xref: /dragonfly/sys/vm/swap_pager.c (revision 43b4d1bd)
1 /*
2  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1994 John S. Dyson
35  * Copyright (c) 1990 University of Utah.
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * the Systems Programming Group of the University of Utah Computer
41  * Science Department.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *				New Swap System
72  *				Matthew Dillon
73  *
74  * Radix Bitmap 'blists'.
75  *
76  *	- The new swapper uses the new radix bitmap code.  This should scale
77  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
78  *	  arbitrary degree of fragmentation.
79  *
80  * Features:
81  *
82  *	- on the fly reallocation of swap during putpages.  The new system
83  *	  does not try to keep previously allocated swap blocks for dirty
84  *	  pages.
85  *
86  *	- on the fly deallocation of swap
87  *
88  *	- No more garbage collection required.  Unnecessarily allocated swap
89  *	  blocks only exist for dirty vm_page_t's now and these are already
90  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
91  *	  removal of invalidated swap blocks when a page is destroyed
92  *	  or renamed.
93  *
94  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
95  *
96  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
97  *
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  * $DragonFly: src/sys/vm/swap_pager.c,v 1.14 2004/07/16 05:52:14 dillon Exp $
100  */
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/vmmeter.h>
115 
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
119 
120 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
121 
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 /*
139  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
140  * in the old system.
141  */
142 
143 extern int vm_swap_size;	/* number of free swap blocks, in pages */
144 
145 int swap_pager_full;		/* swap space exhaustion (task killing) */
146 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
147 static int nsw_rcount;		/* free read buffers			*/
148 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
149 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
150 static int nsw_wcount_async_max;/* assigned maximum			*/
151 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
152 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
153 
154 struct blist *swapblist;
155 static struct swblock **swhash;
156 static int swhash_mask;
157 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
158 
159 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
160 
161 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
162         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
163 
164 /*
165  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
166  * of searching a named list by hashing it just a little.
167  */
168 
169 #define NOBJLISTS		8
170 
171 #define NOBJLIST(handle)	\
172 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
173 
174 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
175 struct pagerlst		swap_pager_un_object_list;
176 vm_zone_t		swap_zone;
177 
178 /*
179  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
180  * calls hooked from other parts of the VM system and do not appear here.
181  * (see vm/swap_pager.h).
182  */
183 
184 static vm_object_t
185 		swap_pager_alloc (void *handle, vm_ooffset_t size,
186 				      vm_prot_t prot, vm_ooffset_t offset);
187 static void	swap_pager_dealloc (vm_object_t object);
188 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
189 static void	swap_pager_init (void);
190 static void	swap_pager_unswapped (vm_page_t);
191 static void	swap_pager_strategy (vm_object_t, struct buf *);
192 
193 struct pagerops swappagerops = {
194 	swap_pager_init,	/* early system initialization of pager	*/
195 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
196 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
197 	swap_pager_getpages,	/* pagein				*/
198 	swap_pager_putpages,	/* pageout				*/
199 	swap_pager_haspage,	/* get backing store status for page	*/
200 	swap_pager_unswapped,	/* remove swap related to page		*/
201 	swap_pager_strategy	/* pager strategy call			*/
202 };
203 
204 /*
205  * dmmax is in page-sized chunks with the new swap system.  It was
206  * dev-bsized chunks in the old.  dmmax is always a power of 2.
207  *
208  * swap_*() routines are externally accessible.  swp_*() routines are
209  * internal.
210  */
211 
212 int dmmax;
213 static int dmmax_mask;
214 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
215 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
216 
217 static __inline void	swp_sizecheck (void);
218 static void	swp_pager_sync_iodone (struct buf *bp);
219 static void	swp_pager_async_iodone (struct buf *bp);
220 
221 /*
222  * Swap bitmap functions
223  */
224 
225 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
226 static __inline daddr_t	swp_pager_getswapspace (int npages);
227 
228 /*
229  * Metadata functions
230  */
231 
232 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
233 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
234 static void swp_pager_meta_free_all (vm_object_t);
235 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
236 
237 /*
238  * SWP_SIZECHECK() -	update swap_pager_full indication
239  *
240  *	update the swap_pager_almost_full indication and warn when we are
241  *	about to run out of swap space, using lowat/hiwat hysteresis.
242  *
243  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
244  *
245  *	No restrictions on call
246  *	This routine may not block.
247  *	This routine must be called at splvm()
248  */
249 
250 static __inline void
251 swp_sizecheck(void)
252 {
253 	if (vm_swap_size < nswap_lowat) {
254 		if (swap_pager_almost_full == 0) {
255 			printf("swap_pager: out of swap space\n");
256 			swap_pager_almost_full = 1;
257 		}
258 	} else {
259 		swap_pager_full = 0;
260 		if (vm_swap_size > nswap_hiwat)
261 			swap_pager_almost_full = 0;
262 	}
263 }
264 
265 /*
266  * SWAP_PAGER_INIT() -	initialize the swap pager!
267  *
268  *	Expected to be started from system init.  NOTE:  This code is run
269  *	before much else so be careful what you depend on.  Most of the VM
270  *	system has yet to be initialized at this point.
271  */
272 
273 static void
274 swap_pager_init(void)
275 {
276 	/*
277 	 * Initialize object lists
278 	 */
279 	int i;
280 
281 	for (i = 0; i < NOBJLISTS; ++i)
282 		TAILQ_INIT(&swap_pager_object_list[i]);
283 	TAILQ_INIT(&swap_pager_un_object_list);
284 
285 	/*
286 	 * Device Stripe, in PAGE_SIZE'd blocks
287 	 */
288 
289 	dmmax = SWB_NPAGES * 2;
290 	dmmax_mask = ~(dmmax - 1);
291 }
292 
293 /*
294  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
295  *
296  *	Expected to be started from pageout process once, prior to entering
297  *	its main loop.
298  */
299 
300 void
301 swap_pager_swap_init(void)
302 {
303 	int n, n2;
304 
305 	/*
306 	 * Number of in-transit swap bp operations.  Don't
307 	 * exhaust the pbufs completely.  Make sure we
308 	 * initialize workable values (0 will work for hysteresis
309 	 * but it isn't very efficient).
310 	 *
311 	 * The nsw_cluster_max is constrained by the number of pages an XIO
312 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
313 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
314 	 * constrained by the swap device interleave stripe size.
315 	 *
316 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
317 	 * designed to prevent other I/O from having high latencies due to
318 	 * our pageout I/O.  The value 4 works well for one or two active swap
319 	 * devices but is probably a little low if you have more.  Even so,
320 	 * a higher value would probably generate only a limited improvement
321 	 * with three or four active swap devices since the system does not
322 	 * typically have to pageout at extreme bandwidths.   We will want
323 	 * at least 2 per swap devices, and 4 is a pretty good value if you
324 	 * have one NFS swap device due to the command/ack latency over NFS.
325 	 * So it all works out pretty well.
326 	 */
327 
328 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
329 
330 	nsw_rcount = (nswbuf + 1) / 2;
331 	nsw_wcount_sync = (nswbuf + 3) / 4;
332 	nsw_wcount_async = 4;
333 	nsw_wcount_async_max = nsw_wcount_async;
334 
335 	/*
336 	 * Initialize our zone.  Right now I'm just guessing on the number
337 	 * we need based on the number of pages in the system.  Each swblock
338 	 * can hold 16 pages, so this is probably overkill.  This reservation
339 	 * is typically limited to around 32MB by default.
340 	 */
341 	n = vmstats.v_page_count / 2;
342 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
343 		n = maxswzone / sizeof(struct swblock);
344 	n2 = n;
345 
346 	do {
347 		swap_zone = zinit(
348 			"SWAPMETA",
349 			sizeof(struct swblock),
350 			n,
351 			ZONE_INTERRUPT,
352 			1);
353 		if (swap_zone != NULL)
354 			break;
355 		/*
356 		 * if the allocation failed, try a zone two thirds the
357 		 * size of the previous attempt.
358 		 */
359 		n -= ((n + 2) / 3);
360 	} while (n > 0);
361 
362 	if (swap_zone == NULL)
363 		panic("swap_pager_swap_init: swap_zone == NULL");
364 	if (n2 != n)
365 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
366 	n2 = n;
367 
368 	/*
369 	 * Initialize our meta-data hash table.  The swapper does not need to
370 	 * be quite as efficient as the VM system, so we do not use an
371 	 * oversized hash table.
372 	 *
373 	 * 	n: 		size of hash table, must be power of 2
374 	 *	swhash_mask:	hash table index mask
375 	 */
376 
377 	for (n = 1; n < n2 / 8; n *= 2)
378 		;
379 
380 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
381 	bzero(swhash, sizeof(struct swblock *) * n);
382 
383 	swhash_mask = n - 1;
384 }
385 
386 /*
387  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
388  *			its metadata structures.
389  *
390  *	This routine is called from the mmap and fork code to create a new
391  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
392  *	and then converting it with swp_pager_meta_build().
393  *
394  *	This routine may block in vm_object_allocate() and create a named
395  *	object lookup race, so we must interlock.   We must also run at
396  *	splvm() for the object lookup to handle races with interrupts, but
397  *	we do not have to maintain splvm() in between the lookup and the
398  *	add because (I believe) it is not possible to attempt to create
399  *	a new swap object w/handle when a default object with that handle
400  *	already exists.
401  */
402 
403 static vm_object_t
404 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
405 		 vm_ooffset_t offset)
406 {
407 	vm_object_t object;
408 
409 	if (handle) {
410 		/*
411 		 * Reference existing named region or allocate new one.  There
412 		 * should not be a race here against swp_pager_meta_build()
413 		 * as called from vm_page_remove() in regards to the lookup
414 		 * of the handle.
415 		 */
416 
417 		while (sw_alloc_interlock) {
418 			sw_alloc_interlock = -1;
419 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
420 		}
421 		sw_alloc_interlock = 1;
422 
423 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
424 
425 		if (object != NULL) {
426 			vm_object_reference(object);
427 		} else {
428 			object = vm_object_allocate(OBJT_DEFAULT,
429 				OFF_TO_IDX(offset + PAGE_MASK + size));
430 			object->handle = handle;
431 
432 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
433 		}
434 
435 		if (sw_alloc_interlock < 0)
436 			wakeup(&sw_alloc_interlock);
437 
438 		sw_alloc_interlock = 0;
439 	} else {
440 		object = vm_object_allocate(OBJT_DEFAULT,
441 			OFF_TO_IDX(offset + PAGE_MASK + size));
442 
443 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
444 	}
445 
446 	return (object);
447 }
448 
449 /*
450  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
451  *
452  *	The swap backing for the object is destroyed.  The code is
453  *	designed such that we can reinstantiate it later, but this
454  *	routine is typically called only when the entire object is
455  *	about to be destroyed.
456  *
457  *	This routine may block, but no longer does.
458  *
459  *	The object must be locked or unreferenceable.
460  */
461 
462 static void
463 swap_pager_dealloc(vm_object_t object)
464 {
465 	int s;
466 
467 	/*
468 	 * Remove from list right away so lookups will fail if we block for
469 	 * pageout completion.
470 	 */
471 
472 	if (object->handle == NULL) {
473 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
474 	} else {
475 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
476 	}
477 
478 	vm_object_pip_wait(object, "swpdea");
479 
480 	/*
481 	 * Free all remaining metadata.  We only bother to free it from
482 	 * the swap meta data.  We do not attempt to free swapblk's still
483 	 * associated with vm_page_t's for this object.  We do not care
484 	 * if paging is still in progress on some objects.
485 	 */
486 	s = splvm();
487 	swp_pager_meta_free_all(object);
488 	splx(s);
489 }
490 
491 /************************************************************************
492  *			SWAP PAGER BITMAP ROUTINES			*
493  ************************************************************************/
494 
495 /*
496  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
497  *
498  *	Allocate swap for the requested number of pages.  The starting
499  *	swap block number (a page index) is returned or SWAPBLK_NONE
500  *	if the allocation failed.
501  *
502  *	Also has the side effect of advising that somebody made a mistake
503  *	when they configured swap and didn't configure enough.
504  *
505  *	Must be called at splvm() to avoid races with bitmap frees from
506  *	vm_page_remove() aka swap_pager_page_removed().
507  *
508  *	This routine may not block
509  *	This routine must be called at splvm().
510  */
511 
512 static __inline daddr_t
513 swp_pager_getswapspace(int npages)
514 {
515 	daddr_t blk;
516 
517 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
518 		if (swap_pager_full != 2) {
519 			printf("swap_pager_getswapspace: failed\n");
520 			swap_pager_full = 2;
521 			swap_pager_almost_full = 1;
522 		}
523 	} else {
524 		vm_swap_size -= npages;
525 		swp_sizecheck();
526 	}
527 	return(blk);
528 }
529 
530 /*
531  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
532  *
533  *	This routine returns the specified swap blocks back to the bitmap.
534  *
535  *	Note:  This routine may not block (it could in the old swap code),
536  *	and through the use of the new blist routines it does not block.
537  *
538  *	We must be called at splvm() to avoid races with bitmap frees from
539  *	vm_page_remove() aka swap_pager_page_removed().
540  *
541  *	This routine may not block
542  *	This routine must be called at splvm().
543  */
544 
545 static __inline void
546 swp_pager_freeswapspace(daddr_t blk, int npages)
547 {
548 	blist_free(swapblist, blk, npages);
549 	vm_swap_size += npages;
550 	swp_sizecheck();
551 }
552 
553 /*
554  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
555  *				range within an object.
556  *
557  *	This is a globally accessible routine.
558  *
559  *	This routine removes swapblk assignments from swap metadata.
560  *
561  *	The external callers of this routine typically have already destroyed
562  *	or renamed vm_page_t's associated with this range in the object so
563  *	we should be ok.
564  *
565  *	This routine may be called at any spl.  We up our spl to splvm temporarily
566  *	in order to perform the metadata removal.
567  */
568 
569 void
570 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
571 {
572 	int s = splvm();
573 	swp_pager_meta_free(object, start, size);
574 	splx(s);
575 }
576 
577 /*
578  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
579  *
580  *	Assigns swap blocks to the specified range within the object.  The
581  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
582  *
583  *	Returns 0 on success, -1 on failure.
584  */
585 
586 int
587 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
588 {
589 	int s;
590 	int n = 0;
591 	daddr_t blk = SWAPBLK_NONE;
592 	vm_pindex_t beg = start;	/* save start index */
593 
594 	s = splvm();
595 	while (size) {
596 		if (n == 0) {
597 			n = BLIST_MAX_ALLOC;
598 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
599 				n >>= 1;
600 				if (n == 0) {
601 					swp_pager_meta_free(object, beg, start - beg);
602 					splx(s);
603 					return(-1);
604 				}
605 			}
606 		}
607 		swp_pager_meta_build(object, start, blk);
608 		--size;
609 		++start;
610 		++blk;
611 		--n;
612 	}
613 	swp_pager_meta_free(object, start, n);
614 	splx(s);
615 	return(0);
616 }
617 
618 /*
619  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
620  *			and destroy the source.
621  *
622  *	Copy any valid swapblks from the source to the destination.  In
623  *	cases where both the source and destination have a valid swapblk,
624  *	we keep the destination's.
625  *
626  *	This routine is allowed to block.  It may block allocating metadata
627  *	indirectly through swp_pager_meta_build() or if paging is still in
628  *	progress on the source.
629  *
630  *	This routine can be called at any spl
631  *
632  *	XXX vm_page_collapse() kinda expects us not to block because we
633  *	supposedly do not need to allocate memory, but for the moment we
634  *	*may* have to get a little memory from the zone allocator, but
635  *	it is taken from the interrupt memory.  We should be ok.
636  *
637  *	The source object contains no vm_page_t's (which is just as well)
638  *
639  *	The source object is of type OBJT_SWAP.
640  *
641  *	The source and destination objects must be locked or
642  *	inaccessible (XXX are they ?)
643  */
644 
645 void
646 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
647     vm_pindex_t offset, int destroysource)
648 {
649 	vm_pindex_t i;
650 	int s;
651 
652 	s = splvm();
653 
654 	/*
655 	 * If destroysource is set, we remove the source object from the
656 	 * swap_pager internal queue now.
657 	 */
658 
659 	if (destroysource) {
660 		if (srcobject->handle == NULL) {
661 			TAILQ_REMOVE(
662 			    &swap_pager_un_object_list,
663 			    srcobject,
664 			    pager_object_list
665 			);
666 		} else {
667 			TAILQ_REMOVE(
668 			    NOBJLIST(srcobject->handle),
669 			    srcobject,
670 			    pager_object_list
671 			);
672 		}
673 	}
674 
675 	/*
676 	 * transfer source to destination.
677 	 */
678 
679 	for (i = 0; i < dstobject->size; ++i) {
680 		daddr_t dstaddr;
681 
682 		/*
683 		 * Locate (without changing) the swapblk on the destination,
684 		 * unless it is invalid in which case free it silently, or
685 		 * if the destination is a resident page, in which case the
686 		 * source is thrown away.
687 		 */
688 
689 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
690 
691 		if (dstaddr == SWAPBLK_NONE) {
692 			/*
693 			 * Destination has no swapblk and is not resident,
694 			 * copy source.
695 			 */
696 			daddr_t srcaddr;
697 
698 			srcaddr = swp_pager_meta_ctl(
699 			    srcobject,
700 			    i + offset,
701 			    SWM_POP
702 			);
703 
704 			if (srcaddr != SWAPBLK_NONE)
705 				swp_pager_meta_build(dstobject, i, srcaddr);
706 		} else {
707 			/*
708 			 * Destination has valid swapblk or it is represented
709 			 * by a resident page.  We destroy the sourceblock.
710 			 */
711 
712 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
713 		}
714 	}
715 
716 	/*
717 	 * Free left over swap blocks in source.
718 	 *
719 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
720 	 * double-remove the object from the swap queues.
721 	 */
722 
723 	if (destroysource) {
724 		swp_pager_meta_free_all(srcobject);
725 		/*
726 		 * Reverting the type is not necessary, the caller is going
727 		 * to destroy srcobject directly, but I'm doing it here
728 		 * for consistency since we've removed the object from its
729 		 * queues.
730 		 */
731 		srcobject->type = OBJT_DEFAULT;
732 	}
733 	splx(s);
734 }
735 
736 /*
737  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
738  *				the requested page.
739  *
740  *	We determine whether good backing store exists for the requested
741  *	page and return TRUE if it does, FALSE if it doesn't.
742  *
743  *	If TRUE, we also try to determine how much valid, contiguous backing
744  *	store exists before and after the requested page within a reasonable
745  *	distance.  We do not try to restrict it to the swap device stripe
746  *	(that is handled in getpages/putpages).  It probably isn't worth
747  *	doing here.
748  */
749 
750 boolean_t
751 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
752     int *after)
753 {
754 	daddr_t blk0;
755 	int s;
756 
757 	/*
758 	 * do we have good backing store at the requested index ?
759 	 */
760 
761 	s = splvm();
762 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
763 
764 	if (blk0 == SWAPBLK_NONE) {
765 		splx(s);
766 		if (before)
767 			*before = 0;
768 		if (after)
769 			*after = 0;
770 		return (FALSE);
771 	}
772 
773 	/*
774 	 * find backwards-looking contiguous good backing store
775 	 */
776 
777 	if (before != NULL) {
778 		int i;
779 
780 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
781 			daddr_t blk;
782 
783 			if (i > pindex)
784 				break;
785 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
786 			if (blk != blk0 - i)
787 				break;
788 		}
789 		*before = (i - 1);
790 	}
791 
792 	/*
793 	 * find forward-looking contiguous good backing store
794 	 */
795 
796 	if (after != NULL) {
797 		int i;
798 
799 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
800 			daddr_t blk;
801 
802 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
803 			if (blk != blk0 + i)
804 				break;
805 		}
806 		*after = (i - 1);
807 	}
808 	splx(s);
809 	return (TRUE);
810 }
811 
812 /*
813  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
814  *
815  *	This removes any associated swap backing store, whether valid or
816  *	not, from the page.
817  *
818  *	This routine is typically called when a page is made dirty, at
819  *	which point any associated swap can be freed.  MADV_FREE also
820  *	calls us in a special-case situation
821  *
822  *	NOTE!!!  If the page is clean and the swap was valid, the caller
823  *	should make the page dirty before calling this routine.  This routine
824  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
825  *	depends on it.
826  *
827  *	This routine may not block
828  *	This routine must be called at splvm()
829  */
830 
831 static void
832 swap_pager_unswapped(vm_page_t m)
833 {
834 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
835 }
836 
837 /*
838  * SWAP_PAGER_STRATEGY() - read, write, free blocks
839  *
840  *	This implements the vm_pager_strategy() interface to swap and allows
841  *	other parts of the system to directly access swap as backing store
842  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
843  *	cacheless interface ( i.e. caching occurs at higher levels ).
844  *	Therefore we do not maintain any resident pages.  All I/O goes
845  *	directly to and from the swap device.
846  *
847  *	Note that b_blkno is scaled for PAGE_SIZE
848  *
849  *	We currently attempt to run I/O synchronously or asynchronously as
850  *	the caller requests.  This isn't perfect because we loose error
851  *	sequencing when we run multiple ops in parallel to satisfy a request.
852  *	But this is swap, so we let it all hang out.
853  */
854 
855 static void
856 swap_pager_strategy(vm_object_t object, struct buf *bp)
857 {
858 	vm_pindex_t start;
859 	int count;
860 	int s;
861 	char *data;
862 	struct buf *nbp = NULL;
863 
864 	if (bp->b_bcount & PAGE_MASK) {
865 		bp->b_error = EINVAL;
866 		bp->b_flags |= B_ERROR | B_INVAL;
867 		biodone(bp);
868 		printf("swap_pager_strategy: bp %p b_vp %p blk %d size %d, not page bounded\n", bp, bp->b_vp, (int)bp->b_pblkno, (int)bp->b_bcount);
869 		return;
870 	}
871 
872 	/*
873 	 * Clear error indication, initialize page index, count, data pointer.
874 	 */
875 
876 	bp->b_error = 0;
877 	bp->b_flags &= ~B_ERROR;
878 	bp->b_resid = bp->b_bcount;
879 
880 	start = bp->b_pblkno;
881 	count = howmany(bp->b_bcount, PAGE_SIZE);
882 	data = bp->b_data;
883 
884 	s = splvm();
885 
886 	/*
887 	 * Deal with B_FREEBUF
888 	 */
889 
890 	if (bp->b_flags & B_FREEBUF) {
891 		/*
892 		 * FREE PAGE(s) - destroy underlying swap that is no longer
893 		 *		  needed.
894 		 */
895 		swp_pager_meta_free(object, start, count);
896 		splx(s);
897 		bp->b_resid = 0;
898 		biodone(bp);
899 		return;
900 	}
901 
902 	/*
903 	 * Execute read or write
904 	 */
905 
906 	while (count > 0) {
907 		daddr_t blk;
908 
909 		/*
910 		 * Obtain block.  If block not found and writing, allocate a
911 		 * new block and build it into the object.
912 		 */
913 
914 		blk = swp_pager_meta_ctl(object, start, 0);
915 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
916 			blk = swp_pager_getswapspace(1);
917 			if (blk == SWAPBLK_NONE) {
918 				bp->b_error = ENOMEM;
919 				bp->b_flags |= B_ERROR;
920 				break;
921 			}
922 			swp_pager_meta_build(object, start, blk);
923 		}
924 
925 		/*
926 		 * Do we have to flush our current collection?  Yes if:
927 		 *
928 		 *	- no swap block at this index
929 		 *	- swap block is not contiguous
930 		 *	- we cross a physical disk boundry in the
931 		 *	  stripe.
932 		 */
933 
934 		if (
935 		    nbp && (nbp->b_blkno + btoc(nbp->b_bcount) != blk ||
936 		     ((nbp->b_blkno ^ blk) & dmmax_mask)
937 		    )
938 		) {
939 			splx(s);
940 			if (bp->b_flags & B_READ) {
941 				++mycpu->gd_cnt.v_swapin;
942 				mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
943 			} else {
944 				++mycpu->gd_cnt.v_swapout;
945 				mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
946 				nbp->b_dirtyend = nbp->b_bcount;
947 			}
948 			flushchainbuf(nbp);
949 			s = splvm();
950 			nbp = NULL;
951 		}
952 
953 		/*
954 		 * Add new swapblk to nbp, instantiating nbp if necessary.
955 		 * Zero-fill reads are able to take a shortcut.
956 		 */
957 
958 		if (blk == SWAPBLK_NONE) {
959 			/*
960 			 * We can only get here if we are reading.  Since
961 			 * we are at splvm() we can safely modify b_resid,
962 			 * even if chain ops are in progress.
963 			 */
964 			bzero(data, PAGE_SIZE);
965 			bp->b_resid -= PAGE_SIZE;
966 		} else {
967 			if (nbp == NULL) {
968 				nbp = getchainbuf(bp, swapdev_vp, (bp->b_flags & B_READ) | B_ASYNC);
969 				nbp->b_blkno = blk;
970 				nbp->b_bcount = 0;
971 				nbp->b_data = data;
972 			}
973 			nbp->b_bcount += PAGE_SIZE;
974 		}
975 		--count;
976 		++start;
977 		data += PAGE_SIZE;
978 	}
979 
980 	/*
981 	 *  Flush out last buffer
982 	 */
983 
984 	splx(s);
985 
986 	if (nbp) {
987 		if ((bp->b_flags & B_ASYNC) == 0)
988 			nbp->b_flags &= ~B_ASYNC;
989 		if (nbp->b_flags & B_READ) {
990 			++mycpu->gd_cnt.v_swapin;
991 			mycpu->gd_cnt.v_swappgsin += btoc(nbp->b_bcount);
992 		} else {
993 			++mycpu->gd_cnt.v_swapout;
994 			mycpu->gd_cnt.v_swappgsout += btoc(nbp->b_bcount);
995 			nbp->b_dirtyend = nbp->b_bcount;
996 		}
997 		flushchainbuf(nbp);
998 		/* nbp = NULL; */
999 	}
1000 
1001 	/*
1002 	 * Wait for completion.
1003 	 */
1004 
1005 	if (bp->b_flags & B_ASYNC) {
1006 		autochaindone(bp);
1007 	} else {
1008 		waitchainbuf(bp, 0, 1);
1009 	}
1010 }
1011 
1012 /*
1013  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1014  *
1015  *	Attempt to retrieve (m, count) pages from backing store, but make
1016  *	sure we retrieve at least m[reqpage].  We try to load in as large
1017  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1018  *	belongs to the same object.
1019  *
1020  *	The code is designed for asynchronous operation and
1021  *	immediate-notification of 'reqpage' but tends not to be
1022  *	used that way.  Please do not optimize-out this algorithmic
1023  *	feature, I intend to improve on it in the future.
1024  *
1025  *	The parent has a single vm_object_pip_add() reference prior to
1026  *	calling us and we should return with the same.
1027  *
1028  *	The parent has BUSY'd the pages.  We should return with 'm'
1029  *	left busy, but the others adjusted.
1030  */
1031 
1032 static int
1033 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1034 {
1035 	struct buf *bp;
1036 	vm_page_t mreq;
1037 	int s;
1038 	int i;
1039 	int j;
1040 	daddr_t blk;
1041 	vm_offset_t kva;
1042 	vm_pindex_t lastpindex;
1043 
1044 	mreq = m[reqpage];
1045 
1046 	if (mreq->object != object) {
1047 		panic("swap_pager_getpages: object mismatch %p/%p",
1048 		    object,
1049 		    mreq->object
1050 		);
1051 	}
1052 	/*
1053 	 * Calculate range to retrieve.  The pages have already been assigned
1054 	 * their swapblks.  We require a *contiguous* range that falls entirely
1055 	 * within a single device stripe.   If we do not supply it, bad things
1056 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1057 	 * loops are set up such that the case(s) are handled implicitly.
1058 	 *
1059 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1060 	 * not need to be, but it will go a little faster if it is.
1061 	 */
1062 
1063 	s = splvm();
1064 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1065 
1066 	for (i = reqpage - 1; i >= 0; --i) {
1067 		daddr_t iblk;
1068 
1069 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1070 		if (blk != iblk + (reqpage - i))
1071 			break;
1072 		if ((blk ^ iblk) & dmmax_mask)
1073 			break;
1074 	}
1075 	++i;
1076 
1077 	for (j = reqpage + 1; j < count; ++j) {
1078 		daddr_t jblk;
1079 
1080 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1081 		if (blk != jblk - (j - reqpage))
1082 			break;
1083 		if ((blk ^ jblk) & dmmax_mask)
1084 			break;
1085 	}
1086 
1087 	/*
1088 	 * free pages outside our collection range.   Note: we never free
1089 	 * mreq, it must remain busy throughout.
1090 	 */
1091 
1092 	{
1093 		int k;
1094 
1095 		for (k = 0; k < i; ++k)
1096 			vm_page_free(m[k]);
1097 		for (k = j; k < count; ++k)
1098 			vm_page_free(m[k]);
1099 	}
1100 	splx(s);
1101 
1102 
1103 	/*
1104 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1105 	 * still busy, but the others unbusied.
1106 	 */
1107 
1108 	if (blk == SWAPBLK_NONE)
1109 		return(VM_PAGER_FAIL);
1110 
1111 	/*
1112 	 * Get a swap buffer header to perform the IO
1113 	 */
1114 
1115 	bp = getpbuf(&nsw_rcount);
1116 	kva = (vm_offset_t) bp->b_data;
1117 
1118 	/*
1119 	 * map our page(s) into kva for input
1120 	 *
1121 	 * NOTE: B_PAGING is set by pbgetvp()
1122 	 */
1123 
1124 	pmap_qenter(kva, m + i, j - i);
1125 
1126 	bp->b_flags = B_READ | B_CALL;
1127 	bp->b_iodone = swp_pager_async_iodone;
1128 	bp->b_data = (caddr_t) kva;
1129 	bp->b_blkno = blk - (reqpage - i);
1130 	bp->b_bcount = PAGE_SIZE * (j - i);
1131 	bp->b_bufsize = PAGE_SIZE * (j - i);
1132 	bp->b_pager.pg_reqpage = reqpage - i;
1133 
1134 	{
1135 		int k;
1136 
1137 		for (k = i; k < j; ++k) {
1138 			bp->b_xio.xio_pages[k - i] = m[k];
1139 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1140 		}
1141 	}
1142 	bp->b_xio.xio_npages = j - i;
1143 
1144 	pbgetvp(swapdev_vp, bp);
1145 
1146 	mycpu->gd_cnt.v_swapin++;
1147 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1148 
1149 	/*
1150 	 * We still hold the lock on mreq, and our automatic completion routine
1151 	 * does not remove it.
1152 	 */
1153 
1154 	vm_object_pip_add(mreq->object, bp->b_xio.xio_npages);
1155 	lastpindex = m[j-1]->pindex;
1156 
1157 	/*
1158 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1159 	 * this point because we automatically release it on completion.
1160 	 * Instead, we look at the one page we are interested in which we
1161 	 * still hold a lock on even through the I/O completion.
1162 	 *
1163 	 * The other pages in our m[] array are also released on completion,
1164 	 * so we cannot assume they are valid anymore either.
1165 	 *
1166 	 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1167 	 */
1168 
1169 	BUF_KERNPROC(bp);
1170 	VOP_STRATEGY(bp->b_vp, bp);
1171 
1172 	/*
1173 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1174 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1175 	 * is set in the meta-data.
1176 	 */
1177 
1178 	s = splvm();
1179 
1180 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1181 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1182 		mycpu->gd_cnt.v_intrans++;
1183 		if (tsleep(mreq, 0, "swread", hz*20)) {
1184 			printf(
1185 			    "swap_pager: indefinite wait buffer: device:"
1186 				" %s, blkno: %ld, size: %ld\n",
1187 			    devtoname(bp->b_dev), (long)bp->b_blkno,
1188 			    bp->b_bcount
1189 			);
1190 		}
1191 	}
1192 
1193 	splx(s);
1194 
1195 	/*
1196 	 * mreq is left bussied after completion, but all the other pages
1197 	 * are freed.  If we had an unrecoverable read error the page will
1198 	 * not be valid.
1199 	 */
1200 
1201 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1202 		return(VM_PAGER_ERROR);
1203 	} else {
1204 		return(VM_PAGER_OK);
1205 	}
1206 
1207 	/*
1208 	 * A final note: in a low swap situation, we cannot deallocate swap
1209 	 * and mark a page dirty here because the caller is likely to mark
1210 	 * the page clean when we return, causing the page to possibly revert
1211 	 * to all-zero's later.
1212 	 */
1213 }
1214 
1215 /*
1216  *	swap_pager_putpages:
1217  *
1218  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1219  *
1220  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1221  *	are automatically converted to SWAP objects.
1222  *
1223  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1224  *	vm_page reservation system coupled with properly written VFS devices
1225  *	should ensure that no low-memory deadlock occurs.  This is an area
1226  *	which needs work.
1227  *
1228  *	The parent has N vm_object_pip_add() references prior to
1229  *	calling us and will remove references for rtvals[] that are
1230  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1231  *	completion.
1232  *
1233  *	The parent has soft-busy'd the pages it passes us and will unbusy
1234  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1235  *	We need to unbusy the rest on I/O completion.
1236  */
1237 
1238 void
1239 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, boolean_t sync,
1240     int *rtvals)
1241 {
1242 	int i;
1243 	int n = 0;
1244 
1245 	if (count && m[0]->object != object) {
1246 		panic("swap_pager_getpages: object mismatch %p/%p",
1247 		    object,
1248 		    m[0]->object
1249 		);
1250 	}
1251 	/*
1252 	 * Step 1
1253 	 *
1254 	 * Turn object into OBJT_SWAP
1255 	 * check for bogus sysops
1256 	 * force sync if not pageout process
1257 	 */
1258 
1259 	if (object->type != OBJT_SWAP)
1260 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1261 
1262 	if (curthread != pagethread)
1263 		sync = TRUE;
1264 
1265 	/*
1266 	 * Step 2
1267 	 *
1268 	 * Update nsw parameters from swap_async_max sysctl values.
1269 	 * Do not let the sysop crash the machine with bogus numbers.
1270 	 */
1271 
1272 	if (swap_async_max != nsw_wcount_async_max) {
1273 		int n;
1274 		int s;
1275 
1276 		/*
1277 		 * limit range
1278 		 */
1279 		if ((n = swap_async_max) > nswbuf / 2)
1280 			n = nswbuf / 2;
1281 		if (n < 1)
1282 			n = 1;
1283 		swap_async_max = n;
1284 
1285 		/*
1286 		 * Adjust difference ( if possible ).  If the current async
1287 		 * count is too low, we may not be able to make the adjustment
1288 		 * at this time.
1289 		 */
1290 		s = splvm();
1291 		n -= nsw_wcount_async_max;
1292 		if (nsw_wcount_async + n >= 0) {
1293 			nsw_wcount_async += n;
1294 			nsw_wcount_async_max += n;
1295 			wakeup(&nsw_wcount_async);
1296 		}
1297 		splx(s);
1298 	}
1299 
1300 	/*
1301 	 * Step 3
1302 	 *
1303 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1304 	 * The page is left dirty until the pageout operation completes
1305 	 * successfully.
1306 	 */
1307 
1308 	for (i = 0; i < count; i += n) {
1309 		int s;
1310 		int j;
1311 		struct buf *bp;
1312 		daddr_t blk;
1313 
1314 		/*
1315 		 * Maximum I/O size is limited by a number of factors.
1316 		 */
1317 
1318 		n = min(BLIST_MAX_ALLOC, count - i);
1319 		n = min(n, nsw_cluster_max);
1320 
1321 		s = splvm();
1322 
1323 		/*
1324 		 * Get biggest block of swap we can.  If we fail, fall
1325 		 * back and try to allocate a smaller block.  Don't go
1326 		 * overboard trying to allocate space if it would overly
1327 		 * fragment swap.
1328 		 */
1329 		while (
1330 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1331 		    n > 4
1332 		) {
1333 			n >>= 1;
1334 		}
1335 		if (blk == SWAPBLK_NONE) {
1336 			for (j = 0; j < n; ++j)
1337 				rtvals[i+j] = VM_PAGER_FAIL;
1338 			splx(s);
1339 			continue;
1340 		}
1341 
1342 		/*
1343 		 * The I/O we are constructing cannot cross a physical
1344 		 * disk boundry in the swap stripe.  Note: we are still
1345 		 * at splvm().
1346 		 */
1347 		if ((blk ^ (blk + n)) & dmmax_mask) {
1348 			j = ((blk + dmmax) & dmmax_mask) - blk;
1349 			swp_pager_freeswapspace(blk + j, n - j);
1350 			n = j;
1351 		}
1352 
1353 		/*
1354 		 * All I/O parameters have been satisfied, build the I/O
1355 		 * request and assign the swap space.
1356 		 *
1357 		 * NOTE: B_PAGING is set by pbgetvp()
1358 		 */
1359 
1360 		if (sync == TRUE) {
1361 			bp = getpbuf(&nsw_wcount_sync);
1362 			bp->b_flags = B_CALL;
1363 		} else {
1364 			bp = getpbuf(&nsw_wcount_async);
1365 			bp->b_flags = B_CALL | B_ASYNC;
1366 		}
1367 		bp->b_spc = NULL;	/* not used, but NULL-out anyway */
1368 
1369 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1370 
1371 		bp->b_bcount = PAGE_SIZE * n;
1372 		bp->b_bufsize = PAGE_SIZE * n;
1373 		bp->b_blkno = blk;
1374 
1375 		pbgetvp(swapdev_vp, bp);
1376 
1377 		for (j = 0; j < n; ++j) {
1378 			vm_page_t mreq = m[i+j];
1379 
1380 			swp_pager_meta_build(
1381 			    mreq->object,
1382 			    mreq->pindex,
1383 			    blk + j
1384 			);
1385 			vm_page_dirty(mreq);
1386 			rtvals[i+j] = VM_PAGER_OK;
1387 
1388 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1389 			bp->b_xio.xio_pages[j] = mreq;
1390 		}
1391 		bp->b_xio.xio_npages = n;
1392 		/*
1393 		 * Must set dirty range for NFS to work.
1394 		 */
1395 		bp->b_dirtyoff = 0;
1396 		bp->b_dirtyend = bp->b_bcount;
1397 
1398 		mycpu->gd_cnt.v_swapout++;
1399 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1400 		swapdev_vp->v_numoutput++;
1401 
1402 		splx(s);
1403 
1404 		/*
1405 		 * asynchronous
1406 		 *
1407 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1408 		 */
1409 
1410 		if (sync == FALSE) {
1411 			bp->b_iodone = swp_pager_async_iodone;
1412 			BUF_KERNPROC(bp);
1413 			VOP_STRATEGY(bp->b_vp, bp);
1414 
1415 			for (j = 0; j < n; ++j)
1416 				rtvals[i+j] = VM_PAGER_PEND;
1417 			continue;
1418 		}
1419 
1420 		/*
1421 		 * synchronous
1422 		 *
1423 		 * NOTE: b_blkno is destroyed by the call to VOP_STRATEGY
1424 		 */
1425 
1426 		bp->b_iodone = swp_pager_sync_iodone;
1427 		VOP_STRATEGY(bp->b_vp, bp);
1428 
1429 		/*
1430 		 * Wait for the sync I/O to complete, then update rtvals.
1431 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1432 		 * our async completion routine at the end, thus avoiding a
1433 		 * double-free.
1434 		 */
1435 		s = splbio();
1436 
1437 		while ((bp->b_flags & B_DONE) == 0) {
1438 			tsleep(bp, 0, "swwrt", 0);
1439 		}
1440 
1441 		for (j = 0; j < n; ++j)
1442 			rtvals[i+j] = VM_PAGER_PEND;
1443 
1444 		/*
1445 		 * Now that we are through with the bp, we can call the
1446 		 * normal async completion, which frees everything up.
1447 		 */
1448 
1449 		swp_pager_async_iodone(bp);
1450 
1451 		splx(s);
1452 	}
1453 }
1454 
1455 /*
1456  *	swap_pager_sync_iodone:
1457  *
1458  *	Completion routine for synchronous reads and writes from/to swap.
1459  *	We just mark the bp is complete and wake up anyone waiting on it.
1460  *
1461  *	This routine may not block.  This routine is called at splbio() or better.
1462  */
1463 
1464 static void
1465 swp_pager_sync_iodone(struct buf *bp)
1466 {
1467 	bp->b_flags |= B_DONE;
1468 	bp->b_flags &= ~B_ASYNC;
1469 	wakeup(bp);
1470 }
1471 
1472 /*
1473  *	swp_pager_async_iodone:
1474  *
1475  *	Completion routine for asynchronous reads and writes from/to swap.
1476  *	Also called manually by synchronous code to finish up a bp.
1477  *
1478  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1479  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1480  *	unbusy all pages except the 'main' request page.  For WRITE
1481  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1482  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1483  *
1484  *	This routine may not block.
1485  *	This routine is called at splbio() or better
1486  *
1487  *	We up ourselves to splvm() as required for various vm_page related
1488  *	calls.
1489  */
1490 
1491 static void
1492 swp_pager_async_iodone(struct buf *bp)
1493 {
1494 	int s;
1495 	int i;
1496 	vm_object_t object = NULL;
1497 
1498 	bp->b_flags |= B_DONE;
1499 
1500 	/*
1501 	 * report error
1502 	 */
1503 
1504 	if (bp->b_flags & B_ERROR) {
1505 		printf(
1506 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1507 			"size %ld, error %d\n",
1508 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1509 		    (long)bp->b_blkno,
1510 		    (long)bp->b_bcount,
1511 		    bp->b_error
1512 		);
1513 	}
1514 
1515 	/*
1516 	 * set object, raise to splvm().
1517 	 */
1518 
1519 	if (bp->b_xio.xio_npages)
1520 		object = bp->b_xio.xio_pages[0]->object;
1521 	s = splvm();
1522 
1523 	/*
1524 	 * remove the mapping for kernel virtual
1525 	 */
1526 
1527 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1528 
1529 	/*
1530 	 * cleanup pages.  If an error occurs writing to swap, we are in
1531 	 * very serious trouble.  If it happens to be a disk error, though,
1532 	 * we may be able to recover by reassigning the swap later on.  So
1533 	 * in this case we remove the m->swapblk assignment for the page
1534 	 * but do not free it in the rlist.  The errornous block(s) are thus
1535 	 * never reallocated as swap.  Redirty the page and continue.
1536 	 */
1537 
1538 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1539 		vm_page_t m = bp->b_xio.xio_pages[i];
1540 
1541 		vm_page_flag_clear(m, PG_SWAPINPROG);
1542 
1543 		if (bp->b_flags & B_ERROR) {
1544 			/*
1545 			 * If an error occurs I'd love to throw the swapblk
1546 			 * away without freeing it back to swapspace, so it
1547 			 * can never be used again.  But I can't from an
1548 			 * interrupt.
1549 			 */
1550 
1551 			if (bp->b_flags & B_READ) {
1552 				/*
1553 				 * When reading, reqpage needs to stay
1554 				 * locked for the parent, but all other
1555 				 * pages can be freed.  We still want to
1556 				 * wakeup the parent waiting on the page,
1557 				 * though.  ( also: pg_reqpage can be -1 and
1558 				 * not match anything ).
1559 				 *
1560 				 * We have to wake specifically requested pages
1561 				 * up too because we cleared PG_SWAPINPROG and
1562 				 * someone may be waiting for that.
1563 				 *
1564 				 * NOTE: for reads, m->dirty will probably
1565 				 * be overridden by the original caller of
1566 				 * getpages so don't play cute tricks here.
1567 				 *
1568 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1569 				 * AS THIS MESSES WITH object->memq, and it is
1570 				 * not legal to mess with object->memq from an
1571 				 * interrupt.
1572 				 */
1573 
1574 				m->valid = 0;
1575 				vm_page_flag_clear(m, PG_ZERO);
1576 
1577 				if (i != bp->b_pager.pg_reqpage)
1578 					vm_page_free(m);
1579 				else
1580 					vm_page_flash(m);
1581 				/*
1582 				 * If i == bp->b_pager.pg_reqpage, do not wake
1583 				 * the page up.  The caller needs to.
1584 				 */
1585 			} else {
1586 				/*
1587 				 * If a write error occurs, reactivate page
1588 				 * so it doesn't clog the inactive list,
1589 				 * then finish the I/O.
1590 				 */
1591 				vm_page_dirty(m);
1592 				vm_page_activate(m);
1593 				vm_page_io_finish(m);
1594 			}
1595 		} else if (bp->b_flags & B_READ) {
1596 			/*
1597 			 * For read success, clear dirty bits.  Nobody should
1598 			 * have this page mapped but don't take any chances,
1599 			 * make sure the pmap modify bits are also cleared.
1600 			 *
1601 			 * NOTE: for reads, m->dirty will probably be
1602 			 * overridden by the original caller of getpages so
1603 			 * we cannot set them in order to free the underlying
1604 			 * swap in a low-swap situation.  I don't think we'd
1605 			 * want to do that anyway, but it was an optimization
1606 			 * that existed in the old swapper for a time before
1607 			 * it got ripped out due to precisely this problem.
1608 			 *
1609 			 * clear PG_ZERO in page.
1610 			 *
1611 			 * If not the requested page then deactivate it.
1612 			 *
1613 			 * Note that the requested page, reqpage, is left
1614 			 * busied, but we still have to wake it up.  The
1615 			 * other pages are released (unbusied) by
1616 			 * vm_page_wakeup().  We do not set reqpage's
1617 			 * valid bits here, it is up to the caller.
1618 			 */
1619 
1620 			pmap_clear_modify(m);
1621 			m->valid = VM_PAGE_BITS_ALL;
1622 			vm_page_undirty(m);
1623 			vm_page_flag_clear(m, PG_ZERO);
1624 
1625 			/*
1626 			 * We have to wake specifically requested pages
1627 			 * up too because we cleared PG_SWAPINPROG and
1628 			 * could be waiting for it in getpages.  However,
1629 			 * be sure to not unbusy getpages specifically
1630 			 * requested page - getpages expects it to be
1631 			 * left busy.
1632 			 */
1633 			if (i != bp->b_pager.pg_reqpage) {
1634 				vm_page_deactivate(m);
1635 				vm_page_wakeup(m);
1636 			} else {
1637 				vm_page_flash(m);
1638 			}
1639 		} else {
1640 			/*
1641 			 * For write success, clear the modify and dirty
1642 			 * status, then finish the I/O ( which decrements the
1643 			 * busy count and possibly wakes waiter's up ).
1644 			 */
1645 			pmap_clear_modify(m);
1646 			vm_page_undirty(m);
1647 			vm_page_io_finish(m);
1648 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1649 				vm_page_protect(m, VM_PROT_READ);
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * adjust pip.  NOTE: the original parent may still have its own
1655 	 * pip refs on the object.
1656 	 */
1657 
1658 	if (object)
1659 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1660 
1661 	/*
1662 	 * release the physical I/O buffer
1663 	 */
1664 
1665 	relpbuf(
1666 	    bp,
1667 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1668 		((bp->b_flags & B_ASYNC) ?
1669 		    &nsw_wcount_async :
1670 		    &nsw_wcount_sync
1671 		)
1672 	    )
1673 	);
1674 	splx(s);
1675 }
1676 
1677 /************************************************************************
1678  *				SWAP META DATA 				*
1679  ************************************************************************
1680  *
1681  *	These routines manipulate the swap metadata stored in the
1682  *	OBJT_SWAP object.  All swp_*() routines must be called at
1683  *	splvm() because swap can be freed up by the low level vm_page
1684  *	code which might be called from interrupts beyond what splbio() covers.
1685  *
1686  *	Swap metadata is implemented with a global hash and not directly
1687  *	linked into the object.  Instead the object simply contains
1688  *	appropriate tracking counters.
1689  */
1690 
1691 /*
1692  * SWP_PAGER_HASH() -	hash swap meta data
1693  *
1694  *	This is an inline helper function which hashes the swapblk given
1695  *	the object and page index.  It returns a pointer to a pointer
1696  *	to the object, or a pointer to a NULL pointer if it could not
1697  *	find a swapblk.
1698  *
1699  *	This routine must be called at splvm().
1700  */
1701 
1702 static __inline struct swblock **
1703 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1704 {
1705 	struct swblock **pswap;
1706 	struct swblock *swap;
1707 
1708 	index &= ~SWAP_META_MASK;
1709 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1710 
1711 	while ((swap = *pswap) != NULL) {
1712 		if (swap->swb_object == object &&
1713 		    swap->swb_index == index
1714 		) {
1715 			break;
1716 		}
1717 		pswap = &swap->swb_hnext;
1718 	}
1719 	return(pswap);
1720 }
1721 
1722 /*
1723  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1724  *
1725  *	We first convert the object to a swap object if it is a default
1726  *	object.
1727  *
1728  *	The specified swapblk is added to the object's swap metadata.  If
1729  *	the swapblk is not valid, it is freed instead.  Any previously
1730  *	assigned swapblk is freed.
1731  *
1732  *	This routine must be called at splvm(), except when used to convert
1733  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1734 
1735  */
1736 
1737 static void
1738 swp_pager_meta_build(
1739 	vm_object_t object,
1740 	vm_pindex_t index,
1741 	daddr_t swapblk
1742 ) {
1743 	struct swblock *swap;
1744 	struct swblock **pswap;
1745 
1746 	/*
1747 	 * Convert default object to swap object if necessary
1748 	 */
1749 
1750 	if (object->type != OBJT_SWAP) {
1751 		object->type = OBJT_SWAP;
1752 		object->un_pager.swp.swp_bcount = 0;
1753 
1754 		if (object->handle != NULL) {
1755 			TAILQ_INSERT_TAIL(
1756 			    NOBJLIST(object->handle),
1757 			    object,
1758 			    pager_object_list
1759 			);
1760 		} else {
1761 			TAILQ_INSERT_TAIL(
1762 			    &swap_pager_un_object_list,
1763 			    object,
1764 			    pager_object_list
1765 			);
1766 		}
1767 	}
1768 
1769 	/*
1770 	 * Locate hash entry.  If not found create, but if we aren't adding
1771 	 * anything just return.  If we run out of space in the map we wait
1772 	 * and, since the hash table may have changed, retry.
1773 	 */
1774 
1775 retry:
1776 	pswap = swp_pager_hash(object, index);
1777 
1778 	if ((swap = *pswap) == NULL) {
1779 		int i;
1780 
1781 		if (swapblk == SWAPBLK_NONE)
1782 			return;
1783 
1784 		swap = *pswap = zalloc(swap_zone);
1785 		if (swap == NULL) {
1786 			vm_wait();
1787 			goto retry;
1788 		}
1789 		swap->swb_hnext = NULL;
1790 		swap->swb_object = object;
1791 		swap->swb_index = index & ~SWAP_META_MASK;
1792 		swap->swb_count = 0;
1793 
1794 		++object->un_pager.swp.swp_bcount;
1795 
1796 		for (i = 0; i < SWAP_META_PAGES; ++i)
1797 			swap->swb_pages[i] = SWAPBLK_NONE;
1798 	}
1799 
1800 	/*
1801 	 * Delete prior contents of metadata
1802 	 */
1803 
1804 	index &= SWAP_META_MASK;
1805 
1806 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1807 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1808 		--swap->swb_count;
1809 	}
1810 
1811 	/*
1812 	 * Enter block into metadata
1813 	 */
1814 
1815 	swap->swb_pages[index] = swapblk;
1816 	if (swapblk != SWAPBLK_NONE)
1817 		++swap->swb_count;
1818 }
1819 
1820 /*
1821  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1822  *
1823  *	The requested range of blocks is freed, with any associated swap
1824  *	returned to the swap bitmap.
1825  *
1826  *	This routine will free swap metadata structures as they are cleaned
1827  *	out.  This routine does *NOT* operate on swap metadata associated
1828  *	with resident pages.
1829  *
1830  *	This routine must be called at splvm()
1831  */
1832 
1833 static void
1834 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1835 {
1836 	if (object->type != OBJT_SWAP)
1837 		return;
1838 
1839 	while (count > 0) {
1840 		struct swblock **pswap;
1841 		struct swblock *swap;
1842 
1843 		pswap = swp_pager_hash(object, index);
1844 
1845 		if ((swap = *pswap) != NULL) {
1846 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1847 
1848 			if (v != SWAPBLK_NONE) {
1849 				swp_pager_freeswapspace(v, 1);
1850 				swap->swb_pages[index & SWAP_META_MASK] =
1851 					SWAPBLK_NONE;
1852 				if (--swap->swb_count == 0) {
1853 					*pswap = swap->swb_hnext;
1854 					zfree(swap_zone, swap);
1855 					--object->un_pager.swp.swp_bcount;
1856 				}
1857 			}
1858 			--count;
1859 			++index;
1860 		} else {
1861 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1862 			count -= n;
1863 			index += n;
1864 		}
1865 	}
1866 }
1867 
1868 /*
1869  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1870  *
1871  *	This routine locates and destroys all swap metadata associated with
1872  *	an object.
1873  *
1874  *	This routine must be called at splvm()
1875  */
1876 
1877 static void
1878 swp_pager_meta_free_all(vm_object_t object)
1879 {
1880 	daddr_t index = 0;
1881 
1882 	if (object->type != OBJT_SWAP)
1883 		return;
1884 
1885 	while (object->un_pager.swp.swp_bcount) {
1886 		struct swblock **pswap;
1887 		struct swblock *swap;
1888 
1889 		pswap = swp_pager_hash(object, index);
1890 		if ((swap = *pswap) != NULL) {
1891 			int i;
1892 
1893 			for (i = 0; i < SWAP_META_PAGES; ++i) {
1894 				daddr_t v = swap->swb_pages[i];
1895 				if (v != SWAPBLK_NONE) {
1896 					--swap->swb_count;
1897 					swp_pager_freeswapspace(v, 1);
1898 				}
1899 			}
1900 			if (swap->swb_count != 0)
1901 				panic("swap_pager_meta_free_all: swb_count != 0");
1902 			*pswap = swap->swb_hnext;
1903 			zfree(swap_zone, swap);
1904 			--object->un_pager.swp.swp_bcount;
1905 		}
1906 		index += SWAP_META_PAGES;
1907 		if (index > 0x20000000)
1908 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
1909 	}
1910 }
1911 
1912 /*
1913  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
1914  *
1915  *	This routine is capable of looking up, popping, or freeing
1916  *	swapblk assignments in the swap meta data or in the vm_page_t.
1917  *	The routine typically returns the swapblk being looked-up, or popped,
1918  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
1919  *	was invalid.  This routine will automatically free any invalid
1920  *	meta-data swapblks.
1921  *
1922  *	It is not possible to store invalid swapblks in the swap meta data
1923  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
1924  *
1925  *	When acting on a busy resident page and paging is in progress, we
1926  *	have to wait until paging is complete but otherwise can act on the
1927  *	busy page.
1928  *
1929  *	This routine must be called at splvm().
1930  *
1931  *	SWM_FREE	remove and free swap block from metadata
1932  *	SWM_POP		remove from meta data but do not free.. pop it out
1933  */
1934 
1935 static daddr_t
1936 swp_pager_meta_ctl(
1937 	vm_object_t object,
1938 	vm_pindex_t index,
1939 	int flags
1940 ) {
1941 	struct swblock **pswap;
1942 	struct swblock *swap;
1943 	daddr_t r1;
1944 
1945 	/*
1946 	 * The meta data only exists of the object is OBJT_SWAP
1947 	 * and even then might not be allocated yet.
1948 	 */
1949 
1950 	if (object->type != OBJT_SWAP)
1951 		return(SWAPBLK_NONE);
1952 
1953 	r1 = SWAPBLK_NONE;
1954 	pswap = swp_pager_hash(object, index);
1955 
1956 	if ((swap = *pswap) != NULL) {
1957 		index &= SWAP_META_MASK;
1958 		r1 = swap->swb_pages[index];
1959 
1960 		if (r1 != SWAPBLK_NONE) {
1961 			if (flags & SWM_FREE) {
1962 				swp_pager_freeswapspace(r1, 1);
1963 				r1 = SWAPBLK_NONE;
1964 			}
1965 			if (flags & (SWM_FREE|SWM_POP)) {
1966 				swap->swb_pages[index] = SWAPBLK_NONE;
1967 				if (--swap->swb_count == 0) {
1968 					*pswap = swap->swb_hnext;
1969 					zfree(swap_zone, swap);
1970 					--object->un_pager.swp.swp_bcount;
1971 				}
1972 			}
1973 		}
1974 	}
1975 	return(r1);
1976 }
1977