1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * Copyright (c) 1994 John S. Dyson 37 * Copyright (c) 1990 University of Utah. 38 * Copyright (c) 1991, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This code is derived from software contributed to Berkeley by 42 * the Systems Programming Group of the University of Utah Computer 43 * Science Department. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions and the following disclaimer. 50 * 2. Redistributions in binary form must reproduce the above copyright 51 * notice, this list of conditions and the following disclaimer in the 52 * documentation and/or other materials provided with the distribution. 53 * 4. Neither the name of the University nor the names of its contributors 54 * may be used to endorse or promote products derived from this software 55 * without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 67 * SUCH DAMAGE. 68 * 69 * New Swap System 70 * Matthew Dillon 71 * 72 * Radix Bitmap 'blists'. 73 * 74 * - The new swapper uses the new radix bitmap code. This should scale 75 * to arbitrarily small or arbitrarily large swap spaces and an almost 76 * arbitrary degree of fragmentation. 77 * 78 * Features: 79 * 80 * - on the fly reallocation of swap during putpages. The new system 81 * does not try to keep previously allocated swap blocks for dirty 82 * pages. 83 * 84 * - on the fly deallocation of swap 85 * 86 * - No more garbage collection required. Unnecessarily allocated swap 87 * blocks only exist for dirty vm_page_t's now and these are already 88 * cycled (in a high-load system) by the pager. We also do on-the-fly 89 * removal of invalidated swap blocks when a page is destroyed 90 * or renamed. 91 * 92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $ 95 */ 96 97 #include <sys/param.h> 98 #include <sys/systm.h> 99 #include <sys/conf.h> 100 #include <sys/kernel.h> 101 #include <sys/proc.h> 102 #include <sys/buf.h> 103 #include <sys/vnode.h> 104 #include <sys/malloc.h> 105 #include <sys/vmmeter.h> 106 #include <sys/sysctl.h> 107 #include <sys/blist.h> 108 #include <sys/lock.h> 109 #include <sys/thread2.h> 110 111 #include "opt_swap.h" 112 #include <vm/vm.h> 113 #include <vm/vm_object.h> 114 #include <vm/vm_page.h> 115 #include <vm/vm_pager.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/swap_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/vm_zone.h> 120 #include <vm/vnode_pager.h> 121 122 #include <sys/buf2.h> 123 #include <vm/vm_page2.h> 124 125 #ifndef MAX_PAGEOUT_CLUSTER 126 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES 127 #endif 128 129 #define SWM_FREE 0x02 /* free, period */ 130 #define SWM_POP 0x04 /* pop out */ 131 132 #define SWBIO_READ 0x01 133 #define SWBIO_WRITE 0x02 134 #define SWBIO_SYNC 0x04 135 136 struct swfreeinfo { 137 vm_object_t object; 138 vm_pindex_t basei; 139 vm_pindex_t begi; 140 vm_pindex_t endi; /* inclusive */ 141 }; 142 143 struct swswapoffinfo { 144 vm_object_t object; 145 int devidx; 146 }; 147 148 /* 149 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 150 * in the old system. 151 */ 152 153 int swap_pager_full; /* swap space exhaustion (task killing) */ 154 int vm_swap_cache_use; 155 int vm_swap_anon_use; 156 157 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 158 static int nsw_rcount; /* free read buffers */ 159 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 160 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 161 static int nsw_wcount_async_max;/* assigned maximum */ 162 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 163 164 struct blist *swapblist; 165 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 166 static int swap_burst_read = 0; /* allow burst reading */ 167 static swblk_t swapiterator; /* linearize allocations */ 168 169 /* from vm_swap.c */ 170 extern struct vnode *swapdev_vp; 171 extern struct swdevt *swdevt; 172 extern int nswdev; 173 174 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0) 175 176 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 177 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 178 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read, 179 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins"); 180 181 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use, 182 CTLFLAG_RD, &vm_swap_cache_use, 0, ""); 183 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use, 184 CTLFLAG_RD, &vm_swap_anon_use, 0, ""); 185 SYSCTL_INT(_vm, OID_AUTO, swap_size, 186 CTLFLAG_RD, &vm_swap_size, 0, ""); 187 188 vm_zone_t swap_zone; 189 190 /* 191 * Red-Black tree for swblock entries 192 * 193 * The caller must hold vm_token 194 */ 195 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare, 196 vm_pindex_t, swb_index); 197 198 int 199 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2) 200 { 201 if (swb1->swb_index < swb2->swb_index) 202 return(-1); 203 if (swb1->swb_index > swb2->swb_index) 204 return(1); 205 return(0); 206 } 207 208 static 209 int 210 rb_swblock_scancmp(struct swblock *swb, void *data) 211 { 212 struct swfreeinfo *info = data; 213 214 if (swb->swb_index < info->basei) 215 return(-1); 216 if (swb->swb_index > info->endi) 217 return(1); 218 return(0); 219 } 220 221 static 222 int 223 rb_swblock_condcmp(struct swblock *swb, void *data) 224 { 225 struct swfreeinfo *info = data; 226 227 if (swb->swb_index < info->basei) 228 return(-1); 229 return(0); 230 } 231 232 /* 233 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 234 * calls hooked from other parts of the VM system and do not appear here. 235 * (see vm/swap_pager.h). 236 */ 237 238 static void swap_pager_dealloc (vm_object_t object); 239 static int swap_pager_getpage (vm_object_t, vm_page_t *, int); 240 static void swap_chain_iodone(struct bio *biox); 241 242 struct pagerops swappagerops = { 243 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 244 swap_pager_getpage, /* pagein */ 245 swap_pager_putpages, /* pageout */ 246 swap_pager_haspage /* get backing store status for page */ 247 }; 248 249 /* 250 * dmmax is in page-sized chunks with the new swap system. It was 251 * dev-bsized chunks in the old. dmmax is always a power of 2. 252 * 253 * swap_*() routines are externally accessible. swp_*() routines are 254 * internal. 255 */ 256 257 int dmmax; 258 static int dmmax_mask; 259 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 260 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 261 262 static __inline void swp_sizecheck (void); 263 static void swp_pager_async_iodone (struct bio *bio); 264 265 /* 266 * Swap bitmap functions 267 */ 268 269 static __inline void swp_pager_freeswapspace(vm_object_t object, 270 swblk_t blk, int npages); 271 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages); 272 273 /* 274 * Metadata functions 275 */ 276 277 static void swp_pager_meta_convert(vm_object_t); 278 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t); 279 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 280 static void swp_pager_meta_free_all(vm_object_t); 281 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 282 283 /* 284 * SWP_SIZECHECK() - update swap_pager_full indication 285 * 286 * update the swap_pager_almost_full indication and warn when we are 287 * about to run out of swap space, using lowat/hiwat hysteresis. 288 * 289 * Clear swap_pager_full ( task killing ) indication when lowat is met. 290 * 291 * No restrictions on call 292 * This routine may not block. 293 * SMP races are ok. 294 */ 295 static __inline void 296 swp_sizecheck(void) 297 { 298 if (vm_swap_size < nswap_lowat) { 299 if (swap_pager_almost_full == 0) { 300 kprintf("swap_pager: out of swap space\n"); 301 swap_pager_almost_full = 1; 302 } 303 } else { 304 swap_pager_full = 0; 305 if (vm_swap_size > nswap_hiwat) 306 swap_pager_almost_full = 0; 307 } 308 } 309 310 /* 311 * SWAP_PAGER_INIT() - initialize the swap pager! 312 * 313 * Expected to be started from system init. NOTE: This code is run 314 * before much else so be careful what you depend on. Most of the VM 315 * system has yet to be initialized at this point. 316 * 317 * Called from the low level boot code only. 318 */ 319 static void 320 swap_pager_init(void *arg __unused) 321 { 322 /* 323 * Device Stripe, in PAGE_SIZE'd blocks 324 */ 325 dmmax = SWB_NPAGES * 2; 326 dmmax_mask = ~(dmmax - 1); 327 } 328 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL) 329 330 /* 331 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 332 * 333 * Expected to be started from pageout process once, prior to entering 334 * its main loop. 335 * 336 * Called from the low level boot code only. 337 */ 338 void 339 swap_pager_swap_init(void) 340 { 341 int n, n2; 342 343 /* 344 * Number of in-transit swap bp operations. Don't 345 * exhaust the pbufs completely. Make sure we 346 * initialize workable values (0 will work for hysteresis 347 * but it isn't very efficient). 348 * 349 * The nsw_cluster_max is constrained by the number of pages an XIO 350 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined 351 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 352 * constrained by the swap device interleave stripe size. 353 * 354 * Currently we hardwire nsw_wcount_async to 4. This limit is 355 * designed to prevent other I/O from having high latencies due to 356 * our pageout I/O. The value 4 works well for one or two active swap 357 * devices but is probably a little low if you have more. Even so, 358 * a higher value would probably generate only a limited improvement 359 * with three or four active swap devices since the system does not 360 * typically have to pageout at extreme bandwidths. We will want 361 * at least 2 per swap devices, and 4 is a pretty good value if you 362 * have one NFS swap device due to the command/ack latency over NFS. 363 * So it all works out pretty well. 364 */ 365 366 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 367 368 nsw_rcount = (nswbuf + 1) / 2; 369 nsw_wcount_sync = (nswbuf + 3) / 4; 370 nsw_wcount_async = 4; 371 nsw_wcount_async_max = nsw_wcount_async; 372 373 /* 374 * The zone is dynamically allocated so generally size it to 375 * maxswzone (32MB to 512MB of KVM). Set a minimum size based 376 * on physical memory of around 8x (each swblock can hold 16 pages). 377 * 378 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio 379 * has increased dramatically. 380 */ 381 n = vmstats.v_page_count / 2; 382 if (maxswzone && n < maxswzone / sizeof(struct swblock)) 383 n = maxswzone / sizeof(struct swblock); 384 n2 = n; 385 386 do { 387 swap_zone = zinit( 388 "SWAPMETA", 389 sizeof(struct swblock), 390 n, 391 ZONE_INTERRUPT, 392 1); 393 if (swap_zone != NULL) 394 break; 395 /* 396 * if the allocation failed, try a zone two thirds the 397 * size of the previous attempt. 398 */ 399 n -= ((n + 2) / 3); 400 } while (n > 0); 401 402 if (swap_zone == NULL) 403 panic("swap_pager_swap_init: swap_zone == NULL"); 404 if (n2 != n) 405 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n); 406 } 407 408 /* 409 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 410 * its metadata structures. 411 * 412 * This routine is called from the mmap and fork code to create a new 413 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 414 * and then converting it with swp_pager_meta_convert(). 415 * 416 * We only support unnamed objects. 417 * 418 * No restrictions. 419 */ 420 vm_object_t 421 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset) 422 { 423 vm_object_t object; 424 425 KKASSERT(handle == NULL); 426 object = vm_object_allocate_hold(OBJT_DEFAULT, 427 OFF_TO_IDX(offset + PAGE_MASK + size)); 428 swp_pager_meta_convert(object); 429 vm_object_drop(object); 430 431 return (object); 432 } 433 434 /* 435 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 436 * 437 * The swap backing for the object is destroyed. The code is 438 * designed such that we can reinstantiate it later, but this 439 * routine is typically called only when the entire object is 440 * about to be destroyed. 441 * 442 * The object must be locked or unreferenceable. 443 * No other requirements. 444 */ 445 static void 446 swap_pager_dealloc(vm_object_t object) 447 { 448 vm_object_hold(object); 449 vm_object_pip_wait(object, "swpdea"); 450 451 /* 452 * Free all remaining metadata. We only bother to free it from 453 * the swap meta data. We do not attempt to free swapblk's still 454 * associated with vm_page_t's for this object. We do not care 455 * if paging is still in progress on some objects. 456 */ 457 swp_pager_meta_free_all(object); 458 vm_object_drop(object); 459 } 460 461 /************************************************************************ 462 * SWAP PAGER BITMAP ROUTINES * 463 ************************************************************************/ 464 465 /* 466 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 467 * 468 * Allocate swap for the requested number of pages. The starting 469 * swap block number (a page index) is returned or SWAPBLK_NONE 470 * if the allocation failed. 471 * 472 * Also has the side effect of advising that somebody made a mistake 473 * when they configured swap and didn't configure enough. 474 * 475 * The caller must hold the object. 476 * This routine may not block. 477 */ 478 static __inline swblk_t 479 swp_pager_getswapspace(vm_object_t object, int npages) 480 { 481 swblk_t blk; 482 483 lwkt_gettoken(&vm_token); 484 blk = blist_allocat(swapblist, npages, swapiterator); 485 if (blk == SWAPBLK_NONE) 486 blk = blist_allocat(swapblist, npages, 0); 487 if (blk == SWAPBLK_NONE) { 488 if (swap_pager_full != 2) { 489 kprintf("swap_pager_getswapspace: failed alloc=%d\n", 490 npages); 491 swap_pager_full = 2; 492 swap_pager_almost_full = 1; 493 } 494 } else { 495 swapiterator = blk; 496 swapacctspace(blk, -npages); 497 if (object->type == OBJT_SWAP) 498 vm_swap_anon_use += npages; 499 else 500 vm_swap_cache_use += npages; 501 swp_sizecheck(); 502 } 503 lwkt_reltoken(&vm_token); 504 return(blk); 505 } 506 507 /* 508 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 509 * 510 * This routine returns the specified swap blocks back to the bitmap. 511 * 512 * Note: This routine may not block (it could in the old swap code), 513 * and through the use of the new blist routines it does not block. 514 * 515 * We must be called at splvm() to avoid races with bitmap frees from 516 * vm_page_remove() aka swap_pager_page_removed(). 517 * 518 * This routine may not block. 519 */ 520 521 static __inline void 522 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages) 523 { 524 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)]; 525 526 lwkt_gettoken(&vm_token); 527 sp->sw_nused -= npages; 528 if (object->type == OBJT_SWAP) 529 vm_swap_anon_use -= npages; 530 else 531 vm_swap_cache_use -= npages; 532 533 if (sp->sw_flags & SW_CLOSING) { 534 lwkt_reltoken(&vm_token); 535 return; 536 } 537 538 blist_free(swapblist, blk, npages); 539 vm_swap_size += npages; 540 swp_sizecheck(); 541 lwkt_reltoken(&vm_token); 542 } 543 544 /* 545 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 546 * range within an object. 547 * 548 * This is a globally accessible routine. 549 * 550 * This routine removes swapblk assignments from swap metadata. 551 * 552 * The external callers of this routine typically have already destroyed 553 * or renamed vm_page_t's associated with this range in the object so 554 * we should be ok. 555 * 556 * No requirements. 557 */ 558 void 559 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size) 560 { 561 vm_object_hold(object); 562 swp_pager_meta_free(object, start, size); 563 vm_object_drop(object); 564 } 565 566 /* 567 * No requirements. 568 */ 569 void 570 swap_pager_freespace_all(vm_object_t object) 571 { 572 vm_object_hold(object); 573 swp_pager_meta_free_all(object); 574 vm_object_drop(object); 575 } 576 577 /* 578 * This function conditionally frees swap cache swap starting at 579 * (*basei) in the object. (count) swap blocks will be nominally freed. 580 * The actual number of blocks freed can be more or less than the 581 * requested number. 582 * 583 * This function nominally returns the number of blocks freed. However, 584 * the actual number of blocks freed may be less then the returned value. 585 * If the function is unable to exhaust the object or if it is able to 586 * free (approximately) the requested number of blocks it returns 587 * a value n > count. 588 * 589 * If we exhaust the object we will return a value n <= count. 590 * 591 * The caller must hold the object. 592 * 593 * WARNING! If count == 0 then -1 can be returned as a degenerate case, 594 * callers should always pass a count value > 0. 595 */ 596 static int swap_pager_condfree_callback(struct swblock *swap, void *data); 597 598 int 599 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count) 600 { 601 struct swfreeinfo info; 602 int n; 603 int t; 604 605 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 606 607 info.object = object; 608 info.basei = *basei; /* skip up to this page index */ 609 info.begi = count; /* max swap pages to destroy */ 610 info.endi = count * 8; /* max swblocks to scan */ 611 612 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp, 613 swap_pager_condfree_callback, &info); 614 *basei = info.basei; 615 616 /* 617 * Take the higher difference swblocks vs pages 618 */ 619 n = count - (int)info.begi; 620 t = count * 8 - (int)info.endi; 621 if (n < t) 622 n = t; 623 if (n < 1) 624 n = 1; 625 return(n); 626 } 627 628 /* 629 * The idea is to free whole meta-block to avoid fragmenting 630 * the swap space or disk I/O. We only do this if NO VM pages 631 * are present. 632 * 633 * We do not have to deal with clearing PG_SWAPPED in related VM 634 * pages because there are no related VM pages. 635 * 636 * The caller must hold the object. 637 */ 638 static int 639 swap_pager_condfree_callback(struct swblock *swap, void *data) 640 { 641 struct swfreeinfo *info = data; 642 vm_object_t object = info->object; 643 int i; 644 645 for (i = 0; i < SWAP_META_PAGES; ++i) { 646 if (vm_page_lookup(object, swap->swb_index + i)) 647 break; 648 } 649 info->basei = swap->swb_index + SWAP_META_PAGES; 650 if (i == SWAP_META_PAGES) { 651 info->begi -= swap->swb_count; 652 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES); 653 } 654 --info->endi; 655 if ((int)info->begi < 0 || (int)info->endi < 0) 656 return(-1); 657 lwkt_yield(); 658 return(0); 659 } 660 661 /* 662 * Called by vm_page_alloc() when a new VM page is inserted 663 * into a VM object. Checks whether swap has been assigned to 664 * the page and sets PG_SWAPPED as necessary. 665 * 666 * No requirements. 667 */ 668 void 669 swap_pager_page_inserted(vm_page_t m) 670 { 671 if (m->object->swblock_count) { 672 vm_object_hold(m->object); 673 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE) 674 vm_page_flag_set(m, PG_SWAPPED); 675 vm_object_drop(m->object); 676 } 677 } 678 679 /* 680 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 681 * 682 * Assigns swap blocks to the specified range within the object. The 683 * swap blocks are not zerod. Any previous swap assignment is destroyed. 684 * 685 * Returns 0 on success, -1 on failure. 686 * 687 * The caller is responsible for avoiding races in the specified range. 688 * No other requirements. 689 */ 690 int 691 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 692 { 693 int n = 0; 694 swblk_t blk = SWAPBLK_NONE; 695 vm_pindex_t beg = start; /* save start index */ 696 697 vm_object_hold(object); 698 699 while (size) { 700 if (n == 0) { 701 n = BLIST_MAX_ALLOC; 702 while ((blk = swp_pager_getswapspace(object, n)) == 703 SWAPBLK_NONE) 704 { 705 n >>= 1; 706 if (n == 0) { 707 swp_pager_meta_free(object, beg, 708 start - beg); 709 vm_object_drop(object); 710 return(-1); 711 } 712 } 713 } 714 swp_pager_meta_build(object, start, blk); 715 --size; 716 ++start; 717 ++blk; 718 --n; 719 } 720 swp_pager_meta_free(object, start, n); 721 vm_object_drop(object); 722 return(0); 723 } 724 725 /* 726 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 727 * and destroy the source. 728 * 729 * Copy any valid swapblks from the source to the destination. In 730 * cases where both the source and destination have a valid swapblk, 731 * we keep the destination's. 732 * 733 * This routine is allowed to block. It may block allocating metadata 734 * indirectly through swp_pager_meta_build() or if paging is still in 735 * progress on the source. 736 * 737 * XXX vm_page_collapse() kinda expects us not to block because we 738 * supposedly do not need to allocate memory, but for the moment we 739 * *may* have to get a little memory from the zone allocator, but 740 * it is taken from the interrupt memory. We should be ok. 741 * 742 * The source object contains no vm_page_t's (which is just as well) 743 * The source object is of type OBJT_SWAP. 744 * 745 * The source and destination objects must be held by the caller. 746 */ 747 void 748 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 749 vm_pindex_t base_index, int destroysource) 750 { 751 vm_pindex_t i; 752 753 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject)); 754 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject)); 755 756 /* 757 * transfer source to destination. 758 */ 759 for (i = 0; i < dstobject->size; ++i) { 760 swblk_t dstaddr; 761 762 /* 763 * Locate (without changing) the swapblk on the destination, 764 * unless it is invalid in which case free it silently, or 765 * if the destination is a resident page, in which case the 766 * source is thrown away. 767 */ 768 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 769 770 if (dstaddr == SWAPBLK_NONE) { 771 /* 772 * Destination has no swapblk and is not resident, 773 * copy source. 774 */ 775 swblk_t srcaddr; 776 777 srcaddr = swp_pager_meta_ctl(srcobject, 778 base_index + i, SWM_POP); 779 780 if (srcaddr != SWAPBLK_NONE) 781 swp_pager_meta_build(dstobject, i, srcaddr); 782 } else { 783 /* 784 * Destination has valid swapblk or it is represented 785 * by a resident page. We destroy the sourceblock. 786 */ 787 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE); 788 } 789 } 790 791 /* 792 * Free left over swap blocks in source. 793 * 794 * We have to revert the type to OBJT_DEFAULT so we do not accidently 795 * double-remove the object from the swap queues. 796 */ 797 if (destroysource) { 798 /* 799 * Reverting the type is not necessary, the caller is going 800 * to destroy srcobject directly, but I'm doing it here 801 * for consistency since we've removed the object from its 802 * queues. 803 */ 804 swp_pager_meta_free_all(srcobject); 805 if (srcobject->type == OBJT_SWAP) 806 srcobject->type = OBJT_DEFAULT; 807 } 808 } 809 810 /* 811 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 812 * the requested page. 813 * 814 * We determine whether good backing store exists for the requested 815 * page and return TRUE if it does, FALSE if it doesn't. 816 * 817 * If TRUE, we also try to determine how much valid, contiguous backing 818 * store exists before and after the requested page within a reasonable 819 * distance. We do not try to restrict it to the swap device stripe 820 * (that is handled in getpages/putpages). It probably isn't worth 821 * doing here. 822 * 823 * No requirements. 824 */ 825 boolean_t 826 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex) 827 { 828 swblk_t blk0; 829 830 /* 831 * do we have good backing store at the requested index ? 832 */ 833 vm_object_hold(object); 834 blk0 = swp_pager_meta_ctl(object, pindex, 0); 835 836 if (blk0 == SWAPBLK_NONE) { 837 vm_object_drop(object); 838 return (FALSE); 839 } 840 vm_object_drop(object); 841 return (TRUE); 842 } 843 844 /* 845 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 846 * 847 * This removes any associated swap backing store, whether valid or 848 * not, from the page. This operates on any VM object, not just OBJT_SWAP 849 * objects. 850 * 851 * This routine is typically called when a page is made dirty, at 852 * which point any associated swap can be freed. MADV_FREE also 853 * calls us in a special-case situation 854 * 855 * NOTE!!! If the page is clean and the swap was valid, the caller 856 * should make the page dirty before calling this routine. This routine 857 * does NOT change the m->dirty status of the page. Also: MADV_FREE 858 * depends on it. 859 * 860 * The page must be busied or soft-busied. 861 * The caller can hold the object to avoid blocking, else we might block. 862 * No other requirements. 863 */ 864 void 865 swap_pager_unswapped(vm_page_t m) 866 { 867 if (m->flags & PG_SWAPPED) { 868 vm_object_hold(m->object); 869 KKASSERT(m->flags & PG_SWAPPED); 870 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 871 vm_page_flag_clear(m, PG_SWAPPED); 872 vm_object_drop(m->object); 873 } 874 } 875 876 /* 877 * SWAP_PAGER_STRATEGY() - read, write, free blocks 878 * 879 * This implements a VM OBJECT strategy function using swap backing store. 880 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP 881 * types. 882 * 883 * This is intended to be a cacheless interface (i.e. caching occurs at 884 * higher levels), and is also used as a swap-based SSD cache for vnode 885 * and device objects. 886 * 887 * All I/O goes directly to and from the swap device. 888 * 889 * We currently attempt to run I/O synchronously or asynchronously as 890 * the caller requests. This isn't perfect because we loose error 891 * sequencing when we run multiple ops in parallel to satisfy a request. 892 * But this is swap, so we let it all hang out. 893 * 894 * No requirements. 895 */ 896 void 897 swap_pager_strategy(vm_object_t object, struct bio *bio) 898 { 899 struct buf *bp = bio->bio_buf; 900 struct bio *nbio; 901 vm_pindex_t start; 902 vm_pindex_t biox_blkno = 0; 903 int count; 904 char *data; 905 struct bio *biox; 906 struct buf *bufx; 907 #if 0 908 struct bio_track *track; 909 #endif 910 911 #if 0 912 /* 913 * tracking for swapdev vnode I/Os 914 */ 915 if (bp->b_cmd == BUF_CMD_READ) 916 track = &swapdev_vp->v_track_read; 917 else 918 track = &swapdev_vp->v_track_write; 919 #endif 920 921 if (bp->b_bcount & PAGE_MASK) { 922 bp->b_error = EINVAL; 923 bp->b_flags |= B_ERROR | B_INVAL; 924 biodone(bio); 925 kprintf("swap_pager_strategy: bp %p offset %lld size %d, " 926 "not page bounded\n", 927 bp, (long long)bio->bio_offset, (int)bp->b_bcount); 928 return; 929 } 930 931 /* 932 * Clear error indication, initialize page index, count, data pointer. 933 */ 934 bp->b_error = 0; 935 bp->b_flags &= ~B_ERROR; 936 bp->b_resid = bp->b_bcount; 937 938 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT); 939 count = howmany(bp->b_bcount, PAGE_SIZE); 940 data = bp->b_data; 941 942 /* 943 * Deal with BUF_CMD_FREEBLKS 944 */ 945 if (bp->b_cmd == BUF_CMD_FREEBLKS) { 946 /* 947 * FREE PAGE(s) - destroy underlying swap that is no longer 948 * needed. 949 */ 950 vm_object_hold(object); 951 swp_pager_meta_free(object, start, count); 952 vm_object_drop(object); 953 bp->b_resid = 0; 954 biodone(bio); 955 return; 956 } 957 958 /* 959 * We need to be able to create a new cluster of I/O's. We cannot 960 * use the caller fields of the passed bio so push a new one. 961 * 962 * Because nbio is just a placeholder for the cluster links, 963 * we can biodone() the original bio instead of nbio to make 964 * things a bit more efficient. 965 */ 966 nbio = push_bio(bio); 967 nbio->bio_offset = bio->bio_offset; 968 nbio->bio_caller_info1.cluster_head = NULL; 969 nbio->bio_caller_info2.cluster_tail = NULL; 970 971 biox = NULL; 972 bufx = NULL; 973 974 /* 975 * Execute read or write 976 */ 977 vm_object_hold(object); 978 979 while (count > 0) { 980 swblk_t blk; 981 982 /* 983 * Obtain block. If block not found and writing, allocate a 984 * new block and build it into the object. 985 */ 986 blk = swp_pager_meta_ctl(object, start, 0); 987 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) { 988 blk = swp_pager_getswapspace(object, 1); 989 if (blk == SWAPBLK_NONE) { 990 bp->b_error = ENOMEM; 991 bp->b_flags |= B_ERROR; 992 break; 993 } 994 swp_pager_meta_build(object, start, blk); 995 } 996 997 /* 998 * Do we have to flush our current collection? Yes if: 999 * 1000 * - no swap block at this index 1001 * - swap block is not contiguous 1002 * - we cross a physical disk boundry in the 1003 * stripe. 1004 */ 1005 if ( 1006 biox && (biox_blkno + btoc(bufx->b_bcount) != blk || 1007 ((biox_blkno ^ blk) & dmmax_mask) 1008 ) 1009 ) { 1010 if (bp->b_cmd == BUF_CMD_READ) { 1011 ++mycpu->gd_cnt.v_swapin; 1012 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 1013 } else { 1014 ++mycpu->gd_cnt.v_swapout; 1015 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 1016 bufx->b_dirtyend = bufx->b_bcount; 1017 } 1018 1019 /* 1020 * Finished with this buf. 1021 */ 1022 KKASSERT(bufx->b_bcount != 0); 1023 if (bufx->b_cmd != BUF_CMD_READ) 1024 bufx->b_dirtyend = bufx->b_bcount; 1025 biox = NULL; 1026 bufx = NULL; 1027 } 1028 1029 /* 1030 * Add new swapblk to biox, instantiating biox if necessary. 1031 * Zero-fill reads are able to take a shortcut. 1032 */ 1033 if (blk == SWAPBLK_NONE) { 1034 /* 1035 * We can only get here if we are reading. Since 1036 * we are at splvm() we can safely modify b_resid, 1037 * even if chain ops are in progress. 1038 */ 1039 bzero(data, PAGE_SIZE); 1040 bp->b_resid -= PAGE_SIZE; 1041 } else { 1042 if (biox == NULL) { 1043 /* XXX chain count > 4, wait to <= 4 */ 1044 1045 bufx = getpbuf(NULL); 1046 biox = &bufx->b_bio1; 1047 cluster_append(nbio, bufx); 1048 bufx->b_flags |= (bp->b_flags & B_ORDERED); 1049 bufx->b_cmd = bp->b_cmd; 1050 biox->bio_done = swap_chain_iodone; 1051 biox->bio_offset = (off_t)blk << PAGE_SHIFT; 1052 biox->bio_caller_info1.cluster_parent = nbio; 1053 biox_blkno = blk; 1054 bufx->b_bcount = 0; 1055 bufx->b_data = data; 1056 } 1057 bufx->b_bcount += PAGE_SIZE; 1058 } 1059 --count; 1060 ++start; 1061 data += PAGE_SIZE; 1062 } 1063 1064 vm_object_drop(object); 1065 1066 /* 1067 * Flush out last buffer 1068 */ 1069 if (biox) { 1070 if (bufx->b_cmd == BUF_CMD_READ) { 1071 ++mycpu->gd_cnt.v_swapin; 1072 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 1073 } else { 1074 ++mycpu->gd_cnt.v_swapout; 1075 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 1076 bufx->b_dirtyend = bufx->b_bcount; 1077 } 1078 KKASSERT(bufx->b_bcount); 1079 if (bufx->b_cmd != BUF_CMD_READ) 1080 bufx->b_dirtyend = bufx->b_bcount; 1081 /* biox, bufx = NULL */ 1082 } 1083 1084 /* 1085 * Now initiate all the I/O. Be careful looping on our chain as 1086 * I/O's may complete while we are still initiating them. 1087 * 1088 * If the request is a 100% sparse read no bios will be present 1089 * and we just biodone() the buffer. 1090 */ 1091 nbio->bio_caller_info2.cluster_tail = NULL; 1092 bufx = nbio->bio_caller_info1.cluster_head; 1093 1094 if (bufx) { 1095 while (bufx) { 1096 biox = &bufx->b_bio1; 1097 BUF_KERNPROC(bufx); 1098 bufx = bufx->b_cluster_next; 1099 vn_strategy(swapdev_vp, biox); 1100 } 1101 } else { 1102 biodone(bio); 1103 } 1104 1105 /* 1106 * Completion of the cluster will also call biodone_chain(nbio). 1107 * We never call biodone(nbio) so we don't have to worry about 1108 * setting up a bio_done callback. It's handled in the sub-IO. 1109 */ 1110 /**/ 1111 } 1112 1113 /* 1114 * biodone callback 1115 * 1116 * No requirements. 1117 */ 1118 static void 1119 swap_chain_iodone(struct bio *biox) 1120 { 1121 struct buf **nextp; 1122 struct buf *bufx; /* chained sub-buffer */ 1123 struct bio *nbio; /* parent nbio with chain glue */ 1124 struct buf *bp; /* original bp associated with nbio */ 1125 int chain_empty; 1126 1127 bufx = biox->bio_buf; 1128 nbio = biox->bio_caller_info1.cluster_parent; 1129 bp = nbio->bio_buf; 1130 1131 /* 1132 * Update the original buffer 1133 */ 1134 KKASSERT(bp != NULL); 1135 if (bufx->b_flags & B_ERROR) { 1136 atomic_set_int(&bufx->b_flags, B_ERROR); 1137 bp->b_error = bufx->b_error; /* race ok */ 1138 } else if (bufx->b_resid != 0) { 1139 atomic_set_int(&bufx->b_flags, B_ERROR); 1140 bp->b_error = EINVAL; /* race ok */ 1141 } else { 1142 atomic_subtract_int(&bp->b_resid, bufx->b_bcount); 1143 } 1144 1145 /* 1146 * Remove us from the chain. 1147 */ 1148 spin_lock(&bp->b_lock.lk_spinlock); 1149 nextp = &nbio->bio_caller_info1.cluster_head; 1150 while (*nextp != bufx) { 1151 KKASSERT(*nextp != NULL); 1152 nextp = &(*nextp)->b_cluster_next; 1153 } 1154 *nextp = bufx->b_cluster_next; 1155 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL); 1156 spin_unlock(&bp->b_lock.lk_spinlock); 1157 1158 /* 1159 * Clean up bufx. If the chain is now empty we finish out 1160 * the parent. Note that we may be racing other completions 1161 * so we must use the chain_empty status from above. 1162 */ 1163 if (chain_empty) { 1164 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) { 1165 atomic_set_int(&bp->b_flags, B_ERROR); 1166 bp->b_error = EINVAL; 1167 } 1168 biodone_chain(nbio); 1169 } 1170 relpbuf(bufx, NULL); 1171 } 1172 1173 /* 1174 * SWAP_PAGER_GETPAGES() - bring page in from swap 1175 * 1176 * The requested page may have to be brought in from swap. Calculate the 1177 * swap block and bring in additional pages if possible. All pages must 1178 * have contiguous swap block assignments and reside in the same object. 1179 * 1180 * The caller has a single vm_object_pip_add() reference prior to 1181 * calling us and we should return with the same. 1182 * 1183 * The caller has BUSY'd the page. We should return with (*mpp) left busy, 1184 * and any additinal pages unbusied. 1185 * 1186 * If the caller encounters a PG_RAM page it will pass it to us even though 1187 * it may be valid and dirty. We cannot overwrite the page in this case! 1188 * The case is used to allow us to issue pure read-aheads. 1189 * 1190 * NOTE! XXX This code does not entirely pipeline yet due to the fact that 1191 * the PG_RAM page is validated at the same time as mreq. What we 1192 * really need to do is issue a separate read-ahead pbuf. 1193 * 1194 * No requirements. 1195 */ 1196 static int 1197 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess) 1198 { 1199 struct buf *bp; 1200 struct bio *bio; 1201 vm_page_t mreq; 1202 vm_page_t m; 1203 vm_offset_t kva; 1204 swblk_t blk; 1205 int i; 1206 int j; 1207 int raonly; 1208 int error; 1209 u_int32_t flags; 1210 vm_page_t marray[XIO_INTERNAL_PAGES]; 1211 1212 mreq = *mpp; 1213 1214 vm_object_hold(object); 1215 if (mreq->object != object) { 1216 panic("swap_pager_getpages: object mismatch %p/%p", 1217 object, 1218 mreq->object 1219 ); 1220 } 1221 1222 /* 1223 * We don't want to overwrite a fully valid page as it might be 1224 * dirty. This case can occur when e.g. vm_fault hits a perfectly 1225 * valid page with PG_RAM set. 1226 * 1227 * In this case we see if the next page is a suitable page-in 1228 * candidate and if it is we issue read-ahead. PG_RAM will be 1229 * set on the last page of the read-ahead to continue the pipeline. 1230 */ 1231 if (mreq->valid == VM_PAGE_BITS_ALL) { 1232 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) { 1233 vm_object_drop(object); 1234 return(VM_PAGER_OK); 1235 } 1236 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0); 1237 if (blk == SWAPBLK_NONE) { 1238 vm_object_drop(object); 1239 return(VM_PAGER_OK); 1240 } 1241 m = vm_page_lookup_busy_try(object, mreq->pindex + 1, 1242 TRUE, &error); 1243 if (error) { 1244 vm_object_drop(object); 1245 return(VM_PAGER_OK); 1246 } else if (m == NULL) { 1247 /* 1248 * Use VM_ALLOC_QUICK to avoid blocking on cache 1249 * page reuse. 1250 */ 1251 m = vm_page_alloc(object, mreq->pindex + 1, 1252 VM_ALLOC_QUICK); 1253 if (m == NULL) { 1254 vm_object_drop(object); 1255 return(VM_PAGER_OK); 1256 } 1257 } else { 1258 if (m->valid) { 1259 vm_page_wakeup(m); 1260 vm_object_drop(object); 1261 return(VM_PAGER_OK); 1262 } 1263 vm_page_unqueue_nowakeup(m); 1264 } 1265 /* page is busy */ 1266 mreq = m; 1267 raonly = 1; 1268 } else { 1269 raonly = 0; 1270 } 1271 1272 /* 1273 * Try to block-read contiguous pages from swap if sequential, 1274 * otherwise just read one page. Contiguous pages from swap must 1275 * reside within a single device stripe because the I/O cannot be 1276 * broken up across multiple stripes. 1277 * 1278 * Note that blk and iblk can be SWAPBLK_NONE but the loop is 1279 * set up such that the case(s) are handled implicitly. 1280 */ 1281 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1282 marray[0] = mreq; 1283 1284 for (i = 1; swap_burst_read && 1285 i < XIO_INTERNAL_PAGES && 1286 mreq->pindex + i < object->size; ++i) { 1287 swblk_t iblk; 1288 1289 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0); 1290 if (iblk != blk + i) 1291 break; 1292 if ((blk ^ iblk) & dmmax_mask) 1293 break; 1294 m = vm_page_lookup_busy_try(object, mreq->pindex + i, 1295 TRUE, &error); 1296 if (error) { 1297 break; 1298 } else if (m == NULL) { 1299 /* 1300 * Use VM_ALLOC_QUICK to avoid blocking on cache 1301 * page reuse. 1302 */ 1303 m = vm_page_alloc(object, mreq->pindex + i, 1304 VM_ALLOC_QUICK); 1305 if (m == NULL) 1306 break; 1307 } else { 1308 if (m->valid) { 1309 vm_page_wakeup(m); 1310 break; 1311 } 1312 vm_page_unqueue_nowakeup(m); 1313 } 1314 /* page is busy */ 1315 marray[i] = m; 1316 } 1317 if (i > 1) 1318 vm_page_flag_set(marray[i - 1], PG_RAM); 1319 1320 /* 1321 * If mreq is the requested page and we have nothing to do return 1322 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead 1323 * page and must be cleaned up. 1324 */ 1325 if (blk == SWAPBLK_NONE) { 1326 KKASSERT(i == 1); 1327 if (raonly) { 1328 vnode_pager_freepage(mreq); 1329 vm_object_drop(object); 1330 return(VM_PAGER_OK); 1331 } else { 1332 vm_object_drop(object); 1333 return(VM_PAGER_FAIL); 1334 } 1335 } 1336 1337 /* 1338 * map our page(s) into kva for input 1339 */ 1340 bp = getpbuf_kva(&nsw_rcount); 1341 bio = &bp->b_bio1; 1342 kva = (vm_offset_t) bp->b_kvabase; 1343 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t)); 1344 pmap_qenter(kva, bp->b_xio.xio_pages, i); 1345 1346 bp->b_data = (caddr_t)kva; 1347 bp->b_bcount = PAGE_SIZE * i; 1348 bp->b_xio.xio_npages = i; 1349 bio->bio_done = swp_pager_async_iodone; 1350 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1351 bio->bio_caller_info1.index = SWBIO_READ; 1352 1353 /* 1354 * Set index. If raonly set the index beyond the array so all 1355 * the pages are treated the same, otherwise the original mreq is 1356 * at index 0. 1357 */ 1358 if (raonly) 1359 bio->bio_driver_info = (void *)(intptr_t)i; 1360 else 1361 bio->bio_driver_info = (void *)(intptr_t)0; 1362 1363 for (j = 0; j < i; ++j) 1364 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG); 1365 1366 mycpu->gd_cnt.v_swapin++; 1367 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages; 1368 1369 /* 1370 * We still hold the lock on mreq, and our automatic completion routine 1371 * does not remove it. 1372 */ 1373 vm_object_pip_add(object, bp->b_xio.xio_npages); 1374 1375 /* 1376 * perform the I/O. NOTE!!! bp cannot be considered valid after 1377 * this point because we automatically release it on completion. 1378 * Instead, we look at the one page we are interested in which we 1379 * still hold a lock on even through the I/O completion. 1380 * 1381 * The other pages in our m[] array are also released on completion, 1382 * so we cannot assume they are valid anymore either. 1383 */ 1384 bp->b_cmd = BUF_CMD_READ; 1385 BUF_KERNPROC(bp); 1386 vn_strategy(swapdev_vp, bio); 1387 1388 /* 1389 * Wait for the page we want to complete. PG_SWAPINPROG is always 1390 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1391 * is set in the meta-data. 1392 * 1393 * If this is a read-ahead only we return immediately without 1394 * waiting for I/O. 1395 */ 1396 if (raonly) { 1397 vm_object_drop(object); 1398 return(VM_PAGER_OK); 1399 } 1400 1401 /* 1402 * Read-ahead includes originally requested page case. 1403 */ 1404 for (;;) { 1405 flags = mreq->flags; 1406 cpu_ccfence(); 1407 if ((flags & PG_SWAPINPROG) == 0) 1408 break; 1409 tsleep_interlock(mreq, 0); 1410 if (!atomic_cmpset_int(&mreq->flags, flags, 1411 flags | PG_WANTED | PG_REFERENCED)) { 1412 continue; 1413 } 1414 mycpu->gd_cnt.v_intrans++; 1415 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) { 1416 kprintf( 1417 "swap_pager: indefinite wait buffer: " 1418 " offset: %lld, size: %ld\n", 1419 (long long)bio->bio_offset, 1420 (long)bp->b_bcount 1421 ); 1422 } 1423 } 1424 1425 /* 1426 * mreq is left bussied after completion, but all the other pages 1427 * are freed. If we had an unrecoverable read error the page will 1428 * not be valid. 1429 */ 1430 vm_object_drop(object); 1431 if (mreq->valid != VM_PAGE_BITS_ALL) 1432 return(VM_PAGER_ERROR); 1433 else 1434 return(VM_PAGER_OK); 1435 1436 /* 1437 * A final note: in a low swap situation, we cannot deallocate swap 1438 * and mark a page dirty here because the caller is likely to mark 1439 * the page clean when we return, causing the page to possibly revert 1440 * to all-zero's later. 1441 */ 1442 } 1443 1444 /* 1445 * swap_pager_putpages: 1446 * 1447 * Assign swap (if necessary) and initiate I/O on the specified pages. 1448 * 1449 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1450 * are automatically converted to SWAP objects. 1451 * 1452 * In a low memory situation we may block in vn_strategy(), but the new 1453 * vm_page reservation system coupled with properly written VFS devices 1454 * should ensure that no low-memory deadlock occurs. This is an area 1455 * which needs work. 1456 * 1457 * The parent has N vm_object_pip_add() references prior to 1458 * calling us and will remove references for rtvals[] that are 1459 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1460 * completion. 1461 * 1462 * The parent has soft-busy'd the pages it passes us and will unbusy 1463 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1464 * We need to unbusy the rest on I/O completion. 1465 * 1466 * No requirements. 1467 */ 1468 void 1469 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1470 boolean_t sync, int *rtvals) 1471 { 1472 int i; 1473 int n = 0; 1474 1475 vm_object_hold(object); 1476 1477 if (count && m[0]->object != object) { 1478 panic("swap_pager_getpages: object mismatch %p/%p", 1479 object, 1480 m[0]->object 1481 ); 1482 } 1483 1484 /* 1485 * Step 1 1486 * 1487 * Turn object into OBJT_SWAP 1488 * check for bogus sysops 1489 * force sync if not pageout process 1490 */ 1491 if (object->type == OBJT_DEFAULT) { 1492 if (object->type == OBJT_DEFAULT) 1493 swp_pager_meta_convert(object); 1494 } 1495 1496 if (curthread != pagethread) 1497 sync = TRUE; 1498 1499 /* 1500 * Step 2 1501 * 1502 * Update nsw parameters from swap_async_max sysctl values. 1503 * Do not let the sysop crash the machine with bogus numbers. 1504 */ 1505 if (swap_async_max != nsw_wcount_async_max) { 1506 int n; 1507 1508 /* 1509 * limit range 1510 */ 1511 if ((n = swap_async_max) > nswbuf / 2) 1512 n = nswbuf / 2; 1513 if (n < 1) 1514 n = 1; 1515 swap_async_max = n; 1516 1517 /* 1518 * Adjust difference ( if possible ). If the current async 1519 * count is too low, we may not be able to make the adjustment 1520 * at this time. 1521 * 1522 * vm_token needed for nsw_wcount sleep interlock 1523 */ 1524 lwkt_gettoken(&vm_token); 1525 n -= nsw_wcount_async_max; 1526 if (nsw_wcount_async + n >= 0) { 1527 nsw_wcount_async_max += n; 1528 pbuf_adjcount(&nsw_wcount_async, n); 1529 } 1530 lwkt_reltoken(&vm_token); 1531 } 1532 1533 /* 1534 * Step 3 1535 * 1536 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1537 * The page is left dirty until the pageout operation completes 1538 * successfully. 1539 */ 1540 1541 for (i = 0; i < count; i += n) { 1542 struct buf *bp; 1543 struct bio *bio; 1544 swblk_t blk; 1545 int j; 1546 1547 /* 1548 * Maximum I/O size is limited by a number of factors. 1549 */ 1550 1551 n = min(BLIST_MAX_ALLOC, count - i); 1552 n = min(n, nsw_cluster_max); 1553 1554 lwkt_gettoken(&vm_token); 1555 1556 /* 1557 * Get biggest block of swap we can. If we fail, fall 1558 * back and try to allocate a smaller block. Don't go 1559 * overboard trying to allocate space if it would overly 1560 * fragment swap. 1561 */ 1562 while ( 1563 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE && 1564 n > 4 1565 ) { 1566 n >>= 1; 1567 } 1568 if (blk == SWAPBLK_NONE) { 1569 for (j = 0; j < n; ++j) 1570 rtvals[i+j] = VM_PAGER_FAIL; 1571 lwkt_reltoken(&vm_token); 1572 continue; 1573 } 1574 1575 /* 1576 * The I/O we are constructing cannot cross a physical 1577 * disk boundry in the swap stripe. Note: we are still 1578 * at splvm(). 1579 */ 1580 if ((blk ^ (blk + n)) & dmmax_mask) { 1581 j = ((blk + dmmax) & dmmax_mask) - blk; 1582 swp_pager_freeswapspace(object, blk + j, n - j); 1583 n = j; 1584 } 1585 1586 /* 1587 * All I/O parameters have been satisfied, build the I/O 1588 * request and assign the swap space. 1589 */ 1590 if (sync == TRUE) 1591 bp = getpbuf_kva(&nsw_wcount_sync); 1592 else 1593 bp = getpbuf_kva(&nsw_wcount_async); 1594 bio = &bp->b_bio1; 1595 1596 lwkt_reltoken(&vm_token); 1597 1598 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1599 1600 bp->b_bcount = PAGE_SIZE * n; 1601 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1602 1603 for (j = 0; j < n; ++j) { 1604 vm_page_t mreq = m[i+j]; 1605 1606 swp_pager_meta_build(mreq->object, mreq->pindex, 1607 blk + j); 1608 if (object->type == OBJT_SWAP) 1609 vm_page_dirty(mreq); 1610 rtvals[i+j] = VM_PAGER_OK; 1611 1612 vm_page_flag_set(mreq, PG_SWAPINPROG); 1613 bp->b_xio.xio_pages[j] = mreq; 1614 } 1615 bp->b_xio.xio_npages = n; 1616 1617 mycpu->gd_cnt.v_swapout++; 1618 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages; 1619 1620 bp->b_dirtyoff = 0; /* req'd for NFS */ 1621 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */ 1622 bp->b_cmd = BUF_CMD_WRITE; 1623 bio->bio_caller_info1.index = SWBIO_WRITE; 1624 1625 /* 1626 * asynchronous 1627 */ 1628 if (sync == FALSE) { 1629 bio->bio_done = swp_pager_async_iodone; 1630 BUF_KERNPROC(bp); 1631 vn_strategy(swapdev_vp, bio); 1632 1633 for (j = 0; j < n; ++j) 1634 rtvals[i+j] = VM_PAGER_PEND; 1635 continue; 1636 } 1637 1638 /* 1639 * Issue synchrnously. 1640 * 1641 * Wait for the sync I/O to complete, then update rtvals. 1642 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1643 * our async completion routine at the end, thus avoiding a 1644 * double-free. 1645 */ 1646 bio->bio_caller_info1.index |= SWBIO_SYNC; 1647 bio->bio_done = biodone_sync; 1648 bio->bio_flags |= BIO_SYNC; 1649 vn_strategy(swapdev_vp, bio); 1650 biowait(bio, "swwrt"); 1651 1652 for (j = 0; j < n; ++j) 1653 rtvals[i+j] = VM_PAGER_PEND; 1654 1655 /* 1656 * Now that we are through with the bp, we can call the 1657 * normal async completion, which frees everything up. 1658 */ 1659 swp_pager_async_iodone(bio); 1660 } 1661 vm_object_drop(object); 1662 } 1663 1664 /* 1665 * No requirements. 1666 */ 1667 void 1668 swap_pager_newswap(void) 1669 { 1670 swp_sizecheck(); 1671 } 1672 1673 /* 1674 * swp_pager_async_iodone: 1675 * 1676 * Completion routine for asynchronous reads and writes from/to swap. 1677 * Also called manually by synchronous code to finish up a bp. 1678 * 1679 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1680 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1681 * unbusy all pages except the 'main' request page. For WRITE 1682 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1683 * because we marked them all VM_PAGER_PEND on return from putpages ). 1684 * 1685 * This routine may not block. 1686 * 1687 * No requirements. 1688 */ 1689 static void 1690 swp_pager_async_iodone(struct bio *bio) 1691 { 1692 struct buf *bp = bio->bio_buf; 1693 vm_object_t object = NULL; 1694 int i; 1695 int *nswptr; 1696 1697 /* 1698 * report error 1699 */ 1700 if (bp->b_flags & B_ERROR) { 1701 kprintf( 1702 "swap_pager: I/O error - %s failed; offset %lld," 1703 "size %ld, error %d\n", 1704 ((bio->bio_caller_info1.index & SWBIO_READ) ? 1705 "pagein" : "pageout"), 1706 (long long)bio->bio_offset, 1707 (long)bp->b_bcount, 1708 bp->b_error 1709 ); 1710 } 1711 1712 /* 1713 * set object, raise to splvm(). 1714 */ 1715 if (bp->b_xio.xio_npages) 1716 object = bp->b_xio.xio_pages[0]->object; 1717 1718 /* 1719 * remove the mapping for kernel virtual 1720 */ 1721 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages); 1722 1723 /* 1724 * cleanup pages. If an error occurs writing to swap, we are in 1725 * very serious trouble. If it happens to be a disk error, though, 1726 * we may be able to recover by reassigning the swap later on. So 1727 * in this case we remove the m->swapblk assignment for the page 1728 * but do not free it in the rlist. The errornous block(s) are thus 1729 * never reallocated as swap. Redirty the page and continue. 1730 */ 1731 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1732 vm_page_t m = bp->b_xio.xio_pages[i]; 1733 1734 if (bp->b_flags & B_ERROR) { 1735 /* 1736 * If an error occurs I'd love to throw the swapblk 1737 * away without freeing it back to swapspace, so it 1738 * can never be used again. But I can't from an 1739 * interrupt. 1740 */ 1741 1742 if (bio->bio_caller_info1.index & SWBIO_READ) { 1743 /* 1744 * When reading, reqpage needs to stay 1745 * locked for the parent, but all other 1746 * pages can be freed. We still want to 1747 * wakeup the parent waiting on the page, 1748 * though. ( also: pg_reqpage can be -1 and 1749 * not match anything ). 1750 * 1751 * We have to wake specifically requested pages 1752 * up too because we cleared PG_SWAPINPROG and 1753 * someone may be waiting for that. 1754 * 1755 * NOTE: for reads, m->dirty will probably 1756 * be overridden by the original caller of 1757 * getpages so don't play cute tricks here. 1758 * 1759 * NOTE: We can't actually free the page from 1760 * here, because this is an interrupt. It 1761 * is not legal to mess with object->memq 1762 * from an interrupt. Deactivate the page 1763 * instead. 1764 */ 1765 1766 m->valid = 0; 1767 vm_page_flag_clear(m, PG_ZERO); 1768 vm_page_flag_clear(m, PG_SWAPINPROG); 1769 1770 /* 1771 * bio_driver_info holds the requested page 1772 * index. 1773 */ 1774 if (i != (int)(intptr_t)bio->bio_driver_info) { 1775 vm_page_deactivate(m); 1776 vm_page_wakeup(m); 1777 } else { 1778 vm_page_flash(m); 1779 } 1780 /* 1781 * If i == bp->b_pager.pg_reqpage, do not wake 1782 * the page up. The caller needs to. 1783 */ 1784 } else { 1785 /* 1786 * If a write error occurs remove the swap 1787 * assignment (note that PG_SWAPPED may or 1788 * may not be set depending on prior activity). 1789 * 1790 * Re-dirty OBJT_SWAP pages as there is no 1791 * other backing store, we can't throw the 1792 * page away. 1793 * 1794 * Non-OBJT_SWAP pages (aka swapcache) must 1795 * not be dirtied since they may not have 1796 * been dirty in the first place, and they 1797 * do have backing store (the vnode). 1798 */ 1799 vm_page_busy_wait(m, FALSE, "swadpg"); 1800 swp_pager_meta_ctl(m->object, m->pindex, 1801 SWM_FREE); 1802 vm_page_flag_clear(m, PG_SWAPPED); 1803 if (m->object->type == OBJT_SWAP) { 1804 vm_page_dirty(m); 1805 vm_page_activate(m); 1806 } 1807 vm_page_flag_clear(m, PG_SWAPINPROG); 1808 vm_page_io_finish(m); 1809 vm_page_wakeup(m); 1810 } 1811 } else if (bio->bio_caller_info1.index & SWBIO_READ) { 1812 /* 1813 * NOTE: for reads, m->dirty will probably be 1814 * overridden by the original caller of getpages so 1815 * we cannot set them in order to free the underlying 1816 * swap in a low-swap situation. I don't think we'd 1817 * want to do that anyway, but it was an optimization 1818 * that existed in the old swapper for a time before 1819 * it got ripped out due to precisely this problem. 1820 * 1821 * clear PG_ZERO in page. 1822 * 1823 * If not the requested page then deactivate it. 1824 * 1825 * Note that the requested page, reqpage, is left 1826 * busied, but we still have to wake it up. The 1827 * other pages are released (unbusied) by 1828 * vm_page_wakeup(). We do not set reqpage's 1829 * valid bits here, it is up to the caller. 1830 */ 1831 1832 /* 1833 * NOTE: can't call pmap_clear_modify(m) from an 1834 * interrupt thread, the pmap code may have to map 1835 * non-kernel pmaps and currently asserts the case. 1836 */ 1837 /*pmap_clear_modify(m);*/ 1838 m->valid = VM_PAGE_BITS_ALL; 1839 vm_page_undirty(m); 1840 vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG); 1841 vm_page_flag_set(m, PG_SWAPPED); 1842 1843 /* 1844 * We have to wake specifically requested pages 1845 * up too because we cleared PG_SWAPINPROG and 1846 * could be waiting for it in getpages. However, 1847 * be sure to not unbusy getpages specifically 1848 * requested page - getpages expects it to be 1849 * left busy. 1850 * 1851 * bio_driver_info holds the requested page 1852 */ 1853 if (i != (int)(intptr_t)bio->bio_driver_info) { 1854 vm_page_deactivate(m); 1855 vm_page_wakeup(m); 1856 } else { 1857 vm_page_flash(m); 1858 } 1859 } else { 1860 /* 1861 * Mark the page clean but do not mess with the 1862 * pmap-layer's modified state. That state should 1863 * also be clear since the caller protected the 1864 * page VM_PROT_READ, but allow the case. 1865 * 1866 * We are in an interrupt, avoid pmap operations. 1867 * 1868 * If we have a severe page deficit, deactivate the 1869 * page. Do not try to cache it (which would also 1870 * involve a pmap op), because the page might still 1871 * be read-heavy. 1872 * 1873 * When using the swap to cache clean vnode pages 1874 * we do not mess with the page dirty bits. 1875 */ 1876 vm_page_busy_wait(m, FALSE, "swadpg"); 1877 if (m->object->type == OBJT_SWAP) 1878 vm_page_undirty(m); 1879 vm_page_flag_clear(m, PG_SWAPINPROG); 1880 vm_page_flag_set(m, PG_SWAPPED); 1881 if (vm_page_count_severe()) 1882 vm_page_deactivate(m); 1883 #if 0 1884 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1885 vm_page_protect(m, VM_PROT_READ); 1886 #endif 1887 vm_page_io_finish(m); 1888 vm_page_wakeup(m); 1889 } 1890 } 1891 1892 /* 1893 * adjust pip. NOTE: the original parent may still have its own 1894 * pip refs on the object. 1895 */ 1896 1897 if (object) 1898 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages); 1899 1900 /* 1901 * Release the physical I/O buffer. 1902 * 1903 * NOTE: Due to synchronous operations in the write case b_cmd may 1904 * already be set to BUF_CMD_DONE and BIO_SYNC may have already 1905 * been cleared. 1906 * 1907 * Use vm_token to interlock nsw_rcount/wcount wakeup? 1908 */ 1909 lwkt_gettoken(&vm_token); 1910 if (bio->bio_caller_info1.index & SWBIO_READ) 1911 nswptr = &nsw_rcount; 1912 else if (bio->bio_caller_info1.index & SWBIO_SYNC) 1913 nswptr = &nsw_wcount_sync; 1914 else 1915 nswptr = &nsw_wcount_async; 1916 bp->b_cmd = BUF_CMD_DONE; 1917 relpbuf(bp, nswptr); 1918 lwkt_reltoken(&vm_token); 1919 } 1920 1921 /* 1922 * Fault-in a potentially swapped page and remove the swap reference. 1923 * (used by swapoff code) 1924 * 1925 * object must be held. 1926 */ 1927 static __inline void 1928 swp_pager_fault_page(vm_object_t object, vm_pindex_t pindex) 1929 { 1930 struct vnode *vp; 1931 vm_page_t m; 1932 int error; 1933 1934 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1935 1936 if (object->type == OBJT_VNODE) { 1937 /* 1938 * Any swap related to a vnode is due to swapcache. We must 1939 * vget() the vnode in case it is not active (otherwise 1940 * vref() will panic). Calling vm_object_page_remove() will 1941 * ensure that any swap ref is removed interlocked with the 1942 * page. clean_only is set to TRUE so we don't throw away 1943 * dirty pages. 1944 */ 1945 vp = object->handle; 1946 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE); 1947 if (error == 0) { 1948 vm_object_page_remove(object, pindex, pindex + 1, TRUE); 1949 vput(vp); 1950 } 1951 } else { 1952 /* 1953 * Otherwise it is a normal OBJT_SWAP object and we can 1954 * fault the page in and remove the swap. 1955 */ 1956 m = vm_fault_object_page(object, IDX_TO_OFF(pindex), 1957 VM_PROT_NONE, 1958 VM_FAULT_DIRTY | VM_FAULT_UNSWAP, 1959 0, &error); 1960 if (m) 1961 vm_page_unhold(m); 1962 } 1963 } 1964 1965 /* 1966 * This removes all swap blocks related to a particular device. We have 1967 * to be careful of ripups during the scan. 1968 */ 1969 static int swp_pager_swapoff_callback(struct swblock *swap, void *data); 1970 1971 int 1972 swap_pager_swapoff(int devidx) 1973 { 1974 struct vm_object marker; 1975 vm_object_t object; 1976 struct swswapoffinfo info; 1977 1978 bzero(&marker, sizeof(marker)); 1979 marker.type = OBJT_MARKER; 1980 1981 lwkt_gettoken(&vmobj_token); 1982 TAILQ_INSERT_HEAD(&vm_object_list, &marker, object_list); 1983 1984 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) { 1985 if (object->type == OBJT_MARKER) 1986 goto skip; 1987 if (object->type != OBJT_SWAP && object->type != OBJT_VNODE) 1988 goto skip; 1989 vm_object_hold(object); 1990 if (object->type != OBJT_SWAP && object->type != OBJT_VNODE) { 1991 vm_object_drop(object); 1992 goto skip; 1993 } 1994 info.object = object; 1995 info.devidx = devidx; 1996 swblock_rb_tree_RB_SCAN(&object->swblock_root, 1997 NULL, 1998 swp_pager_swapoff_callback, 1999 &info); 2000 vm_object_drop(object); 2001 skip: 2002 if (object == TAILQ_NEXT(&marker, object_list)) { 2003 TAILQ_REMOVE(&vm_object_list, &marker, object_list); 2004 TAILQ_INSERT_AFTER(&vm_object_list, object, 2005 &marker, object_list); 2006 } 2007 } 2008 TAILQ_REMOVE(&vm_object_list, &marker, object_list); 2009 lwkt_reltoken(&vmobj_token); 2010 2011 /* 2012 * If we fail to locate all swblocks we just fail gracefully and 2013 * do not bother to restore paging on the swap device. If the 2014 * user wants to retry the user can retry. 2015 */ 2016 if (swdevt[devidx].sw_nused) 2017 return (1); 2018 else 2019 return (0); 2020 } 2021 2022 static 2023 int 2024 swp_pager_swapoff_callback(struct swblock *swap, void *data) 2025 { 2026 struct swswapoffinfo *info = data; 2027 vm_object_t object = info->object; 2028 vm_pindex_t index; 2029 swblk_t v; 2030 int i; 2031 2032 index = swap->swb_index; 2033 for (i = 0; i < SWAP_META_PAGES; ++i) { 2034 /* 2035 * Make sure we don't race a dying object. This will 2036 * kill the scan of the object's swap blocks entirely. 2037 */ 2038 if (object->flags & OBJ_DEAD) 2039 return(-1); 2040 2041 /* 2042 * Fault the page, which can obviously block. If the swap 2043 * structure disappears break out. 2044 */ 2045 v = swap->swb_pages[i]; 2046 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) { 2047 swp_pager_fault_page(object, swap->swb_index + i); 2048 /* swap ptr might go away */ 2049 if (RB_LOOKUP(swblock_rb_tree, 2050 &object->swblock_root, index) != swap) { 2051 break; 2052 } 2053 } 2054 } 2055 return(0); 2056 } 2057 2058 /************************************************************************ 2059 * SWAP META DATA * 2060 ************************************************************************ 2061 * 2062 * These routines manipulate the swap metadata stored in the 2063 * OBJT_SWAP object. All swp_*() routines must be called at 2064 * splvm() because swap can be freed up by the low level vm_page 2065 * code which might be called from interrupts beyond what splbio() covers. 2066 * 2067 * Swap metadata is implemented with a global hash and not directly 2068 * linked into the object. Instead the object simply contains 2069 * appropriate tracking counters. 2070 */ 2071 2072 /* 2073 * Lookup the swblock containing the specified swap block index. 2074 * 2075 * The caller must hold the object. 2076 */ 2077 static __inline 2078 struct swblock * 2079 swp_pager_lookup(vm_object_t object, vm_pindex_t index) 2080 { 2081 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2082 index &= ~(vm_pindex_t)SWAP_META_MASK; 2083 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index)); 2084 } 2085 2086 /* 2087 * Remove a swblock from the RB tree. 2088 * 2089 * The caller must hold the object. 2090 */ 2091 static __inline 2092 void 2093 swp_pager_remove(vm_object_t object, struct swblock *swap) 2094 { 2095 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2096 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap); 2097 } 2098 2099 /* 2100 * Convert default object to swap object if necessary 2101 * 2102 * The caller must hold the object. 2103 */ 2104 static void 2105 swp_pager_meta_convert(vm_object_t object) 2106 { 2107 if (object->type == OBJT_DEFAULT) { 2108 object->type = OBJT_SWAP; 2109 KKASSERT(object->swblock_count == 0); 2110 } 2111 } 2112 2113 /* 2114 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 2115 * 2116 * We first convert the object to a swap object if it is a default 2117 * object. Vnode objects do not need to be converted. 2118 * 2119 * The specified swapblk is added to the object's swap metadata. If 2120 * the swapblk is not valid, it is freed instead. Any previously 2121 * assigned swapblk is freed. 2122 * 2123 * The caller must hold the object. 2124 */ 2125 static void 2126 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk) 2127 { 2128 struct swblock *swap; 2129 struct swblock *oswap; 2130 vm_pindex_t v; 2131 2132 KKASSERT(swapblk != SWAPBLK_NONE); 2133 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2134 2135 /* 2136 * Convert object if necessary 2137 */ 2138 if (object->type == OBJT_DEFAULT) 2139 swp_pager_meta_convert(object); 2140 2141 /* 2142 * Locate swblock. If not found create, but if we aren't adding 2143 * anything just return. If we run out of space in the map we wait 2144 * and, since the hash table may have changed, retry. 2145 */ 2146 retry: 2147 swap = swp_pager_lookup(object, index); 2148 2149 if (swap == NULL) { 2150 int i; 2151 2152 swap = zalloc(swap_zone); 2153 if (swap == NULL) { 2154 vm_wait(0); 2155 goto retry; 2156 } 2157 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK; 2158 swap->swb_count = 0; 2159 2160 ++object->swblock_count; 2161 2162 for (i = 0; i < SWAP_META_PAGES; ++i) 2163 swap->swb_pages[i] = SWAPBLK_NONE; 2164 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap); 2165 KKASSERT(oswap == NULL); 2166 } 2167 2168 /* 2169 * Delete prior contents of metadata. 2170 * 2171 * NOTE: Decrement swb_count after the freeing operation (which 2172 * might block) to prevent racing destruction of the swblock. 2173 */ 2174 index &= SWAP_META_MASK; 2175 2176 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) { 2177 swap->swb_pages[index] = SWAPBLK_NONE; 2178 /* can block */ 2179 swp_pager_freeswapspace(object, v, 1); 2180 --swap->swb_count; 2181 } 2182 2183 /* 2184 * Enter block into metadata 2185 */ 2186 swap->swb_pages[index] = swapblk; 2187 if (swapblk != SWAPBLK_NONE) 2188 ++swap->swb_count; 2189 } 2190 2191 /* 2192 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 2193 * 2194 * The requested range of blocks is freed, with any associated swap 2195 * returned to the swap bitmap. 2196 * 2197 * This routine will free swap metadata structures as they are cleaned 2198 * out. This routine does *NOT* operate on swap metadata associated 2199 * with resident pages. 2200 * 2201 * The caller must hold the object. 2202 */ 2203 static int swp_pager_meta_free_callback(struct swblock *swb, void *data); 2204 2205 static void 2206 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count) 2207 { 2208 struct swfreeinfo info; 2209 2210 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2211 2212 /* 2213 * Nothing to do 2214 */ 2215 if (object->swblock_count == 0) { 2216 KKASSERT(RB_EMPTY(&object->swblock_root)); 2217 return; 2218 } 2219 if (count == 0) 2220 return; 2221 2222 /* 2223 * Setup for RB tree scan. Note that the pindex range can be huge 2224 * due to the 64 bit page index space so we cannot safely iterate. 2225 */ 2226 info.object = object; 2227 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK; 2228 info.begi = index; 2229 info.endi = index + count - 1; 2230 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp, 2231 swp_pager_meta_free_callback, &info); 2232 } 2233 2234 /* 2235 * The caller must hold the object. 2236 */ 2237 static 2238 int 2239 swp_pager_meta_free_callback(struct swblock *swap, void *data) 2240 { 2241 struct swfreeinfo *info = data; 2242 vm_object_t object = info->object; 2243 int index; 2244 int eindex; 2245 2246 /* 2247 * Figure out the range within the swblock. The wider scan may 2248 * return edge-case swap blocks when the start and/or end points 2249 * are in the middle of a block. 2250 */ 2251 if (swap->swb_index < info->begi) 2252 index = (int)info->begi & SWAP_META_MASK; 2253 else 2254 index = 0; 2255 2256 if (swap->swb_index + SWAP_META_PAGES > info->endi) 2257 eindex = (int)info->endi & SWAP_META_MASK; 2258 else 2259 eindex = SWAP_META_MASK; 2260 2261 /* 2262 * Scan and free the blocks. The loop terminates early 2263 * if (swap) runs out of blocks and could be freed. 2264 * 2265 * NOTE: Decrement swb_count after swp_pager_freeswapspace() 2266 * to deal with a zfree race. 2267 */ 2268 while (index <= eindex) { 2269 swblk_t v = swap->swb_pages[index]; 2270 2271 if (v != SWAPBLK_NONE) { 2272 swap->swb_pages[index] = SWAPBLK_NONE; 2273 /* can block */ 2274 swp_pager_freeswapspace(object, v, 1); 2275 if (--swap->swb_count == 0) { 2276 swp_pager_remove(object, swap); 2277 zfree(swap_zone, swap); 2278 --object->swblock_count; 2279 break; 2280 } 2281 } 2282 ++index; 2283 } 2284 2285 /* swap may be invalid here due to zfree above */ 2286 lwkt_yield(); 2287 2288 return(0); 2289 } 2290 2291 /* 2292 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2293 * 2294 * This routine locates and destroys all swap metadata associated with 2295 * an object. 2296 * 2297 * NOTE: Decrement swb_count after the freeing operation (which 2298 * might block) to prevent racing destruction of the swblock. 2299 * 2300 * The caller must hold the object. 2301 */ 2302 static void 2303 swp_pager_meta_free_all(vm_object_t object) 2304 { 2305 struct swblock *swap; 2306 int i; 2307 2308 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2309 2310 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) { 2311 swp_pager_remove(object, swap); 2312 for (i = 0; i < SWAP_META_PAGES; ++i) { 2313 swblk_t v = swap->swb_pages[i]; 2314 if (v != SWAPBLK_NONE) { 2315 /* can block */ 2316 swp_pager_freeswapspace(object, v, 1); 2317 --swap->swb_count; 2318 } 2319 } 2320 if (swap->swb_count != 0) 2321 panic("swap_pager_meta_free_all: swb_count != 0"); 2322 zfree(swap_zone, swap); 2323 --object->swblock_count; 2324 lwkt_yield(); 2325 } 2326 KKASSERT(object->swblock_count == 0); 2327 } 2328 2329 /* 2330 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2331 * 2332 * This routine is capable of looking up, popping, or freeing 2333 * swapblk assignments in the swap meta data or in the vm_page_t. 2334 * The routine typically returns the swapblk being looked-up, or popped, 2335 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2336 * was invalid. This routine will automatically free any invalid 2337 * meta-data swapblks. 2338 * 2339 * It is not possible to store invalid swapblks in the swap meta data 2340 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2341 * 2342 * When acting on a busy resident page and paging is in progress, we 2343 * have to wait until paging is complete but otherwise can act on the 2344 * busy page. 2345 * 2346 * SWM_FREE remove and free swap block from metadata 2347 * SWM_POP remove from meta data but do not free.. pop it out 2348 * 2349 * The caller must hold the object. 2350 */ 2351 static swblk_t 2352 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags) 2353 { 2354 struct swblock *swap; 2355 swblk_t r1; 2356 2357 if (object->swblock_count == 0) 2358 return(SWAPBLK_NONE); 2359 2360 r1 = SWAPBLK_NONE; 2361 swap = swp_pager_lookup(object, index); 2362 2363 if (swap != NULL) { 2364 index &= SWAP_META_MASK; 2365 r1 = swap->swb_pages[index]; 2366 2367 if (r1 != SWAPBLK_NONE) { 2368 if (flags & (SWM_FREE|SWM_POP)) { 2369 swap->swb_pages[index] = SWAPBLK_NONE; 2370 if (--swap->swb_count == 0) { 2371 swp_pager_remove(object, swap); 2372 zfree(swap_zone, swap); 2373 --object->swblock_count; 2374 } 2375 } 2376 /* swap ptr may be invalid */ 2377 if (flags & SWM_FREE) { 2378 swp_pager_freeswapspace(object, r1, 1); 2379 r1 = SWAPBLK_NONE; 2380 } 2381 } 2382 /* swap ptr may be invalid */ 2383 } 2384 return(r1); 2385 } 2386