap->swb_index == index
1704 		) {
1705 			break;
1706 		}
1707 		pswap = &swap->swb_hnext;
1708 	}
1709 	return(pswap);
1710 }
1711 
1712 /*
1713  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1714  *
1715  *	We first convert the object to a swap object if it is a default
1716  *	object.
1717  *
1718  *	The specified swapblk is added to the object's swap metadata.  If
1719  *	the swapblk is not valid, it is freed instead.  Any previously
1720  *	assigned swapblk is freed.
1721  *
1722  *	This routine must be called at splvm(), except when used to convert
1723  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1724 
1725  */
1726 
1727 static void
1728 swp_pager_meta_build(
1729 	vm_object_t object,
1730 	vm_pindex_t index,
1731 	daddr_t swapblk
1732 ) {
1733 	struct swblock *swap;
1734 	struct swblock **pswap;
1735 
1736 	/*
1737 	 * Convert default object to swap object if necessary
1738 	 */
1739 
1740 	if (object->type != OBJT_SWAP) {
1741 		object->type = OBJT_SWAP;
1742 		object->un_pager.swp.swp_bcount = 0;
1743 
1744 		if (object->handle != NULL) {
1745 			TAILQ_INSERT_TAIL(
1746 			    NOBJLIST(object->handle),
1747 			    object,
1748 			    pager_object_list
1749 			);
1750 		} else {
1751 			TAILQ_INSERT_TAIL(
1752 			    &swap_pager_un_object_list,
1753 			    object,
1754 			    pager_object_list
1755 			);
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * Locate hash entry.  If not found create, but if we aren't adding
1761 	 * anything just return.  If we run out of space in the map we wait
1762 	 * and, since the hash table may have changed, retry.
1763 	 */
1764 
1765 retry:
1766 	pswap = swp_pager_hash(object, index);
1767 
1768 	if ((swap = *pswap) == NULL) {
1769 		int i;
1770 
1771 		if (swapblk == SWAPBLK_NONE)
1772 			return;
1773 
1774 		swap = *pswap = zalloc(swap_zone);
1775 		if (swap == NULL) {
1776 			vm_wait();
1777 			goto retry;
1778 		}
1779 		swap->swb_hnext = NULL;
1780 		swap->swb_object = object;
1781 		swap->swb_index = index & ~SWAP_META_MASK;
1782 		swap->swb_count = 0;
1783 
1784 		++object->un_pager.swp.swp_bcount;
1785 
1786 		for (i = 0; i < SWAP_META_PAGES; ++i)
1787 			swap->swb_pages[i] = SWAPBLK_NONE;
1788 	}
1789 
1790 	/*
1791 	 * Delete prior contents of metadata
1792 	 */
1793 
1794 	index &= SWAP_META_MASK;
1795 
1796 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1797 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1798 		--swap->swb_count;
1799 	}
1800 
1801 	/*
1802 	 * Enter block into metadata
1803 	 */
1804 
1805 	swap->swb_pages[index] = swapblk;
1806 	if (swapblk != SWAPBLK_NONE)
1807 		++swap->swb_count;
1808 }
1809 
1810 /*
1811  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1812  *
1813  *	The requested range of blocks is freed, with any associated swap
1814  *	returned to the swap bitmap.
1815  *
1816  *	This routine will free swap metadata structures as they are cleaned
1817  *	out.  This routine does *NOT* operate on swap metadata associated
1818  *	with resident pages.
1819  *
1820  *	This routine must be called at splvm()
1821  */
1822 
1823 static void
1824 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1825 {
1826 	if (object->type != OBJT_SWAP)
1827 		return;
1828 
1829 	while (count > 0) {
1830 		struct swblock **pswap;
1831 		struct swblock *swap;
1832 
1833 		pswap = swp_pager_hash(object, index);
1834 
1835 		if ((swap = *pswap) != NULL) {
1836 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1837 
1838 			if (v != SWAPBLK_NONE) {
1839 				swp_pager_freeswapspace(v, 1);
1840 				swap->swb_pages[index & SWAP_META_MASK] =
1841 					SWAPBLK_NONE;
1842 				if (--swap->swb_count == 0) {
1843 					*pswap = swap->swb_hnext;
1844 					zfree(swap_zone, swap);
1845 					--object->un_pager.swp.swp_bcount;
1846 				}
1847 			}
1848 			--count;
1849 			++index;
1850 		} else {
1851 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1852 			count -= n;
1853 			index += n;
1854 		}
1855 	}
1856 }
1857 
1858 /*
1859  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1860  *
1861  *	This routine locates and destroys all swap metadata associated with
1862  *	an object.
1863  *
1864  *	This routine must be called at splvm()
1865  */
1866 
1867 static void
1868 swp_pager_meta_free_all(vm_object_t object)
1869 {
1870 	daddr_t index = 0;
1871 
1872 	if (object->type != OBJT_SWAP)
1873 		return;
1874 
1875 	while (object->un_pager.swp.swp_bcount) {
1876 		struct swblock **pswap;
1877 		struct swblock *swap;
1878 
1879 		pswap = swp_pager_hash(object, index);
1880 		if ((swap = *pswap) != NULL) {
1881 			int i;
1882 
1883 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1884 				daddr_t v = swap->swb_pages[i];
1885 				if (v != SWAPBLK_NONE) {
1886 					--swap->swb_count;
1887 					swp_pager_freeswapspace(v, 1);
1888 				}
1889 			}
1890 			if (swap->swb_count != 0)
1891 				panic("swap_pager_meta_free_all: swb_count != 0");
1892 			*pswap = swap->swb_hnext;
1893 			zfree(swap_zone, swap);
1894 			--object->un_pager.swp.swp_bcount;
1895 		}
1896 		index += SWAP_META_PAGES;
1897 		if (index > 0x20000000)
1898 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1899 	}
1900 }
1901 
1902 /*
1903  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1904  *
1905  *	This routine is capable of looking up, popping, or freeing
1906  *	swapblk assignments in the swap meta data or in the vm_page_t.
1907  *	The routine typically returns the swapblk being looked-up, or popped,
1908  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1909  *	was invalid.  This routine will automatically free any invalid
1910  *	meta-data swapblks.
1911  *
1912  *	It is not possible to store invalid swapblks in the swap meta data
1913  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1914  *
1915  *	When acting on a busy resident page and paging is in progress, we
1916  *	have to wait until paging is complete but otherwise can act on the
1917  *	busy page.
1918  *
1919  *	This routine must be called at splvm().
1920  *
1921  *	SWM_FREE	remove and free swap block from metadata
1922  *	SWM_POP		remove from meta data but do not free.. pop it out
1923  */
1924 
1925 static daddr_t
1926 swp_pager_meta_ctl(
1927 	vm_object_t object,
1928 	vm_pindex_t index,
1929 	int flags
1930 ) {
1931 	struct swblock **pswap;
1932 	struct swblock *swap;
1933 	daddr_t r1;
1934 
1935 	/*
1936 	 * The meta data only exists of the object is OBJT_SWAP
1937 	 * and even then might not be allocated yet.
1938 	 */
1939 
1940 	if (object->type != OBJT_SWAP)
1941 		return(SWAPBLK_NONE);
1942 
1943 	r1 = SWAPBLK_NONE;
1944 	pswap = swp_pager_hash(object, index);
1945 
1946 	if ((swap = *pswap) != NULL) {
1947 		index &= SWAP_META_MASK;
1948 		r1 = swap->swb_pages[index];
1949 
1950 		if (r1 != SWAPBLK_NONE) {
1951 			if (flags & SWM_FREE) {
1952 				swp_pager_freeswapspace(r1, 1);
1953 				r1 = SWAPBLK_NONE;
1954 			}
1955 			if (flags & (SWM_FREE|SWM_POP)) {
1956 				swap->swb_pages[index] = SWAPBLK_NONE;
1957 				if (--swap->swb_count == 0) {
1958 					*pswap = swap->swb_hnext;
1959 					zfree(swap_zone, swap);
1960 					--object->un_pager.swp.swp_bcount;
1961 				}
1962 			}
1963 		}
1964 	}
1965 	return(r1);
1966 }
1967